13碳氧比能谱测井详解
碳氧比能谱测井综合解释系统使用说明
碳氧比测井综合解释系统使用说明为提高碳氧比测井的计算精度,需要从建立解释模型开始,形成一套具有服务能力的碳氧比测井综合解释系统。
基于这一目标,充分考虑到目前我们的碳氧比测井系列,并考虑到碳氧比测井技术的发展,确定以下具体内容:●碳氧比测井响应机理研究●碳氧比测井解释模型●利用碳氧比测井资料对水淹层进行合理的解释主要技术特点●该解释软件采用微软Visual 工具开发。
●采用交会图和曲线覆盖技术,使用简单方便,功能强大。
●具有多种数据接口,可加载LAS、TEXT、LA716、LIS等多种数据格式。
●图形打印可以使用EPSON打印机和各种绘图仪,成本低,使用方便。
附件1 主要地层参数的计算碳氧比测井的解释一般是建立在主要地层参数由裸眼井测井资料确定的基础上,在常规裸眼井测井解释中我们做以下假设:▪输入曲线都是做过深度匹配和环境校正,曲线都反映地层的实际响应情况。
▪模型分为内部模型(隐含模型)和外部模型,除了Rt曲线外,其它曲线都反映地层冲洗带的状况;中子、密度是一个例外,即能反映冲洗带又能反映原状地层。
▪在冲洗带特性中,包括残余油气等,冲洗带的岩性和原状地层相比没有变化。
▪固体包括:石英、长石、方解石、伊利石等矿物;▪流体包括油、气和水。
▪ 水包括粘土束缚水、自由水和泥浆滤液(其中自由水可分为束缚水和可动水两种)。
▪ 固体和流体的联系用阿尔奇公式,阿尔奇公式可认为基本上是线性的,考虑到粘土等诸多因素对导电机理的影响,有许多改进的方程。
▪ 对流体参数的选取一定要考虑温度的影响。
对于原状地层,矿化度在同一单元应该是连续的,而电阻率是变化的。
考虑到测井仪器的不准确性。
取纯水层的参数最合理。
1、 孔隙度孔隙度曲线主要是单声波曲线,故采用威利公式计算孔隙度。
式中: △t ─ 储层声波时差值(μs/m);△t ma ─ 岩石骨架的声波时差值,砂岩数值为180μs/m ;△tf ─ 流体声波时差值,数值为620μs/m ;cp ─ 压实校正系数。
13碳氧比能谱测井详解
5.碳氧比能谱测井资料的应用
应用分为5点
由于碳氧比能谱测井能在套管井中较好地区分油层和水层,确 定油层剩余油饱和度,评价水淹层,因而它在油田开发中得到广泛 应用。
(1)定量计算含油饱和度(剩余油饱和度) 不同的含油饱和度,碳氧比能谱测井得到的C、O比值是不一样
的,所以根据含油饱和度与C/O的关系式来定量计算含油饱和度(剩 余油饱和度)。
3.伽马能谱的数据采集和处理
(1) 源距选择和谱数据的采集
右图为用MCNP程序(Monte Carlo中子一伽马输运程序)模拟碳 氧比能谱测井得出的C/O与源距的 关系(模拟模型为高1m的均质地层 等)。
从图中①、②和③三条曲线可以 看出:
★当源距小于25cm时,碳氧比 值受井眼内流体性质影响很大;
(2)快中子非弹性散射γ射线 ① 非弹性散射γ射线
表中第一列给出的γ射线能量,就是非弹性散射γ初始数据谱。从表中 可以看出,油气储层中最显著的谱线是6.13MeV、4.43MeV、3.73MeV和 1.78MeV,它们分别是16O,12C,40Ca和28Si的特征谱线。在测井中,选用这四种核 素分别作为碳、氧、钙和硅元素的指示核素,因而这四条谱线也就是对应的 几种元素的特征谱线,见右上图。
2.脉冲中子源在地层中激发的伽马射线
(3)俘获γ能谱
脉冲中子源在地层中激发的各种γ射线的时间分布图。 从图中可知,测量时要用时间门控制测量快中子非弹性散射γ射线,然 后再根据能谱分析来确定射线的引起元素种类和元素含量。
碳氧比能谱测井
学习内容
1.方法特点 2.脉冲中子源在地层中激发的伽马射线 3.伽马能谱的数据采集和处理 4.碳氧比的计算、饱和度和孔隙度解释模型 5.碳氧比能谱测井资料的应用
碳氧比能谱测井技术与应用
碳氧比能谱测井技术与应用【摘要】本文简单介绍了碳氧比能谱测井的测量原理、技术特点、主要用途和操作步骤。
同时针对碳氧比测井资料在现河的应用进行了分析,阐述了应用碳氧比测井资料解决油藏的剩余油分布问题。
【关键词】饱和度;剩余油0.引言现河辖区包括两带、一洼、一地区,发现了馆陶-奥陶等8套含油层系。
已投入开发现河庄等六个油田。
探区构造复杂,油藏类型多样,是集“小断块、薄油层、窄条带、深埋藏、低渗透、稠油”于一体的复式油气集聚区。
进入“十五”以来,油田进入高含水开发期,普遍存在着平面及纵向剩余油分布不清、含水分布不清等主要问题。
因此,寻找剩余油分布,预测产层能力和寻找新的潜力层成为主要的挖潜方向。
1.碳氧比能谱测井技术概述碳氧比测井技术引入了快中子非弹性散射理论,解决了低矿化度地层水条件下测量的问题,但是孔隙度对碳氧比能谱测量影响巨大。
