小学数学圆柱体积

合集下载

六年级下册数学圆柱的体积

六年级下册数学圆柱的体积

六年级下册数学讲义圆柱的体积☆☆知识讲解:知识点一:圆柱体积的意义和计算公式1.圆柱体积的意义:一个圆柱所占空间的大小,叫做这个圆柱的体积。

2.圆柱体积公式的推导:圆柱的体积=长方体的体积=长方体的底面积×长方体的高=圆柱的底面积×圆柱的高如果用V 表示圆柱的体积,S 表示圆柱的底面积,h 表示圆柱的高,可以得到圆柱的体积计算公式为:h r Sh V 2π==知识点二:圆柱的体积计算公式的应用知识应用1:已知圆柱的底面积和高,求圆柱的体积。

点击例题:一根圆柱形钢材,底面积是402cm ,高是2.1m ,它的体积是多少?知识应用2:已知圆柱的底面半径和高,求圆柱的体积。

点击例题:一个圆柱形罐头盒的底面半径是5cm ,高是18cm 。

体积是多少?知识应用3:已知圆柱的底面直径和高,求圆柱的体积。

点击例题:一个圆柱形水桶,从里面量底面直径是4分米,高是5分米,这个水桶的容积是多少?(得数保留整立方分米)可装水多少千克?(1立方分米水重1千克)知识应用4:已知圆柱的底面周长和高,求圆柱的体积。

点击例题:一个圆柱形水泥柱,底面周长是1.884米,高是3米,这根水泥柱的体积是多少立方米?知识应用5:已知圆柱的体积和高(或底面积),也可以求出圆柱的底面积(或高)。

点击例题:在地面挖一个圆柱形水池,底面周长62.8米,要使池内存水1570立方米,水池至少要挖多深?过关精练:一个圆柱形容器的底面直径为4分米,现在往容器里倒入25.12升的水,水深多少分米?☆☆思维拓展:点拨方法1:如果把一个正方体的木料加工成一个最大的圆柱体,这个圆柱体的高就等于正方体的棱长,这个圆柱体的底面直径也就等于正方体的棱长。

点击例题:有一块正方体的木料,它的棱长是3分米,把这块木料加工成一个最大的圆柱体(如图),这个圆柱体的体积是多少?过关精练:点拨方法2:将物体浸没在容器里,物体的体积等于升高的那部分液体的体积;如果物体没有完全浸没在液体中,则浸没在液体中的那部分体积等于升高的液体的体积。

六年级下学期数学 圆柱的体积 完整版讲义 例题+课后作业

六年级下学期数学 圆柱的体积 完整版讲义 例题+课后作业

六年级下学期圆柱的体积知识概要1、圆柱的体积将圆柱切割拼成一个近似长方体:长方体的长:圆柱底面圆周长的一半πr长方体的宽:圆柱的底面半径r长方体的高:圆柱的高hV=πr·r·h =πr2hV=底面积×高2、体积单位及换算体积单位:立方米、立方分米、立方厘米相邻两个体积单位间的进率是10001立方米=1000立方分米1立方分米=1000立方厘米精讲精练例1、(1)圆柱的半径扩大为原来的3倍,高不变,体积扩大为原来的____倍。

如果高变成2倍,半径不变,体积变为原来的_____倍。

(2)判断:①圆柱的半径扩大为原来的2倍,表面积扩大为原来的4倍。

()②圆柱的半径扩大为原来的2倍,体积扩大为原来的6倍。

()演练1、(1)圆柱的半径缩小为原来的二分之一,高不变,体积缩小为原来的_____。

(2)判断:圆柱的半径扩大为原来的2倍,高不变,体积扩大为原来的4倍。

()例2、(1)已知圆柱体的底面半径3厘米,高10厘米。

那么这个圆柱体的体积是_____立方厘米.(2)如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.问这个物体的体积是多少平方米?(圆周率取3)1110.511.5演练2、(1)一个圆柱底面积是1⒉56平方分米,高是2分米,则圆柱的体积是多少立方分米?(2)一个双层的圆柱形蛋糕,两层都高15厘米,第一层和第二层蛋糕的半径分别为10厘米和5厘米。

求这个蛋糕的体积。

例3、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。

这个零件的体积是多少?演练3、有一个圆柱体的零件,高6厘米,底面直径是8厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。

这个零件的体积是多少?例4、(1)圆柱体的侧面展开,放平,是长宽分别为18厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米。

