《数学分析》考试大纲 .doc
《数学分析》考试大纲

《数学分析》考试大纲一、课程名称:数学分析二、适用专业: 数学与应用数学三、考试方法:闭卷考试四、考试时间:100分钟五、试卷结构:总分:100分,选择题15分,填空题15分,计算题40分,证明题30分。
六、参考书目:1、华东师范大学数学系编著,《数学分析》(上、下册),高等教育出版社,2010年第4版。
2、中国科学技术大学常庚哲史济怀编著,《数学分析教程》(上、下册),高等教育出版社,2003年第1版。
七、考试的基本要求:数学分析是数学与应用数学专业专升本入学考试中专业课考试内容,考生应理解和掌握《数学分析》中函数、极限、连续、微分学、积分学和级数的基本概念、基本理论、基本方法。
应具有抽象思维能力、逻辑推理能力、运算能力和空间想象能力,能运用所学知识正确拙推理证明,准确、简捷地计算。
能综合运用数学分析中的基本理论、基本方法分析和解决实际问题。
八、考试范围第一章实数集与函数(一)考核内容实数及其性质,绝对值与不等式。
区间与邻域,有界集与确界原理。
函数概念,函数的表示法。
函数的四则运算,复合函数,反函数,初等函数。
具有某些特性的函数:有界函数、单调函数、奇函数与偶函数、周期函数。
(二)考核知识点1、实数:实数的概念,实数的性质,绝对值与不等式;2、数集、确界原理:区间与邻域,有界集与无界集,上确界与下确界,确界原理;3、函数概念:函数的定义,函数的表示法(解析法、列表法、和图象法),分段函数;4、具有某些特征的函数:有界函数,单调函数,奇函数与偶函数,周期函数。
(三)考核要求1、了解实数域及性质;2、掌握几种不等式及应用;3、熟练掌握数域,上确界,下确界,确界原理;4、牢固掌握函数复合、基本初等函数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。
第二章数列极限(一)考核内容数列。
数列极限的定义,无穷小数列。
收敛数列性质:唯一性、有界性、保号性、不等式性质、迫敛性、四则运算法则。
子列及子列定理。
2021年云南大学823-数学分析

823-《数学分析》考试大纲(研究生招生考试属于择优选拔性考试,考试大纲及书目仅供参考,考试内容及题型可包括但不仅限于以上范围,主要考察考生分析和解决问题的能力。
)一、考试性质《数学分析》是基础数学专业、计算数学专业、概率论与数理统计专业、应用数学专业、运筹学与控制论专业、系统理论专业硕士学位研究生入学考试的科目之一。
《数学分析》考试要求能反映数学学科的特点,科学、公平、准确地测试考生的基本素质和综合能力,很好地选拔具有科研发展潜力的优秀人才进入硕士阶段学习,为国家培养掌握现代数学方面的基础理论知识,具有较强分析与解决实际问题能力的高层次的应用型的和复合型的数学专业人才。
二、考试要求考查考生对《数学分析》里的基本概念、基础知识的掌握情况,考察考生的分析能力、计算能力和对知识的综合运用能力。
三、试卷分值、考试时间和答题方式本科目试卷满分为150分,考试时间为180分钟,答题方式为闭卷、笔试。
四、试题结构(1)试卷题型结构填空题:30分计算题:60分证明题:60分(2)内容结构各部分内容所占分值为极限论:约30分单变量微积分学:约40分级数:约40分多变量微积分学:约40分五、考查的知识及范围1、变量与函数函数的概念;复合函数和反函数;基本初等函数2、极限与连续数列的极限和无穷大量;函数的极限;连续函数3、极限续论关于实数的基本定理;闭区间上连续函数性质4、导数与微分导数的引进与定义;简单函数的导数;求导法则;复合函数求导法;微分及其运算;隐函数及参数方程所表示函数的求导法;不可导的函数举例;高阶导数与高阶微分5、微分学的基本定理及其应用微分中值定理;泰勒公式;函数的升降、凸性与极值;平面曲线的曲率;待定型;方程的近似解6、不定积分不定积分的概念及运算法则;不定积分的计算7、定积分定积分概念;定积分存在条件;定积分的性质;定积分计算8、定积分的应用和近似计算平面图形面积;曲线的弧长;体积;旋转曲面的面积;质心;平均值、功9、数项级数上极限与下极限;级数的收敛性及基本性质;正项级数;任意项级数;绝对收敛级和条件收敛级数的性质;无穷乘积10、反常积分无穷限的反常积分;无界函数的反常积分11、函数项级数、幂级数函数项级数的一致收敛性;幂级数;逼近定理12、Fourier级数和Fourier变换Fourier级数; Fourier变换13、多元函数的极限与连续平面点集;多元函数的极限和连续性14、偏导数和全微分偏导数和全微分的计算;求复合函数偏导数的链式法则;由方程(组)所确定的函数的求导法;空间曲线的切线与法平面;曲面的切平面与法线;方向导数和梯度;泰勒公式15、极值和条件极值极值和最小二乘法;条件极值16、隐函数存在定理、函数相关隐函数存在定理;函数行列式的性质、函数相关17、含参变量积分含参变量的积分的定义;含参变量的积分的分析性质:连续性定理、积分次序交换定理与积分号下求导定理;含参变量的积分的计算。
福建师范大学《数学分析选讲》考试大纲

《数学分析选讲》考试大纲一、单项选择题1.设243)(-+=x x x f ,则当0→x 时,有( ).A .)(x f 与x 是等价无穷小B .)(x f 与x 同阶但非是等价无穷小C .)(x f 是比x 高阶的无穷小D .)(x f 是比x 低阶的无穷小 答案:B 2. 设函数111()1xx e f x e -=+,则0x =是()f x 的( )A .可去间断点B .第二类间断点C .跳跃间断点D .连续点 答案:C3. 22lim (1)n nn→∞+等于( ).A . 221ln xdx ⎰B .212ln xdx ⎰C .212ln(1)x dx +⎰ D .221ln (1)x dx +⎰答案:B4. (,)z f x y =在点(,)x y 处偏导数连续是(,)f x y 在该点连续的( )条件.A .充分非必要 B.必要非充分 C.充分必要 D.既不充分也不必要 答案:A5. 如果级数1n n u ∞=∑和1n n v ∞=∑均发散,则以下说法正确的是( ).A. 1()n n n u v ∞=±∑一定都收敛 B. 1()n n n u v ∞=±∑一定都发散C. 1()n n n u v ∞=-∑可能收敛,但1()n n n u v ∞=+∑一定发散D. 1()n n n u v ∞=±∑都可能收敛答案:D6. 设232)(-+=x x x f ,则当0→x 时,有( )A .)(x f 与x 是等价无穷小 B. )(x f 与x 是同阶但非等价无穷小 C. )(x f 是比x 高阶的无穷小 D. )(x f 是比x 低阶的无穷小答案;B 7. 设arctan (),xf x x=则0x =是()f x 的( ) A. 连续点 B. 可去间断点 C.跳跃间断点 D. 第二类间断点 答案:B8. 下列极限计算中,正确的是( )A .01lim(1)x x e x +→+= B. 01lim(1)1x x x +→+= C. 1lim(1)x x e x →∞-=- D. 1lim(1)x x e x -→∞+=答案:B9. 设函数)(x f 在0x 处可导,且2)(0'=x f ,则=--→hx f h x f h )()(lim000( )A.21 B. 2 C. 21- D. -2 答案:D10. 下列反常积分中收敛的是 ( ) A. 211x dx x +∞+⎰B. 1+∞⎰12011sin dx x x ⎰ D. 10ln xdx ⎰答案:D11. 函数()y f x =,若0000()(2)3,|limx x h f x f x h dy h=→--==则( )A. 32dx B.32dx - C.3dx D.3dx -答案:A12. 已知函数(,)f x y 在点(0,0)的某个邻域内连续,且224(,)(0,0)(,)lim1()x y f x y xyx y →-=+,则下述四个选项中正确的是 ( ). A .点(0,0)不是(,)f x y 的极值点 B. 点(0,0)是(,)f x y 的极小值点 C. 点(0,0)是(,)f x y 的极大值点D. 根据所给条件无法判断点(0,0)是否是(,)f x y 的极值点 答案:A13. lim →∞n 等于( ) A. 1ln ⎰xdx B. 0ln +∞⎰xdx C. 1⎰xdx D. 0+∞⎰xdx .答案:A14.设)(x f 在],[b a 上连续,则0[()]xd f t dt dx -⎰等于( )A. ()f x -B. ()f x -C. ()f x --D. ()f x 答案:A15.下列结论正确的是( ).A. 若0()f x dx +∞⎰和0()f x dx -∞⎰均发散,则()f x dx +∞-∞⎰一定发散;B. 