理论研究表明,只有在地层孔隙度大于15%的条件下,碳氧比测井可以获得较可靠的结果,可以根据C/O值确定含油饱和度,区分开油层、水层。
2.碳氧比能谱测井技术原理及特点2.1测量原理能量为14.1MeV的快中子轰击地层,与地层中的各种元素发生非弹性散射后减速,受轰击的原子核处于激发态,之后放出具有一定能量的伽马射线。
因此分析所测得的能量与伽马射线计数率组成的光谱即可确定地层所含元素的种类和数量。
因为原油中含有大量的C元素,水中含有大量的O元素,若测量出相应的元素的非弹性散射伽马射线的强度(计数率),即可确定出地层中碳和氧的含量,从而可导出油和水含量(饱和度)。
因为C/O比能谱测井是快中子非弹性散射基础之上建立的,所以其不受氯离子即矿化度的影响,由于伽马射线穿透能力很强,因此既可在裸眼井中测量,又可在套管井中测量。
2.2主要技术指标⑴探测器类型:NaI。
⑵耐压:70MPa。
⑶耐温:125℃。
⑷尺寸:Φ91×6000mm。
⑸测速:54m/h。
⑹在125℃环境条件下连续工作4小时以上。
碳氧比测井资料应用
SNP碳氧比测井资料的应用情况分析
羊4-21井是1993年羊三木油田8井
区的一口生产井。该井于2009年2
月进行了SNP碳氧比能谱测井,通 过碳氧比处理解释1、2、5号层解 释为水淹层。该井测井前1、2、5 合采日油2.72吨,水143.51方,含 水达98%,测井后调整生产层位, 2009年4月对1、2号层合采,日产
该快中子与地层物质的原子核将发生非弹性散射、弹性散射和辐射俘获及活化反 应,并且伴随会产生能表征元素类别和丰度的不同强度和能量的伽玛射线。这些
伽玛射线为光子探测器所接收后,仪器将记录和分析以下三种谱:即非弹性散射、
辐射俘获伽玛射线两种能量谱和伽玛射线的到达时间谱。并根据不同核素诱发伽 玛射线有不同能量的特征峰选择合适的“能窗”预以检测和记录,碳氧比能谱测 井主要选择碳元素、氧元素作为油和水的指示元素,硅元素和钙元素作为岩性的 指示元素。因为油中主要含碳,水中主要含氧,通过碳氧比测井可以求出地层中碳 氧相对含量比例,可以在已经下了套管的井中发现遗漏的油气层,在已采油的油井 中确定油层的剩余饱和度等。
SNP(HPT)
符号 曲线名 俘获总计数与非弹性反射 总计数比 元素名 地层响应 与电性曲线具有相关性
NCNI
Si+Ca C+O
CO
SICA HSC
非弹性碳氧比
俘获硅钙比 俘获氢比硅加钙
C
Si
O
Ca
用来计算含水饱和度
岩性指示
H/(Si+Ca) 反映孔隙度
一、碳氧比能谱测井技术简介 二、SNP碳氧比测井资料的适应性分析 三、SNP碳氧比测井资料的应用情况分析 四、SNP碳氧比测井解释标准的建立 五、认识与总结
3.67
51 230 0.34 1.85
报告1:精准碳氧比测井原理、解释方法操作共24页
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同Байду номын сангаас 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
报告1:精准碳氧比测井原理、 解释方法操作
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
碳氧比测井
2. c/o测井核物理基础
c/o测井的定义:
碳氧比测井是利用脉冲中子源向地层发射能量 为14MeV的高能快中子脉冲,分别测量地层中原子 核与快中子发生非弹性散射时放出的伽马射线,以 及原子核俘获热中子时放出的伽马射线,不同的原 子核产生的非弹性散射伽马射线和俘获伽马射线 的能量不同,记录这些不同能量的非弹性散射伽马 射线和俘获伽马射线,就可以分析地层中的各种元 素及其含量.
在应用地球物理中,所用的加速器中子源是脉冲 中子源 所谓脉冲中子源用直流电压,被加速粒子的能 量在50Mev以下。它们大都加速氘粒子,用(d, n)反应获得中子,中子的能量是单色的,其中子 强度可高达10 /秒。 氘核引起的反应都是放能反应,因此可用低能 加速器工作,选用氢的同位素做靶材料易实现 (d,n)反应,(d,n)反应有两种: 氘—氘反应 氘—氚反应
Am z
X A zX
应用:中子与靶核发生非弹性散射,使靶核处于 激发态,在退激时要发出γ射线。 由于这些γ射线的能量反映靶核的能级特性。 而靶核能级又决定靶核的性质,这些γ射线叫做特 征γ射线。特征γ射线与靶核的性质有关。 利用特征γ射线可以研究核的能级结构。反过 来,若已知核素的特征γ射线能量,就可以利用中 子非弹性后靶核发出的γ射线分析靶物质中所含的 核素的多少(元素)。
主要内容
1. 2. 3. 4. 5. 6.
