高中数学《锐角三角函数》教学反思.doc
锐角三角函数教学反思
1、狠抓预习习惯。
我国教育家叶圣陶曾说过一句名言:“教育就是培养习惯”。
培养良好的学习习惯是提升教育质量的重要手段,教学实践证明,凡是学得好的同学都有预习的好习惯,用学生的话来说,预习了,上课就像复习,先人一步,一步领先,步步领先。
因此,我们必须狠抓学生的预习习惯。
预习就像数学的运算问题,成败在运算。
2、要转变教学理念,坚持新课程倡导的“自主、合作、探究”的教学模式。
学生的自主体现在预习,预习强调就是独立完成,而在课堂上想方设法创造合作交流的机会,师生互动、生生互动,特别是生生互动,根据教育心理学规律,学生的同伴互助的影响比老师单独教的效果更大。
3、注重发展学生的思维能力①突出重点,突破难点。
本章重、难点之一都是锐角三角函数的概念,是为了突出重点,突破难点,而锐角三角函数又是一种超越函数,是一个抽象的概念,学生不好理解,怎样才能突破这个重难点呢?我们首先先让学生回忆学过哪些函数?什么叫函数?接着我们就设计了三个探究活动,让学生通过计算、探索、归纳、证明,就可以让学生对变量的性质以及变量之间的对应关系有深刻的认识,加深对函数观念的理解,这样的编写方式就是为学生提供了更加广阔的探索空间,开阔思路,进一步发展学生的思维能力,有效地改变学生的学习方式。
②特别注意通法和通解的训练。
由于中考一般把角变成特殊角处理,这样往往会使一些题目出现特殊的解法,如果忽略了一般的解法,那么会防碍了思维能力的发展。
如果我们不注重通法的训练,那么特解会在更多的情况下是解决不了通解的题目,因此,我们可以通过一题多解培养学生思维的广度和深度。
③重视数学思想方法的运用。
爱因斯坦曾说过,“方法是最有价值的知识”,本章有几个十分重要的思想方法是需要强化运用的,比如,转化思想、建构直角三角形的建模思想以及化曲为直的微积分的基本思想等等。
4、注重应用的意识和加强与实际的联系,学以致用。
数学源于生活,是实际的需要。
这章书在前言提出意大利的斜塔问题和后面的铺设水管的长度问题、测量中的仰俯角问题、方向角问题及斜面的坡度问题等等,从不同的角度展示了解直角三角形在实际中的广泛应用,我们必须提高学生的基本知识和基本技能、方法的归纳能力,比如,测量问题的一些专用的术语等等,首先必须准确理解,其次根据题意把实际问题抽象出数学问题,通过解决数学问题得到数学问题的答案,再将数学问题的答案回到实际问题上。
高中数学《锐角三角函数》教学反思
高中数学《锐角三角函数》教学反思引言高中数学的教学中,《锐角三角函数》是一个重要的内容,因为它是学生进一步理解三角函数的基础。
在本文档中,我将对我的教学过程进行反思,从教学目标、教学内容、教学方法和教学评价四个方面进行详细讨论。
教学目标教学目标是教学中至关重要的一环,它直接影响到学生的学习效果和能力提升。
在《锐角三角函数》这个教学内容中,我的教学目标主要包括以下几个方面:1.理解锐角三角函数的定义和性质;2.掌握常用锐角三角函数的数值计算方法;3.运用锐角三角函数解决实际问题;4.培养学生的逻辑思维和数学推理能力。
通过这些教学目标的设定,我希望能够帮助学生全面理解《锐角三角函数》的概念和应用,培养他们的数学分析和解决问题的能力。
教学内容《锐角三角函数》的教学内容主要包括以下几个方面:1.正弦、余弦和正切函数的定义和性质;2.正弦定理和余弦定理的应用;3.锐角三角函数的图像性质和变换;4.锐角三角函数的基本计算方法;5.锐角三角函数在实际问题中的应用。
在教学中,我以教科书为基础,将教学内容进行了适当的删减和整合,使其更易于理解和掌握。
教学方法在教学方法的选择上,我注重培养学生的主动学习和合作学习能力。
我采用了以下几种教学方法:1.讲授法:针对较为抽象的概念和定理,我会进行简明扼要的讲解,并结合具体例子进行说明,以增强学生的理解;2.实例演练:通过一些典型例题的讲解和演示,引导学生掌握解题方法和技巧;3.探究式学习:鼓励学生根据已有的知识进行探究和发现,激发他们的求知欲望,培养他们的问题解决能力;4.小组合作:在一些复杂的问题上,我会将学生分成小组进行合作讨论和解答,促进学生之间的互动和合作。
通过以上的教学方法的选择,我旨在激发学生的主动性和积极性,培养他们的学习兴趣和解决问题的能力。
教学评价教学评价是对教学过程和学习效果的反思和总结,它能够帮助我发现教学中的不足并进行改进。
在《锐角三角函数》的教学中,我主要采用了以下几种评价方式:1.课堂练习:通过在课堂上布置一些练习题,检验学生对所学内容的掌握情况和解题能力;2.小组讨论:在小组合作环节中,我会观察和评价学生之间的合作和互动情况,以及他们对问题的解决思路和方法的理解程度;3.作业和考试:通过作业和考试,我能够全面评价学生对《锐角三角函数》的掌握程度和应用能力。