若0()f x dx +∞⎰发散,0()g x dx +∞⎰发散,则0[()()]f x g x dx +∞+⎰一定发散; C. 若0()f x dx +∞⎰发散,0()g x dx +∞⎰发散,则0()()f x g x dx +∞⎰一定发散; D. 若0()f x dx +∞⎰收敛,0()g x dx +∞⎰发散,则0()()f x g x dx +∞⎰一定发散.答案:A16.lim →∞n 等于( ) A. 1ln ⎰xdx B. 0ln +∞⎰xdx C. 1⎰xdx D. 0+∞⎰xdx .答案:A 17. 函数2ln(1)y x =+单调增加且图形为凹的区间是( ).A. (,1)-∞-B. (1,0)-C. (0,1)D. (1,)+∞答案:C18. 设二元函数(,)f x y 存在偏导数,则00000(2,)(,)lim x f x x y f x x y x∆→+∆--∆=∆( ).A. 0B. 00(,)x f x x y +∆C. 002(,)x f x yD. 003(,)x f x y 答案;D19. 若24()f x dx x C '=+⎰,则)(x f =( )A .2x C + B. 33x C + C.5285x C + D. 4x C +答案:C20. 部分和数列}{n S 有界是正项级数∑∞=1n n u 收敛的( )条件A. 充分非必要B. 必要非充分C.充分必要D.非充分非必要 答案:C21.当0→x 时,x x sin -与x 比较是( ).A.等价无穷小B.高阶无穷小C.低阶无穷小D.同阶无穷小 答案:B22. 设32()431f x x x x =+--,则方程()0f x =( ). A.在(0,1)内没有实根 B.在(1,0)-内没有实根C.在(,0)-∞内有两个不同的实根D.在(0,)+∞内有两个不同的实根 答案:C23. 设32,1()3,1x x f x x x ⎧≤⎪=⎨⎪>⎩,则()f x 在1x =处的( ).(A )左右导数都存在(B )左导数存在,右导数不存在 (C )左右导数都不存在(D ) 左导数不存在,右导数存在 答案:B24. 0()0f x '=是()f x 在0x x =取得极值的( ). A .充分非必要条件 B .必要非充分条件 C .充分且必要条件 D .既非充分又非必要条件 答案:D25. 设()f x 和()g x 均为区间I 内的可导函数,则在I 内,下列结论正确的是( ).A .若()()f x g x =, 则()()f x g x ''= B. 若()()f x g x ''=,则()()f x g x = C. 若()()f x g x >,则 ()()f x g x ''> D. 若()()f x g x ''>,则()()f x g x > 答案:A26.()f x 在[,]a b 有界是()f x 在[,]a b 可积的( ).A. 充分非必要条件B. 必要非充分条件C. 充分且必要条件D. 既非充分又非必要条件 答案:B27. 设()f x 为可导函数,且满足0(1)(1)13lim x f f x x →--=,那么曲线()y f x =在点(1,(1))f 处的切线斜率为 ( )A. 3B. 3-C. 1D. 1-答案:A二、判断题:以下各题若正确请在( )内填“√”, 若错误填“×”. 1. 若{}n x 不是无穷大量,则{}n x 必存在收敛子列. ( ) 答案:√2.)(x f 在],[b a 上连续是⎰ba dx x f )(存在的充要条件 . ( )答案:×3. 若()f x 是初等函数,其定义域为(,)a b ,0(,)x a b ∈,则00lim ()()x x f x f x →= .( ) 答案:√4. 若(1,2)n n u v n ≤=,级数1n n v ∞=∑收敛,则1n n u ∞=∑不一定收敛.( )答案:√5. 已知函数(,)f x y 在点(0,0)的某个邻域内连续,且224(,)(0,0)(,)lim1()x y f x y xyx y →-=+,则点(0,0)是(,)f x y 的极小值点. ( ) 答案:×6.若{}n x 不是无穷大量,则{}n x 任一子列均不是无穷大量. ( ) 答案:×7. 若函数()f x 在[,]a b 上可积,则()f x 在[,]a b 上也可积. ( ) 答案:×8. 当0x x →时,()f x 不以A 为极限,则存在00{},(1,2),()n n n x x x n x x n ≠=→→∞,使{()}n f x 不以A 为极限.( ) 答案:√9. 若lim 0n n u →∞=,则级数1n n u ∞=∑收敛但和不一定是0 . ( )答案:×10. 对),(y x f z =, 偏导数连续,则全微分存在. ( ) 答案:√11.若{}n x 不是无穷大量,则{}n x 必存在有界子列. ( ) 答案:√12. 若函数()f x 在[,]a b 上可积,而()g x 只在有限个点上与()f x 的取值不相同,则()g x 在[,]a b 上也可积,且有()()bbaaf x dxg x dx =⎰⎰.( )答案:√13.若()f x 在点0x 连续,则()f x 在0x 既是右连续,又是左连续. ( ) 答案:×14. 函数21xx-展开成x 的幂级数为210,1n n x x ∞+=<∑. ( )答案:√15.二元函数22220(,)0,0x y f x y x y +≠=+=⎩,在点(0,0)处连续,偏导数存在.( ) 答案:√ 三、填空题1、若20(23)0kx x dx -=⎰,则k 的值为 .答案:0或12、设21(2021)n n x ∞=-∑收敛,则lim n n x →∞= .答案:20213、级数1nn ∞=的收敛区间是 .答案:(2,4)或[2,4)4.设21(10)n n x ∞=-∑收敛,则lim n n x →∞= .答案:105.(,)(0,0)limx y →= .答案:46.级数21nn ∞=的收敛区间是_____________.答案:(1,3)7.广义积分20110k dx x π+∞=+⎰,则1k= . 答案:58.1lim 1+xx x →∞⎛⎫= ⎪⎝⎭. 答案:e9.设21,0()0,0x x f x x x e ⎧--⎪≠=⎨⎪=⎩,则(0)f '= . 答案:1四、计算题1. 2+3200lim (sin )x x x t dtt t t dt→-⎰⎰.解 原式=++320026lim lim 12(sin )1cos xx x x x x x x x→→⋅==--2.求sin cos cos 2x x y x e π+=+ 的导数.解:cos sin ()'=-x x xe e esin sin ln sin sin ()cos n ()l ()'='=+xx x x xex x x xx cos 02'π⎛⎫= ⎪⎝⎭sin sin cos ln '()sin 所以+=-x x x xe xy x x x e . 3.求积分cot 1sin xdx x+⎰.解:cot 1sin xdx x+⎰=()sin sin 1sin d x x x +⎰=11sin sin 1sin d x x x ⎛⎫- ⎪+⎝⎭⎰=ln sin ln 1sin x x c -++ 4.将函数1()12f x x=+展成1-x 的幂级数. 解:1001111()21232(1)31(1)312(1)2()(1)(1),333nn n n n n n f x x x x x x ∞∞+=====++-+--=-=--∑∑收敛域为15 (,)22 -.五、综合题.1.241lim cos1nnnn→∞-+!. (请说明理由)答:原式=0(有界量乘以无穷小量)2. 叙述一元函数可导,可微,连续的关系.答:一元函数可导与可微是等价的,可导推出连续,连续不一定可导.(温馨提示:照抄答案,没有加入自己的答案,一律不给分。
数学分析-考试大纲及要求

《数学分析》考试大纲科目名称:数学分析科目代码: 617《数学分析》是数学专业研究生必考的科目,总分值为150分,考试时间为3个小时。
本科目考试的基本知识以华东师范大学数学系编写的《数学分析》(第三版)为基础,除去带*号的内容(包括:第六章§7方程的近似解;第七章§1三实数完备性基本定理的等价性,§3上极限与下极限;第九章§6可积性理论补叙;第十章§6定积分的近似计算)不考,其余内容都是考试所要求掌握的。
参考书目:[1] 华东师范大学数学系,数学分析(第三版),高等教育出版社,2008年4月;[2] 陈守信,数学分析选讲,机械工业出版社,2009年9月.参考题型:河南工业大学2014年硕士研究生入学考试试题(见附页)。
