高校无机化学化学反应的方向和吉布斯自由能变(天津大学第四版)讲义
无机化学(天津大学第四版答案)

第1章化学反应中的质量关系和能量关系习题参考答案1.解:1.00吨氨气可制取2.47吨硝酸。
2.解:氯气质量为2.9×103g。
3.解:一瓶氧气可用天数4.解:= 318 K℃5.解:根据道尔顿分压定律p(N2) = 7.6104 Pap(O2) = 2.0104 Pap(Ar) =1103 Pa6.解:(1)0.114mol;(2)(3)7.解:(1)p(H2) =95.43 kPa(2)m(H2) == 0.194 g8.解:(1) = 5.0 mol(2) = 2.5 mol结论: 反应进度()的值与选用反应式中的哪个物质的量的变化来进行计算无关,但与反应式的写法有关。
9.解:U = Qp pV = 0.771 kJ10.解:(1)V1 = 38.310-3 m3= 38.3L(2) T2 == 320 K(3)W = (pV) = 502 J(4) U = Q + W = -758 J(5) H = Qp = -1260 J11.解:NH3(g) +O2(g)NO(g) +H2O(g)= 226.2 kJ·mol112.解:= Qp = 89.5 kJ=nRT= 96.9 kJ13.解:(1)C (s) + O2 (g) → CO2 (g)=(CO2, g) = 393.509 kJ·mol1CO2(g) +C(s) → CO(g)= 86.229 kJ·mol1CO(g) +Fe2O3(s) →Fe(s) + CO2(g)= 8.3 kJ·mol1各反应之和= 315.6 kJ·mol1。
(2)总反应方程式为C(s) + O2(g) +Fe2O3(s) →CO2(g) +Fe(s)= 315.5 kJ·mol1由上看出:(1)与(2)计算结果基本相等。
所以可得出如下结论:反应的热效应只与反应的始、终态有关,而与反应的途径无关。
高校无机化学化学反应的方向和吉布斯自由能变(天津大学第四版)讲义

化学反应的吉布斯自由能变 ──热化学反应方向的判据
等温、等压的封闭体系内,不作非体 积功的前提下,任何自发过程总是朝
着吉布斯自由能(G)减小的方向进行。
rGm = 0 时, 体系的G降低到最小值,
反应达平衡。此即为著名的最小自由 能原理。
rGm=rHm-T rSm 各种 符 号 反应情况 情况 H S rG m r m r m
第二章 化学反应的方向、 速率和限度
第二章 化学反应的方 向、速率和限度 第一节 化学反应的方向和吉布 斯自由能变
2.1.1化学反应的自发过程 自发过程 在一定条件下不需外界作功,一经引发就 能自动进行的过程。 例如: 水总是自动地从高处向低处流,铁在 潮湿的空气中易生锈。 要使非自发过程得以进行, 外界必须作功。 例如:欲使水从低处输送到高处,可借助 水泵作机械功来实现。 注意:能自发进行的反应,并不意味着其 反应速率一定很大
化学反应的熵变 熵的概念: 体系内组成物质粒子运动的混乱程度。 熵是描述物质混乱度大小的物理量。 物质(或体系) 混乱度越大,对应的熵值越大。 符号:S 。单位: JK-1 在0K时,一个纯物质的完美晶体,其组分粒 子(原子、分子或离子)都处于完全有序的排 列状态, 混乱度最小, 熵值最小。 把任何纯物质的完美晶体在0K时的熵值规 定为零(S0=0)。
标准摩尔熵 某单位物质的量的纯物质在标准态下的熵 值称为标准摩尔熵。 符号:Sm 单位:J· mol-1· K-1
注意: (1) 纯净单质在298.15K时Sm≠0; (2) 物质的聚集状态不同其熵值不同; 同种物质 Sm(g)>Sm (1)>Sm(s) (3) 物质的熵值随温度的升高而增大; (4) 气态物质的熵值随压力的增大而减小。
《无机化学》天津大学第四版第一章:化学反应中的质量关系和能量关系