《锐角三角函数》教学反思
《锐角三角函数》教学反思引言作为一名数学教师,对于《锐角三角函数》这一内容,我深入研究并进行了精心的教学准备。
然而,在实际的授课过程中,我意识到了一些问题和不足之处。
本篇文档旨在对《锐角三角函数》的教学进行反思和总结,以期在今后的教学中更好地帮助学生理解和掌握这一知识点。
教学目标在教学开始之前,我明确了以下教学目标: 1. 学生能够理解锐角三角函数的定义和基本性质; 2. 学生能够灵活运用正弦、余弦和正切的性质求解相关问题; 3. 学生能够解决与锐角三角函数相关的实际问题。
教学方法在教学方法方面,我采取了多种教学手段来帮助学生理解和掌握《锐角三角函数》这一内容。
1. 讲解与演示:通过讲解和演示,向学生介绍了正弦、余弦和正切的定义和基本性质,以及它们在平面直角坐标系中的图像特点。
2. 练习与巩固:通过大量的练习题,让学生熟练掌握正弦、余弦和正切的运算规则和性质,培养他们的计算能力和应用能力。
3. 实例分析:选取一些实际问题,结合锐角三角函数的知识,引导学生将抽象的概念应用到实际情境中,提高学生的问题解决能力。
教学反思尽管在教学过程中采取了多种教学方法,但我意识到还有一些不足之处,需要加以改进。
首先,我发现在讲解和演示过程中,有的学生对于理论知识的接受度并不高。
他们对于定义和性质的理解存在一定困难。
下次我将更注重通过生动的、贴近学生实际的例子来讲解和演示,以激发他们的兴趣和学习积极性。
其次,虽然练习与巩固环节能够提高学生的计算能力和应用能力,但我发现许多学生只是机械地运用公式进行计算,而没有真正理解和应用相关的概念。
我计划在下次教学中,增加一些思考题,让学生进行推理和解释,帮助他们更好地理解数学原理。
最后,对于实例分析这一环节,我觉得自己还不够熟练。
在实际问题的选取和分析上,我需要进一步提升自己的能力。
同时,我也要引导学生主动思考、积极讨论,培养他们的问题解决能力。
结论通过本次教学反思,我意识到在《锐角三角函数》的教学中仍有一些不足之处。
第二十八章锐角三角函数(教案)
一、教学内容
第二十八章锐角三角函数:本章节主要围绕锐角三角函数的定义、性质及图像展开,教学内容包括:
1.锐角三角函数的定义:正弦、余弦、正切的定义及其在直角三角形中的应用。
2.锐角三角函数的性质:正弦、余弦、正切的取值范围及增减性。
3.锐角三角函数的图像:利用坐标轴绘制正弦、余弦、正切函数的图像,并观察其特点。
首先,我发现学生们对于正弦、余弦、正切这三个函数的定义掌握得还不错,但在具体应用时,有些同学还是会混淆。在今后的教学中,我需要多设计一些实际案例,让学生有更多机会将理论知识运用到解决问题中,提高他们的应用能力。
其次,教学难点部分,如锐角三角函数的增减性和图像特点,学生们理解起来有一定难度。在讲解这部分内容时,我应该更加注重引导学生通过观察和思考,自己总结规律。同时,可以借助一些教具或多媒体工具,以更直观的方式展示函数图像的变化,帮助学生突破这个难点。
-难点三:图像绘制中的精确性和细节处理。在绘制锐角三角函数图像时,学生需要准确地表示角度和对应的函数值,同时注意图像的连续性和平滑性。
举例:在绘制正切函数图像时,如何处理90°处的无穷大和不存在的点,以及如何表示其增减趋势。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《锐角三角函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量物体高度或距离的情况?”(如测量旗杆高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索锐角三角函数的奥秘。
1.讨论主题:学生将围绕“锐角三角函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
《锐角三角函数》教案 (省一等奖) 3
锐角三角函数[教学反思]课题锐角三角函数〔3〕授课时间课型新授二次修改意见课时1 授课人科目数学主备教学目标知识与技能⑴: 能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应锐角度数。
⑵: 能熟练计算含有30°、45°、60°角的三角函数的运算式过程与方法能推导特殊角的三角函数值情感态度价值观培养学生的类比能力,通过画图,推导增强他们的学习兴趣教材分析重难点熟记30°、45°、60°角的三角函数值,能熟练计算含有30°、45°、60°角的三角函数的运算式教学设想教法三主互位导学法学法合作探究教具常规教具课堂设计一、目标展示⑴: 能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应锐角度数。