圆柱的体积公式都有哪些

圆柱的体积公式都有哪些

圆柱的体积公式都有哪些
想要学好数学,先要掌握好公式。

下面小编整理了一些关于圆柱体积公式,希望可以帮助到大家!
1圆柱体积公式1.π是圆周率,一般取3.14
r是圆柱底面半径
h为圆柱的高
还可以是
v=1/2ch×r
侧面积的一半×半径
2.圆柱体体积=底面积×高
V=πR H=V=sh
1圆柱相关公式圆柱体积:V=底面积×高或V=1/2侧面积×高
圆锥体积:V=底面积×高÷3
圆柱侧面积:S侧=底面周长×高
圆柱表面积:S表=侧面积+2个底面积
字母表示:
圆柱体积:V=sh
圆锥体积:V=sh÷3
圆柱侧面积:S=ch/2πrh/πdh
圆柱表面积:s=ch+2πr²
1如何计算圆柱体积求圆基的半径。

两个圆都会做,因为它们大小相同。

如果你已经知道半径,你可以继续前进。

如果你不知道半径,那幺你可以用。

圆柱体积计算公式 计算方法及例题

圆柱体积计算公式 计算方法及例题

圆柱体积计算公式计算方法及例题
圆柱体积公式是用于计算圆柱体体积的公式。

圆柱体积=πr²h=s底h。

圆周率(π)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。

1 圆柱体积公式圆柱体积v=πr²h=sh(S是底面积,h 是高)
π是圆周率,一般取3.14
r 是圆柱底面半径
h 为圆柱的高
还可以是
v=1/2ch×r
侧面积的一半×半径
圆周率(π)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。

π也等于圆形之面积与半径平方之比。

是精确计算圆周长、圆面积、球体积等几何形状的关键值。

在分析学里,π可以严格地定义为满足sinx= 0 的最小正实数x。

1 如何计算圆柱体的体积求圆基的半径。

两个圆都会做,因为它们大小相同。

如果你已经知道半径,你可以继续前进。

如果你不知道半径,那幺你可以用尺子测量圆的最宽部分,然后除以2。

这将比测量直径的一半更准确。

我们说,这个圆筒的半径是1 英寸(2.5 厘米)。

把它写下来。

如果你知道这个圆的直径,就把它分成
2 个。

如果你知道周长,然后除以2π得到半径。

计算圆形基的面积。

要做到这一点,只是用公式求圆的面积,πR2=。

只要。

小学六年级数学教案《圆柱的体积》(精选13篇)

小学六年级数学教案《圆柱的体积》(精选13篇)

小学六年级数学教案《圆柱的体积》小学六年级数学教案《圆柱的体积》(精选13篇)作为一位无私奉献的人民教师,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。

那么大家知道正规的教案是怎么写的吗?以下是小编帮大家整理的小学六年级数学教案《圆柱的体积》(精选13篇),欢迎大家借鉴与参考,希望对大家有所帮助。

小学六年级数学教案《圆柱的体积》篇1教学目标1.理解圆柱体体积公式的推导过程,掌握计算公式.2.会运用公式计算圆柱的体积.教学重点圆柱体体积的计算.教学难点理解圆柱体体积公式的推导过程.教学过程一、复习准备(一)教师提问1.什么叫体积?怎样求长方体的体积?2.圆的面积公式是什么?3.圆的面积公式是怎样推导的?(二)谈话导入同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)二、新授教学(一)教学圆柱体的体积公式.(演示动画圆柱体的体积1)1.教师演示把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.2.学生利用学具操作.3.启发学生思考、讨论:(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)(2)通过刚才的实验你发现了什么?①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.③近似长方体的高就是圆柱的高,没有变化.4.学生根据圆的面积公式推导过程,进行猜想.(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?5.启发学生说出通过以上的观察,发现了什么?(1)平均分的份数越多,拼起来的形体越近似于长方体.(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.6.推导圆柱的体积公式(1)学生分组讨论:圆柱体的体积怎样计算?(2)学生汇报讨论结果,并说明理由.因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积高)(3)用字母表示圆柱的体积公式.(板书:V=Sh)(二)教学例4.1.出示例4例4.一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?2.1米=210厘米50210=10500(立方厘米)答:它的体积是10500立方厘米.2.反馈练习(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?(三)教学例5.1.出示例5例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?水桶的底面积:=3.14=3.14100=314(平方厘米)水桶的容积:31425=7850(立方厘米)=7.8(立方分米)答:这个水桶的容积大约是7.8立方分米.三、课堂小结通过本节课的学习,你有什么收获?1.圆柱体体积公式的推导方法.2.公式的应用.小学六年级数学教案《圆柱的体积》篇2教学内容:北师大版教学六年级《圆柱的体积》教学目标:1、结合具体的情境和实践活动,理解圆柱体体积的含义。

《圆柱的体积》教学设计(精选9篇)

《圆柱的体积》教学设计(精选9篇)

《圆柱的体积》教学设计(精选9篇)《圆柱的体积》数学教案篇一探究目标:1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。

2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。

3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。

4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。

教学重难点:学生会应用圆柱体积公式解决实际问题。

探究过程:一、迁移引入提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。

提问:如果已知的是底面半径和高,该怎么求呢?二、自主探究1、出示长方体鱼缸。

要计算这个长方体鱼缸能装多少水,就是求什么?怎样求这个长方体的容积呢?2、出示圆柱形鱼缸。

⑴估测。

这个圆柱形鱼缸的容积大约是多少?⑴操作、汇报。

如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。

学生可能的回答有:生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)生2:我们小组测量的是底面直径和高。

底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)生3:我们测量的是底面半径和高。

3.14×152×12=8478(立方厘米)⑴评价。

组织学生间进行评价。

你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。

⑴反思。

引导学生将实际计算结果与自己的估测结果进行对比。

自己矫正偏差。

⑴延伸。

如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?3、自学例题。

小学六年级数学《圆柱的体积》教案一等奖范文

小学六年级数学《圆柱的体积》教案一等奖范文

小学六年级数学《圆柱的体积》教案一等奖范文1、小学六年级数学《圆柱的体积》教案一等奖范文教学内容:北师大版数学六年级下册5——6页。

教学目标:1、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。

2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

教学重点:目标1。

教学难点:目标2。

教学过程:活动一:复习旧知,巩固学过的公式。

1、一个直径是100毫米的圆,求周长。

2、一个半径3厘米的圆,求周长和面积。

3、一个长为3米,宽为2米的长方形,它的面积是多少?4、出示圆柱体的模型,说说它有什么特征?活动二;探究新知。

1、做一个圆柱形纸盒,至少需要多大面积的纸板?(接口处不计)要解决这个问题,就是求什么?2、圆柱的表面积包括哪几部分?3、圆柱的表面积的计算关键在哪一部分?4、探索圆柱侧面积的计算方法。

1)圆柱的侧面展开后是一个怎样的图形呢?用一张长方形的纸,可以卷成圆柱形。

2)圆柱侧面展开图的长和宽与这个圆柱有什么关系?怎样求圆柱的侧面积呢?3)师;圆柱的侧面积就是求长方形的面积。

用长乘宽。

4)长就是圆柱的底面圆的周长,宽就是圆柱的高。

5)请你来总结一下圆柱侧面积的计算方法。

6)圆柱的侧面积用2∏rh,求圆柱的表面积要用侧面积加两个底面积。

活动三:新知识的运用。

1、求底面半径是10厘米,高30厘米的圆柱的表面积。

2、教师板书:侧面积:2╳3.14╳10╳30=1884(平方厘米)底面积:3.14╳10╳10=314(平方厘米)表面积:1884+314╳2=2512(平方厘米)要求按步骤进行书写。

2、试一试。

做一个无盖的圆柱形铁皮水桶,底面直径围分米,高为5分米,至少需要多大面积的铁皮?求至少需要多少铁皮,就是求水桶的表面积。

这道题要注意什么?无盖就只算一个底面。

这种题如果求整数,一般用进一法。

3、练一练。

书第6页第1题。

3个小题:已知底面直径或底面周长和高,求圆柱的表面积。

小学六年级数学《圆柱的体积》教案(优秀9篇)

小学六年级数学《圆柱的体积》教案(优秀9篇)

小学六年级数学《圆柱的体积》教案(优秀9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!小学六年级数学《圆柱的体积》教案(优秀9篇)作为一名教职工,就不得不需要编写教案,借助教案可以有效提升自己的教学能力。

六年级下册数学教案-《圆柱的体积》人教版

六年级下册数学教案-《圆柱的体积》人教版
突破方法:提醒学生注意单位统一,以及π的取值(一般取3.14),培养学生严谨的计算习惯。
(4)合作交流中的难点:在小组合作过程中,学生可能无法充分表达自己的观点,或者无法倾听他人的意见。
突破方法:教师引导学生学会倾听、尊重他人,培养学生的团队协作能力和人际沟通能力。
四、教学流程
(一)导入新课(用时5分钟)
1.讨论主题:学生将围绕“圆柱体积在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如圆柱体积计算在工程设计中的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
1.理论介绍:首先,我们要了解圆柱体积的基本概念。圆柱体积是指圆柱体所占空间的大小。它是我们研究几何体积的一个重要部分,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过将圆柱切割、拼凑成近似长方体的方式,推导出圆柱体积的计算公式,并展示如何运用这个公式解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调圆柱体积公式V=πr²h和圆柱与长方体体积关系这两个重点。对于难点部分,如空间观念的建立和公式的应用,我会通过实物操作和举例来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆柱体积相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量水桶的半径和高度,计算其体积,从而验证圆柱体积公式的正确性。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