c/o测井简介 碳氧比测井核物理基础 c/o测井原理 碳氧比测井仪器简介 解释及应用 新技术及发展
1. c/o测井是用来做什么的
主要用于: c/o测井是套管井评价地层岩性,含油性和孔 隙度的新方法,可以在套管井中较好的划分 油层和水层 可以过套管确定油层的剩余油饱和度 评价水淹层 复查老井,寻找被遗漏的油层 在注水开发过程中监视油水运动状态
13 碳氧比能谱测井
4.碳氧比的计算、饱和度和孔隙度解释模型
(2)含油饱和度解释模型
SO C / O (C / O)W (C / O) O (C / O)W
上式仅对油水层孔隙度与岩性基本一致时适用。 在储集层孔隙度与岩性变化时,应考虑测得的 Si/Ca,可按下式 求 SO
SO C / O K ( Si / Ca ) XIW (C / O) O (C / O)W
看到各自的全 能峰、单逃逸
峰和双逃逸峰,
而硅和钙的谱 图特征峰不够
显著。
(2)快中子非弹性散射γ射线 ②非弹性散射γ射线仪器谱 实际测量时候, 可选取四个特征 谱段(能窗), 使每个谱段的计 数尽可能多地反 映其中一种核素 的贡献,以便于
处理。
2.脉冲中子源在地层中激发的伽马射线
(3)俘获γ能谱
的含量比含油岩层多。因此可选取碳元素及氧元素分别作为油和水 的指示元素。 当快中子与碳元素和氧元素原子核发生非弹性散射时,这两种
元素不但具有较大的宏观非弹性散射截面,而且放射出非弹性散射
伽马射线能量较高,差别也较大(碳的散射伽马射线能量4.43MeV, 氧的散射伽马射线能量为6.13MeV),有利于作能谱分析。
从上式和右图可以看出:
A.当含油饱和度为零时,碳氧原子
数比为O.333,比孔隙度为35%和含油 饱和度高达90%的纯砂岩还要高; B.当含油饱和度达到20%时,孔隙 度不同的各条曲线交于一点,将曲线簇
分成两部分;
(1)单位体积地层中的碳和氧原子数及其比值
②纯石灰岩
C.当含油饱和度小于20%时, 对应于同一含油饱和度,孔隙度大 的地层碳氧原子数比值低; D.当含油饱和度大于20%时,
围有一定的差别。见右图。 双探测器仪器解释模型 是一组联立方程,通过解此 方程来确定不同探测深度的
碳氧比能谱测井的基本原理
1 碳氧比能谱测井的基本原理碳氧比能谱测井的基本原理是:向地层发射快中子(14MeV),同时记录分析快中子与地层中元素发生非弹性散射作用而产生的γ射线能谱。
碳氧等多种元素受快中子非弹性散射作用后,将以发射γ射线的形式使自己的能级退降到原来的稳态。
因为每种元素发射的γ射线的能量不同,我们可以根据接收到的γ射线的能量,来确定某种元素的存在,此能量的γ射线称为该元素的特征γ射线。
如:n + 12C →12C★ + n,∣→12C + γ(4.43MeV)n + 16O →16O★ + n,∣→12O + γ(6.13MeV)碳的特征γ射线能量是4.43MeV,氧的特征γ射线能量是6.13MeV,如此的能量差别很容易将两种γ射线区分开来。
其它元素如硅、钙、氮等受快中子非弹性散射作用也将发射γ射线,但它们或是特征γ射线能量与碳、氧的不同,或是反应几率小,或是地层中含量少,所以分析非弹性散射γ射线的能谱,便可以知道碳、氧两种元素的相对含量,而得到C/O值,油中含碳不含氧,水中含氧不含碳,这样由C/O值的高低可以推知含油饱和度的大小。
2 仪器介绍2.1仪器简介碳氧比能谱测井方法是上个世纪五十年代在世界兴起的一种脉冲中子测井方法。
在我国,以大庆为代表的测井工作者从六十年代开始进行了该方法的研究,经过数十年的不懈努力,刻苦攻关,获得了一大批技术成果,碳氧比能谱测井仪不断得到改进和发展。
大庆测井公司自成立以来,先后研制了NP系列碳氧比能谱测井仪,COR型高精度碳氧比能谱测井仪,COR-D双源距碳氧比能谱测井仪,伴随粒子碳氧比能谱测井仪和小直径碳氧比能谱测井仪。
仪器经历了由点测到连续测量;由耐低温到耐高温;由模拟电路到数字电路;由单晶到双晶的不断发展和完善过程。
仪器实现了系列化、标准化。
碳氧比能谱测井仪是我公司比较重要的拳头产品之一。
特别是COR型高精度碳氧比能谱测井仪,仪器具有较强的工作稳定性和较高的探测精度,具有国内领先水平。
地球物理测井碳氧比测井
了解”中子”
原子核由质子和中子构成。由于中子不 带电荷,因此没有库仑势垒,易与原子核 发生核反应,这就使中子成为研究原子核 结构和性质的有力工具。 在应用地球物理中,中子与物质相互作 用的性质成为研究地层、岩性、矿物成分 的有效手段。
中子的基本性质
1.由于中子不带电荷,它与电子相互作用时,不能使物质电 离,因此中子在物质中的穿透力很强。 2.它与核相互作用时,不用克服库仑势垒,易接进原子核发 生核反应。其反应截面与原子序数无关,仅与质量数有关。 3. 质量:
碳氧比能谱测井的影响因素
碳氧比能谱测井需要考虑到一些影响因素,它同其 他的测井方法一样,也要考虑到具体的测井环境
(1) 孔隙度的影响
(2) 岩性的影响
(3) 矿化度的影响
(4) 油的密度的影响