⑵: 能熟练计算含有30°、45°、60°角的三角函数的运算式二、预习检测一个直角三角形中,一个锐角正弦是怎么定义的?一个锐角余弦是怎么定义的?一个锐角正切是怎么定义的?三、质疑探究两块三角尺中有几个不同的锐角?是多少度?你能分别求出这几个锐角的正弦值、余弦值和正切值码?.四、精讲点拨归纳结果30°45°60°siaAcosAtanA例3:求以下各式的值.〔1〕cos260°+sin260°.〔2〕cos45sin45︒︒-tan45°.五、当堂检测1.设α、β均为锐角,且sinα-cosβ=0,那么α+β=_______.2.cos45sin301cos60tan452︒-︒︒+︒的值是_______.3.,等腰△ABC•的腰长为4 3 ,•底为30•°,•那么底边上的高为______,•周长为______.4.在Rt△ABC中,∠C=90°,tanB=52,那么cosA=________.5.sin272°+sin218°的值是〔〕.A.1 B.0 C.12D.32六、作业布置习题28。
《锐角三角函数》教学反思
《锐角三角函数》的教学反思
《锐角三角函数》是九年制义务教育新课程标准九年级第二十八章第一节第一课时的内容。
首先引导学生复习回顾在直角三角形中,两锐角之间的互余关系、各边之间适用于勾股定理逆,且30°角所对边是斜边的一半这一特殊性质,为接下来推导证明提供知识铺垫。
教师引导学生提出猜想,固定角的对边与斜边的比值是一个固定值,引发学生进一步研究执教三角形的兴趣。
自主探究活动中,几个小组根据要求用几何画板作图,测量并计算:第一、二、三、四、五、六组分别对应作出一个含有24°、37°、45°、50°、60°、75°的直角三角形,测量出所画角度的对边与斜边的长度,并求出它们的比值。
测量能说明问题,但并不严谨,证明猜想的过程,教师传授学生对于相似比值的使用,进而得出正弦定理。
巩固练习环节中,学生充分使用勾股定理计算边长,继而求得正弦值,或从逆向思维的方式,使用正弦值解得边长,渗透了数形结合的思想。
遗憾的是,在证明正弦的过程中,学生能够快速理解相似过程,但要从相似比过渡到正弦定理,还有些不适应,暴露出学生对分式方程的性质掌握不全面。
锐角三角函数数学教案
锐角三角函数数学教案标题:锐角三角函数数学教案一、教学目标:1. 理解并掌握正弦、余弦、正切等基本概念。
2. 学会利用直角三角形的边长关系求解三角函数值。
3. 能够运用锐角三角函数解决实际问题。
二、教学内容:1. 锐角三角函数的基本概念- 正弦、余弦、正切的定义- 特殊角的三角函数值2. 锐角三角函数的应用- 利用直角三角形的边长关系求解三角函数值- 利用三角函数解决实际问题三、教学过程:1. 引入新课:- 通过展示一些生活中常见的角度和比例问题,引入锐角三角函数的概念。
2. 讲授新知:- 介绍正弦、余弦、正切的定义,并举例说明。
- 介绍特殊角的三角函数值,并让学生记住这些基本的三角函数值。
3. 巩固练习:- 给出一些简单的直角三角形,让学生计算对应的三角函数值。
4. 拓展应用:- 给出一些实际的问题,让学生尝试使用锐角三角函数来解决。
5. 总结归纳:- 回顾本节课的主要知识点,强调锐角三角函数在实际生活中的应用。
四、教学方法:1. 直观演示法:通过实物或模型直观展示锐角三角函数的概念。
2. 启发引导法:通过提出问题,引导学生思考,激发他们的学习兴趣。
3. 实践操作法:让学生亲自参与实践活动,提高他们解决问题的能力。
五、教学评估:1. 过程评价:观察学生在课堂上的表现,包括他们的参与度、理解程度等。
2. 结果评价:通过作业和测试,检查学生对知识的掌握情况。
六、教学反思:1. 对于学生的反馈进行分析,找出教学中的不足,以便改进。
2. 根据学生的接受程度,调整教学进度和难度。
锐角三角函数教学反思
锐角三角函数教学反思关键信息项:1、教学目标达成情况知识与技能掌握程度数学思维培养效果实际应用能力提升2、教学方法效果评估讲解方式的清晰性实例运用的恰当性互动环节的参与度3、学生学习表现分析学生理解困难点学生的积极性与主动性学生的作业完成质量4、教学内容优化方向重点难点的突出程度内容的深度与广度知识的系统性与连贯性5、教学资源利用情况教材的使用效率多媒体资源的辅助作用课外拓展资料的引入6、自身教学能力提升点教学语言表达的准确性课堂节奏的把控能力应对突发问题的灵活性11 教学目标达成情况111 知识与技能掌握程度在锐角三角函数的教学中,大部分学生能够理解并掌握锐角三角函数的基本概念,如正弦、余弦和正切的定义。
通过课堂练习和课后作业的反馈,多数学生能够准确运用三角函数的定义计算相关角度的函数值。
然而,仍有部分学生在复杂图形中确定直角三角形的对应边时出现错误,导致计算结果不准确。