等离子态
“Plasma” I. Langmuir 1926 定义1: “包含足够多的正负电荷数目近于 相等的带电粒子的物质聚集状态。”
等离子第态1章 化学反应中的质量关系和能量关系
固态等离子体:晶格中正离子与自由电子 组合;半导体中电子与空穴的组合等。 液态等离子体:如电解质溶液中正负离子 的组合。 定义2: “等离子体是由大量带电粒子组成 的非凝聚系统。” (国家自然科学基金委,“等离子体物理 学发展战略调研报告”,1994年) 强调了非凝聚系统,即排除了单纯的固态 和液态,但包含了电子束和离子束。
第1章 化学反应中的质量关系和能量关系
理想气体状态方程
实际工作中,当压力不太高、温度不太 低的情况下,气体分子间的距离大,分 子本身的体积和分子间的作用力均可 忽略,气体的压力、体积、温度以及 物质的量之间的关系可近似地用理想 气体状态方程来描述。
理想第1气章 体化学状反态应中方的程质量关系和能量关系
表明反应中每消耗1 mol N2和3 mol H2 生成2 mol NH3
1.3.2化第学1章计量化学数反与应反中的应质进量度关系和能量关系
反应进度
对于化学计量方程式
dξ = νB-1dnB
0=∑νBB B
ξ为反应进度, 其单位为mol
nB为B的物质的量, νB为B的化学计量数 改写为 dnB = νB dξ
化学计量数(ν)
化学反应
cC + dD = yY + zZ
移项
0 = -cC - dD + yY + zZ
令 -c =νC、-d =νD、y =νY、z =νZ
天津大学无机化学课件0绪论52页PPT文档

(介观)
宏观
由宏观到微观,定性到定量,稳定态到亚稳定态,经验上升到理 论并用理论指导实践,进而开创新的研究。
哪些是关键性的问题呢?
化学反应的性能,化学催化,生命过程中的化学问题等。总之,
化学已成为中心科学,与21世纪科学)都有关。
8
1、化学研究的对象
原子 atom
5
1 化学的研究对象 绪论 2 化学的主要分支
3 怎样学习化学
6
什么是化学?它研究的对象是什么?如何才能学好化 学?这是开始学化学首先要解决的问题。下面就从回答这些 问题来开始我们的化学学习。
一.化学研 究的物质
物质是不依赖于人们的感觉而存在并且可以 被人们的感觉所认识的客观实在。简而言之,物 质是客观存在的东西。
化学研究的物质 一般是指实物
具体地 说物质 包括实 物和场
具有静止质量、体积、占有空间的
实物 物体。如书桌、铁、木材、水、空
气等。
场 没有静止质量、体积、不占有空间。
如电场、磁场、光、声音。
7
物质结构层次:
质子
夸克
原子核
中子 电子
原子 (离子)
纳米 材料
宇宙
(宇观)
分子
单质 化合物
星体
微观 当今化学发展的趋势大致是:
2)化学物质(chemical substance) 不包括物质的另 一基本形态---场。化学研究的是以间断形式存在的物质形 态,而场是以连续形式存在的物质形态,属物理学的研究 范畴。
3)组成(form)包括定性组成和定量组成。弄清物 质的定性组成应确证它含有哪些元素,物质的定量组成包 括各元素的质量百分比、原子个数比、化学式及分子式。
1学时 3学时
高校无机化学电极电势(天津大学第四版)讲义

电极反应
(-) Pt,H2(100kPa) H+(1mol·L-1) H+(1mol·L-1) H2(100kPa),Pt (+)
2H+ + 2e- → H2
4.2.3 电极电势的测定
2. 电极电势的测定
欲确定某电极的电极电势 可把该电极与标准氢电极组成原电池
E /V -3.040 -2.924 -0.7626
0 0.340 1.229 1.229 3.053
3.4
常用电对的标准电极电势(298.15K)
电对 Li+/Li K+/K Zn2+/Zn H+/H2 Cu2+/Cu O2/H2O Cl2/ClF2/HF(aq) XeF/Xe(g)
电极反应 Li+ + e- Li K+ + e- K EE ((XLei+F/ZL/Xni)e2最+)最+小2大e- Zn LXLXieie+F的的的的还氧还氧原2化原化H性性性+性+最最最最2强弱弱e强- 2H2 Cu2+ + 2e- Cu O2+4H+ + 4e- 2H2O Cl2 + 2e- 2ClF2+2H+ + 2e- 2HF(aq) XeF + e- Xe(g) + F-
K+ + e- K
Zn2+ + 2e- Zn
2H+ + 2e- 2H2 Cu2+ + 2e- Cu
O2+4H+ + 4e-
无机化学第二章 化学反应的方向、速率和限度--