《圆柱的体积》PPT课件

《圆柱的体积》PPT课件
底面积

圆柱的体积=底面积×高
圆 柱 的 高
底面 半径 圆柱底面周长的一半
填空
(1)把圆柱的底面平均分成若干份,沿圆柱的高 切开后,可以拼成一个近似的( 长方体),拼成的 长方体的底面积等于圆柱的(底面积 ),高就是圆
柱的( 高).
(2)用字母V表示圆柱的体积,S表示圆柱的底面积, h表示圆柱的高,圆柱的体积公式可以写成
12平方分米 6 分 米
12×6
V=s h
(1)
.
3 分 米
7分米
3.14 ×32 ×7
V= 兀r 2× h
(2)
3.14 ×(6÷2)2 ×8 V=兀(d÷2)2×h
(3)
金箍棒底面周长是12.56cm,长是200cm。这根金箍 棒的体积是多少立方厘米?
底面半径:12.56÷3.14÷2=2(cm) 底面积: 3.14×22=12.56(cm3)
方厘米)
答:它的体积是3000立方厘米。
你收获了 什么?
直柱体的体积 = 底面积×高
V =s h
体积: 12.56×200=2512(cm3) 答:这根金箍棒的体积是2512cm3。 如果这根金箍棒是铁制的,每立方厘米铁的质量为 7.9g,这根金箍棒的质量为多少千克?
7.9×2512=19844.8(g)=19.8448
答:这根金箍(棒k重g)19.8448千克。
例4 一根圆柱形钢材,底面积 是20平方厘米,高是1.5米。 它的体积是多少?
( V=Sh )
3.14×0.42×5 =3.14×0.16×5
=3.14×0.8 =2.512(m3) 答:需要2.512m3木材。
3.14×(6÷2)2×16 =3.14×9×16 =452.16(cm3) =452.16(毫升)

《圆柱的体积》教案

《圆柱的体积》教案

《圆柱的体积》教案《圆柱的体积》教案(精选9篇)作为一名优秀的教育工作者,时常需要编写教案,借助教案可以更好地组织教学活动。

那要怎么写好教案呢?以下是店铺为大家整理的《圆柱的体积》教案,欢迎大家借鉴与参考,希望对大家有所帮助。

《圆柱的体积》教案篇1设计说明1.创设问题情境,激发学习兴趣。

兴趣是最好的老师。

新课伊始,为学生创设“圆柱形橡皮泥的体积你会求吗?”的问题情境,引导学生经过思考、讨论、交流,找到解决的方法。

这样的设计不仅自然渗透了圆柱(新问题)和长方体(已知)的知识联系,还让学生体会到可以有许多方法去解决生活中的实际问题,激发了学生的学习兴趣和探究新知的欲望。

2.实践操作,促进知识迁移。

知识和经验的积累来源于大量的实践活动。

动手操作不但能使学生获得感性的体验,更能加深学生对知识的理解。

本设计为学生创设动手操作的情境,使学生通过动手拼摆,充分感知图形之间的关系,深刻理解圆柱的体积公式的合理性,充分认识到图形转化过程中形变而质不变的辩证关系,使学生在把旧知迁移、发展、转化、构建为新知的同时,动手操作、观察及归纳能力也得到极大的提高。

课前准备教师准备圆柱的体积公式演示教具多媒体课件学生准备圆柱的体积公式演示学具教学过程第1课时圆柱的体积(1)⊙创设情境,导入新课1.出示一块圆柱形橡皮泥。

师:同学们,我们以前学过长方体和正方体体积的计算方法,现在我想知道这块圆柱形橡皮泥的体积是多少,你有好的办法吗?2.学生小组讨论交流并汇报。

预设生1:可以把这块橡皮泥捏成长方体,利用长方体的体积公式来解决。

生2:可以把它放到量杯中,计算上升的水的体积。

3.引入新课。

解决生活中的问题有很多方法,需要我们去发现、去探究。

这节课我们就共同去探究圆柱体积的计算方法。

设计意图:通过创设问题情境,引发学生思考,进一步体会“转化”思想。

⊙新知探究1.利用知识的迁移,猜想圆柱体积的计算方法。

(1)提出猜想。

师:在刚才的问题中同学们提出可以将圆柱形橡皮泥捏成长方体,这时会有什么变化?(形状变了,体积没变)师:我们已经掌握了长方体、正方体的体积计算方法,大家猜一猜:圆柱体积可能等于底面积×高吗?(2)学生讨论、交流。

圆柱体的体积公式

圆柱体的体积公式

圆柱体的体积公式Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT小学数学图形计算公式1、体积公式:1)、圆柱体的体积公式:体积=底面积×高,如果用h代表圆柱体的高,则圆柱=S底×h 。