112 数学思维培养效果在教学过程中,注重引导学生通过观察、分析和推理来解决问题,培养了学生的逻辑思维和抽象思维能力。
例如,在推导三角函数的关系式时,让学生自己动手操作,通过测量和计算来发现规律,提高了学生的探究能力和创新思维。
但在培养学生的逆向思维和多角度思考问题方面还有待加强。
113 实际应用能力提升通过引入实际生活中的案例,如测量建筑物高度、计算山坡坡度等,让学生体会到锐角三角函数在解决实际问题中的重要性。
学生能够运用所学知识解决简单的实际问题,但在处理综合性较强、条件较复杂的实际问题时,还存在一定的困难,需要进一步提高学生将数学知识与实际情境相结合的能力。
12 教学方法效果评估121 讲解方式的清晰性在讲解锐角三角函数的概念和公式时,采用了由浅入深、循序渐进的讲解方式,结合图形和实例进行演示,使抽象的概念变得直观易懂。
但在讲解一些较为复杂的定理推导过程中,语速可能稍快,导致部分学生跟不上节奏,今后应注意讲解的节奏和速度,确保每个学生都能理解。
锐角三角函数(通用8篇)
锐角三角函数(通用8篇)锐角三角函数篇1教学三维目标:一.学问目标:初步了解正弦、余弦、正切概念;能较正确地用siaa、cosa、tana表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能依据这些值说出对应的锐角度数。
二.力量目标:逐步培育同学观看、比较、分析,概括的思维力量。
三.情感目标:提高同学对几何图形美的熟悉。
教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaa、cosa、tana表示正弦,余弦,正切教学程序:一.探究活动1.课本引入问题,再结合特别角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaa= ,cosa= ,tana=3例1.求如图所示的rt ⊿abc中的siaa,cosa,tana的值。
4.同学练习p21练习1,2,3二.探究活动二1.让同学画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°归纳结果30°45°60°siaacosatana2. 求下列各式的值(1)sia 30°+cos30°(2)sia 45°- cos30°(3) +ta60°-tan30°abc三.拓展提高p82例4.(略)1. 如图在⊿abc中,∠a=30°,tanb= ,ac=2 ,求ab四.小结五.作业课本p85-86 2,3,6,7,8,10锐角三角函数篇2一、锐角三角函数正弦和余弦第一課时:正弦和余弦(1)教学目的1,使同学了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素。
2,使同学了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。
锐角三角函数教案与反思
锐角三角函数教案与反思《锐角三角函数教案与反思》这是优秀的教案文章,希望可以对您的学习工作中带来帮助!【教学目标】1、知识技能:初步了解锐角三角函数的意义,初步理解在直角三角形中一个锐角的对边与斜边的比值就是这个锐角的正弦的定义,并会根据已知直角三角形的边长求一个锐角的正弦值。
2、数学思考:在体验探求锐角三角函数的定义的过程中,发现对同一锐角而言它的对边与斜边的比值不变的规律,从中思考这种对应关系所揭示的数学内涵。
3、解决问题:从实际问题入手研究,经历从发现到解决直角三角形中的一个锐角所对应的对边与斜边之间的关系的过程,体会研究数学问题的一般方法以及所采用的思考问题的方法。
4、情感态度:在解决问题的过程中体验求索的科学精神以及严谨的科学态度,进一步激发学习需求。
学习重点:锐角正弦的定义学习难点:理解直角三角形中一个锐角与其对边及斜边比值的对应关系。
【教学对象】九年级学生【教学过程】活动一、创设情境,导入新课图片欣赏:意大利比萨斜塔。
问题:数学来源于生活,应用于生活,用数学视觉观察世界,用数学思维思考世界,若用“塔身中心线与垂直中心线所成的角”来描述比萨斜塔的倾斜程度,应该怎么做?师生活动:多媒体动画展示“垂直中心线”“塔身中心线”“塔顶中心点偏离垂直中心线的距离”,显示相关数据,并提出问题,激励学生观察、思考。
设计意图:通过动画展示比萨斜塔的背景材料,扫除学生对引言中一些词语理解的障碍,为抽象出直角三角形做铺垫。
追问1:在上述问题中,可以抽象出什么几何图形?上述问题可以抽象出什么数学问题?师生活动:结合动画演示,引导学生得出:这个问题可以抽象出一个直角三角形,实际是“已知直角三角形的一条直角边和斜边,求这条直角边所对锐角的度数”。
追问2:对直角三角形的三边关系,已经研究了什么?还可以研究什么?设计意图:从实际需要和从数学内部的需要自然引入课题,激发学生的求知欲。