+ iSm(反应物,298.15K) ΔrGm (298.15K) = ΔrHm(298.15K)- 298.15×ΔrSm(298.15K)
注意单位: kJmol-1 kJmol-1 Jmol-1 K-1
(3) 利用吉布斯自由能状态函数的加和性 如果 反应(1)= 反应(2) +反应(3)
第二章 化学反应的方向、
速率和限度
本章教学要求
1、了解标准摩尔熵、标准摩尔生成吉布斯自由能的概念, 掌握反应的标准摩尔熵变、标准摩尔吉布斯自由能变的简单 计算。 2、掌握ΔrGm 与ΔrHm 和ΔrSm 的关系,学会用ΔrGm 判断 标准状态下反应进行的方向。 3、理解反应速率、基元反应和反应级数的概念及速率方程 式的表达,掌握活化能、活化分子的概念并能用其说明浓度、 温度、催化剂对反应速率的影响。 4、掌握可逆反应与化学平衡的概念、标准平衡常数和平衡 组成的有关计算,熟悉标准平衡常数和标准吉布斯自由能变 的关系。 5、熟悉反应商判据和吕·查德里原理,掌握浓度、压力、 温度对化学平衡移动的影响及其有关计算。
任一温度(T),并测量此过程的熵变
量(ΔS), 则该纯物质在T K时的熵
ΔS =ST - S0 = ST - 0 = ST
标准摩尔熵 定义:某单位物质的量的纯物质在标准态下的
熵值称为标准摩尔熵。
符号:Sm
单位:J·mol-1·K-1
影响熵值的因素
1.温度升高,物质的熵值增大。
2. 同一物质在气态的熵值总是大于液态的熵 值,而后者又大于固态的熵值。
则
ΔrGm (1) = ΔrGm (2) + ΔrGm (3)
TiO2(s) + 2Cl2(g) = TiCl4(l) + O2(g) ΔrG m = 173.2 kJ·mol–1
化学反应方向和吉布斯函数

在101KPa时,
若T= 1183K(910℃),
反应发生
此时,温度T 决定反应的自发性. 综上所述, △H、 △S、T都对反应的自发性有影响。
思考:
Zn (s) + Cu2+(aq) = Zn2+(aq) +Cu(s)
一、化学反应的自发性 1.自发过程
例如:物体自由下落 液体流动 固体传热
2.化学反应的自发性
例如:氢气和氟气混合 H2(g) + F2(g) = 2HF(g) 铁块在潮湿的空气中 4Fe(s) + 3O2(g) = 2Fe2O3(s) 爆炸 生锈
溶液中的置换反应 Zn (s) + Cu2+(aq) = Zn2+(aq) +Cu(s) 反应的自发性: 是指该反应完全自动按方程式“正向”进行. 它们的逆过程都不能自动进行。 当借助外力,体系恢复原状后,会给 环境留下不可磨灭的影响。
混乱度减小
Note:
虽然物质的S将随温度升高而增大。但许多情
况下,反应物增加的熵与生成物增加的熵差不多,
∴反应的△S 无明显的变化。
若温度变化范围不太大时,可作近似处理,
忽略反应△S 随温度的变化, 在温度范围变化不太大时,也可作近似处 理,忽略反应△H随温度的变化。
3. 温度对反应自发性的影响
玻尔兹曼 (Boltzmann L,1844-1906) 奥地利物理学家
R 8.314J mol -1 K -1 k NA 6.022 1023 mol -1 1.3806 10-23 J K -1
★物质的绝对熵
大学无机化学第四版第二章课件

t
dt
dc B 为导数,它的几何意义是c-t曲线上某 dt 点的斜率。例如270s时的瞬时速率: 0.144 0 5 2.58 10 A点的斜率= 2 (55.8 0) 10
V = 2.58×10-5 mol L-1 s-1
1-
s 1-L lom 501 85.2
t2=300 s
c2(N2O5) = 0.180 mol· L-1
mol L-1 3.3 10 5 mol L-1 s -1 2 300 s
2. 瞬时速率 时间间隔Δt趋于无限小时的平均速率的极 限。 c B dc B lim
△ f Gm (参考态单质,T)=0
△ rGm 2. 用△ f Gm (B,相态,T) 计算
对于化学反应:0=ΣνBB
B
△ rGm (298.15K) = ∑νB △ f Gm (B,相态,298.15K)
如果T≠298.15K
△ rGm (T)≈ △ rHm(298.15K)-T△ rSm (298.15K)
H2O(l)
CaO(s)+CO2(g)
mol-1 △ rHm = 178.32kJ·
100 C H O(g) 2
mol-1 △ rHm = 44.0kJ· 焓变只是影响反应自发性的因素之一, 但不是唯一的影响因素。
2.1.3 混乱度、熵和微观态数
1.混乱度 许多自发过程有混乱度增加变化 0K T K △S = ST - S 0 = ST ST---规定熵(绝对熵)
在某温度T 和标准压力下,单位物质的 量的某纯物质B的规定熵称为B的标准摩尔熵。 其符号为 :
mol-1 · K-1 Sm (B,相态,T) ,单位是J·
高校无机化学沉淀反应(天津大学第四版)讲义

例 在10mL0.10mol· L-1MgSO4溶液中加入10mL
NH3· H2O NH4 + OH平衡浓度/(mol· L-1) 0.050-x x x x· x x· x -5 Kb = 0.050-x ;0.050-x≈0.050; 1.8×10 = 0.050 x=9.5×10-4 c(OH-)=9.5×10-4 mol· L-1
+
例 在10 mL 0.10 mol· L-1 MgSO4溶液中加入10
2. 影响沉淀反应的因素 同离子效应——使难溶电解质溶解度降低 平衡移动方向 如 BaSO4(s) Ba2+ + SO24 2Na2SO4 →2Na+ + SO4 例 计算BaSO4在0.10mol· L-1Na2SO4溶液 中的溶解度。(s=1.04×10-5 mol· L-1) 22+ 解: BaSO4(s) Ba + SO4 平衡浓度/(mol· L-1) x x+0.10
应用计算公式应注意:
2.不适用于难溶弱电解质
AB(s)
A+ + B-
s(AB)=c(AB)+c(A+)=c(AB)+c(B-) s=c(AB) + Ksp(AB) ×c
只有相同类型、基本不水解的难溶强电 解质,可直接根据溶度积大小来比较溶 解度的相对大小
Ksp s/(mol· L-1) 类型 难溶电解质 AgCl 1.77×10-10 1.33×10-5 -13 -7 AgBr 5.35 × 10 7.33 × 10 AB AgI 8.52×10-17 9.25×10-9 AB2 MgF2 6.5×10-9 1.2×10-3 A2B Ag2CrO4 1.12×10-12 6.54×10-5
无机化学课后习题答案(天津大学第四版)

第2章 化学反应的方向、速率和限度 习题参考答案1.解: m r H ∆ = -3347.6 kJ·mol -1;m r S ∆ = -216.64 J·mol -1·K -1;m r G ∆ = -3283.0kJ·mol -1 < 0该反应在298.15K 及标准态下可自发向右进行。
2.解: m r G ∆ = 113.4 kJ·mol -1 > 0该反应在常温(298.15 K)、标准态下不能自发进行。
〔2〕 m r H ∆ = 146.0 kJ·mol -1;m r S ∆ = 110.45 J·mol -1·K -1;m r G ∆ = 68.7 kJ·mol -1 > 0该反应在700 K 、标准态下不能自发进行。
3.解: m r H ∆ = -70.81 kJ·mol -1 ;m r S ∆ = -43.2 J·mol -1·K -1; m r G ∆ = -43.9 kJ·mol -1〔2〕由以上计算可知:m r H ∆(298.15 K) = -70.81 kJ·mol -1; m r S ∆(298.15 K) = -43.2 J·mol -1·K -1m r G ∆ =m r H ∆ - T ·m r S ∆ ≤ 0 T ≥K)(298.15K) (298.15m r m rS H ∆∆ = 1639 K4.解:〔1〕c K = {}O)H ( )(CH )(H (CO) 2432c c c c p K = {}O)H ( )(CH )(H (CO) 2432p p p pK = {}{}{}{}p p p p p p p p / O)H ( /)(CH / )(H / (CO) 2432〔2〕c K ={}{})(NH )(H )(N 3232212c c c p K ={}{})(NH )(H )(N 3232212p p pK ={}{}pp p p p p / )(NH/)(H/)(N3232212〔3〕c K =)(CO 2c p K =)(CO 2p K = p p /)(CO 2 〔4〕c K ={}{}3232 )(H O)(H c c p K ={}{}3232 )(H O)(H p pK ={}{}3232 /)(H/O)(Hpp p p5.解:设 m r H ∆、m r S ∆基本上不随温度变化。
天津大学《无机化学》课程教学大纲

天津大学《无机化学》课程教学大纲一.课程的性质与目的无机化学是化学的一个分支,是高等学校化学、化工、药学、轻工、材料、纺织、环境、冶金地质等类有关专业的第一门化学基础课。
本课程的任务是:提供化学反应的基本原理、物质结构的基础理论、元素及其化合物的基础知识。
其目的是培养学生具有解决一般无机化学问题、自学无机化学书刊的能力。
因此它是培养上述各类专业技术人才的整体知识结构及能力结构的重要组成部分,同时也为后继化学及其它课程打下基础。
二.教学基本要求1. 在教学过程中,注意运用辩证唯物主义观点和科学思维方法阐明问题,结合科技和学科发展的实际,适当反映现代无机化学的新知识、新领域,注意理论联系实际,培养学生分析问题和解决问题的能力。
2. 基本要求大体划分三个层次:“了解”(或“学习” )、“理解”(或“熟悉” )、“掌握”(或“学会”、“能” ),这三个层次的要求依次提高。
三.教学内容1. 理论部分(1)化学反应速率了解化学反应速率方程(质量作用定律)和反应级数的概念。
能用活化能和活化分子概念说明浓度、分压、温度、催化剂对均相反应速率的影响。
了解影响多相反应速率的因素。
(2)化学平衡掌握化学平衡概念及平衡移动规律,理解反应速率和化学平衡在实际应用中需综合考虑的必要性。
掌握弱电解质的解离度、稀释定律、溶液的酸碱性和pH值、解离平衡(含分级解离平衡)、盐的水解、同离子效应、缓冲溶液、溶解-沉淀平衡、溶度积规则、氧化还原平衡和电极电势、配位平衡等内容,并能分析多重平衡系统中的成分及其相互影响。
能用平衡常数(Kθ)进行有关计算。
能计算一元弱酸、一元弱碱的解离平衡组成以及同离子效应和缓冲溶液的pH值。
能用溶度积规则判断沉淀的产生、溶解。
能用氧化数法、离子电子法配平氧化还原方程式;能通过能斯特方程式计算说明浓度(含酸度)、分压对电极电势的影响;会用电极电势判断氧化剂、还原剂的相对强弱和氧化还原反应进行的方向;会应用元素标准电极电势图讨论元素的有关性质。
高校无机化学分子间力和氢键(天津大学第四版)讲义

6.5 分子间力和氢
键
6.5.2 分子间力
影响分子间力的因素 分子间距离:分子间距离越大,分子间 力越弱 取向力:温度越高,取向力越弱 分子的偶极矩越大, 取向力越强 诱导力: 极性分子的偶极矩越大 诱导力越强 非极性分子的极化率越大 色散力:分子的极化率越大, 色散力越强
6.5 分子间力和氢
键
缔合
(HF)n
6.5 分子间力和氢
键
6.5.1 分子的极性和变形性
分子的极性 产生: 每个分子都由带正电的原子核和带 负电的电子组成,正负电荷数量相等, 整个分子是电中性的。 如果分子的正电荷中心和负电荷中 心不重合在同一点上,那么分子就具有极 性。
6.5 分子间力和氢
键
6.5.1 分子的极性和变形性
分子的极性
6.5 分子间力和氢
键
6.5.2 分子间力
分子间力的存在 非极性分子与非极性分子之间
_ + _ + + _ + _
_ _ + + _ + _ +
分子间由于瞬时偶极所产生的作用力 ——色散力
6.5 分子间力和氢
键
6.5.2 分子间力
分子间力的存在 非极性分子与极性分子之间 1. 非极性分子在极性分子固有偶极作用 下,发生变形,产生诱导偶极,诱导偶极 与固有偶极之间的作用力称为诱导力。 2. 由于电子与原子核的相对运动,极性 分子也会出现瞬时偶极,所以非极性分子 与极性分子之间也存在色散力。
键
6.5.2 分子间力
分子间力的存在 极性分子与极性分子之间 1. 极性分子相互靠近时,发生定向极化, 由固有偶极的取向而产生的作用力称 为取向力 2. 极性分子定向极化后,会进一步产生 诱 3. 导偶极,存在诱导力 存在色散力
化学反应方向熵变与吉布斯自由能变

体系的熵,就是指体系的混乱度。体系的混乱度愈大,
熵值愈大。
热力学原理指出:等温过程的熵变可由公式求出
S=
Qr T
单位:J/mol·K
完整版课件ppt
8
三、热力学第二定律
自然界的另一变化规律: 系统总是趋向于取得最大的
混乱度,即总是向着熵增大的方向进行。
热力学第二定律:在孤立体系中发生的任何化学反应或
ΔrGmθ(T)=ΔrHmθ(298K) -TΔrSmθ(298K) 可求出任一温度下反应的自由能变ΔrGmθ。
标准状态下,自发进行化学反应ΔrGmθ(T)<0; 非自发反应ΔrGmθ(T)>0;
处于平衡状态ΔrGmθ(T)=0; 那么 ΔrHmθ(298K)-TΔrSmθ(298K)=0
即
T=
ΔrHmθ(298K) = ΔrSmθ(298K)
完整版课件ppt
18
2、吉布斯自由能变的有关计算
⑴ 物质的标准生成吉布斯自由能ΔfGmθ 与焓一样,在特定状态下物质(所含)的吉布斯自由能
的绝对值是无法求得的。人们采取的办法是求取其相对值。 规定:ΔfGmθ(单质)=0,在标准状态下,由最稳定的单
质生成1mol的某物质的反应的标准吉布斯自由能变,为该物 质的标准摩尔生成吉布斯自由能,记作:ΔfGmθ,KJ/mol
(这是经验总结,称为经验判据)
完整版课件ppt
25
例7.已知25℃时ΔfGmθ(NOBr)=82.4kJ/mol,
ΔfGmθ(NO)=86.6kJ/mol,ΔfGmθ(Br2,g)=3.1kJ/mol。
试判断该温度时反应 2NO(g)+ Br2(g)
2NOBr(g)在
下列两种情况下反应的方向:⑴ 标准状态下;
大学无机化学期末考试复习资料(天津大学第四版)

9.化学计量数: 0= VB B表示反应中物质的化学式, VB是 B 的化学计量数,
B
量纲为一;对 反应物取负值,生成物取正值 。 10.化学计量数只表示当安计量反应式反应时各物质转化的比例数,并不是各反 应物质在反应过程中世界所转化的量。
11.反应进度 :
n b / v b 对于化学反应来讲, 一般选未反应时, 0 引入
24. rG T 0 就是化学平衡的热力学标志或称反应限度的判据。 平衡系统的性质
不随时间而改变。 25.标准平衡常数: 当化学反应处于平衡状态时, 以其化学反应的化学计量数 (绝
对值)为指数的各产物与反应物分压或浓度的乘机之比为一个常数。 K 只是温
度的函数, K 值越大说明反应进行的越彻底,反应物的转化率越高。
种情况:当 Q<K ,则 r G m <0 反应正向自发进行;当 Q=K ,则 r G m =0,平
衡状态;当 Q>K ,则 rG m >0,反应逆向自发进行。
33.范特霍夫等压方程式:由 lnK
r
G
(m
T
) 和吉布斯函数方程式合并得到
RT
ln K 2 K1
r H m( 1 1 ) R T2 T1
r H m( T2 T1 )
(Bg)RT即 r H m
无机化学天津大学02-4化学平衡的移动课件

第1章 化学反应中的质量关系和能量关系
• 1、正视自己的长处,扬长避短, • 2、正视自己的缺点,知错能改, • 3谦虚使人进步, • 4、人应有一技之长, • 5、自信是走向成功的第一步, • 6强中更有强中手,一山还比一山高, • 7艺无止境 • 8、宝剑锋从磨砺出,梅花香自苦寒来,刻苦
训练才能有所收获,取得成效。 • 9、骄傲自大、不可一世者往往遭人轻视; • 10、智者超然物外
衡移动方向。
解: ln K2 = rHm(298.15K)( T2-T1)
K1
R
T1T2
ln
K (723K) 6.8×1024
=
-197.78 8.314
(
723-298.15 198.15×723
)=-20.3
K (723K)=2.95×104
K (723K)=2.95×104< 6.8×1024=K (298.15K)
第2章 化学反应的方向、速率和限度
可逆反应: c C + d D yY + z Z △n=[(y+z)-(c+d)]=0
体系总压力的改变,同等倍数降低或增加反 应物和生成物的分压,J 值不变(仍等于K ), 故对平衡不发生影响。 引入不参加反应的气体,对化学平衡的影响:
恒温恒容条件下,对化学平衡无影响; 恒温恒压条件下,引入不参加反应的气体, 使体积的增大,造成各组分气体分压的减小, 化学平衡向气体分子总数增加的方向移动。
yY + z Z
n > 0,气体分 n < 0,气体分
子数增加的反应 子数减少的反应
压缩体积 增加总压
J>K ,平衡向 J<K ,平衡向 逆反应方向移动 正反应方向移动
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CaCO3(s)→CaO(s)+CO2(g)
非标准摩尔吉布斯自由能变(ΔrGm) 的计算和反应方向的判 断 等温、等压及非标准态下 , 对任一反应: cC + dD → yY + zZ ΔrGm=ΔrGm+RTlnJ J——反应商 对于气体反应: {p(Y)/p }y {p(Z)/p }z J = ———————— — c { p (C)/ p } {p(D)/p }d 水溶液中离子反应: [c(Y)/c ]y [c(Z)/c ]z J = ———————— — c [ c (C)/ c ] [c(D)/c ]d 纯固态或液态处于标准态与否对反应的
化学反应的吉布斯自由能变 ──热化学反应方向的判据
等温、等压的封闭体系内,不作非体 积功的前提下,任何自发过程总是朝
着吉布斯自由能(G)减小的方向进行。
rGm = 0 时, 体系的G降低到最小值,
反应达平衡。此即为著名的最小自由 能原理。
rGm=rHm-T rSm 各种 符 号 反应情况 情况 H S rG m r m r m
ΔrGm={ΔfGm(CaO)+ΔfGm(CO2)}-ΔfGm(CaCO3) ={(-604.03)+(-394.359)-(-1128.79)} kJ· mol1
在298.15K、标准态下,反应不能自发分解。
=130.40 kJ· mol-1>0
解:(2)解法
ΔfHm/(kJ· mol-1) -1206.92 -635.09 393.509 Sm/(J· mol-1· K-1) 92.9 39.75 Δ 213.74 rHm=[ΔfHm(CaO)+ΔfHm(CO2)]-ΔfHm(CaCO3) ={[(-635.09)+(-393.509)]-(-1206.92)} kJ· mol-1 ΔrSm=[ Sm(CaO)+ S -1 2)]-Sm(CaCO3) m(CO =178.32 kJ· mol =[(39.75+213.74)-92.9] J· mol-1· K-1 =106.6 J· mol-1· K-1 ΔrGm(298.15K)=ΔrHm(298.15K)-TΔrSm(298.15K) ΔrGm=[178.32-298.15×106.6×10-3] 在298.15K 、标准态下,反应不能自发分解。 -1 kJ· mol
1 2
+
+ -
+
常温(+) 高温(-) 常温(-) 高温(+)
3 4
+ -
+ -
任何温度下均为 自发反应 任何温度下均为 非自发反应 常温下为非自发反应 高温下为自发反应 常温下为自发反应 高温下为非自发反应
ΔrHm ΔrSm “高温”是指当T > 时
2.1.3热化学反应方向的判断
标准摩尔吉布斯自由能变(ΔrGm) 的计算和反应方向的判 断 标准态时,吉布斯公式为:
曾试图以反应的焓变 (rHm) 作为反应自发 性的判据。认为在等温等压条件下,当 可见,把焓变作为反应自发性的判据是不 rH < 0时: 化学反应自发进行 准确 、 不全面的 。除了反应焓变以外,还有 m rH m > ( 0体系混乱度的增加和温度等 时: 化学反应不能自发进行 ), 其它因素 但实践表明: 有些吸热过程(rHm > 0) 也是影响许多化学和物理过程自发进行的 亦能自发进行。 因素。 例如 1.NH4Cl(s) → NH4+(aq) + Cl-(aq) rHm = 14.7 kJ· mol-1 1 2.Ag2O(s) → 2Ag(s) + 2 O2(g) rHm=31.05 kJ· mol-1
rGm = rHm – T rSm
化学反应的吉布斯自由能变 ──热化学反应方向的判据 在等温、等压的封闭体系内, 不作非体积功, rGm可作为热化学反应自发过程的判据。
即: rGm < 0 自发过程, 化学反应自发正向进行 rGm = 0 平衡状态 rGm > 0 非自发过程, 化学反应逆向进行
2.1.2影响化学反应方向的因 素 化学反应的焓变 自发过程一般都朝着能量降低的方向进行。 能量越低,体系的状态就越稳定。
对化学反应, 很多放热反应在298.15K, 标 准态下是自发的。
例如: CH4(g) + 2O2(g) → CO2(g) + 2H2O(l) rHm = -890.36 kJ· mol-1
第二章 化学反应的方向、 速率和限度
第二章 化学反应的方 向、速率和限度 第一节 化学反应的方向和吉布 斯自由能变
2.1.1化学反应的自发过程 自发过程 在一定条件下不需外界作功,一经引发就 能自动进行的过程。 例如: 水总是自动地从高处向低处流,铁在 潮湿的空气中易生锈。 要使非自发过程得以进行, 外界必须作功。 例如:欲使水从低处输送到高处,可借助 水泵作机械功来实现。 注意:能自发进行的反应,并不m 判据的条件
反应体系必须是封闭体系,反应过程中体 系与环境之间不得有物质的交换,如不断 加入反应物或取走生成物等; 反应体系必须不作非体积功(或者不受外界 如“场”的影响),反之,判据将不适用。 例如:2NaCl(s) → 2Na(s) + Cl2(g), ΔrGm > 0 反应不能自发进行,但如果采用电解的方 法(环境对体系作电功), 则可使其向右进行。
ΔrGm = ΔrHm - T ΔrSm 等温、等压下, 反应在标准态时自发进 行的判据 ΔrGm < 0 标准摩尔生成吉布斯自由能变ΔfGm 标准态下, 由最稳定的纯态单质生成单位 物质的量的某物质时的吉布斯自由能变
2.1.3热化学反应方向的判断
标准态下,由最稳定的纯态单质生成单位物质 的量的某物质时的吉布斯自由能变。 任何最稳定的纯态单质在任何温度下的标准摩 尔生成吉布斯自由能均为零。 如 ΔfGm(石墨)=0、ΔfGm(H2)=0 ΔrGm只与反应的始态和终态有关,与反应的 具体途径无关。 ΔrGm = ∑iΔfGm(生成物) + ∑iΔfGm(反应物)
标准摩尔熵 某单位物质的量的纯物质在标准态下的熵 值称为标准摩尔熵。 符号:Sm 单位:J· mol-1· K-1
注意: (1) 纯净单质在298.15K时Sm≠0; (2) 物质的聚集状态不同其熵值不同; 同种物质 Sm(g)>Sm (1)>Sm(s) (3) 物质的熵值随温度的升高而增大; (4) 气态物质的熵值随压力的增大而减小。
2.1.2影响化学反应方向的因 素 再如
为什么有些吸热过程亦能自发进行呢?
2. Ag2O(s) → 2Ag(s) O2(g) rHm=31.05 kJ· mol-1
1 + 2
反应前后, 不但物质的种类和 “物质的量”增多 , 并产生了热运 动自由度很大的气体 , 整个物质体 系的混乱程度增大。
化学反应的熵变 熵的性质: 熵是状态函数。 温度升高, 体系或物质的熵值增大。 据此, 可求得在其它温度下的熵值(ST)。 例如:我们将一种纯晶体物质从0K升到 任一温度(T),并测量此过程的熵 变 量(ΔS), 则该纯物质在T K时的熵 ΔS =ST - S0 = ST - 0 = ST
例
MnO2(s) + 4H+(aq) + 2Cl-(aq) → Mn2+(aq) + Cl2(g) + 2H2O (l) 非标准态时: ΔrGm=ΔrGm+RTlnJ ΔrGm
{c(Mn2+)/c } {p(Cl2)/p =ΔrGm+RTln —————————— {c(H+)/c }4 {c(Cl-)/c }
例 计算723K、非标准态下, 下列反应的ΔrGm,
并判断反应自发进行的方向。 2SO2(g) + O2(g) →2SO3(g) 分压/Pa 1.0×104 1.0×104 1.0×108
Sm/(J· mol · K ) 248.22 205.138 Δr Hm=2ΔfHm(SO3)-[2ΔfHm(SO2)]+ΔfHm(O2)] 256.76 =[2(-395.72)-2(-296.830)] kJ· mol-1 =-197.78 kJ· mol-1 ΔrSm=2Sm(SO3)-[2Sm(SO2)]+Sm(O2)] ={2(256.76)-[2(248.22)+205.138]} J· mol1 -1 = -188.06 J· mol-1· K-1 · K
标准摩尔生成吉布斯自由能ΔfGm
ΔrGm(T) = ΔfHm(T)-TΔfSm(T) ≈ΔrHm(298.15K)-TΔrSm(298.15K)
试判断在298.15K、标准态下,反应 CaCO3(s)→CaO(s)+CO2(g)能否自发进行?
例
解: CaCO3(s)→CaO(s)+CO2(g) ΔfGm/(kJ· mol-1) -1128.79 -604.03 394.359 ΔfHm/(kJ· mol-1) -1206.92 -635.09 -1· -1) S /(J· mol K 92.9 39.75 393.509 m 213.74 (1)解
解: 2SO2(g) + O2(g) -1) -296.83 Δ H /(kJ· mol 0 -395.72 r m 3(g) →2SO -1 -1
ΔrGm(723K)=ΔrHm(723K)+TΔrSm(723K) ≈ ΔrHm(298K)+TΔrSm(298 K) ΔrGm(723K)=[(-197.78×10-3)+723(188.06)]J· mol-1 2 [ p (SO )/ p ] -1 3 = -61813 J· mol RT ln J =8.314 × 723ln —————————— -1 J· mol [p(SO2)/p ]2 [p(O2)/p ] (1.0×108)2 (1.0×105) =8.314×723ln ————————— J· mol1 (1.0×104)2 (1.0×104) ΔrGm>0 ,反应自发向左进行。 =124590.5 J· mol1 ΔrGm(723K)=ΔrGm(723K)+RTlnJ =(-61813+ 124590.5) J· mol-1 =62.777 kJ· mol-1