(5) 井眼条件的影响
(1) 孔隙度的影响
碳氧比值是地层介质中碳元素的响应,当岩性不 变,地层孔隙度由小变大时,纯油砂岩或纯油石 灰岩的碳氧比值都相应地增大。碳氧比曲线只反 映地层含油量的多少,要确定含油饱和度,就要 考虑孔隙度的大小。孔隙度越大,碳氧比求得的 含油饱和度结果的可信度就越高。一般地: 当孔隙度大于12%时,用碳氧比能基本确定含 油饱和度; 当孔隙度小于12%时,定量解释有误差,只能 定性判断油水层。
在地球物理测井,地层经中子非弹性散射 后,地层中的一些核素就会发出特征γ射线, 测量γ射线的能谱,进行能谱分析,就可以得 出地层中元素的含量,或含量比,从而达到 划分地层的目的。 例如,不同地层中各元素的含量是各不相 同的,测量地层碳、氧元素的比例大小,就 可以划分地层是油层还是水,因油层与水层 的碳元素与氧元素的比例是不同的。
M n 1.008665 1.674950 10 27 Kg 939.5492Mev
碳氧比能谱测井原理与实现
碳氧比能谱测井原理与实现碳氧比(C/O)能谱测井是运用次生伽马射线能谱学的原理到现场测井和油气探侧【1】,测量脉冲中子轰击地层而产生的伽玛射线的能量和强度,通过记录地层中的碳和氧的相对量直接判断油水层。
在低矿化度、矿化度变化很大的水层和高孔隙度地层中能定量地给出饱和度参数,是国内目前唯一不受地层矿化度影响的测井方法,能够很好地评价储集层孔隙度和岩性,区分流体的类型,广泛用于在套管井周围地层中寻找油层、监测油井产量和油井的动态,为油田的动态分析、二次采油和三次采油提供重要的地质参数。
随着油田勘探开发任务的加重和油田的二次开发,国内许多油田公司都要求使用碳氧比测量方法,不仅测量出地层物质的氢、抓、碳、氧等元素的含量,还同时计算出地层各元素的比值,以便更好地分析地层岩性和流体类型,确定含油饱和度。
目前国内使用的碳氧比下井仪器主要是从阿特拉斯公司引进的2727多参数能谱测井仪,该仪器的主要特点是井下有一个多功能的微处理器控制仪器的工作;探测的计数率高,提高了原始资料的分辨率;测井的重复性好、质量高;能准确地测量更多的地层参数,测量值更能反映地层状况。
由于该仪器井下具有微处理器,控制繁琐,加之与地面的双向通讯工作方式,使得数控测井系统配接该仪器有一定的难度,本文结合在配接过程中积累的经验,介绍了2727碳氧比仪器的测井原理,给出了具体实现方法和实例。
1.测量原理与方法C/0能谱测井是利用快中子和地层中的原子核发生非弹性碰撞时发射非弹性散射γ射线,该射线的能量与被碰挽核的结构有关,表征了该原子核的性质,不同原子核在碰撞时放出的非弹性散射γ射线的能量和数量都是不同的,通过分析γ射线的能谱,可确定地层中存在的各种元素的相对丰度。
2727测井仪就选用14.1Mev的中子发生器作为中子源,使快中子和碳、氧发生非弹性碰撞,测量碳氧产生的特征γ射线的强度。
选择碳和氧作为区分油层和水层的指示元素是因为石油中含有大量碳元素而不含氧元素,水中含有大量氧元素而不含碳元素,但如果单纯利用碳和氧的浓度来区分油水层,由于碳和氧的差异变化范围小,对仪器的灵敏度要求高,为了增强不同地层的差异,采用碳氧比值来衡量地层的性质,使得油水层的差异增大,放宽对仪器灵敏度的要求,同时也减少了测井中的各种影响,尤其是脉冲中子产额不稳的影响。
碳氧比测井解释培训教材
碳氧比测井解释技术编写:李敬功中国石油化工股份有限公司中原油田分公司二○○二年九月一、概论碳氧比能谱测井是利用一种每秒20千赫兹(KHz)脉冲速度控制下的14.1兆电子伏特(Mev)中子源,穿透仪器外壳、井内流体和套管、水泥环等介质进入地层,让快中子与地层中的碳、氧原子核发生非弹性碰撞,并释放出较高能量的伽马射线。
而作为区分油和水的指示元素C和O,区分岩性的指示元素Si和Ca,套管指示元素Fe,由于非弹性散射所诱发的伽马射线各自具有不同的能量和明显的特征峰值,因而通过选择合适的能窗可被分别检测和记录。
测量碳氧的非弹性散射伽马射线(4.43 Mev和6.13 Mev),从而确定地层的C/O值。
能量为14.1Mev的中子轰击地层时,还有热中子在地层中扩散吸收,同时放出俘获伽马射线,利用中子脉冲同步技术,即可把非弹性散射伽马射线和俘获伽马射线有效区分开来。
C/O测井对地层中常见的四种元素C12、O16、Si28、Ca40反映敏感。
这四种元素正是储层的岩性及流体的综合反映。
碳氧比测井资料中的C/O比曲线反映了地层中的含油性;俘获Si/Ca曲线和非弹性散射Ca/Si曲线用于指示地层的岩性;CI、CIM2、FCC是好的孔隙度指示曲线,与补偿中子曲线很相似,可用于确定地层总孔隙度。
碳氧比能谱测井仪具有精度高、耐温和耐压的特点,可以在摄氏150度以下地层准确确定地层剩余油饱和度。
利用碳氧比能谱测井可以对孔隙度15%以上的地层定量解释、对孔隙度10%-15%的差产层半定量解释。
定量解释的含油饱和度计算误差小于6%、半定量解释的含油饱和度计算误差小于12%,定量解释的产水率计算误差小于10%、半定量解释的产水率计算误差小于20%。