活动二、探究发现,形成概念问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,•在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?(1)解决问题,初步体验隐去引例中的背景材料后,直观显示出图中的直角三角形,追问1:你能用数学语言来表述这个实际问题吗?如何解决这个问题?师生活动:学生组织语言与同伴交流。
《直角三角形的边角关系》锐角三角函数 教学设计及教学反思、评课稿.doc
锐角三角函数一、教材分析1 •教材内容本节课是义务教育课程标准北师大版实验教科书九年级(下)第一章《直角三角形的边角关系》的第一节•本课为第一课时,主要内容是:理解正切的概念,会进行简单的计算,了解坡度.2. 地位及作用正切在生活中的运用非常广泛,如物体的倾斜程度、山的坡度等都往往用正切来刻画•同时正切也是学生接触的第一个三角函数•学好正切,既为正弦余弦的学习打下基础,又为高中系统学习三角函数做好铺垫•因此本节内容极其重要.二、学情分析1. 知识基础九年级学生已经学习了直角三角形,函数和相似三角形的相关知识,具备了学习锐角三角函数的知识基础•但是,锐角三角函数和学生以前学习过的一次函数、反比例函数有所不同,它揭示的是角度与线段比值之间的对应关系•学生是第一次接触用符号表示的函数,因此学生对锐角三角函数的理解仍然比较抽象和困难.2. 能力基础学生已经经历了多次小组合作,探索新知的过程,对探究性学习掌握了一定的方法,具有一定的活动学习的经验,这为本节课采用小组活动来感知概念打下了基础.3. 任教学生特点我班学生数学基础较扎实,求知欲强,想彖力丰富•能较好地运用所学的知识解决问题.三、目标分析1 •教学目标:(1)经历探索直角三角形边角关系的过程,理解正切的概念并能进行简单的计算.(2)经历数学活动过程,发展合情推理能力,能有条理的、清晰的阐述自己的观点.教学环节教师活动学生活动以诗句引导学生欣赏剑门关、乐山大佛、窦团山登山阶梯图片,再由“激流勇进”让学生感受斜坡的陡悄,提出问题:我们用数学知识怎样來比较阶梯的倾斜程度呢?设计意图用实际问题引出本课的探索问题,让学生感悟数学来源2. 教学重点理解正切概念.3. 教学难点正切概念的形成过程.4•突出重点、突破难点的策略抓住学生的认知盲点,教师加以启发诱导,抽象出本节课重要的数学模型——直角三角形,配合实验直观展示,帮助学生理解一个锐角和它的对边与邻边的比值之间的对应关系,确定这是一种函数关系,给出正切概念,突破本节课的难点•理解概念后,通过小组合作辨析、应用概念,突出本节课重点.四、教法、学法教法:启发式与自主探究结合的教法.学法:自主探究、合作交流的学法.五、过程设计结合教材知识内容和教学目标,本课的教学环节如下:感悟概念C=> 理解概念应用概念 ^=> 归纳小结生活.现实模型学生欣赏图片,思考问题合作探究念1・请学生观察4幅图片.教师提出问题并巡视各个小组交流情况.并请小组代表汇报观察得出的结论.小组活动1学牛观察4幅图片,展开讨论.学生代表发言,展示探究四幅图片的成果.判断梯子的倾斜程度可以通过研究倾斜角的度数.教师活动问题1:如图,梯子AB和DE 哪个更陡?你是怎么判断的?学生活动设计意图合作探感7S m1(图• 澜/顾]11\14f>Llmre L打Y'图1中的梯子等高,底小的更陡。
锐角三角函数正切教学反思
锐角三角函数正切教学反思常州市潞城中学刘晓近以前课件为教师事先设定好了的不可更改的教学内容展示,学生被动地观看教师的展示和表演,同时,教师忙于在讲台上操作微机,疏于组织教学,课堂教学的效度和学生对知识的掌握和巩固度被打了折扣。
交互式电子白板能直观形象地演示情境,能动能静,能有效地把学生的兴趣和注意力集中到课堂教学活动中来。
例如,情境引入时,伴随着乐曲,出现了一组图片,音乐和图片相结合,积极调动了学生多种感官投入学习,使他们了解在自然现象和日常生活中存在的倾斜物体;而且我还利用白板的拖动功能,来比较角的大小,学生直观的感受到哪能个梯子更陡些;在如何描述梯子平陡时因为有四组梯子的对比,所以在以往页面限制的条件下使用电子白板的无限延伸的功能使得让一个知识点能够充分的在一个页面中完整的实现;为了改变学生学习单一性的状况,借助白板与几何画板,渗透“数形结合”思想,可帮助学生感悟、理解,最后熟练应用知识.例如:借助几何画板学生直观感受并发现,当点在直线上运动时,横坐标与纵坐标相应的增大或者减小,形象的理解“如果一个锐角确定那么这个锐角所对的对边和邻边的比值也相就的确定”的意义;以及在角的大小和该角的正切值之间的关系时学生也能很快的找出它们之间的关系并能进行估计正切值所对应的角的范围;电子白板为师生、生生之间的互动提供交流平台。