附页河南工业大学2014年硕士研究生入学考试试题考试科目: 数学分析 共 2 页(第 1 页)一、(24分,每小题8分) 计算下列极限: 1. 1211lim 1)n n n n-→+∞+-( ;2. 0x →;3. lim sin sin sin ).n →+∞+++22212n (n n n二、( 48分,每小题12分) 计算下列各类积分:1. 12sin I dx x ππ-=+⎰;2. 2sin y x I dy dx x ππππ-=⎰⎰ ;3. 第二型曲线积分22C xdy ydx x y -+⎰,其中C 为任意简单闭曲线,逆时针为正向; 4. 利用奥高公式计算()()()s I x y z dydz y z x dzdx z x y dxdy =-++-++-+⎰⎰,其中S 是八面体1x y z y z x z x y -++-++-+=的外侧.三、(36分,每小题12分) 完成下列各题1.(12分) 按步骤做出函数23(1)y x x =-的图像.2. 求幂级数111(1)(1)2n n n x n∞=-+++∑的收敛域. 3. 设(,)z z x y =是由方程组,,u v u v x e y e z uv +-===,确定的函数,求当0,0u v == 时的2,dz d z .共 2 页(第 2 页)四、(42分) 完成下列证明题1. (10分) 若函数()f x 在[,)a +∞上连续,lim ()x f x →+∞存在,则()f x 在[,)a +∞上一致连续.2. (10分) 设二元函数f 在圆周222:C x y a +=上连续,证明:存在C 的一条直径的两个端点A 与B ,使得 ()()f A f B =.3. (10分)证明方程0ln x x e π=-⎰在0+∞(,)内有且仅有两个实根. 4. (12分) 证明函数2222222,0(,)0,0x y x y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩在原点(0,0)处连续,且存在偏导数,但在(0,0)处不可微.。
数学分析专升本考试大纲

《数学分析》专升本考试大纲一、课程名称:数学分析二、适用专业:数学与应用数学三、考试方法:闭卷考试四、考试时间:120分钟五、试卷结构:总分:100分;判断题:10分;填空题20分;选择题15分;计算证明应用题:55分六、参考教材:1、林元重著,新编数学分析(上、下册),武汉大学出版社,2015年3月第1版2、陈纪修、於崇华、金路编,数学分析(上、下册),高等教育出版社,2004年6月第二版3、华东师范大学数学系编,数学分析(上、下册),高等教育出版社,2011年5月第四版七、考试内容及基本要求第1章极限论1.1引言(一) 考核要求1. 了解数学分析是什么.2. 掌握实数的性质(有序性,稠密性,阿基米德性.实数的四则运算),掌握实数的基本概念和最常见的不等式.3.掌握函数概念和函数的不同的表示方法.4. 掌握函数的有界性,单调性,奇偶性和周期性.(二) 考核范围1. 数学分析是什么.2. 实数的基本性质和绝对值的不等式,区间与邻域,集合的上下界.3. 函数的定义与表示法,复合函数与反函数,初等函数.4. 函数的有界性,单调性,奇偶性和周期性.1.2 数列极限概念(一) 考核要求ε-定义证明极限,学会证明1. 深刻理解并掌握数列极限概念,学会用数列极限的N数列极限的基本方法.2. 掌握数列极限的基本性质,掌握四则运算法则.3. 掌握夹逼准则,理解数集确界及确界原理,掌握单调有界准则,理解柯西收敛准则.(二) 考核范围1. 数列极限概念.2. 数列极限的唯一性,有界性,保号性,保不等式性,四则运算法则.3. 数列极限的夹逼准则和单调有界准则,数集的确界及确界原理,数列的子列及相关定理(包括致密性定理),柯西收敛准则.1.3 函数极限概念及性质(一) 考核要求1. 正确理解和掌握函数极限的M ε-定义、εδ-定义,掌握极限与左右极限的关系,能够用定义证明和计算函数的极限.2. 理解并掌握函数极限的基本性质(唯一性,有界性,保号性,保不等式性,四则运算法则),会用这些性质计算函数的极限.(二) 考核范围1. 函数极限的M ε-定义、εδ-定义,左右极限.2. 函数极限的唯一性,有界性,保号性,保不等式性,四则运算法则.1.4 函数极限存在的准则与两个重要极限(一) 考核要求1. 理解并掌握函数极限的归结原则,了解函数极限的单调有界定理,理解函数极限的柯西准则.能够写出函数极限的归结原理和柯西准则.2. 熟练掌握两个重要极限.(二) 考核范围1. 函数极限的归结,函数极限的单调有界定理,函数极限的柯西准则.2. 两个重要极限.1.5 无穷小量与无穷大量(一) 考核要求掌握无穷小量与无穷大量以及它们的阶数的概念.(二) 考核范围无穷小量与无穷大量,高阶无穷小,同阶无穷小,等价无穷小,无穷大.1.6 连续性概念(一) 考核要求深刻理解并掌握函数连续性概念.(二) 考核范围1. 函数连续,函数左右连续,区间上函数连续的概念.2. 间断点及其分类.1.7 连续函数的局部性质与初等函数的连续性(一) 考核要求掌握连续函数的局部性质和和初等函数的连续性.(二) 考核范围1. 连续函数的局部有界性,局部保号性,四则运算.2. 复合函数的连续性,反函数的连续性,初等函数的连续性.1.8 闭区间上连续函数的性质(一) 考核要求1. 理解闭区间上连续函数的最大最小值定理,介值性定理.2. 理解并掌握一致连续性概念,理解一致连续性定理.(二) 考核范围1. 连续函数的最大最小值定理,介值性定理.2. 一致连续性概念,一致连续性定理.1.9 实数的连续性与上(下)极限(一)考核要求1. 理解区间套定理、聚点定理,了解上(下)极限及其性质.2. 理解有限覆盖定理,了解几个基本定理的等价性.(二)考核范围1. 区间套定理、聚点定理,上(下)极限及其性质.2. 有限覆盖定理,几个基本定理的等价性.第2章一元函数微分学2.1 导数的概念(一) 考核要求1. 理解并掌握导数的定义,掌握导数的几何意义,了解导数的物理意义.2. 了解增量——微分公式,掌握可导与连续的关系.了解费马定理、达布定理.(二) 考核范围1. 变化率——导数,单侧导数,导函数,几个基本导数公式,几何意义.2. 增量——微分公式,可导与连续的关系.2.2 导数的运算法则(一) 考核要求1. 熟练掌握导数的四则运算法则,理解反函数的求导法则.2. 熟练掌握复合函数的求导法则及基本导数公式.3. 知道求分段函数在分段点处的导数.(二) 考核范围1.导数的四则运算法则,反函数的求导法则.2. 复合函数的求导法则,对数求导法,基本导数公式.2.3 参变量函数和隐函数的导数(一) 考核要求掌握参变量函数的求导法则,知道求隐函数的导数,会运用求导法则求相关变化率.(二) 考核范围参变量函数的求导法则,隐函数的求导法,相关变化率.2.4 微分(一) 考核要求1. 深刻理解并掌握微分的概念,掌握微分的运算方法,了解微分在近似计算中的应用.2. 理解微分与导数的关系,会利用微分法则求参变量函数和隐函数的导数.(二) 考核范围1. 微分的概念,微分的运算法则,一阶微分形式的不变性,微分在近似计算中的应用.2. 利用微分法则求参变量函数和隐函数的导数.2.5 高阶导数与高阶微分(一) 教学目的1. 掌握高阶导数的概念和计算,掌握高阶导数的莱布尼茨公式.2. 了解高阶微分及其计算,知道高阶导数与高阶微分的关系.(二) 考核范围1. 高阶导数及其计算,高阶导数的莱布尼茨公式.2. 高阶微分及其计算.2.6 拉格朗日定理和函数的单调性、极值(一) 考核要求1. 掌握罗尔定理和拉格朗日中值定理的条件、结论及证明方法,会应用中值定理证明一些不等式和一些中值公式,了解达布定理和导数极限定理.2. 掌握求函数的单调区间和极值及最值的一般方法.(二) 考核范围1. 极值概念与费马定理.2. 罗尔定理,拉格朗日中值定理,应用中值定理证明不等式和中值公式举例,达布定理,导数极限定理.3. 函数的单调性与极值,函数的最值,最值应用题举例.2.7 柯西中值定理和不定式极限(一) 考核要求掌握柯西中值定理,掌握罗比达法则,会求各种形式的不定式极限.(二) 考核范围柯西中值定理及其简单应用举例,洛必达法则,不定式极限计算举例.2.8 泰勒公式(一) 考核要求理解带两种余项形式的泰勒公式,掌握基本初等函数的麦克劳林公式(熟记六个),会利用它们求不定式极限,了解泰勒公式在求高阶导数、函数极值以及近似计算方面的应用.(二) 考核范围1. 带佩亚诺余项和带拉格朗日余项的泰勒公式和麦克劳林公式,几个基本初等函数的麦克劳林公式.2. 泰勒公式应用举例(不定式极限,高阶导数,函数极值,近似计算).2.9其它应用(一) 考核要求1. 掌握函数凸性与拐点的概念,会求函数凹凸区间与拐点,了解函数凸性在证明不等式方面的应用.2.会求曲线的渐近线,了解函数作图的一般步骤,会描绘函数的图像.f x=近似解的牛顿切线法.3. 了解求方程()0(二) 考核范围f x=的近似解.