碳氧比能谱测井良好的地质效果为剩余油饱和度分布研究打下坚实基础。
二、碳氧比能谱测井技术指标由于碳氧比能谱测井的中子源是人工中子源,存在较大统计涨落和随机误差,因此采用各个元素对应的次生伽玛计数率之比来消除人工源不稳定因素,这是碳氧比能谱测井名称的由来。
碳氧比能谱测井解释油气水层的方法基础及油田应用实例
碳氧比能谱测井解释油气水层的方法基础及油田应用实例谭廷栋
【期刊名称】《物探与化探》
【年(卷),期】1990(000)005
【摘要】碳氧比能谱测井是一种探测地层化学指示元素比值的核测井方法。
根据测量的碳氧比(C/O)和硅钙比(Si/Ca),可以确定套管井地层含水饱和度及其产水率。
从80年代起,我国大庆、胜利、辽河、大港油田先后开展了碳氧比能谱测井,在套管井地层中找油找气,获得了显著的地质效果。
本文论述碳氧比能谱测井解释油气水层的方法基础及油田应用实例。
【总页数】1页(P346)
【作者】谭廷栋
【作者单位】无
【正文语种】中文
【中图分类】P618.130.8
【相关文献】
1.BGO碳氧比能谱测井定量解释方法 [J], 陆海英;杨荫祖
2.基于CATO方法的碳氧比能谱测井资料解释 [J], 王祝文;刘菁华
3.碳氧比能谱测井解释中扩径影响校正方法研究 [J], 王艳萍
4.碳氧比能谱测井精细解释方法研究及应用 [J], 孟凡顺;冯庆付;贲亮;张绍亮
5.碳氧比能谱测井解释中扩径影响校正方法研究 [J], 王艳萍
因版权原因,仅展示原文概要,查看原文内容请购买。
碳氧比测井解释培训教材
碳氧比测井解释技术编写:李敬功中国石油化工股份有限公司中原油田分公司二○○二年九月一、概论碳氧比能谱测井是利用一种每秒20千赫兹(KHz)脉冲速度控制下的14.1兆电子伏特(Mev)中子源,穿透仪器外壳、井内流体和套管、水泥环等介质进入地层,让快中子与地层中的碳、氧原子核发生非弹性碰撞,并释放出较高能量的伽马射线。
而作为区分油和水的指示元素C和O,区分岩性的指示元素Si和Ca,套管指示元素Fe,由于非弹性散射所诱发的伽马射线各自具有不同的能量和明显的特征峰值,因而通过选择合适的能窗可被分别检测和记录。
测量碳氧的非弹性散射伽马射线(4.43 Mev和6.13Mev),从而确定地层的C/O值。
能量为14.1Mev的中子轰击地层时,还有热中子在地层中扩散吸收,同时放出俘获伽马射线,利用中子脉冲同步技术,即可把非弹性散射伽马射线和俘获伽马射线有效区分开来。
C/O测井对地层中常见的四种元素C12、O16、Si28、Ca40反映敏感。
这四种元素正是储层的岩性及流体的综合反映。
碳氧比测井资料中的C/O比曲线反映了地层中的含油性;俘获Si/Ca曲线和非弹性散射Ca/Si曲线用于指示地层的岩性;CI、CIM2、FCC 是好的孔隙度指示曲线,与补偿中子曲线很相似,可用于确定地层总孔隙度。
碳氧比能谱测井仪具有精度高、耐温和耐压的特点,可以在摄氏150度以下地层准确确定地层剩余油饱和度。
利用碳氧比能谱测井可以对孔隙度15%以上的地层定量解释、对孔隙度10%-15%的差产层半定量解释。
定量解释的含油饱和度计算误差小于6%、半定量解释的含油饱和度计算误差小于12%,定量解释的产水率计算误差小于10%、半定量解释的产水率计算误差小于20%。
碳氧比能谱测井良好的地质效果为剩余油饱和度分布研究打下坚实基础。
二、碳氧比能谱测井技术指标由于碳氧比能谱测井的中子源是人工中子源,存在较大统计涨落和随机误差,因此采用各个元素对应的次生伽玛计数率之比来消除人工源不稳定因素,这是碳氧比能谱测井名称的由来。
碳氧比测井解释培训教材
碳氧比测井解释技术编写:李敬功中国石油化工股份有限公司中原油田分公司二○○二年九月一、概论碳氧比能谱测井是利用一种每秒20千赫兹(KHz)脉冲速度控制下的14.1兆电子伏特(Mev)中子源,穿透仪器外壳、井内流体和套管、水泥环等介质进入地层,让快中子与地层中的碳、氧原子核发生非弹性碰撞,并释放出较高能量的伽马射线。
而作为区分油和水的指示元素C和O,区分岩性的指示元素Si和Ca,套管指示元素Fe,由于非弹性散射所诱发的伽马射线各自具有不同的能量和明显的特征峰值,因而通过选择合适的能窗可被分别检测和记录.测量碳氧的非弹性散射伽马射线(4。
43 Mev和6.13 Mev),从而确定地层的C/O值。
能量为14。
1Mev的中子轰击地层时,还有热中子在地层中扩散吸收,同时放出俘获伽马射线,利用中子脉冲同步技术,即可把非弹性散射伽马射线和俘获伽马射线有效区分开来.C/O测井对地层中常见的四种元素C12、O16、Si28、Ca40反映敏感。
这四种元素正是储层的岩性及流体的综合反映。
碳氧比测井资料中的C/O比曲线反映了地层中的含油性;俘获Si/Ca曲线和非弹性散射Ca/Si曲线用于指示地层的岩性;CI、CIM2、FCC是好的孔隙度指示曲线,与补偿中子曲线很相似,可用于确定地层总孔隙度。