数学的学科特点要求学生在学习中必须积极、主动的参与思维活动过程,数学学习离开了学生的积极参与必然失败。
黑板和实物投影虽然也具备这种能力,但是效率和效果都不尽人意。
而电子白板的书写、画图、拍照功能却能为学生提供了良好、全面的交流平台,教师与学生以及学生与学生之间的相互作用得到很好的体现。
例如:我在让学生做一些对正切的一些基本概念的理解判断题时,不仅让学生说定写出正确的答案,学生在操作中加深了对概念的理解,并且有效地集中了全班同学的注意力,增强了学生的学习兴趣,这样,真正地把课堂还给了学生,学生在民主、宽松地氛围中敢于表达、敢于质疑,大胆动手。
教学反思 (锐角三角函数)课后一点感悟
教学反思(锐角三角函数)课后一点感想同组一位老师突然生病请假,临时去她们班代课。
与我所带的班级不是一个层次。
尽管一年多前我带过这些学生,第—节上课内心是非常忐忑,因为我了解这一年多的时间学生的变化是非常大的,无论是知识方面的还是能力方面的。
然而第—节课(锐角三角函数〔1〕),本节课共设计了三个问题。
问题一:正切值的由来、表示、读法。
问题二:正切值与角、坡度联系。
问题三:特别角的三角函数值。
每个环节仅仅相扣,学生很自然顺畅的解决了全部的问题。
上下来只有一种感觉,我这节课急几乎没有没有起到什么作用,除了引导还是引导。
总感觉缺点什么。
我开始疑心我是不是设计的这节课没有让学生吃饱,是不是带一般班习惯了,难度与深度设计不够。
这让我开始重新审察什么是一节好课?答案一1、一堂好课应表达三点:真实的学习过程;科学的学习方法、高超的教学艺术。
〔实事求是、讲究实效〕2、一堂好课应以学生的开展来衡量,要求做到知识与能力的同步开展,认知与感情和谐开展。
〔目标多元、过程生成、内容放开、评价鼓励、媒体使用恰当〕3、一堂好课应表达在建构性、生成性和多元性的统一。
〔指向全面开展、内容得当、方法贴切、评价完善〕4、一堂好课应表达学生的学习主体,以考察学生在课堂上的学习活动状态为主。
〔参与、交流、达成〕答案二一节好课要做到“五实〞,即一节好课应该是扎实的课、充实的课、丰实的课、平实的课、真实的课。
扎实的课就是有意义的课,学生至少能学到东西,有感情体验,产生学习需求,不图外表的热闹;充实的课就是有效率、有内容的课,让不同层次的学生都学有所得;丰实的课就是生成性的课,不完全是预设的结果,内容丰富,师生互动,思维活泼,给人启发;平实的课就是课堂的实实在在,是常态下的课,不管谁在听,教师都要做到旁假设无人,心中只有学生;真实的课就是不加粉饰、课有待完善、值得反思的课。
答案三一堂好课不能用标准去衡量,课堂应该是生命的、灵动的、富有个性的,而非什么标准,而是表达一些根本元素,这些包含:和谐、生成、开展、创新、反思、个性等等。
锐角三角函数教学反思
锐角三角函数是定义在直角三角形中的研究边角之间的关系。
而锐角三角函数本质上是边与边之间的一种比值,通过边与角之间的联系让我们清晰的了解直角三角形的边角关系特点。
对于锐角三角形函数而言,重点就是对比值的理解。
首先要讨论角的任意性,从一般到特殊。
其次运用三角形性质,理解固定角,无论直角三角形的大小如何变动,都不会影响到对边与斜边的比值。
课程可以采用生活中建筑工地搭建脚手架的例子来入手,激发学生的兴趣和丰富学生的想象力和求知欲。
再由浅入深,先以一般的学习方法再到特殊的锐角函数。
带领学生画图,观察图形,找出边的关系,角的度数,进行计算。
让学生讨论三角函数与直角三角形的边角有什么关系,三角函数是否与图形大小有关?对于能够积极参与和回答问题的同学,都应该积极鼓励并予以肯定表扬,只有这样才能激发学生的参与和学习的兴趣。
对于教学方法上,应着重注意以下两点:
一、烘托课堂气氛,通过话题或者案例吸引学生的注意力和兴趣。
最好能够文字与图形或者视频相结合,多方面的调动学生参与和理解。
良好的课堂氛围和环境更容易使学生接纳学习知识的思维,再者可以通过转换不同的教学方式来进行全面差异性教授,从中吸取经验完善下一步阶段的教学方法。
二、一定要让学生主动思考。
主动学习与被动学习的知识理解效果是截然不同的,在教学过程中应当注意循序渐进的进行引导,适时的抛出问题让学生头脑风暴,这样学生对知识的理解能力才会更深,知识掌握的才会更牢固。
《锐角三角函数——余弦、正切》教学反思
《锐角三角函数——余弦、正切》的教学反思
《锐角三角函数——余弦、正切》是九年制义务教育新课程标准九年级第二十八章第一节第二课时的内容。
首先复习回顾正弦的引入过程,用类比的数学思想去探究余弦和正切的概念。
在直角三角形中,固定角的正弦是固定值,根据勾股定理邻边也是随对边斜边变化而变化的,故有理由相信余弦正切也是定值。
统合来看,对于每一个固定的锐角,sinA有唯一确定的值与之对应,所以sinA是A的函数,同样的cosA、tanA也是A的函数,统称为∠A的锐角三角函数。