函数的凸性与拐点,凸性的判定,渐近线,函数作图,方程()0第3章一元函数积分学3.1 不定积分的概念与线性运算(一) 考核要求理解原函数与不定积分的概念,熟练掌握基本积分公式及不定积分的线性运算法则,了解不定积分的几何意义,了解连续分段函数的原函数的求法.(二) 考核范围原函数与不定积分的概念,基本积分公式与线性运算法则,不定积分的几何意义.3.2 换元积分法与分部积分法(一) 考核要求理解并熟练掌握第一、二换元积分法与分部积分法.(二) 考核范围第一、二换元积分法,分部积分法.3.3 有理函数和三角函数有理式的不定积分(一) 考核要求掌握有理函数不定积分的计算方法,会计算一些三角函数有理式的不定积分,会计算一些简单无理函数的不定积分,了解欧拉变换法.(二) 考核范围有理函数的不定积分,三角函数有理式的不定积分,两类无理函数的不定积分.3.4 定积分的概念与牛顿——莱布尼茨公式(一) 考核要求-定义,了解定积分的几何1. 深刻理解并掌握定积分的概念,知道定积分概念的εδ意义和物理意义.2. 熟练掌握牛顿——莱布尼茨公式,会利用牛顿——莱布尼茨公式计算一些特殊的和式极限.(二) 考核范围-定义),牛顿—定积分的几何背景和物理背景,定积分的定义(极限形式的定义和εδ—莱布尼茨公式.3.5 可积函数类与定积分的性质(一) 考核要求1. 理解函数可积的必要条件,函数可积的充要条件(可积准则),掌握三类可积函数,对这些定理的证明及其证明思路只要求读懂,不作其它较高要求.2. 理解并掌握定积分的若干基本性质,能证明一些简单的积分不等式.(二) 考核范围1. 可积的必要条件,上(下)和与上(下)积分,可积的充要条件(可积准则),可积函数类.2. 定积分的基本性质,积分第一中值定理.3.6 微积分学基本定理、定积分的计算(续)(一) 考核要求1. 掌握微积分学基本定理,会求变上(下)限的定积分的导数.2. 熟练掌握换元积分法与分部积分法.3. 理解积分第二中值定理,理解泰勒公式的积分型余项,了解定积分近似计算.(二) 考核范围变上(下)限的定积分,微积分学基本定理,换元积分法与分部积分法,积分第二中值定理,泰勒公式的积分型余项,定积分近似计算.3.7 (3.8)定积分的应用(一) 考核要求1. 领会微元法的要领,掌握平面图形面积、由平行截面面积求体积、平面曲线弧长的计算公式,了解曲线的曲率,旋转曲面的面积.2. 领会定积分在物理应用方面的基本方法.(二)考核范围1. 微元法概述.2. 平面图形的面积,由平行截面面积求体积,平面曲线的弧长与曲率,旋转曲面面积.3. 功,液体静压力,引力.3.9 无穷积分与瑕积分(一) 考核要求1. 掌握无穷积分与瑕积分的定义和计算.2. 理解无穷积分的基本性质,掌握非负函数无穷积分的收敛性判别的比较判别法,掌握绝对收敛和条件收敛的概念,理解狄利克雷判别法和阿贝尔判别法(不作其它较高要求).3. 了解瑕积分与无穷积分的关系,了解瑕积分的收敛性判别法.(二) 考核范围1. 无穷积分与瑕积分的定义和计算.2. 无穷积分的基本性质,比较判别法(包括极限形式及特殊形式),绝对收敛与条件收敛,狄利克雷判别法与阿贝尔判别法.3. 瑕积分的收敛性判别法.第4章 级数论4.1 数项级数的基本概念及性质(一) 考核要求1. 理解数项级数收敛与发散的定义,掌握收敛级数的基本性质,能够根据定义或性质判别一些简单简单级数的敛散性.2. 掌握等比级数与调和级数.3. 理解级数收敛的柯西准则,对应用柯西准则判别级数的敛散性不作较高要求.(二) 考核范围数项级收敛与发散的定义和基本性质,等比级数,调和级数,柯西准则.4.2 正项级数(一) 考核要求1. 掌握判别正项级数敛散性的基本方法:比较判别法,比式判别法和根式判别.2. 了解积分判别法和拉贝判别法.(二) 考核范围1. 比较判别法,比式判别法,根式判别法.2. 积分判别法,拉贝判别法.4.3 变号级数(一) 考核要求1. 掌握交错级数的莱布尼茨判别法,掌握绝对收敛与条件收敛概念.2. 理解狄利克雷判别法与阿贝尔判别法,对其应用一般不作较高要求.3. 理解绝对收敛级数的两条重要性质,对其应用不作较高要求.(二) 考核范围1. 交错级数及其莱布尼茨判别法,绝对收敛与条件收敛.2. 狄利克雷判别法与阿贝尔判别法.3. 绝对收敛级数的重排,绝对收敛级数的乘积.4.4 函数项级数及其一致收敛性(一) 考核要求1. 深刻理解并掌握函数列和函数项级数一致收敛性的定义,理解一致收敛的柯西准则.2. 掌握一致收敛的另一充要条件(即lim sup ()()0n n x D f x f x →∞∈-=lim sup ()0n n x DR x →∞∈=),掌握判别函数项级数的魏尔斯特拉斯判别法即优级数判别法.3. 理解判别函数项级数收敛性的狄利克雷判别法和阿贝尔判别法,对其应用不作较高要求.(二) 考核范围1. 函数列与函数项级数一致收敛性的定义,一致收敛的柯西准则.2. 一致收敛的另一充要条件,魏尔斯特拉斯判别法.3. 函数项级数收敛性的狄利克雷判别法和阿贝尔判别法.4.5 一致收敛函数序列与函数项级数的性质(一) 考核要求理解并掌握一致收敛函数列和函数项级数的连续性,逐项积分与逐项求导法则.(二) 考核范围一致收敛函数列与函数项级数的连续性,逐项积分与逐项求导法则.4.6 幂级数及其性质(一) 考核要求掌握幂级数的收敛半径及收敛域的求法,掌握幂级数的基本性质和运算法则.(二) 考核范围幂级数的收敛半径,收敛半径的计算公式,收敛区间和收敛域的概念.4.7 函数的幂级数展开(一) 考核要求掌握泰勒级数和麦克劳林级数,熟记一些初等函数的幂级数展开式,掌握初等函数的幂级数展开.(二) 考核范围泰勒级数,麦克劳林级数,五种基本初等函数的幂级数展开式,初等函数的幂级数展开(直接法和间接法).4.8 傅里叶级数(一) 考核要求1. 理解三角级数和傅里叶级数定义,掌握傅里叶级数的收敛定理,能够按照收敛定理将比较简单的函数展开成傅里叶级数.2. 掌握以2l为周期的函数的展开式,掌握偶函数和奇函数的傅里叶级数的展开,掌握正弦级数,余弦级数.3. 了解收敛定理的证明,了解傅里叶级数的一致收敛性.(二) 考核范围1. 三角级数;正交函数系,傅里叶级数,收敛定理,傅里叶级数的展开式举例.2. 以2l为周期的函数的展开式,掌握偶函数和奇函数的傅里叶级数的展开式,函数的奇延拓与偶延拓及正弦级数与余弦级数.3.黎曼引理,收敛定理的证明,贝塞尔不等式,一致收敛性定理.第5章多元函数微分学5.1多元函数与极限(6)(一) 考核要求1. 理解二元及多元函数的定义.了解平面中邻域,开域,闭域的定义.-定义,知道二元函数极限存在的充要条件,了解方向2. 理解二元函数重极限的εδ极限与累次极限,了解重极限与累次极限的区别与联系.(二) 考核范围1. 二元函数及多元函数,平面中的邻域,开域,闭域.2. 二元函数重极限定义,二元函数极限存在的充要条件,方向极限与累次极限.5.2 二元函数的连续性(一) 考核要求1. 理解二元函数的连续性的定义,知道二元初等函数的连续性.R上的完备性定理,知道有界闭区域上连续函数的整体性质.2. 了解有关二维空间2(二) 考核范围1. 二元函数的连续性的定义,二元初等函数的连续性.R中的聚点定理,致密性定理,闭区域套定理,有限覆盖定理.2. 23. 有界闭域上连续函数的最大最小值定理,介值性定理和一致连续性.(1) 基本要求:掌握二元函数的连续性的定义,了解有界闭域上连续函数的性质.(2) 较高要求:掌握有界闭域上连续函数性质的证明要点.5.3 偏导数与全微分(一) 考核要求1. 理解并掌握多元函数偏导数的定义,知道偏导数的几何意义,能够熟练的求出初等函数的偏导数和高阶偏导数,能够求二元函数在一些特殊的导数,知道混合偏导数与求导顺序无关的条件.2. 理解并掌握二元函数可微和全微分的定义,掌握微分法则,掌握可微的必要条件,理解可微的充分条件,了解高阶全微分及其运算.(二) 考核范围1. 多元函数偏导数与高阶偏导数,偏导数的几何意义,混合偏导数与求导顺序无关的条件.2. 二元函数可微和全微分的定义,微分法则,可微的必要条件,可微的充分条件,高阶全微分及其运算.5.4 复合函数微分法与方向导数(一) 考核要求理解并熟练掌握复合函数求导的链式法则,掌握方向导数与梯度的定义及其运算,了解二元函数的梯度的几何意义.(二) 考核范围1. 复合函数链式法则,复合函数的全微分,一阶全微分形式不变性.2. 方向导数与梯度5.5 多元函数的泰勒公式(一) 考核要求理解并掌握多元函数的泰勒公式,了解泰勒公式的一个推论——中值定理.(二) 考核范围泰勒公式与中值定理,泰勒公式的计算与应用举例.5.6 隐函数及其微分法(一) 考核要求1. 理解隐函数定理和可微性定理,掌握隐函数微分法.2. 了解隐函数组及其可微性定理,知道求隐函数组的偏导数.(二) 考核范围1. 隐函数存在性定理,隐函数可微性定理.2. 隐函数组及其可微性定理,反函数组定理.5.7 多元函数偏导数的几何应用(一) 考核要求1. 