碳氧比能谱测井仪具有精度高、耐温和耐压的特点,可以在摄氏150度以下地层准确确定地层剩余油饱和度。
利用碳氧比能谱测井可以对孔隙度15%以上的地层定量解释、对孔隙度10%-15%的差产层半定量解释.定量解释的含油饱和度计算误差小于6%、半定量解释的含油饱和度计算误差小于12%,定量解释的产水率计算误差小于10%、半定量解释的产水率计算误差小于20%。
碳氧比能谱测井良好的地质效果为剩余油饱和度分布研究打下坚实基础。
二、碳氧比能谱测井技术指标由于碳氧比能谱测井的中子源是人工中子源,存在较大统计涨落和随机误差,因此采用各个元素对应的次生伽玛计数率之比来消除人工源不稳定因素,这是碳氧比能谱测井名称的由来。
碳氧比能谱测井及其应用
学术论坛科技创新导报 Science and Technology Innovation Herald242当油田进入中高含水期后,一方面迫切需要了解储层目前剩余油分布,寻找潜力油层,调整作业方案,需要对储层性质进行重新认识。
为了解决以上问题,需要引进更先进的测井仪器和资料解释方法。
在套管井中通常使用的饱和度测井方法大都建立在伽马射线探测的基础上,常用的剩余油饱和度测井技术有中子寿命测井(T D T)和碳氧比(C/O)能谱测井。
中子寿命测井在天然气井中效果较好,但受地层水矿化度的影响,低矿化度的地层,难区别油和水[1]。
碳氧比能谱测井是目前国内唯一不受地层水矿化度影响的测井方法,在注入水和地层水矿化度存在较大差异的情况下,该方法具有明显的优点,尤其在高孔隙度地层测试中效果更好,克服了目前电法测井不能评价套管井中地层含油性的困难,又弥补了中子寿命测井不能用于低地层水矿化度区域的不足。
因此在各大油田中得到广泛的应用。
1 测量原理碳氧比能谱测井是一种新型的脉冲中子能谱测井,它所依据的基本理论是快中子非弹性散射,所要测量的主要伽马射线是非弹性散射伽马射线。
基本原理是利用利用脉冲中子发生器向地层发射能量为14MeV的快中子,当这些高能快中子射入地层后,它除了与地层中元素的原子核发生非弹性散射反应外,还要发生俘获辐射反应和活化反应。
非弹性散射伽马射线基本上仅在高能中子源存在时它才存在,而在中子源停止发射后只能延续极短的时间,因此只要适当的采用与中子脉冲同步的测量技术,就可以有效地把非弹性伽马射与其它反应产①作者简介:段迎利(1989—),女,在读硕士研究生,主要从事油藏动态监测及测井资料解释工作。
碳氧比能谱测井及其应用①段迎利 袁伟(湖北省武汉市蔡甸区长江大学地球物理与石油资源学院 湖北武汉 430100)摘 要:碳氧比能谱测井,又称快中子非弹性散射伽马能谱测井,能穿透套管、水泥环等介质而直接探测地层中的元素,不受地层水矿化度的影响,进而计算出储层中的含油饱和度,进行油田动态分析。
各种测井新技术介绍
各种测井新技术介绍SNP碳氧比能谱测井技术碳氧比能谱测井是通过向地层发射脉冲式快中子(能量14Mev),测量中子与原子核碰撞后释放出的非弹性散射次生伽马射线,这种伽马射线能量与所碰撞的原子性质有关。
选出了碳元素与氧元素作为油水识别元素,并测量碳元素与氧元素的非弹性散射次生伽马射线的计数,两元素的计数率比即是碳氧比。
地质应用:●新井投产前,对储层进行再评价;●寻找高含水层,为堵水作业提供依据;●在枯竭井中,寻找有生产潜力的油层;●在观察井中,监测剩余油饱和度变化状况;●进行多井评价,确定剩余油饱和度分布。
氧活化测井技术氧活化测井是一种新的测量水流速度的测井方法。
井下仪器由两部分组成:中子发生器和特征Υ射线探测器。
中子发生器发射中子,使井筒内水溶液中的氧元素活化,如果水流动,Υ射线探测器就可以测出水的流动信号,进而测出水的流速。
该技术是在水、聚合物驱油水溶液和三元复合驱油水溶液中测量套管和油管间、套管外水泥环中水的流速。
从而确定注入剖面的套管井测井方法。
测井不破坏聚合物水溶液的分子链,克服了过去的注入剖面玷污、环境污染、大孔道测量不准的缺陷。
地质应用:●注聚合物、三元复合剂水井的注入剖面;●水井的注入剖面,尤其是同位素沾污严重的配注水井的注入剖面;●大孔道、裂缝井、深穿透射孔井的注入剖面;● 量在30~50m3/d的水井注入剖面;●注水井的“找窜”、“找漏”。
电磁波测井技术电磁波测井也叫介电测井通过发射天线向地层发射电磁波,再由二个接收天线接收来自地层的电磁波的相位差值及幅度比,测量的相位差和幅度比与地层的电阻率和介电常数之间存在函数关系,这样就可以得到地层的电阻率和介电常数。
技术特点:--- 2MHZ电磁波测井只与地层的电阻率特性有关,受围岩影响小、探测深度较大、分层能力较强。
---60MHz电磁波测井不但与地层电阻率特性有关,还与地层的介电常数特性有关,受地层水矿化度影响小,适合于地层水矿化度未知或难于确定的地区。
碳氧比能谱测井信号的采集与处理