2)、长方体的体积公式:体积=长×宽×高。

(底面积乘以高 S底·h)如果用a、b、c分别表示长方体的长、宽、高则长方体体积公式为:V长=abc。

3)、正方体的体积公式:体积=棱长×棱长×棱长。

(底面积乘以高 S底·h) 如果用a表示正方体的棱长,则正方体的体积公式为V=a·a·a=a^3。

4)、锥体的体积=底面面积×高÷3 。

圆锥=S底×hx3分之一。

2、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S== a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径?=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积小学应用题计算公式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数10、和差问题的公式:(和+差)÷2=大数、(和-差)÷2=小数11、和倍问题:和÷(倍数-1)=小数、小数×倍数=大数、(或者和-小数=大数)12、差倍问题:差÷(倍数-1)=小数、小数×倍数=大数、(或小数+差=大数)13、植树问题:1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数14、盈亏问题:(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数15、相遇问题:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、追及问题:追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间17、流水问题:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷218、浓度问题:溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量19、利润与折扣问题:利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)单位换算1、长度:1千米=1000米、1米=10分米、1分米=10厘米、1米=100厘米、1厘米=10毫米2、面积:1平方千米=100公顷、1公顷=10000平方米、1平方米=100平方分米1平方分米=100平方厘米、1平方厘米=100平方毫米、3、体(容)积:1立方米=1000立方分米、1立方分米=1000立方厘米、1立方分米=1升1立方厘米=1毫升、1立方米=1000升、4、重量:1吨=1000 千克、1千克=1000克、1千克=1公斤5、人民币:1元=10角、1角=10分、1元=100分6、时间:1世纪=100年 1年=12月、大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月、平年2月28天, 闰年2月29天、1时=3600秒平年全年365天, 闰年全年366天、1日=24小时 1时=60分、1分=60秒。

《圆柱的体积》教案5篇

《圆柱的体积》教案5篇

《圆柱的体积》教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!《圆柱的体积》教案5篇作为一名为他人授业解惑的教育工作者,时常需要准备好教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。

《圆柱的体积》教案八篇

《圆柱的体积》教案八篇

《圆柱的体积》教案八篇《圆柱的体积》教案篇1最近,本人在《小学教学设计》看到一则“圆柱的体积”教学实录精彩片段,它以一种全新的视角诠释了新课标所倡导的理念,给我留下了较为深刻的印象。

现把它撷取下来与各位同行共赏。

……师:圆柱有大有小,你觉得圆柱体积应该怎样计算呢?生:(绝大部分学生举起了手)底面积乘高。

师:那你们是怎样理解这个计算方法的呢?生1:我是从书上看到的。

(举起的手放下了一大半。

很明显,大部分同学都看到或听到这个结论,并不理解实质的涵义。

但仍有几位学生的手高高举起,跃跃欲试,脸上的神情告诉老师:他们有更高明的答案。

老师便顺水推舟,让他们来讲。

)生2:我是这样思考的:长方体、正方体和圆柱体它们都是立体图形,体积都是指它们所占空间的大小。

而长方体、正方体的体积都可以用底面积乘高来计算,所以我想计算圆柱体的体积时也应该可以用底面积乘高吧!师:你能迅速地把圆柱体与以前学过的长方体、正方体联系起来,进而联想到圆柱体的体积计算方法。

真行!当然这仅是你的猜测,要是再能证明就好了。

生3:我可以证明。

推导长方体体积公式时,我们是采用摆体积单位的方法,用每层个数(底面积)×层数(高)现在求圆柱体积我们也可以沿袭这种思路,在圆柱体内部同样摆上合适的体积单位,用每层个数×层数,每层的个数也就是它的底面积,摆的层数也就是高。

那不就证明了圆柱体积的计算公式就是用底面积乘高吗?(教室里立刻响起了热烈的掌声,许多同学被他精彩的发言折服了,理性的思维散发出诱人的魅力。

)师:你真聪明,能用以前学过的知识解决今天的难题!(这时举起的手更多了。

)生4:我有个想法不知是否可行、在推导圆面积计算方法时,我们是把圆转化成了长方形,圆柱的底面就是一个圆,所以我就想是否可以把圆柱体转化成长方体呢?师:(翘起了大拇指)你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。

生5:我还有一种想法:我们可以把圆柱体看成是无数个同样大小的圆片叠加而成的。

圆柱体的体积公式

圆柱体的体积公式

小学数学图形计算公式1、体积公式:1)、圆柱体的体积公式:体积=底面积×高,如果用h代表圆柱体的高,则圆柱=S底×h 。

2)、长方体的体积公式:体积=长×宽×高。

(底面积乘以高 S底·h)如果用a、b、c分别表示长方体的长、宽、高则长方体体积公式为:V长=abc。

3)、正方体的体积公式:体积=棱长×棱长×棱长。

(底面积乘以高 S底·h) 如果用a表示正方体的棱长,则正方体的体积公式为V=a·a·a=a^3。

4)、锥体的体积=底面面积×高÷3 。

圆锥=S底×hx3分之一。

2、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径Ѕ=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积小学应用题计算公式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数10、和差问题的公式:(和+差)÷2=大数、(和-差)÷2=小数11、和倍问题:和÷(倍数-1)=小数、小数×倍数=大数、(或者和-小数=大数)12、差倍问题:差÷(倍数-1)=小数、小数×倍数=大数、(或小数+差=大数)13、植树问题:1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数14、盈亏问题:(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数15、相遇问题:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、追及问题:追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间17、流水问题:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷218、浓度问题:溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量19、利润与折扣问题:利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)单位换算1、长度:1千米=1000米、1米=10分米、1分米=10厘米、1米=100厘米、1厘米=10毫米2、面积:1平方千米=100公顷、1公顷=10000平方米、1平方米=100平方分米1平方分米=100平方厘米、1平方厘米=100平方毫米、3、体(容)积:1立方米=1000立方分米、1立方分米=1000立方厘米、1立方分米=1升1立方厘米=1毫升、1立方米=1000升、4、重量:1吨=1000 千克、1千克=1000克、1千克=1公斤5、人民币:1元=10角、1角=10分、1元=100分6、时间:1世纪=100年 1年=12月、大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月、平年2月28天, 闰年2月29天、1时=3600秒平年全年365天, 闰年全年366天、1日=24小时 1时=60分、1分=60秒。

六年级数学圆柱的体积和容积

六年级数学圆柱的体积和容积

六年级数学圆柱的体积和容积一、计算公式1、圆柱的体积:一个圆柱所占空间的大小。

2、圆柱的体积=底面积×高。

如果用V表示圆柱的体积,S表示底面积,h 表示高,那么V=Sh。

3、圆柱体积公式的应用:(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:V=Sh。

(2)已知圆柱的底面半径和高,求体积,可用公式:V=πr²h;(3)已知圆柱的底面直径和高,求体积,可用公式:V=π(d÷2)²h;(4)已知圆柱的底面周长和高,求体积,可用公式:V=π(C÷π÷2)²h;4、圆柱形容器的容积=底面积×高,用字母表示是V=Sh。

5、圆柱形容器公式的应用与圆柱体积公式的应用计算方法相同。

二、常见题型1.下图是一个圆柱的展开图,这个圆柱表面积是多少平方厘米?体积是多少立方厘米?6.28÷3.14÷2=1(厘米) 6.28×3+3.14×1²×2=25.12(平方厘米)3.14×1²×3=9.42(立方厘米)答:这个圆柱的表面积是25.12平方厘米,体积是9.42立方厘米。

2.如图,李师傅把一个正方体改造成了一个笔筒,从中挖出一个半径为3cm的圆柱后,表面积增加131.88cm²。

这个笔筒的容积约是多少?(得数保留整数)表面积增加的部分是圆柱的侧面积高:131.88÷(3.14×3×2)=7(厘米)3.14×3²×7≈198(立方厘米)3.把一个铁块放入一个底面半径是4厘米的装有水的圆柱形量杯(如图),当把完全浸没在水中的铁块取出后,水面下降了3cm。

这个铁块的体积是多少立方厘米?3.14×4²×3=150.72(立方厘米)4.如图是一卷卫生纸,你能求出这卷卫生纸的体积吗?3.14×(13÷2)²×10-3.14×(3÷2)²×10=1256(立方厘米)5.下面是一根钢管,它所用的钢材的体积是多少立方厘米?10÷2=5(厘米)(10+2+2)÷2=7(厘米)3.14×7²×35-3.14×5²×35=2637.6(立方厘米)6.一瓶装满的矿泉水,小强喝了一些,瓶中水深15cm,把瓶盖拧紧后倒置放平,无水部分高6cm,瓶内直径是6cm,小强喝了多少毫升水?3.14×(6÷2)²×6=169.56(毫升)7.一个底面内直径是10cm,高是8cm的圆柱形容器中装有一些水,把一个石块完全浸入水中后溢出100mL水。

《圆柱的体积》教案

《圆柱的体积》教案

《圆柱的体积》教案五篇教学目标:1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程能够运用公式正确地计算圆柱的体积。

2、过程与方法:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究法。

3、情感态度与价值观:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:掌握和运用圆柱体积计算公式进行正确计算。

教学难点:理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。

教学过程:一、情景导入:1、教师:(出示)多么温馨的场面,今天是亮亮和爷爷的生日,幸福的一家人围坐在饭桌前享用着美酒佳肴,你能观察到今天的饭菜比平时多了什么吗?学生:1、比平日多了两个蛋糕。

2、两个蛋糕一个大一个小。

3、蛋糕都是圆柱形的。

2、教师:同学们观察的很仔细,那你能根据刚学过的知识说一说爷爷蛋糕较大意味着什么吗?学生:蛋糕大,意味着圆柱的体积大。

3、教师:那你还知道什么是圆柱的体积吗?学生:圆柱的体积就是圆柱体占空间的大小。

4、教师:两个蛋糕的体积相差较多,我们容易比较出那个体积大,如果体积相差较小我们怎么比较呢?学生:拿出准备的圆柱体进行比较,讨论,各小组分别说明比较的方法并展示。

教师:板书:圆柱的体积二、课上探究1、教师:同学们回忆一下我们还学过那些立体图形?学生:还学过正方体和长方体。

教师:它们的体积怎样计算?(多媒体出示长方体)有什么共同点?学生:长方体的体积=长×宽×高,长×宽=底面积,V=sh;正方体的体积=棱长×棱长×棱长,棱长×棱长=底面积,V=sh;共同点都是底面积乘高。

2、猜测圆柱的体积与什么有关师:拿出圆柱体,让学生猜想圆柱体积与什么有关。

圆柱体积PPT课件

圆柱体积PPT课件

r= d
2
S=∏r2 v=sh = ∏ r2 h
3.已知圆柱体的底面周长和高,怎样求体积 ?
r=c÷2∏
S=∏r2 v=sh = ∏ r2 h
一个圆柱,底面半径是2cm,高是5cm。 求它的体积?
r=2cm h=5cm S底=πr2 =2×2×3.14
=4×3.14 =12.56(cm2) V=Sh=5×12.56=62.8(cm3)
人教版小学六年级数学下册《圆柱的体积》
真 棒!
高 宽

棱长
长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长
v长=a b h
v正 =a 3
V=s底 h
圆的面积公式推导过程:
圆的面积公式推导过程:
S=π r 2
rHale Waihona Puke πrS=πr ×r =π r 2
圆面积计算公式的推导过程
()

长方形
运用了什么数学思想?
一根圆柱形的钢材,底面积是50平方厘米, 高是2.1米。它的体积是多少?
2.1米=210厘米 50 ×210=10500(立方厘米) 答:它的体积是10500立方厘米。
50平方厘米=0.005平方米 0.005 ×2.1=0.0105(立方米) 答:它的体积是0.0105立方米。
看图列式,并写出相应的公式。
答:圆柱的表面积是62.8平方厘米。
计算右图圆柱是体积。(单位:dm)
d=10dm h=4dm S底=π(d÷2)2
=(10÷2)2×3.14 =25×3.14 =78.5(dm2) V=Sh=4×78.5=314(dm3)
1·0 4
一个圆柱,底面周长是94.2m,高是 100m。求它的体积?

圆柱的知识点总结小学

圆柱的知识点总结小学

圆柱的知识点总结小学圆柱是几何学中的一种基本几何体,它是由一个平面上的一个圆(底)和与此平面平行的另一平面围成的部分组成,这个圆为所围部分的底,另一平面为所围部分的面,所围部分体积为圆柱体积。

圆柱的结构与性质:1. 圆柱的面积:(1)圆柱的侧面积:圆柱的侧面积等于侧面展开的矩形的面积。

(2)圆柱的表面积:圆柱的表面积等于底面积加上侧面积的和。

2. 圆柱的体积:圆柱的体积等于底的面积乘以高。

3. 圆柱的投影:用圆柱的截面投影的方法画图。

4. 圆柱的展开图:圆柱展开展平开合,得到展开图。

圆柱的相关定理:1. 圆柱底面的圆心轨迹:圆柱的底面的圆心轨迹与所约在平行于底面与高的圆柱上的任一平行截面的交线相等。

2. 圆柱投影:一个圆柱的所有平行于底面的截面的投影交于某一曲线上。

这个曲线叫做圆柱的投影。

圆柱的运用:圆柱是一种普遍的几何体,其在实际应用中有着广泛的用途。

下面列举了一些圆柱在日常生活中的应用:1. 圆柱体积的计算:在日常生活中,一些容器如水桶、圆柱形罐子的容量都可以使用圆柱的体积公式来计算,从而方便我们在购买物品或做工程测算时使用。

2. 圆柱的建筑:在建筑工程中,圆柱的形状常常被应用在柱子、管道等部分,因为圆柱能够承受更大的压力,提高建筑物的稳定性。

3. 圆柱的几何题:圆柱作为一种基本的几何体,其在数学题目中也有着广泛的应用,如基础的几何计算,以及数学建模等领域。

4. 圆柱的食品制作:在食品制作中,有一些食品的形状就是圆柱形状的,例如薯条、意大利面等,这些食品在形状上都体现了圆柱的特点。

综上所述,圆柱是一个基础的几何体,其在数学课程中的重要性不言而喻,同时在实际生活中也有着广泛的应用。

通过深入理解和熟练掌握圆柱的相关知识,可以更好地应用到日常生活和工作中,为我们的学习和生活带来更多的便利和乐趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一 想

一个压路机的前轮是圆柱体, 轮宽2.5米,半径1米,它的 体积是多少立方米?
3.14×12×2.5
=3.14×2.5
=7.85(立方米)
答:它的体积是7.85立方米。
整理ppt
43
要知道这个圆 柱形柱子的体 积,测量哪些 数据较方便?
整理ppt
44
谈谈再你的见收获
整理ppt
45
整理ppt
1
真 棒!
高 宽

棱长
长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长
v长=a b h
v正 =a 3
V=s底 h
整理ppt
2
圆柱体的体积
—— (人教版)六年制小学数学第十二册
课件制作:太平寨小学
整理ppt
3
圆柱体积的大小与哪些条件有关?
整理ppt
4
图1:
h=h


讨论题:
1、甲圆柱与乙圆柱谁的体积大?
2、它们的什么条件是相同的?
3、圆柱的体积大小与什么有关?
整理ppt
15
图2
将一个圆柱截成不相等的两段,哪个圆柱体积大?
上 下
整理ppt
16
整理ppt
17
整理ppt
18
整理ppt
19
整理ppt
20
整理ppt
21
整理ppt
22
整理ppt
23
整理ppt
24
整理ppt
25
整理ppt
26
2、它们的什么条件是相同的?
3、圆柱的体积大小与什么有关?
整理ppt
5
图1:
h=h


讨论题:
1、甲圆柱与乙圆柱谁的体积大?
2、它们的什么条件是相同的?
3、圆柱的体积大小与什么有关?
整理ppt
6
图1:
h=h


讨论题:
1、甲圆柱与乙圆柱谁的体积大?
2、它们的什么条件是相同的?
3、圆柱的体积大小与什么有关?
(4)50平方厘米=0.005平方米
V=sh=0.005×2.1=0.0105 √
答:它的体积是0.010整5理立pp方t 米。
37
做一做
(1)一根圆柱形木料,底面积为75平方 厘米,长90厘米,它的体积是多少?
75×90=6750(立方厘米)
答:它的体积是6750立方厘米。
整理ppt
38
看图列式,并写出相应的公式。
整理ppt
12
图1:
h=h


讨论题:
1、甲圆柱与乙圆柱谁的体积大?
2、它们的什么条件是相同的?
3、圆柱的体积大小与什么有关?
整理ppt
13
图1:
h=h


讨论题:
1、甲圆柱与乙圆柱谁的体积大?
2、它们的什么条件是相同的?
3、圆柱的体积大小与什么有关?
整理ppt
14
图1:
h=h


讨论题:
1、甲圆柱与乙圆柱谁的体积大?
整理ppt
27
整理ppt
28
整理ppt
29
下 上
整理ppt
30
圆柱体积的大小与哪些条件有关?
底面积

整理ppt
31
整理ppt
32
整理ppt
33
整理ppt
34
讨论题
1、拼成的长方体的体积与原来的圆柱体体积是否相等?
2、它的底面积变了吗?
3、它的高变了吗?
整理ppt
35
例4 一根圆柱形钢材,底面积 是50平方厘米,高是2.1米。 它的体积是多少?
整理ppt
36
判断并说明理由.
(1)v=s h=50× 2.1=105 × 答:它的体积是105立方厘米。
(2)2.1米=210厘米
V=sh=50× 210=10500 √ 答:它的体积是10500立方厘米。 (3)50平方厘米=0.5平方米
V=sh=0.5× 2.1=105 × 答:它的体积是105立方米。
2、它们的什么条件是相同的?
3、圆柱的体积大小与什么有关?
整理ppt
10
图1:
h=h


讨论题:
1、甲圆柱与乙圆柱谁的体积大?
2、它们的什么条件是相同的?
3、圆柱的体积大小与什么有关?
整理ppt
11
图1:
h=h


讨论题:
1、甲圆柱与乙圆柱谁的体积大?
2、它们的什么条件是相同的?
3、圆柱的体积大小与什么有关?
整理ppt
7
图1:
h=h


讨论题:
1、甲圆柱与乙圆柱谁的体积大?
2、它们的什么条件是相同的?
3、圆柱的体积大小与什么有关?
整理ppt
8
图1:
h=h


讨论题:
1、甲圆柱与乙圆柱谁的体积大?
2、它们的什么条件是相同的?
3、圆柱的体积大小与什么有关?
整理ppt
9
图1:
h=h


讨论题:
1、甲圆柱与乙圆柱谁的体积大?
12平方分米 6 分 米
12×6
V=s h
ห้องสมุดไป่ตู้(1)
7分米
.
3 分 米
3.14 ×32 ×7
V= 兀r 2× h
(2)
整理ppt
3.14 ×(6÷2)2 ×8 V=兀(d÷2)2×h
(3)
39
已知:S r d
h 直求 v h 先求s 再求v h 先求r 再求s 然后求v
V=sh V= 兀r2 × h V=兀(d÷2)2 ×h
12平方分米 6 分 米
12×6
7分米
.
3 分 米
3.14 ×32 ×7
整理ppt
3.14 ×(6÷2)2 ×8
40
直柱体的体积 = 底面积×高
V =s h
整理ppt
41
想 试试
一 想

(1)你会计算它们的体积吗? (2)试写出它们的体积公式。
8 米
16平方米
15平方米
9 米
整理ppt
42
想 试试
相关文档
最新文档