理解空间曲线(两种表示形式)的切线方程的推导,掌握空间曲线的切线与法平面方程的求法,理解曲面(两种表示形式)的切平面方程的推导,掌握曲面的切平面与法线的求法.2. 了解二元函数全微分的几何意义,了解三元函数梯度的几何意义.(二) 考核范围1. 空间曲线的切线与法平面方程,曲面的切平面与法线方程.2. 二元函数全微分的几何意义,、三元函数梯度的几何意义.5.8多元函数的极值与条件极值(一) 考核要求1. 掌握二元函数的极值的必要条件与充分条件.2. 了解拉格朗日乘数法,会用拉格朗日乘数法求条件极值.(二) 考核范围1. 二元函数的极值,必要条件与充分条件.2. 条件极值,拉格朗日乘数法,用条件极值的方法证明不等式.第6章多元函数积分学6.1 二重积分(一) 考核要求1. 了解平面点集的面积定义及其性质,理解二重积分的定义和性质,理解有界闭区域上的连续函数可积的结论,理解并熟练掌握化二重积分为累次积分的计算公式.2. 理解二重积分变量变换公式的证明,掌握用极坐标计算二重积分.(二) 考核范围1. 二重积分的定义和性质,化二重积分为累次积分的计算公式.2. 二重积分的变量变换公式,用极坐标计算二重积分.6.2 三重积分(一) 考核要求1. 掌握三重积分的定义,了解三重积分的性质,熟练掌握化三重积分为累次积分的计算公式(柱体法和截面法).2. 了解三重积分变量变换公式,掌握用球坐标和柱坐标计算三重积分.(二) 考核范围1. 三重积分的定义,化三重积分为累次积分的计算公式(柱体法和截面法).2. 三重积分变量变换公式,柱坐标变换公式,球坐标变换公式.6.3 n重积分和广义重积分(一) 考核要求了解n重积分和广义二重积分的概念和性质,了解广义二重积分的收敛性判别.(二) 考核范围n重积分的定义,计算公式,广义二重积分的性质,收敛性判别.6.4 重积分的应用(一) 考核要求掌握用重积分计算计算面积和体积,掌握曲面面积的计算公式,了解物体的重心,转动惯量与引力及其计算公式.(二) 考核范围平面区域的面积,立体的体积,曲面的面积,物体重心,转动惯量,引力.6.5 第一型曲线积分(一) 考核要求理解并掌握第一型曲线积分的定义,性质和计算公式.(二) 考核范围第一型曲线积分的定义,性质和计算公式.6.6 第二型曲线积分(一) 考核要求1. 理解并掌握第二型曲线积分的定义,性质,坐标形式和计算公式.2. 了解两类曲线积分之间的联系.(二) 考核范围1. 第二型曲线积分的定义,性质,坐标形式和计算公式.2. 两类曲线积分之间的联系.6.7 格林公式(一) 考核要求理解并掌握格林公式以及曲线积分与路线无关的条件.(二) 考核范围格林公式,曲线积分与路线无关的条件.6.8 第一型曲面积分(一) 考核要求理解并掌握第一型曲面积分的定义和计算公式.(二) 考核范围第一型曲面积分的定义和计算公式.6.9 第二型曲面积分(一) 考核要求理解并掌握第二型曲面积分的定义、性质,了解两类曲面积分的联系,掌握第二型曲面积分的计算公式.(二) 考核范围有向曲面的概念,第二型曲面积分的定义、性质,两类曲面积分的联系,第二型曲面积分的计算公式.6.10 高斯公式与斯托克斯公式(一) 考核要求理解并掌握高斯公式和斯托克斯公式.(二) 考核范围高斯公式,斯托克斯公式,沿空间曲线的第二型积分与路径无关的条件.*6.11 含参变量的积分(一) 考核要求1. 理解并掌握含参变量的定积分的连续性,可微性和可积性定理,掌握计算含参变量的定积分基本方法.2. 了解含参变量的广义积分的一致收敛性概念和性质,了解一致收敛性判别法(魏尔斯特拉斯判别法,狄里克雷判别法和阿贝尔判别法.3. 了解含参变量的广义积分的连续性,可微性与可积性定理,了解含参变量的定积分基本方法.4. 了解Γ函数与β函数的定义、性质及其联系.(二) 考核范围1. 含参变量的定积分的连续性,可微性和可积性定理的证明,定理的应用.2. 含参变量的广义积分的一致收敛性概念和性质,一致收敛性判别法.3. 连续性,可微性与可积性定理,定理的应用.4.Γ函数与β函数的定义、性质及其联系,余元公式.萍乡学院工程与管理学院2019年3月20日。
上海财经大学数学分析大纲

601 数学分析《数学分析》考试是为招收数学各专业学生而设置的具有选拔功能的业务水平考试。
它的主要目的是测试考生对数学分析各项内容的掌握程度和应用相关知识解决问题的能力。
考试对象为参加全国硕士研究生入学考试的考生。
一、考试的基本要求要求考生比较系统地理解数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法。
要求考生具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。
二、考试方法和考试时间数学分析考试采用闭卷笔试形式,试卷满分为150 分,考试时间为180 分钟。
三、考试内容和考试要求1、极限和函数的连续性考试主要内容映射与函数;数列的极限、函数的极限;连续函数、函数的连续性和一致连续性;R 中的点集、实数系的连续性;函数和连续函数的各种性质。
考试要求(1)透彻理解和掌握数列极限,函数极限的概念。
掌握并能运用ε-N,ε-X,ε-δ语言处理极限问题。
熟练掌握数列极限与函数极限的概念;理解无穷小量的概念及基本性质。
(2)熟练掌握极限的性质及四则运算性质,能够熟练运用两面夹原理和熟练掌握两个重要极限来处理极限问题。
(3)熟练掌握实数系的基本定理:区间套定理,确界存在定理,单调有界原理,Bolzano-Weierstrass 定理,Heine-Borel 有限覆盖定理,Cauchy 收敛准则;并理解相互关系。
(4)熟练掌握函数连续性的概念及相关的不连续点类型。
能够运用函数连续的四则运算与复合运算性质以及相对应的;并理解两者的相互关系。
函数连续性的定义(点,区间),连续函数的局部性质;理解单侧连续的概念。
(5)熟练掌握闭区间上连续函数的性质:有界性定理、最值定理、介值定理;了解Contor定理。
2、一元函数微分学考试主要内容微分的概念、导数的概念、微分和导数的意义;求导运算;微分运算;微分中值定理;洛必达法则、泰勒展式;导数的应用。
考试要求(1)理解导数和微分的概念及其相互关系,理解导数的几何意义和物理意义,理解函数可导性与连续性之间的关系。
数学分析610研究生入学考试大纲

《数学分析》(610)研究生入学考试大纲一、参考书目:1.《数学分析》第四版(上、下册)华东师范大学数学系编(高等教育出版社)。
2.《数学分析》(上、下册)盛炎平等编(机械工业出版社)。
二、考试大纲:(第一章~第二十二章,所有带*号的部分不用看)第一章实数集与函数数集的确界,确界原理.第二章数列极限极限定义,收敛数列性质,单调有界原理,重要极限.第三章函数极限函数极限定义,函数极限性质,两个重要极限,无穷大量与无穷小量,渐近线.第四章函数连续性函数连续概念,间断点分类,连续函数的性质,一致连续的概念.第五章导数与微分导数概念,导数几何意义,求导法则,基本求导公式,参变量函数求导,高阶导数,微分的概念,几何意义.第六章微分中值定理及其应用罗尔定理,拉格朗日定理,函数单调性的判定,柯西中值定理,不定式极限的罗必达法则,泰勒公式,,函数极值的判定,最值问题,函数凹凸性的判定.第七章实数的完备性了解刻画实数完备性定理的内容.第八章不定积分原函数与不定积分概念,基本积分公式,换元法与分部积分法.第九章定积分定积分概念,定积分性质,牛顿-莱布尼兹公式,变限积分和原函数存在定理,积分中值定理,计算积分的换元法与分部积分法.第十章定积分应用计算平面图形面积,立体体积,曲线弧长,旋转曲面面积.第十一章反常积分无穷积分和瑕积分的概念和性质,非负无穷积分和瑕积分的比较判别法,一般无穷积分和瑕积分的狄立克莱判别法和阿贝尔判别法.第十二章数项级数级数收敛的定义,级数的性质,正项级数的比较、根值、比值判别法,一般项级数的阿贝尔判别法和狄立克雷判别法.第十三章函数列与函数项级数函数列的一致收敛性,一致收敛的柯西准则及充要条件,一致收敛函数列的极限函数的性质,函数项级数一致收敛概念,判别法,一致收敛函数项级数的性质.第十四章幂级数幂级数的收敛半径、收敛区间、收敛域,收敛半径的计算,幂级数的性质,泰勒级数,初等函数的幂级数展开.第十五章傅立叶级数三角级数,正交系,收敛定理,周期函数的傅里叶展开,偶函数与奇函数的傅里叶级数与展开.第十六章多元函数的极限与连续二元函数的极限与连续.第十七章多元函数微分学偏导数的概念,全微分的概念,偏导数的几何意义,复合函数的求导法则,方向导数与梯度的概念,多元函数的极值问题.第十八章隐函数定理及其应用了解隐函数定理,会隐函数求导,曲线的切线,曲面的切平面与法线,条件极值问题.第十九章含参积分该章不考察.第二十章曲线积分第一型曲线积分定义与计算,第二型曲线积分的定义与计算,两类积分的联系.第二十一章重积分二重积分的概念、性质,直角坐标计算,极坐标计算,格林公式,曲线积分与路径的无关性,三重积分的定义,性质,利用直角坐标计算,柱坐标计算,球坐标计算.第二十二章曲面积分第一型曲面积分定义与计算,第二型曲面积分的定义与计算,高斯公式与斯托克斯公式三、试卷结构:1.概念简答题;2.计算题;3.证明题.。