巩固练习环节,学生在平面直角坐标系、圆的外切三角形、等腰三角形、三垂直图形中充分熟练余弦正切,以及三种已知三角函数的相互转化关系,加深对本节课的认识,计算结果并不复杂,题目的设置主要考查学生对算理的灵活程度。
遗憾的是,学生在确定边长的过程中,单一思维就是勾股定理,对使用正弦、余弦、正切求边长主动意识不够。
锐角三角函数的教研活动(3篇)
第1篇一、活动背景随着新课程改革的深入推进,数学教学越来越注重培养学生的数学思维能力和解决问题的能力。
锐角三角函数作为高中数学中的重要内容,不仅关系到学生后续学习的数学基础,还涉及到物理、工程等多个领域的应用。
为了提高教师对锐角三角函数教学的理解和把握,提升课堂教学效果,我们特此开展了本次教研活动。
二、活动目标1. 提高教师对锐角三角函数概念、性质和应用的深入理解。
2. 探讨有效的教学方法,激发学生学习锐角三角函数的兴趣。
3. 促进教师之间的交流与合作,共同提高锐角三角函数的教学水平。
三、活动内容1. 锐角三角函数概念讲解- 活动主持人对锐角三角函数的基本概念、定义、符号等进行详细讲解,帮助教师准确把握教学内容。
2. 锐角三角函数性质分析- 教师们共同探讨锐角三角函数的性质,如和角公式、差角公式、倍角公式等,并通过实例分析这些性质在实际教学中的应用。
3. 锐角三角函数在物理中的应用- 结合物理学科特点,探讨锐角三角函数在物理问题中的应用,如三角函数在力学、电磁学等领域中的应用。
4. 锐角三角函数的教学方法探讨- 教师们分享各自在教学过程中使用的方法,如启发式教学、探究式教学、合作学习等,共同探讨如何提高教学效果。
5. 案例分析- 通过对典型教学案例的分析,教师们共同探讨如何针对不同学生的学习特点,设计合理的教学方案。
6. 分组讨论与交流- 教师们分为小组,针对以下问题进行讨论:- 如何帮助学生建立锐角三角函数的直观形象?- 如何引导学生发现和总结锐角三角函数的性质?- 如何将锐角三角函数与实际生活相联系?7. 总结与反思- 各小组汇报讨论成果,主持人对本次活动进行总结,并对教师们提出的问题进行解答。
四、活动过程1. 前期准备- 教师们收集相关资料,包括锐角三角函数的教学大纲、教材、教学案例等。
2. 活动实施- 按照活动内容,主持人组织教师们进行讨论、交流、分享经验。
3. 活动总结- 教师们对本次活动进行总结,提出改进意见和措施。
锐角三角函数教学反思2
锐角三角函数教学反思2这是锐角三角函数教学反思2,是优秀的数学教案文章,供老师家长们参考学习。
锐角三角函数教学反思2第1篇教学反思:锐角三角函数在解决现实问题中有着重要的作用,但是锐角三角函数首先是放在直角三角形中研究的,显示的是边角之间的关系。
锐角三角函数值是边与边之间的比值,锐角三角函数沟通了边与角之间的联系,它是解直角三角形最有力的工具之一。
在今后教学过程中,自己还要多注意以下两点:(1)还要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。
初中学生的.注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。
如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现。
我将不断摸索,不断实践。
(2)我将尽我可能站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。
让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角。
而我将尽我最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步。
只有这样,才能真正提高课堂教学效率。
锐角三角函数教学反思2第2篇思维总是从问题开始的,有问题,学着才主动。
学生在不断解决问题,发现问题中学习,知识得到了掌握,能力得到了训练,情感得到了体验。
我来谈谈上完本节课之后的感想,做一小结和反思,以便更好地服务于课堂教学。
一、在教学时对学生状况进行了正确的分析,这是成功的开始。
有利条件:学生已经学过相似形、直角三角形及函数等有关知识,具备一定的分析判断及推理能力,通过教师引导能够完成学习任务。
不利因素及对策:初三学生两极分化明显,不同学生的认知水平、思维能力不同,而数学抽象性较强,多数学生对数形结合类型题的适应能力较差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《锐角三角函数》教学反思
下面我为大家整理了一些关于高中数学《锐角三角函数》教学反思的范文,供大家参考,希望对大家有帮助!