碳氧比能谱测井信号的采集与处理摘要:碳氧比能谱测井技术是目前针对油田开采的主要测井技术之一,碳氧比能谱测井技术通过反馈回来的信号分析矿井的碳氧比,计算建立了计算泥质含量、粒度中值、孔隙度、束缚水饱和度、渗透率等等参数来建立数据解释模型,通过对模型的精确计算与系统的分析来对地质效果进行统计分析来进行实际施工指导,通过大量的碳氧比能谱测井工程的实践例子表明碳氧比能谱测井技术为油田的开发初期、加密调整以及综合实施方案的制定提供实际的资料依据,这是其他的测井技术的所无法替代的优势,通过碳氧比能谱测井信号纵向分析粒子的碳氧比,表明过碳氧比能谱测井方法具有较高的纵向分层分析能力,是目前油田后期开发的首选测量技术。
关键字:碳氧比能谱测井信号采集与处理我国的油田开发一直是国家与社会的关注重点,油田开发在进入中后期时需要对油田进行重新测定,因此对于重新评价那些已经部分枯竭的老油层是油田开发的后期工作重点,使用碳氧比能谱测井技术对成熟的产油区中以及老井中遗漏掉油的含油层进行深入的测量,在开发区域中监测产油量和油层的开采情况等应用都是广泛的。
通过在已下套管井中测量油层,确定目前所发现的储集层含油饱和度以及监测油层水淹状况和油水动态变化等等,来采集油田的实际参数数据,近年来碳氧比能谱测井技术虽然解决了一系列地质问题,但是测井解释符合率偏低,所以对于这个现象,进行全面分析,确保在碳氧比能谱测井技术的实际效果。
一、碳氧比能谱测井技术的现状碳氧比能谱测井技术的主要理论就是快中子非弹性散射理论。
当探测器子源向地层发出发射出14Mev的特快中子,中子在地层中会与地层元素的原子核发生之间发生非弹性散射反应伴随高能量的伽马射线的释放,但是油层与水层的区分由C、O元素随着非弹性散射反应所诱发的伽马射线各自具有不同的能量和明显的特征峰值来进行判断。
伽马射线具有很强的穿透能力,几乎不受套管水泥等屏蔽等障碍物的阻隔,可直接穿透地表,探测到来自地层的响应,所以碳氧比能谱测井技术对已下套管井中的油层探测,确定不同开发时期的油层的剩余油饱和度,是目前一种有效的监测油藏动态方法。
碳氧比测井
高精度碳氧比 4.1m 80--99mm 70--98kg 135--150o C
技术指标
2727XA C/O 13.64 英尺 (4.16米) 3-1/2 英寸 88.9 mm 200磅(90.72公斤) 270o F (132o C)
100 MPa 14 MeV 中子源
14500 psi (100 MPa) 14 MeV 中子源
时间门A记录脉冲发射期间的产生 非弹性谱和俘获伽马射线谱(蓝 线),时间门B记录脉冲发射后的 俘获的能谱(绿线),其中含有大 部分的俘获伽马射线。
从时间门A谱中减去时间门B谱的 一部分,可以得到经校正后的净非 弹性能谱(红线)。
高精度碳氧比能谱处理
高精度碳氧比能谱测井采用 开窗能谱处理技术,利用简 单的伽马射线能量分布模式, 把大量的伽马射线归结为单 一元素的贡献,提高探测的 伽马射线的数目,降低统计 起伏误差。
比值法 :在利用碳氧比能谱测井方法对地层进行分析时,通常总是取碳能窗范围内所 包含的伽马射线总计数与氧能窗范围内所包含的伽马射线总计数之比来评估储集层中 的含油量或其他地质参数。碳能窗与氧能窗中计数的比值称为碳氧比,碳氧比能谱测 井也由此得名。利用碳氧比来评价地层中的含油量有两个优点:一是可以消除中子产 额不稳定造成的影响;二是可以提高区别地层中的灵敏度。
孔隙度φ:
C/O比值受地层介质中碳元素含量的影响。因此,当岩性不变,地层孔隙度 由小变大时,纯油砂岩或纯油石灰岩的C/O比值相应的增大。
Φ<10% 不能应用 10%<Φ<15% 只能定性地区分油、水层 15%<Φ<25% 可以区分开油、水层,并给出地层的含油饱和度。 Φ>25% 可以确定含油饱和度,区分油、水层、弱水淹层和强水淹层。 矿化度: 盐水和硼对C/O的影响不大,但对俘获Si/Ca曲线有较小的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
进而确定含油饱和
度。
2.脉冲中子源在地层中激发的伽马射线
(2)快中子非弹性散射γ射线
① 非弹性散射γ射线
地层中能与
快中子发生非弹 性散射而产生γ
射线的核素主要
是12C、160、28Si 和40Ca。右表给
出这四种核素的
有关数据。
(2)快中子非弹性散射γ射线
① 非弹性散射γ射线
表中第一列给出的γ射线能量,就是非弹性散射γ初始数据谱。从表中 可以看出,油气储层中最显著的谱线是6.13MeV、4.43MeV、3.73MeV和 1.78MeV,它们分别是16O,12C,40Ca和28Si的特征谱线。在测井中,选用这四种核 素分别作为碳、氧、钙和硅元素的指示核素,因而这四条谱线也就是对应的 几种元素的特征谱线,见右上图。
1.方法特点
碳氧比能谱测井是一种脉冲中子测井方法。其探测深度较浅,约 21.3 cm。主要用于套管井测井,克服了目前电测井不能用于评价套管 井中地层含油性的困难,它是套管井评价地层岩性、含油性和孔隙度 的新方法。其理论基础是快中子的非弹性散射理论。 当高能快中子射入地层之后,与地层中元素的原子核发生非弹性 散射,致使原子核处于激发状态。当原子核从激发状态恢复到稳定状