江苏大学数学分析考试大纲

全国硕士研究生入学统一考试数学专业《数学分析》考试大纲I 考查目标全国硕士研究生入学统一考试数学专业《数学分析》考试是为我校招收数学硕士生设置的具有选拔性质的考试科目。
其目的是科学、公平、有效地测试考生是否具备攻读数学专业硕士所必须的基本素质、一般能力和培养潜能,以利于选拔具有发展潜力的优秀人才入学,为数学学科及社会的发展培养具有良好职业道德、法制观念和国际视野、具有较强分析与解决问题能力的高层次、应用型、复合型的数学专业人才。
考试要求是测试考生掌握分析、表达与解决问题的一些基本能力和技能。
具体来说就是:要求考生理解数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。
II 考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间180分钟。
二、答题方式答题方式为闭卷、笔试。
不得使用带有公式和文本存储功能的计算器。
三、试卷内容与题型结构一元函数微积分约占 60%,多元函数微积分约占 25%,无穷级数约占 20有以下三种题型:填空题或选择题(20%)、计算题(30%)、综合题(50%)III 考查内容1、极限和函数的连续性(1)熟练掌握数列极限与函数极限的概念;理解无穷小量、无穷大量的概念及基本性质。
(2)掌握极限的性质及四则运算法则,能够熟练运用迫敛性定理和两个重要极限。
(3)熟练掌握:区间套定理,确界存在定理,单调有界原理,聚点定理,有限覆盖定理,Cauchy收敛准则;并理解其相互关系。
(4)熟练掌握函数连续性的概念及相关的不连续点类型。
能够熟练地运用函数连续的四则运算与复合运算性质。
(5)熟练掌握闭区间上连续函数的基本性质:有界性定理、最值定理、介值定理,一致连续性。
(6)熟练掌握实数基本理论和性质,会用实数理论及性质表达和证明相关命题。
2、一元函数微分学(1)理解导数和微分的概念及其相互关系,理解导数的几何意义,理解函数可导性与连续性之间的关系。
数学分析考试大纲

《数学分析》考试大纲一、课程性质和目的《数学分析》是数学系的一门重要基础课,其主要任务是使学生获得数学的基本思想方法和极限论、单元和多元微积分、级数论、反常积分等方面的系统知识。
它一方面为后继课程(如《微分方程》、《实变函数》、《概率论与数理统计》及有关的《泛函分析》、《微分几何》等限选课程及《普通物理学》等)提供一些所需的基础理论和知识,另一方面还对提高学生思维能力,开发学生智能加强“三基”(基础知识、基本理论、基本技能)及培养学生独立工作能力等起着重要的作用。
通过本课程教学的主要环节(讲授与讨论、习题课、作业、辅导等),使学生对极限思想和方法有较深的认识和理解,从而有助于培养学生辩证唯物主义基本观点及正确理解《数学分析》的基本概念和论证方法及分析问题和解决问题的能力。
整个课程注重培养学生的数学逻辑及思想方法,训练学生举一反三的能力,在单元函数和多元函数相平行的内容以单元函数为主,引导学生通过独立思考得到多元函数的相应结论。
二、课程内容充分条件,必要条件,充要条件,绝对值,不等式,函数,单调函数,周期函数,奇偶函数,复合函数,反函数,初等函数,数列极限,数列极限的性质,单调有界数列,子数列,函数极限,函数极限的性质,函数极限与数列极限的关系,两个重要极限,无穷小量与无穷大量,闭区间套定理,上确界与下确界,确界存在定理,有限覆盖定理,致密性定理,柯西收敛准则,连续,左连续,右连续,间断点,函数在一点连续的性质,中间值定理,有界性定理,最大值与最小值定理,反函数的连续性定理,一致连续性定理,初等函数的连续性,导数,求导法则,微分,微分与导数的关系,高阶导数,高阶微分,参数方程求高阶导数,费尔马定理,洛尔定理,拉格朗日定理,柯西定理,洛必达法则,泰勒公式,单调性判别法,极值,凹凸性,拐点,曲线的渐近线,函数作图,不定积分,换元法,分部积分法,有理函数积分法,三角函数有理式积分,无理函数的积分,平面图形的面积,立体的体积,平面曲线的弧长,曲线的曲率,上极限,下极限,数项级数,正项级数,任意项级数,绝对收敛,条件收敛,无穷乘积,无穷积分,瑕积分,反常积分的收敛与发散,反常积分的计算,柯西主值,函数列,函数项级数,一致收敛,非一致收敛,一致收敛级数的性质,幂级数的收敛域,幂级数的性质,幂级数的展开,富里埃级数,富里埃级数的展开,平面点集,多元函数的极限,多元函数的连续性,偏导数,全微分,方向导数,复合函数的偏导数,一阶全微分形式的不变性,高阶偏导数,高阶全微分,泰勒公式,多元函数的极值,隐函数存在定理,空间曲线的切线与法平面,曲面的切平面与法线,条件极值,含参变量的定积分,含参变量反常积分的一致收敛,含参变量反常积分的分析性质,欧拉积分,二重积分,三重积分,第一型曲线积分,第二型曲线积分,格林公式,平面曲线积分与路径无关的条件,第一型曲面积分,第二型曲面积分,奥高公式,斯托克斯公式。
602数学分析4页word

南京信息工程大学2010年硕士研究生入学考试《数学分析》考试大纲科目代码:602科目名称:数学分析考试内容:一、实数集与函数1 实数集及其性质2 确界定义与确界原理3 函数概念 4有某些特性的函数(有界函数、单调函数、奇函数与偶函数、周期函数)二、数列极限1 数列极限概念2 收敛数列的性质(唯一性、有界性、保号性、不等式性、迫敛性、四则运算)3 数列极限存在的条件:包括单调有界定理与柯西(Cauchy)准则三、函数极限1 函数极限概念2 函数极限的性质(唯一性、局部有界性、局部保号性、不等式性、迫敛性、四则运算)3 函数极限存在的条件:包括归结原则(Heine 定理),单调有界定理与柯西准则4 两个重要极限5 无穷小量,无穷大量, 非正常极限,阶的比较,曲线的渐近线四、函数的连续性1 连续性概念,间断点及其分类2 连续函数的性质(有界性、保号性、连续函数的四则运算、复合函数的连续性、反函数的连续性;闭区间上连续函数的有界性、取得最大值最小值性、介值性、一致连续性)3 初等函数的连续性五、导数与微分1 导数的概念2 求导法则3 微分概念4 高阶导数与高阶微分 5参量方程所确定的函数的导数六、微分中值定理及其应用1 中值定理(罗尔定理、拉格朗日定理、柯西定理)2 不定式极限3 泰勒公式(及其皮亚诺余项与拉格朗日余项、一些常用初等函数的泰勒展开式、应用于近似计算)4 函数的单调性、极值、最大值与最小值5 函数的凸性与拐点6 函数图象的讨论七、实数完备性1 实数集完备性的基本定理的应用2 闭区间上连续函数性质的证明第 1 页第八章不定积分1原函数与不定积分概念,基本积分公式 2 换元积分法与分部积分法 3 有理函数和可化为有理函数的积分九、定积分1定积分的概念及其几何意义 2 可积条件的应用(包括必要条件,可积准则),三类可积函数 3 定积分的性质(线性运算法则、区间可加性、不等式性质、绝对可积性,积分中值定理) 4 微积分学基本定理,定积分的分部积分法与换元法十、反常积分1无穷限反常积分概念、柯西准则,绝对收敛与条件收敛 2无穷限反常积分收敛性判别法:比较判别法及p-函数判别法,狄利克雷(Dirichlet)判别法,阿贝尔(Abel)判别法 3无界函数反常积分概念,无界函数反常积分比较判别法及p-函数判别法十一、定积分的应用1 平面图形的面积2 由截面面积求体积、旋转体的体积3 曲线的弧长与曲率4 旋转曲面的面积十二、数项级数1 级数收敛的概念,柯西收敛准则,收敛级数的性质2 正项级数收敛判别法(比较判别法、p-级数判别法、比式与根式判别法、积分判别法)3 一般项级数的绝对收敛与条件收敛、交错级数的莱布尼兹判别法,阿贝尔(Abel)判别法与狄利克雷(Dirichlet)判别法,绝对收敛级数的性质十三、函数列与函数项级数1 函数列与函数项级数的一致收敛性,柯西准则,函数项级数的维尔斯特拉斯(Weierstrass)优级数判别法,狄利克雷(Dirichlet)判别法,阿贝尔(Abel)判别法2 函数列极限函数与函数项级数和函数的连续性、可积性、可微性十四、幂级数1 幂函数的收敛性,阿贝尔定理,收敛半径与收敛域,内闭一致收敛性,和函数的分析性质2 函数的幂级数展开十五、傅里叶级数1 傅里叶级数的概念,三角函数系的正交性2 以2L为周期的函数的展开第 2 页式,奇式与偶式展开 3 收敛定理的证明十六、多元函数的极限与连续1 平面点集与多元函数2 二元函数的极限,重极限与累次极限3 二元函数的连续性,有界闭域(集)上连续函数的性质十七、多元函数的微分学1偏导数与全微分概念,可微性 2 复合函数微分法,高阶导数,高阶微分,混合偏导数与其顺序无关性 3 方向导数与梯度 4 泰勒公式与极值问题十八、隐函数定理及其应用1隐函数的概念,隐函数定理 2隐函数组定理,隐函数组求导、反函数组与坐标变换,函数行列式及其性质 3 几何应用(空间曲线的切线与法平面,曲面的切平面与法线) 4 条件极值与拉格朗日乘数法十九、含参量积分1 含参量正常积分,连续性、可积性与可微性2 含参量反常积分的收敛与一致收敛,柯西准则,维尔特拉斯(Weierstrass)判别法,狄利克雷(Dirichlet)判别法,阿贝尔(Abel)判别法,含参量无穷积分的连续性,可积性与可微性3 欧拉积分二十、曲线积分1第一型曲线积分的概念,性质和计算公式 2第二型曲线积分的概念,性质和计算公式,两类曲线积分之间的关系二十一、重积分1 二重积分概念与性质2 二重积分的计算(化为累次积分),二重积分的换元法(极坐标与一般变换) 3. 格林(Green)公式,曲线积分与路线的无关性3 三重积分的概念与计算,三重积分的换元法(柱坐标、球坐标与一般变换)4 重积分的应用(体积、曲面面积等)二十二、曲面积分1第一型曲面积分的的概念与计算 2第二型曲面积分的概念与计算,两类曲面积分之间的关系 3高斯(Gauss)公式,斯托克斯(Stokes)公式希望以上资料对你有所帮助,附励志名言3条:1、生命对某些人来说是美丽的,这些人的一生都为某个目标而奋斗。
《数学分析》研究生考试大纲

硕士《数学分析》考试大纲课程名称:数学分析科目代码:661适用专业:数学与应用数学专业参考书目:1、《数学分析》(上下册)第一版,陈纪修,於崇华,金路;高等教育出版社1999.92、《数学分析》(上下册)第二版,陈纪修,於崇华,金路;高等教育出版社2004.103、《数学分析》(上下册),卓里奇;高等教育出版社2006.124、《数学分析》(上下册),华东师范大学,高等教育出版社2010.7一、数列极限1、充分认识实数系的连续性;理解并掌握确界存在定理及相关知识。
2、充分理解数列极限的定义,熟练掌握用数列极限的定义证明有关极限问题,以及数列极限的各种性质及其运算。
3、掌握无穷大量的概念及其相关知识;熟练掌握Stolz定理的内容及其结论及应用。
4、理解单调有界数列收敛定理的内容及其结论,并能熟练解决相关的极限问题。
5、充分理解区间套定理、致密性定理、完备性定理各自的内容和结论;进一步认识实数系的连续性与实数系的完备性的关系;明确有关收敛准则中的各定理之间逻辑关系。
二、函数极限与连续函数1、充分理解函数极限的定义,熟练掌握用函数极限的定义证明有关极限问题;以及函数极限的各种性质及其运算。
2、明确数列极限与函数极限的关系;熟练掌握单侧极限以及各种极限过程的极限。
3、充分理解连续函数的概念,熟练掌握用连续函数的定义和运算解决有关函数连续性问题。
明确不连续点的类型;掌握反函数、复合函数的连续性。
4、熟练掌握无穷小(大)量的概念以及自身的比较,并能熟练应用于极限问题当中。
5、充分掌握闭区间上连续函数的各种性质;充分理解函数的一致连续性及相关定理。
三、微分1、充分理解微分的概念、导数的概念,以及可微、可导、连续三者的关系。
2、熟练掌握导数的运算、反函数、复合函数的求导法则,做到得心应手。
3、理解高阶导数和高阶微分的概念,熟练掌握高阶导数的运算法则。
四、微分中值定理及其应用1、充分理解以Lagrange中值定理为核心的各微分中值定理的内容和结论;掌握应用微分中值定理揭示函数自身的特征和函数之间的关系。
辽宁师范大学601数学分析2020年考研专业课初试大纲

601《数学分析》考试大纲(学术型)
注意:本大纲为参考性考试大纲,是考生需要掌握的基本内容。
第一章实数集与函数
一.考核知识点
1.实数集的性质
2.确界定义和确界原理
3.函数的概念及表示法,基本初等函数的性质及其图形,初等函数
二.考核要求
(一) 实数集的性质
1.熟练掌握:(1)实数及其性质;(2)绝对值与不等式。
2.深刻理解:(1)实数有序性,大小关系的传递性,稠密性,阿基米德性,实数集对四则运算的封闭性以及实数集与数轴上的点的一一对应关系;(2)绝对值的定义及性质。
3.简单应用:(1)会比较实数的大小,能在数轴上表示不等式的解;(2)会利用绝对值的性质证明简单的不等式。
4.综合应用:会利用实数的性质和绝对值的性质证明有关的不等式,会解简单的不等式。
(二)确界定义和确界原理
1.熟练掌握:(1)区间与邻域;(2)有界集、无界集与确界原理。
2.深刻理解:(1)区间与邻域的定义及表示法;(2)确界的定义及确界原理。
3.简单应用:会用区间表示不等式的解,会证明数集的的有界性,会求数集的上、下确界。
8。
602_数学分析

附件2:602数学分析考试科目大纲一、考试性质数学分析是硕士研究生入学考试科目之一,是硕士研究生招生院校自行命题的选拔性考试。
本考试大纲的制定力求反映招生类型的特点,科学、公平、准确、规范地测评考生的相关基础知识掌握水平,考生分析问题和解决问题及综合知识运用能力。
应考人员应根据本大纲的内容和要求自行组织学习内容和掌握有关知识。
本大纲主要由一元函数微分学和积分学、无穷级数、多元函数微分学和积分学、实数理论等部分组成。
考生应掌握数学分析的基本概念,理解数学分析的基本理论,熟练掌握数学分析的各种运算,理解数学分析的基本思想和方法。
二、评价目标(1)要求考生理解和掌握数学分析的基本概念、基本理论和基本方法。
(2)要求考生具有较好的抽象思维能力、逻辑推理能力和运算能力。
(3)要求考生具有综合运用所学知识分析问题和解决问题的能力。
三、考试内容(一)函数、极限与连续1、考试范围实数及其性质,确界及确界原理,函数的概念及有界性、单调性、周期性和奇偶性;数列极限与函数极限的定义、性质及存在的条件,两个重要极限,无穷小量和无穷大量的概念及其关系,无穷小量阶的比较,曲线的渐近线;一元函数连续和一致连续的概念,函数间断点及其分类,连续函数的性质,初等函数的连续性。
2、基本要求(1)了解实数的概念,理解确界概念、确界原理;理解函数、复合函数、分段函数和初等函数的概念;了解有界函数、单调函数、奇(偶)函数、周期函数。
(2)理解数列极限概念,掌握收敛数列的性质及数列极限存在的条件。
(3)理解函数极限的概念,掌握函数极限的性质;熟练掌握函数极限的存在条件和两个重要极限;理解无穷小量的概念,熟练掌握等价无穷小量求极限的方法;了解曲线的渐近线。
(4)理解和掌握一元函数连续和一致连续的概念及其证明;熟练掌握函数间断点及其分类和闭区间上连续函数的性质;了解反函数的连续性,理解复合函数的连续性,初等函数的连续性。
(二)一元函数微分学1、考试范围导数和微分的概念,导数的几何意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线;导数和微分的四则运算,基本初等函数的导数,复合函数、反函数以及参数方程所确定的函数的微分法,高阶导数;微分中值定理,洛必达法则,泰勒公式,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数的最大值与最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学分析》考试大纲一、考试的性质数学分析是大学数学系本科学生的最基本课程之一,也是大多数理工科专业学生的必修基础课。
为帮助考生明确考试范围和有关要求,特制订出本考试大纲。
本考试大纲主要根据北京林业大学数学与应用数学本科《数学分析》教学大纲编制而成,适用于报考北京林业大学数学学科各专业(基础数学、概率论与数理统计、计算数学、应用数学)硕士学位研究生的考生。
二、考试内容和基本要求1.实数集与函数(1)确界概念,确界原理(2)函数概念与运算,初等函数要求:理解确界概念与确界原理,并能运用于有关命题的运算与证明。
深刻理解函数的意义,掌握函数的四则运算。
2.数列极限(1)数列极限的ε一N定义(2)收敛数列的性质(3)数列的单调有界法则,柯西收敛准则,重要极限要求:深刻理解数列极限的ε一N定义,并会运用它验证给定数列的极限;掌握数列极限的性质,并会运用它证明或计算给定数列的极限;掌握数列极限存在的充要条件与充分条件,并能运用这些条件证明或判断数列极限的存在性;掌握重要极限并能运用它计算某些数列极限。
3.函数极限(1) 函数极限的ε一M定义和ε一δ定义,单侧极限(2) 函数极限的性质(3) 海涅定理(归结原则),柯西收敛准则,两个重要极限(4) 无穷小量与无穷大量的定义、性质,无穷小(大)量阶的比较要求:理解各类函数极限的定义,并能按定义验证给定的函数极限;掌握函数极限的性质,并能用它证明或计算给定的函数极限。
掌握函数极限的归结原则,并能用它来判断函数极限的存在性和计算某些数列极限。
掌握函数极限的柯西准则,了解单侧极限的单调有界定理;熟练掌握两个重要极限,并运用它们进行有关函数极限的计算;掌握各类无穷小量与无穷大量的定义与性质,理解无穷小(大)量的阶的概念。
4.函数的连续性(1) 函数在一点连续,单侧连续和在区间上连续的定义,间断点的类型(2) 连续函数的局部性质。
复合函数的连续性,反函数的连续性。
闭区间上连续函数的性质。
(3) 一致连续的定义,初等函数的连续性要求:深刻理解函数连续性概念,掌握间断点的概念及分类;掌握连续函数的局部性质以及复合函数和反函数的连续性,掌握闭区间上连续函数的性质;理解函数在区间上一致连续概念,并能用定义验证给定函数在某区间上为一致连续或非一致连续。
5.导数与微分(1) 导数的定义,导数的几何意义(2) 导数四则运算、反函数导数、复合函数导数,求导法则与求导公式(3) 参数方程所确定的函数的导数,高阶导数(4) 微分概念、微分基本公式,微分法则,一阶微分形式的不变性。
微分在近似计算中的应用,高阶微分要求:深刻理解导数概念,并能用定义求某些函数在一点的导数,清楚可导与连续的关系;掌握求导法则与技巧,能熟练地用它们计算可导函数的导数;理解可微性概念,并能用于近似计算。
理解高阶导数的概念,掌握计算方法。
掌握参数方程所确定函数的求导方法。
6.微分中值定理及其应用(1) 费马定理,罗尔定理,拉格朗日定理(2) 柯西中值定理,罗比达法则,不定式极限(3) 泰勒公式(4) 函数的单调性、凸性与拐点、极值与最值(5) 渐近线,函数作图。
要求:深刻理解中值定理的分析意义与几何意义,会证明中值定理,学会用作辅助函数证明问题的方法。
会用中值定理论证问题;熟练掌握罗比达法则,并能迅速准确地计算出各种不定式极限;理解泰勒定理的内容与意义,会用泰勒公式解题;掌握应用导数研究函数单调性、极值和凹凸性的方法。
知道描绘函数图象的步骤和方法。
7.实数的完备性(1)区间套定理,柯西收敛准则,聚点定理,有限覆盖定理,致密性定理(2)闭区间上连续函数的性质及证明要求:理解描绘实数完备性的几个定理的意义,并能运用它们论证一些理论问题。
掌握闭区间上连续函数的性质和有关命题证明的技巧。
8.不定积分(1)原函数与不定积分的概念,基本积分表,线性运算法则(2)换元积分法,分部积分法(3)有理函数的积分法。
可化为有理函数的某些类型函数的积分要求:掌握原函数与不定积分概念、不定积分的运算法则;掌握换元积分法与分部积分法、分解有理函数为部分分式的方法;掌握某些可有理化函数的不定积分的求法。
9.定积分(1)定积分的概念,牛一莱定理(2)可积的必要条件,达布上下和,可积的充要条件,可积函数类(3)定积分的性质:线性性质,区间可加性,单调性,绝对可积性,积分第一、第二中值定理(4)微积分学基本定理。
换元积分法与分部积分法。
泰勒公式的积分型余项要求:深刻理解定积分的概念与意义。
理解可积分的必要条件、充要条件,初步掌握判断函数是否可积的基本方法;熟练掌握定积分的性质,并能用它证明某些有关问题;深刻理解微积分学基本定理的意义,并具有应用它证明有关定积分问题的能力;熟练掌握与应用牛一莱公式,熟练掌握计算定积分的基本方法和技巧。
10.定积分的应用(1)平面图形之面积,由截面之面积求立体体积(2)平面曲线的弧长与曲率,旋转曲面的面积(3)功,液体的压力,引力要求:熟练地应用定积分来计算平面图形的面积,曲线弧长及曲率,旋转体的表面积与体积,以及掌握由截面面积函数求体积的基本方法;能运用定积分解决某些物理问题。
11.反常积分(1)无穷限反常积分(2)无界函数的反常积分要求:深刻理解反常积分的各类收敛性概念,掌握反常积分的收敛判别法。
12.数项级数(1)级数的收敛性与和的概念,柯西收敛准则,收敛级数的基本性质(2)正项级数收敛性的一般判别法,比式判别法与根式判别法,积分判别法(3)绝对收敛与条件收敛,交错级数,莱布尼兹判别法,阿贝尔判别法与狄利克雷判别法要求:掌握级数敛散性定义及意义,熟练掌握级数敛散性判别法;掌握收敛级数与绝对收敛级数的性质,具有应用级数收敛性定义和收敛级数的性质证明级数中一些理论问题的能力。
13.函数列与函数项级数(1)函数列与函数项级数的收敛性与一致收敛性,一致收敛的柯西准则,M一判别法,阿贝尔判别法,狄利克雷判别法(2)函数列极限函数与函数项级数的和函数的连续性、逐项积分与逐项微分要求:深刻理解一致收敛概念,熟练掌握一致收敛定义及其否定叙述,并能用一致收敛定义或判别法判断函数项级数的一致收敛性;牢记有关性质定理的条件,并能用它们讨论和函数(或极限函数)的分析性质。
14.幂级数(1)阿贝尔定理,收敛半径与收敛区间,幂级数的性质:收敛区间内闭一致收敛性、连续性、逐项积分与逐项微分,四则运算§2.初等函数的幂级数展开要求:掌握幂级数的性质,会求收敛半径,会求一些幂级数的和函数;记住某些典型的初等函数的幂级数展式,并能将一些简单函数展成幂级数。
15.Fourier级数(1)三角级数,三角函数系的正交性,付里叶级数,以2L为周期的付里叶级数,收敛定理。
(2)以2L为周期的函数的付氏级数,偶函数与奇函数的付氏级数。
(3)收敛定理的证明。
要求:理解收敛定理的意义;会将若干函数展成付里叶级数;会利用某些展式求一些特殊数项级数的和。
16.多元函数的极限与连续(1)二元函数的定义,二元函数的极限(2)二元函数极限的局部性质,二元函数的连续性,有界闭区域上连续函数的性质要求:掌握平面点集的一些概念:聚点、内点、开集、闭集、开域、闭域等。
掌握平面点集的基本定理。
掌握二元函数定义,掌握重极限与累次极限定义;会求重极限与累次极限;掌握累次极限换序的条件;掌握二元函数连续与一致连续的定义,以及有界闭域上连续函数的性质。
17.多元函数微分学(1)可微性与全微分的概念,偏导数的定义与几何意义,全微分存在条件,可微性的几何意义(2)复合函数的偏导数,复合函数的全微分,一阶微分形式的不变性(3)方向导数与梯度(4)高阶偏导数,二元函数的中值定理与泰勒公式,二元函数的极值要求:掌握偏导数的定义及求偏导数的运算;理解全微分的概念及意义,会求多元函数的全微分;能够将简单的二元函数展成泰勒公式,掌握二元函数的中值定理;会求二元函数的局部极值和最大(小)值。
掌握方向导数定义,会求方向导数。
18.隐函数定理及其应用(1)隐函数定理,隐函数求导法(2)隐函数组定理、隐函数组求导法,反函数组与坐标变换(3)平面曲线的切线与法线,空间曲线的切线与法平面,曲面的切平面与法线(4)条件极值与拉格朗日乘数法要求:理解隐函数的概念与意义,掌握由一个方程确定隐函数的充分条件;知道二元函数组在一点的邻域内存在反函数组的条件,会求隐函数及隐函数组的导数或偏导数及高阶导数或偏导数;会求函数组的函数行列式,并掌握函数行列式的性质;会求平面曲线的切线与法线,空间曲线的切线与法平面,曲面的切平面与法线;掌握条件极值的必要条件,并会用拉格朗日乘数法求条件极值。
19.含参量积分(1)含参量正常积分的概念和性质(2)含参量非正常积分的收敛与一致收敛,一致收敛的柯西准则,维尔斯特拉斯判别法,连续性,可微性,可积性(3)欧拉积分(Γ函数和B函数)要求:掌握含参量正常积分的概念、连续性、可积性与可微性,积分顺序的交换;掌握含参变量非正常积分所定义的函数的分析性质及其证明。
掌握含参量非正常积分的一致收敛定义及其判别法,会应用积分号下可微性和可积性来计算一些非正常积分的值;会用Γ函数和B函数计算一些积分的值。
20.曲线积分(1)第一型曲线积分(2)第二型曲线积分要求:掌握第一型曲线积分的概念及物理意义,熟练计算第一型曲线积分;掌握第二型曲线积分概念,会计算第二型曲线积分。
21.重积分(1)二重积分的定义,二重积分的性质与计算(2)格林公式,曲线积分与路径无关的条件(3)二重积分的换元积分法:极坐标变换与一般坐标变换(4)三重积分的定义与计算,三重积分的换元积分法:柱坐标变换,球坐标变换,一般坐标变换(5)重积分的应用要求:掌握二重积分的定义、可积条件、性质,几何意义;掌握格林公式的条件与结论,并会证明和应用格林公式;掌握曲线积分与路线无关的条件,并能用它计算第二型曲线积分;掌握二重积分的计算方法;掌握三重积分的定义、物理意义及性质,能灵活地运用柱坐标变换和球坐标变换计算三重积分;能用重积分解决一些几何与物理问题。
22.曲面积分(1)第一型曲面积分(2)第二型曲面积分(3)高斯公式与斯托克斯公式要求:掌握第一型曲面积分的概念及物理意义,能熟练计算第一型曲面积分;掌握第二型曲面积分概念及性质,会计算第二型曲面积分;掌握高斯公式与斯托克斯公式的条件与结论,并会证明定理, 会运用这两个定理解决问题。
23.向量函数微分学(1)n维欧式空间和向量函数(2)向量函数的微分(3)反函数定理和隐函数定理要求:掌握向量函数、向量函数极限、连续、一致连续的概念;掌握向量函数可微性与可微的条件,可微函数的性质,极值的必要条件。
掌握反函数定理及其应用。
三、试卷题型填空题、单项选择题、计算题、证明题。