高中数学《锐角三角函数》教学反思一
角三角函数是定义在直角三角形中的研究边角之间的关系。
而锐角三角函数值实质上就是边与边之间的一种比值,它能沟通了边与角之间的联系,为解直角三角形提供了角边关系的根据。
本节课重难点就是对比值的理解,可以从以下几方面着手研究:
(1)讨论角的任意性(从特殊到一般)(2)运用相似三角形性质,让学生领悟到:在直角三角形中,对于固定角,无论直角三角形大小怎么样改变,都影响不到其对边与斜边的比值。
采用激趣设疑方法,从修建扬水站铺设水管问题入手,让学生参与问题讨论,唤起学生学习兴趣和求知欲。
再根据从特殊到一般的学习方法,利用特殊角来探究锐角的三角函数,通画图,找出边的长度、角的度数,计算相关方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出相关边的长度,然后就问:三角函数与直角三角形的边、角有什么关系,三角函数与三角形的形状大小有关系吗?整堂课都在愉快的氛围中进行。
多数学生都能积极动脑积极参与思考。
教学中,要关注学生的情感态度,对那些积极动脑,热情参与的同学,都给予了鼓励和表扬,促使学生的情感和兴趣始终保持最佳状态,从而保证施教活动的有效性。
在以后教学中,还要多注意以下两点:
(1)要多花点时间来研究如何调控课堂气氛。
学生的注意力是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。
要不断摸索,不断实践找到合适的教学风格,每一种个性教学都是教学魅力和人格魅力的展现。
(2)要学会换位思考,站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。
让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,学会真正把课堂还给学生,让学生来做课堂的主角。
(3)下课后多反思,做好反馈工作,不断总结得失,不断进步。
只有这样,才能真正提高课堂教学效率。
高中数学《锐角三角函数》教学反思二
直角三角形中边角之间的关系,是现实世界中应用最广泛的关系之一。
锐角三角函数在解决现实问题中有着重要的作用,因此,学好本节中关于锐角的三种三角函数,正切,正弦,余弦的定义是关键。
通过这一阶段的课堂教学,在合作探究中培养学生的问题意识,同学们的表现有了明显的转变,课堂上有问题能及时提出来,有的同学一堂课能提出好几个问题,其他同学对提出的问题争先恐后地辩解,争得面红耳赤。
本节课采用问题引入法,从教材探究性问题梯子的倾斜度入手,让学生主动参与学习活动。
用特殊值探究锐角的三角函数时,学生们表现得非常积极,从作图,找边、角,计算各个方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出,然后就问:三角函数与直角三角形
的边、角有什么关系,三角函数与三角形的形状有关系吗?进一步深入地去认识三角函数;当得出正切的概念后,学生们就提出:能不能把公式变形成积的形式,去求边,这个问题已经把本课的内容拓展了,说明学生的问题意识已经增强了,能够合理地提出问题。
至此,每个学生在课堂的表现明显改变,表现得积极、主动、问题意识强。
在教学中,我还注重对学生进行数学学习方法的指导。
在数学学习中,有一些学生往往不注重基本概念、基础知识,认为只要会作题就可以了,结果往往失分于选择题、填空题等一些概念性较强的题目。
通过引导学生进行知识梳理,教会学生如何进行知识的归纳、总结,进一步帮助学生理解、掌握基本概念、基础知识。
在这节课的教学中存在许多缺陷,促使我进一步研究和探索。
我们必须清醒地认识到,课程改革势在必行,在教学中加入新的理念,发挥传统教学的基础性和严谨性,不断地改善教法、学法,才能适应现代教学。
总之,在教学方法上,改变教师教、学生听的传统模式,采用学生自主交流、合作学习、教师点拨的方式,把主动权真正交给学生,让学生成为课堂的主人,才能提高学生的问题意识。
高中数学《锐角三角函数》教学反思三
本节课是锐角三角形这章的第一节课,是学生在学了直角三角形及勾股定理基础上再来研究直角三角形边与角的关系的内容,本章的知识通过解直角三角形与实际问题中的坡度、方向角方位角建立联系,解决问题。
本章是中考必考的知识点,特别是特殊角的三角函数值,一定要熟记。
本节课虽考虑到本班学生自从分班以后,学习氛围不浓,而基础又较差,因
而必须将难度降低想办法调动学生的学习积极性;但在引入时,既用了直角三角形在数学中的重要地位,用:"黑夜给了我一个黑色的眼睛,我用它来寻找光明"类比数学中的"上帝给了我一双黑色的眼睛,我用它来寻找直角三角形"说明寻找直角三角形对解决数学问题的重要性;然后又引入用学生最近反应学习苦,学习累和不爱护公共财物的情况,从引入课桌要到了到其他贫困地区孩子午休谁桌子下的情况引入爱护公共财物,今儿从而引出本节课相关的知识。
虽然大家都在说这节课的亮点就是将德育与数学知识结合起来,注重学科之间的联系。
但我始终觉得这样的结合不免显得优点牵强,下来我将在思考如何让本节课的引入与内容结合得更好。
还有一个问题就是我在设计教学时,想到学生函数的基础不好,很怕函数,没有考虑到和函数的定义联系起来,而学生虽然会计算一个锐角的三角函数了,但对为什么把这些值成为这个锐角的三角函数并不清楚,在教学中我忽视了这一细节,也没有一个学生提出疑问,这说明学生只停留在定义的表面,并没有深入思考。
因此,在下次教学时,我要设计这么一个问题:"为什么把它们成为函数值?"来启发学生。