(2)快中子非弹性散射γ射线 ②非弹性散射γ射线仪器谱
地层快中子非弹性散射γ射线计数,主要包括碳、氧、硅、钙的贡献。 下图分别给出能量为14 MeV的中子与12C、160、28Si、40Ca发生非弹性散射产 生的γ射线谱,谱图是用NaI(TI)闪烁计数γ谱仪测定的。 图中所示 碳和氧的能谱
图中可明显地
损失的主要方式。
2.脉冲中子源在地层中激发的伽马射线
(1)快中子激发的γ射线序列
可以认为:非弹性散射和由此引发的光子发射是在发射中子的持续期内 进行的,并且当中子发射停止时这一过程也立即终止。在随后的脉冲间隔里, 即在中子发射后的10-6~10-3s的时间内,主要作用过程是弹性散射,中子热 化并产生俘获辐射。所以利用时间门可以把非弹性散射γ射线与俘获辐射γ 射线区别开。 碳氧比γ能谱 测井,就是对地层 中先后产生的这两 种γ射线做能谱分 析,求出碳氧比值,
(1)快中子激发的γ射线序列
脉冲中子源以一定脉冲宽度和重复周期向地层发射中子束。能量 为14MeV的中子进入地层,首先与地层中某些核素原子核发生非弹性散 射,并发射非弹性散射γ射线,不同元素原子核的非弹性散射伽马射 线的能量不一样。 在中子发射后的10-8~10-6s时间间隔内,非弹性散射是中子能量
下图是用BGO闪烁晶体,测到的俘获伽马能谱图。
图中纵线可分出H、Si、Ca、CI和
Fe的计数窗。可知:氢特征峰在2.23 MeV处显示清楚;硅两个全能峰位分别 在3.54MeV和4.93MeV;钙在6.42MeV和 4.42MeV处的两个峰也较明显;如地层
水为盐水,则氯的最明显的全能蜂在
6.11MeV,强烈影响钙能窗计数,从而 干扰用硅钙比区分砂岩和石灰岩。谱分
碳氧比能谱测井
Carbon/oxygen (C/O) spectral logging
碳氧比能谱测井
学习参考书
1.丁次乾. 矿场地球物理[M].东营,中国石油大学出版社,1996
2.<<测井学>>编写组. 测井学[M]. 北京,石油工业出版社,1998
3.黄隆基. 核测井原理[M].东营,石油大学出版社,2000
碳氧比能谱测井
学习内容 1.方法特点 2.脉冲中子源在地层中激发的伽马射线 3.伽马能谱的数据采集和处理 4.碳氧比的计算、饱和度和孔隙度解释模型 5.碳氧比能谱测井资料的应用
碳氧比能谱测井
学习内容 1.方法特点 2.脉冲中子源在地层中激发的伽马射线 3.伽马能谱的数据采集和处理 4.碳氧比的计算、饱和度和孔隙度解释模型 5.碳氧比能谱测井资料的应用
看到各自的全 能峰、单逃逸
峰和双逃逸峰,
而硅和钙的谱 图特征峰不够
显著。
(2)快中子非弹性散射γ射线 ②非弹性散射γ射线仪器谱 实际测量时候, 可选取四个特征 谱段(能窗), 使每个谱段的计 数尽可能多地反 映其中一种核素 的贡献,以便于
处理。
2.脉冲中子源在地层中激发的伽马射线
(3)俘获γ能谱
析将严重受地层水矿化度影响。
2.脉冲中子源在地层中激发的伽马射线
(3)俘获γ能谱
脉冲中子源在地层中激发的各种γ射线的时间分布图。 从图中可知,测量时要用时间门控制测量快中子非弹性散射γ射线, 然后再根据能谱分析来确定射线的引起元素种类和元素含量。
碳氧比能谱测井
学习内容 1.方法特点 2.脉冲中子源在地层中激发的伽马射线 3.伽马能谱的数据采集和处理 4.碳氧比的计算、饱和度和孔隙度解释模型 5.碳氧比能谱测井资料的应用
的含量比含油岩层多。因此可选取碳元素及氧元素分别作为油和水 的指示元素。 当快中子与碳元素和氧元素原子核发生非弹性散射时,这两种
元素不但具有较大的宏观非弹性散射截面,而且放射出非弹性散射
伽马射线能量较高,差别也较大(碳的散射伽马射线能量4.43MeV, 氧的散射伽马射线能量为6.13MeV),有利于作能谱分析。
Байду номын сангаас
基于上述原理,分别对不同地层进行能谱分析,就可以由碳元
素和氧元素的含量及其比值来划分水淹层、确定油和水的含量。
碳氧比能谱测井
学习内容 1.方法特点 2.脉冲中子源在地层中激发的伽马射线 3.伽马能谱的数据采集和处理 4.碳氧比的计算、饱和度和孔隙度解释模型 5.碳氧比能谱测井资料的应用
2.脉冲中子源在地层中激发的伽马射线
态时,将会放射出具有一定能量的伽马射线。对于不同元素的原子核
来说,其非弹性散射伽马射线的能量不一样。因此可对地层中的非弹 性散射伽马射线进行能量和强度分析(即能谱分析),来确定地层中存
在那些元素及含量。
1.方法特点
石油是碳氢化合物,不含氧元素;而水是氢氧化合物,不含碳
元素。故在含油岩层中碳的含量比含水岩层要多,而含水岩层中氧
3.伽马能谱的数据采集和处理
(1) 源距选择和谱数据的采集
右图为用MCNP程序(Monte
Carlo中子一伽马输运程序)模拟碳
氧比能谱测井得出的C/O与源距的 关系(模拟模型为高1m的均质地层
等)。
从图中①、②和③三条曲线可 以看出: