上海文来中学八年级数学上册第五单元《分式》检测卷(答案解析)
八年级数学上册第五单元《分式》测试卷(含答案解析)
一、选择题1.如图,在数轴上表示2224411424x xx x x x-++÷-+的值的点是()A.点P B.点Q C.点M D.点N2.化简分式2xy xx+的结果是()A.yxB.1yx+C.1y+D.y xx+3.若使分式2xx-有意义,则x的取值范围是()A.2x≠B.0x=C.1x≠-D.2x=4.若2x11x x1+--的值小于3-,则x的取值范围为()A.x4>-B.x4<-C.x2>D.x2<5.在同一平面内,我们把两条直线相交将平面分得的区域数记为1a,三条直线两两相交最多将平面分得的区域数记为2a,四条直线两两相交最多将平面分得的区域数记为()3,,1a n⋅⋅⋅+条直线两两相交最多将平面分得的区域数记为na,若121111011111na a a++⋅⋅⋅+=---,则n=()A.10B.11C.20D.216.若数a使关于x的分式方程2311ax x+=--的解为非负数,且使关于y的不等式组21322y yy a+⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y<-,则符合条件的所有整数a的个数为()A.5 B.6 C.7 D.87.计算221(1)(1)xx x+++的结果是()A.1 B.1+1xC.x+1 D.21(+1)x8.下列计算正确的个数为()①555•2a a a=;②5510b b b+=;③1644n n÷=;④247••y y y y=;⑤()()23•x x x --=-;⑥()7214a a --=;⑦()()234214•a a a -=;⑧()242a a a ÷-=-;⑨()03.141π-=.A .2B .3C .4D .59.若实数a 使关于x 的不等式组313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4 B .3 C .2 D .110.11121n n n x x x x+-+-+等于( ) A .11n x + B .11n x - C .21x D .111.3333x a a y x y y x+--+++等于( ) A .33x y x y -+ B .x y - C .22x xy y -+ D .22x y + 12.下列各式中正确的是( )A .263333()22=x x y yB .222224()=++a a a b a bC .22222()--=++x y x y x y x y D .333()()()++=--m n m n m n m n 二、填空题13.席卷全世界的新型冠状病毒是个肉眼看不见的小个子,它的身高(直径)约为0.0000012米,将数0.0000012用科学记数法表示为_________.14.若关于x 的方程1322m x x x-+=--的解是正数,则m =____________. 15.已知2510m m -+=,则22125m m m-+=____. 16.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品?根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________.(2)乙型机器人每小时搬运产品_______________kg .17.23()a -=______(a≠0),2-=______,1-=______.18.若关于x 的方程2144416m x x x +=-+-无解,则m 的值为__________. 19.已知1112a b -=,则ab a b-的值是________. 20.九年级()1班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x 千米/时,根据题意列方程为________.三、解答题21.先化简,再求值:(1-22a -)÷228164a a a -+-,其中a =0(2021)π- 22.计算:(1)202()21)3--;(2)22(1)(21)(21)3(4)m m m m ⎡⎤+-+--÷-⎣⎦;(3)2221121x x x x x x --+-+ 23.列方程解应用题:为了响应绿色环保的倡议,我县教体局提出了每个人都践行“双面打印,节约用纸”的口号.已知打印一份资料,如果用A4厚型纸单面打印,总质量为800克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为320克,已知每页A4薄型纸比A4厚型纸轻0.8克,求A4薄型纸每页的质量(墨的质量忽略不计).24.先化简,再求值:21111a aa ⎛⎫-÷ ⎪+-⎝⎭,其中1a = 25.先化简,再求值.(1)22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x 是9的平方根; (2)2222221211⎛⎫-+-÷ ⎪-+-⎝⎭a a a a a a a ,然后从-1,0,1,2中选一个合适的数作为a 的值代入求值.26.鄂州市2020年被评为“全国文明城市”.创文期间,甲、乙两个工程队共同参与某段道路改造工程.如果甲工程队单独施工,恰好如期完成;如果甲、乙两工程队先共同施工10天,剩下的任务由乙工程队单独施工,也恰好能如期完成;如果乙工程队单独施工,就要超过15天才能完成.(1)求甲、乙两工程队单独完成此项工程各需多少天?(2)若甲工程队单独施工a 天,再由甲、乙两工程队合作______天(用含有a 的代数式表示)可完成此项工程.(3)现在要求甲、乙两个工程队都必须参加这项工程.如果甲工程队每天的施工费用为2万元,乙工程队每天的施工费用为1.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,能使施工费用不超过61.5万元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】 解:2224411424x x x x x x-++÷-+ 2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,故选:C .【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键. 2.B解析:B【分析】先把分子因式分解,再约分即可.【详解】 解:22(1)1xy x x y y x x x+++==.故选:B .【点睛】本题考查了分式的约分,解题关键是先把分子因式分解,再和分母约分.3.A解析:A【分析】根据分式有意义分母不为零即可得答案.【详解】∵分式2x x -有意义, ∴x-2≠0,解得:x ≠2.故选:A .【点睛】 本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.4.C解析:C【分析】 根据题意列得2x 131x x 1+<---,求解即可得到答案. 【详解】 ∵2x 131x x 1+<---, ∴2x 131x-<--, ∴()()x 1x 131x+-<--,即x 13--<-, ∴x 2-<-,解得x 2>.又x 1≠,∴x 2>符合题意.故选:C.【点睛】此题考查列式计算,掌握分式的加减法计算法则,整式的因式分解方法,解一元一次不等式是解题的关键.5.C解析:C【分析】根据直线相交得到交点个数的规律,再利用裂项法进行有理数的运算即可解题.【详解】根据题意得,2条直线最多将平面分成4个区域1=4a ,3条直线最多将平面分成7个区域2=7a ,4条直线最多将平面分成11个区域3=11a ,5条直线最多将平面分成16个区域4=16a则11=3=1+2a -, 21=6=1+2+3a -,31=10=1+2+3+4a -,41=15=1+2+3+4+5a - 1=1+2+3+4+51n a n ∴-++12111111n a a a ∴++⋅⋅⋅+--- 111=1+21+2+31+2+3++(n+1)++⋅⋅⋅+ 111=(1+2)2(1+3)3(1+n+1)(n+1)222++⋅⋅⋅+⨯⨯11122334(1)(2)n n ⎡⎤=+++⎢⎥⨯⨯++⎣⎦ 1111112233412n n ⎡⎤=-+-++-⎢⎥++⎣⎦ 11222n ⎡⎤=-⎢⎥+⎣⎦ 2n n =+ 121111011111n a a a ++⋅⋅⋅+=--- 10211n n ∴=+ 2101211n ∴-=+ 21211n ∴=+ 222n ∴+=20n ∴=经检验n=20是原方程的根故选:C .【点睛】本题考查相交线,是重要考点,难度一般,掌握相关知识是解题关键.6.C解析:C【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值.【详解】 解分式方程2311a x x +=--,得53a x -=, ∵分式方程2311a x x +=--的解为非负数, ∴503a -≥, 解得a ≤5,∵关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩, ∵不等式组的解集为2y <-,∴2a ≥-,∵x-1≠0,∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个,故选:C .【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.7.B解析:B【分析】根据同分母分式加法法则计算.【详解】221(1)(1)x x x +++=211(1)1x x x +=++, 故选:B .【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.8.C解析:C【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,零指数幂及积的乘方可得答案.【详解】解:①5510•a a a =,故①错误;②5552b b b +=,故②错误;③2164444n n n n n ÷=÷=,故③错误;④247••y y y y =,故④正确;⑤()()23•x x x --=-,故⑤正确;⑥()7214a a --=,故⑥正确; ⑦()()23428614•a a a a a -=-⋅=-,故⑦错误; ⑧()242a a a ÷-=,故⑧错误;⑨()03.141π-=,故⑨正确,正确的有4个.故选:C .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,零指数幂及积的乘方,解题的关键是灵活运用运算法则. 9.D解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.10.D解析:D【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案.【详解】1131112311n n n n n n n x x x x x x x x+-+++++--++==, 故选:D【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.11.A解析:A【分析】按同分母分式相减的法则计算即可.【详解】333333x a a y x y x y y x x y+---+=+++ 故选:A【点睛】本题考查同分母分式相加减法则:分母不变,分子相加减.12.D解析:D【分析】根据分式的乘法法则计算依次判断即可.【详解】A 、2633327()28=x x y y ,故该项错误; B 、22224()()=++a a a b a b ,故该项错误; C 、222()()()--=++x y x y x y x y ,故该项错误; D 、333()()()++=--m n m n m n m n ,故该项正确; 故选:D .【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.二、填空题13.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指整数数幂指数n 由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:000解析:61.210-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指整数数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000012=1.2×10-6.故答案为:1.2×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.m <5且m≠1【分析】将分式方程去分母转化为整式方程表示出x 根据x 为正数列出关于m 的不等式求出不等式的解集即可确定出m 的范围【详解】解:关于的方程的解是正数且解得m <5且m≠1故答案为:m <5且m≠ 解析:m <5且m≠1【分析】将分式方程去分母转化为整式方程,表示出x ,根据x 为正数列出关于m 的不等式,求出不等式的解集即可确定出m 的范围.【详解】 解:1322m x x x-+=-- ()m+32=-1-x x5-m x=2关于x 的方程1322m x x x -+=--的解是正数, 5-m 02>且5-m 22≠ 解得m <5且m≠1,故答案为:m <5且m≠1【点睛】此题考查了分式方程的解,得出关于m 的不等式是解题的关键,注意任何时候考虑分母不为0.15.22【分析】根据m2﹣5m+1=0可得m+=55m=m2+1然后将原分式适当变形后整体代入计算即可【详解】解:∵m2﹣5m+1=0∴m ﹣5+=05m=m2+1∴m+=5∴2m2﹣5m+=2m2﹣m2解析:22【分析】根据m 2﹣5m+1=0可得m +1m =5,5m=m 2+1,然后将原分式适当变形后整体代入计算即可.【详解】解:∵m 2﹣5m+1=0,∴m ﹣5+1m =0,5m=m 2+1, ∴m +1m=5,∴2m 2﹣5m+21m =2m 2﹣m 2﹣1+21m =m 2+21m ﹣1 =(m +1m)2﹣3 =52﹣3=25﹣3=22.故答案为:22.【点睛】 本题考查分式的求值.掌握整体代入思想是解题关键.在本题中还需理解22211()2m m m m+=++. 16.【分析】(1)设乙型机器人每小时搬运产品根据甲型机器人搬运所用时间与乙型机器人搬运所用时间相等列方程;设甲型机器人搬运所用时间为小时根据甲型机器人比乙型机器人每小时多搬运列方程;(2)设乙型机器人每 解析:80060010x x =+80060010yy =+ 【分析】(1)设乙型机器人每小时搬运xkg 产品,根据甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等列方程;设甲型机器人搬运800kg 所用时间为y 小时,根据甲型机器人比乙型机器人每小时多搬运10kg 列方程;(2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得80060010x x=+,解方程即可. 【详解】(1)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 设甲型机器人搬运800kg 所用时间为y 小时,由题意得80060010y y=+, 故答案为:80060010x x=+,80060010y y =+; (2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得80060010x x=+, 解得x=30,经检验,x=30是方程的解,答:乙型机器人每小时搬运产品30kg .故答案为:30.【点睛】此题考查分式方程的实际应用,正确理解题意,利用直接设未知数的方法和间接设未知数的方法列方程解决问题,注意:解分式方程需检验.17.【分析】根据负整数指数幂的运算法则计算即可【详解】=;;【点睛】此题考查了负整数指数幂:a-n=也考查了分母有理化解析:61a 13+ 【分析】 根据负整数指数幂的运算法则计算即可.【详解】23()a -=661a a -==;2-==13;1-=== 【点睛】 此题考查了负整数指数幂:a -n =1(0)n a a ≠.也考查了分母有理化. 18.-1或-【分析】直接解分式方程再利用一元一次方程无解和分式方程无解分别分析得出答案【详解】解:去分母得:(x+4)+m(x-4)=4可得:(m+1)x=4m 当m+1=0时分式方程无解此时m=-1当m解析:-1或-12【分析】直接解分式方程,再利用一元一次方程无解和分式方程无解分别分析得出答案.【详解】 解:2144416m x x x +=-+-, 去分母得:(x+4)+m(x-4)=4,可得:(m+1)x=4m ,当m+1=0时,分式方程无解,此时m=-1,当m+1≠0时,则x=41m m +=±4, 当41m m +=4时,此时方程无解; 当41m m +=-4时,解得:m=-12, 经检验,m=-12是方程41m m +=-4的解, 综上所述:m=-1或-12. 故答案为:-1或-12. 【点睛】 此题主要考查了分式方程的解,正确分类讨论是解题关键.19.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 20.【分析】设慢车的速度为x 千米/小时则快车的速度为12x 千米/小时根据题意可得走过150千米快车比慢车少用小时列方程即可【详解】解:设慢车的速度为则快车的速度为根据题意得:故答案为:【点睛】本题考查了解析:15011502 1.2 x x-=【分析】设慢车的速度为x千米/小时,则快车的速度为1.2x千米/小时,根据题意可得走过150千米,快车比慢车少用12小时,列方程即可.【详解】解:设慢车的速度为xkm/h,则快车的速度为1.2xkm/h,根据题意得:1501150x2 1.2x-=.故答案为:1501150x2 1.2x-=.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出合适的等量关系,列方程.三、解答题21.24aa+-;-1【分析】先进行括号内的分式减法,再计算分式除法,代入求值即可.【详解】解:原式=222aa---÷2(4)(2)(2)aa a-+-=42aa--×2(2)(2)(4)a aa+--=24aa+-;当a=(π-2021)0=1时,原式=1214+=--1.【点睛】本题考查了分式的化简求值和0指数,解题关键是熟练按照分式化简的顺序与法则进行计算.22.(1)0;(2)112m-;(3)x(1)根据实数的混合运算的法则计算即可;(2)利用完全平方公式,平方差公式去括号、合并同类项后再计算除法即可; (3)根据分式乘法的法则进行计算即可.【详解】解:(1)原式=23212⎛⎫- ⎪⎝⎭=92314--+ =0.25﹣3+1=-1.75; (2)原式=()()222424134m m m m ++-+-÷- =()()2244m m m -+÷- =22444m m m m-+-- =112m -; (3)原式=()()()()2111·11x x x x x x +--+- =x .【点睛】本题考查实数的混合运算、整式的混合运算、完全平方公式,平方差公式,分式的乘法运算,正确计算负整数指数幂、零指数幂、多项式乘法公式和因式分解是解题关键. 23.2克.【分析】设A4薄型纸每页的质量为x 克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.【详解】解:设A4薄型纸每页的质量为x 克,则A4厚型纸每页的质量为(x+0.8)克, 根据题意,得:80032020.8x x=⨯+, 解得 3.2x =经检验 3.2x =是原分式方程的解,且符合题意.答:例子中的A4薄型纸每页的质量为3.2克.【点睛】本题考查分式方程的应用,掌握题目中等量关系是关键,注意分式方程结果要检验.24.1a -先把括号里分式通分,后变除法为乘法,因式分解后进行约分即可,将a 的值代入.【详解】原式=11(1)(1)1a a a a a +-+-⎛⎫⨯⎪+⎝⎭ =(1)(1)(1)a a a a a+-⨯+ 1a =-,当1a =时,原式=【点睛】本题考查了分式的化简求值,按照运算顺序,通分,因式分解,约分是解题的关键. 25.(1)3x ;±1;(2)1a a +,2a =,值为32【分析】(1)先化简,后把x=3或x=-3分别代入求值;(2)先化简,根据分母不能为零的原则,选择数值代入计算即可.【详解】(1)原式=212(2)2(2)x x x x x x +-+-⎛⎫⨯ ⎪--⎝⎭ =23(2)2(2)x x x x -⨯-- =3x, ∵x 是9的平方根, ∴3x =±,∴原式=±1.(2)原式=2(1)(1)(1)(1)(1)(1)a a a a a a a ⎛⎫-++-⨯ ⎪-+⎝⎭ 1a a+=, 由题意当1,1,0a =-时,原分式没有意义, ∴2a =,此时原分式32=. 【点睛】本题考查了分式的化简求值,选值时,确保每一个分式有意义是解题的关键.26.(1)甲工程队单独施工需30天完成,乙工程队单独施工需45天完成;(2)3185a -;(3)15天(1)根据“甲乙两工程队合干10天的工程量+乙工程队单独做的工作量=总工作量1”列方程求解即可;(2)算出剩下的工作量除以甲乙的工作效率之和即可;(3)根据关系式:甲需要的工作费+乙需要的工作费≤61.5列出不等式求解即可.【详解】(1)设甲工程队单独施工需x 天完成,则乙工程队需(15)x +天完成,依题意得:10115x x x +=+ 去分母得:221015015x x x x ++=+∴30x =经检验,30x =是原方程的解.∴1545x +=答:甲工程队单独施工需30天完成,乙工程队单独施工需45天完成.(2)11(1)()303045a -÷+ =3185a - 故答案为:3185a - (3)设甲工程队先单独施工m 天,依题意得:32 3.51861.55m m ⎛⎫+-≤ ⎪⎝⎭ 解不等式得:15m ≥∴甲工程队至少要先单独施工15天.【点睛】本题主要考查了分式方程的应用:工程问题,找到合适的等量关系是解决问题的关键,注意应用前面得到的结论求解.。
八年级数学上册《分式》单元测试卷(含答案解析)
八年级数学上册《分式》单元测试卷(含答案解析)一.选择题1.下列各式﹣3x,,,,,,中,分式的个数为()A.1 B.2 C.3 D.42.下列各式中:①;②;③;④;⑤;⑥分式有()A.1个B.2个C.3个D.4个3.代数式中,,, +b,,分式有()A.1个B.2个C.3个D.4个4.下列约分中,正确的是()A.= B.=0 C.=x3 D.=5.把分式﹣约分结果是()A.﹣B.﹣C.﹣D.﹣6.已知=7,则的值是()A.B.2 C.D.7.下列运算中正确的是()A.= B.C.•=﹣ D.÷=8.当x=﹣2时,下列分式有意义的是()A. B.C. D.9.若分式的值为0,则x的值为()A.﹣5 B.5 C.﹣5和5 D.无法确定10.下列各式,从左到右变形正确的是()A.B. C. D.二.填空题11.当x时,分式有意义.12.约分=.13.写出一个含有字母m,且m≠2的分式,这个分式可以是.14.若分式的值为负数,则x的取值范围是.15.计算=.16.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).17.若式子的值为零,则x的值为.18.不改变分式的值,使分式的分子、分母中各项系数都为整数,=.19.化简:=.20.下列各式中中分式有个.三.解答题21.(1)=(2)=22.当x为何值时,分式的值为0?23.给定下面一列分式:,…,(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.24.下列分式,当x取何值时有意义.(1);(2).25.已知实数a,b满足,6a=2010,335b=2010,求+的值.26.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如==+=1+,==a﹣1+,则和都是“和谐分式”.(1)下列分式中,属于“和谐分式”的是:(填序号);①;②;③;④(2)将“和谐分式化成一个整式与一个分子为常数的分式的和的形为:=.(3)应用:已知方程组有正整数解,求整数m的值.参考答案与解析一.选择题1.解:﹣3x,,的分母中均不含有字母,因此它们是整式,而不是分式.﹣,,,分母中含有字母,因此是分式.故选:D.2.解:①分母中含有π,是具体的数,不是字母,所以不是分式;②分母中含有字母a,是分式;③是等式,不是分式;④分母中没有字母,不是分式;⑤分母中含有字母x,是分式;⑥分母中没有字母,不是分式;分式有②⑤2个,故选:B.3.解;代数式, +b的分母中含有字母,是分式,故选:B.4.解:A、=,故此选项错误;B、,无法化简,故此选项错误;C、=x4,故此选项错误;D、=,正确.故选:D.5.解:﹣=﹣=﹣.故选:C.6.解:∵=7,∴=,∴x﹣4﹣=,∴x﹣=,∵的倒数为x﹣1﹣=﹣1=,∴=,故选:C.7.解:A、=≠,不正确;B、=﹣1,正确;C、=,不正确;D、==,不正确;故选:B.8.解:A、当x=﹣2时,x+2=0,无意义;B、当x=﹣2时,有意义;C、当x=﹣2时,x2﹣4=0,无意义;D、当x=﹣2时,x2+3x+2=4﹣6+2=0,无意义.故选:B.9.解:由题意得,|x|﹣5=0,解得x=±5,当x=5时,x2﹣4x﹣5=0,分式无意义;当x=﹣5时,x2﹣4x﹣5=40≠0,分式有意义;∴x的值为﹣5.故选:A.10.解:A、2前面是加号不是乘号,不可以约分,原变形错误,故本选项不符合题意;B、原式=﹣,原变形错误,故本选项不符合题意;C、原式==,原变形正确,故本选项符合题意;D、从左边到右边不正确,原变形错误,故本选项不符合题意;故选:C.二.填空题11.解:由题意得:2x+3≠0,解得:x≠﹣,故答案为:≠﹣.12.解:=.故答案为:.13.解:含有字母m,且m≠2的分式可以是,故答案为:(答案不唯一).14.解:∵分式的值为负数,∴﹣2x+3<0,解得:x>.故答案为:x>.15.解:原式=x=.故答案为:.16.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.17.解:∵式子的值为零,∴x2﹣1=0,(x﹣1)(x+2)≠0,解得:x=﹣1.故答案为:﹣1.18.解:分式的分子,分母同时乘以500就可得到.故答案为:.19.解:原式==,故答案为:.20.解:中分式为:、+1,﹣共3个.故答案为:3.三.解答题21.解:(1)由分式的基本性质,可得故答案为:5y.(2)分式的分子分母同时乘以﹣1,得=,故答案为2﹣x.22.解:∵分式的值为0,∴,解得x=0且x≠3,∴x=0.∴当x=0时,分式的值为0.23.解:(1)﹣÷=﹣;÷(﹣)=﹣…规律是任意一个分式除以前面一个分式恒等于;(2)∵由式子:,…,发现分母上是y1,y2,y3,…故第7个式子分母上是y7,分子上是x3,x5,x7,故第7个式子是x15,再观察符号发现第偶数个为负,第奇数个为正,∴第7个分式应该是.24.解:(1)要使分式有意义,则分母3x+2≠0,解得:x≠﹣;(2)要使分式有意义,则分母2x﹣3≠0,x≠.25.解:∵6a=2010,335b=2010,∴6ab=2010b,335ab=2010a,∴6ab×335ab═2010b+a,(6×335)ab=2010 a+b,∴ab=a+b,∴+==1.26.解:(1)①=,故是和谐分式;②=,故不是和谐分式;③=,故是和谐分式;④=,故是和谐分式;故答案为①③④;(2)===,故答案为;(3)解方程组得,∵方程组有正整数解,∴m=﹣1或﹣7.。
人教版初中数学八年级数学上册第五单元《分式》测试卷(有答案解析)(1)
一、选择题1.化简221x xx ++÷(1-11x +)的结果是( )A .11x + B .11x - C .x+1 D .x-12.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N3.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ayy y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .34.若关于x 的方程1044m xx x--=--无解,则m 的值是( ) A .2- B .2C .3-D .35.要使分式()()221x x x ++-有意义,x 的取值应满足( )A .1x ≠B .2x ≠-C .1x ≠或2x ≠-D .1x ≠且2x ≠-6.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书( ) A .20本B .25本C .30本D .35本7.若整数a 使得关于x 的不等式组3(1)32(1)x ax x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .2 8.下列变形不正确...的是( ) A .1a b a b a b-=-- B .1a b a b a b +=++ C .221a b a b a b +=++ D .221-=-+a b a b a b9.下列各式计算正确的是( ) A .()23233412a b a b-=-B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba bb -÷=- D .()325339a ba b -=-10.下列各式中正确的是( )A .263333()22=x x y y B .222224()=++a a a b a bC .22222()--=++x y x y x y x y D .333()()()++=--m n m n m n m n 11.如果111a b a b +=+,则b a a b+的值为( ) A .2 B .1C .1-D .2-12.化简214a 2a 4---的结果为( ) A .1a 2+ B .a 2+C .1a 2- D .a 2-二、填空题13.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人. 14.规定一种新的运算“ JXx AB→+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JXx A B →+∞=;当A 的次数等于B 的次数时, JXx A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JXx A B →+∞不存在,例如: 201JXx x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JXx A B →+∞的值为__________. 15.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++.参考上面的方法,解决下列问题:(1)将1a a +变形为满足以上结果要求的形式:1aa =+_________;(2)①将321aa+-变形为满足以上结果要求的形式:321aa+=-_________;②若321aa+-为正整数,且a也为正整数,则a的值为__________.16.计算:12+123⨯+134⨯+145⨯+…+()1n1n-+()1n n1+=______.17.观察给定的分式,探索规律:(1)1x,22x,33x,44x,…其中第6个分式是__________;(2)2xy,43xy-,65xy,87xy-,…其中第6个分式是__________;(3)2ba-,52ba,83ba-,114ba,…其中第n个分式是__________(n为正整数).18.如图,将形状大小完全相同的“□”按照一定规律摆成下列图形,第1幅图中“□”的个数为1a,第2幅图中“□”的个数为2a,第3幅图中“□”的个数为3a,……,以此类推,若123201922222020na a a a+++⋅⋅⋅+=(n为正整数),则(1)5a=________;(2)n的值为________.19.方程11212x x=+-的解是x=_____.20.方程22020(1)1xx x++-=的整数解的个数是_____.三、解答题21.如果n x y=,那么我们记为:(),x y n=.例如239=,则()3,92=.(1)根据上述规定,填空:()2,8=___________,12,4⎛⎫=⎪⎝⎭__________;(2)若()4,2a=,(),83b=,求(),b a的值.22.先化简,再求值:21111aa a⎛⎫-÷⎪+-⎝⎭,其中21a=23.先化简,再求值.(1)22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x 是9的平方根; (2)2222221211⎛⎫-+-÷ ⎪-+-⎝⎭a a a aa a a ,然后从-1,0,1,2中选一个合适的数作为a 的值代入求值.24.解下列方程. (1)21133x x x-+=-- (2)2216124x x x --=+- 25.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯. 将以上三个等式左、右两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯ (1)若n 为正整数,猜想并填空:1(1)n n =+______.(2)计算111111223344520202021+++++⨯⨯⨯⨯⨯的结果为______.(3)解分式方程:11122(2)(3)(3)(4)1x x x x x x ++=------. 26.计算:)3-【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简. 【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ , 故选A.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键.2.C解析:C 【分析】先进行分式化简,再确定在数轴上表示的数即可. 【详解】解:2224411424x x x x x x-++÷-+ 2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M , 故选:C . 【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键.3.A解析:A 【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可. 【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩,∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解,∴2015a+<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a=,∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3 ∴所有满足条件的整数a 的值之和是4, 故选A . 【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.4.D解析:D 【分析】根据方程1044m xx x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值. 【详解】解:去分母得:m +1−x =0,∵方程1044m xx x --=--无解, ∴x =4是方程的增根, ∴m =3. 故选:D . 【点睛】本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根.5.D解析:D 【分析】根据分式有意义的条件得出x +2≠0且x ﹣1≠0,计算即可. 【详解】解:要使分式()()221x x x ++-有意义,必须满足x +2≠0且x ﹣1≠0,解得:x ≠﹣2且x ≠1, 故选:D . 【点睛】本题考查了分式有意义的条件,能根据分式有意义的条件得出x +2≠0且x ﹣1≠0是解此题的关键.6.A解析:A 【分析】设张明平均每分钟清点图书的数量为x ,则李强平均每分钟清点图书的数量为x +10,由张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相等这个条件可列分式方程,求解即可. 【详解】设张明平均每分钟清点图书x 本, 则李强平均每分钟清点(10)x +本, 依题意,得:20030010x x =+,解得:20x ,经检验,20x 是原方程的解,所以张明平均每分钟清点图书20本.故选:A . 【点睛】本题考查了分式方程的应用.找到题中的等量关系,列出分式方程,注意分式方程一定要验根.7.D解析:D 【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和. 【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①②解不等式①得,x a >; 解不等式②得,2x >; ∵不等式组的解集为2x >, ∴a≤2,解方程21111ax x x+=---得:21x a =-∵分式方程的解为整数, ∴11a -=±或2± ∴a=0、2、-1、3 又x≠1,∴211a≠-,∴a≠-1, ∴a≤2且a≠-1, 则a=0、2,∴符合条件的所有整数a 的和=0+2=2, 故选:D .本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.8.C解析:C 【分析】A 、B 两项利用同分母分式的加减法法则计算,约分即可得到结果;C 、D 通过能否继续进行因式分解,继续化简,即可得到答案. 【详解】 A. =1a b a b a b a b a b--=---,故此项正确; B. =1a b a b a b a b a b++=+++,故此项正确; C.22a ba b ++为最简分式,不能继续化简,故此项错误;D. ()()221a b a b a b a b a b a b--==-+-+,故此项正确;故选C . 【点睛】此题考查了分式的加减法、约分,熟练掌握运算法则是解本题的关键.9.A解析:A 【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可. 【详解】A 、()23233412ab a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误; C 、()24222842a b a b b -÷=-,故这个选项错误; D 、()3263327a b a b -=-,故这个选项错误;故选:A . 【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.10.D解析:D 【分析】根据分式的乘法法则计算依次判断即可.A 、2633327()28=x x y y ,故该项错误; B 、22224()()=++a a a b a b ,故该项错误; C 、222()()()--=++x y x y x y x y ,故该项错误; D 、333()()()++=--m n m n m n m n ,故该项正确; 故选:D . 【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.11.C解析:C 【分析】先对111a b a b +=+变形得到()2a b ab +=,然后将b a a b +化成22a b ab+,再结合完全平方公式得到()22a b abab+-,最后将()2a b ab +=代入即可解答.【详解】 解:∵111b a a b a b ab ab ab a b++=+==+,即()2a b ab += ∴()22222221a b ab b a b a a b ab ab ab a b ab ab ab ab ab ab +-+--+=+=====-. 故选C . 【点睛】本题主要考查了分式的减法、完全平方公式的应用以及代数式求值,灵活运用完全平方公式是解答本题的关键.12.A解析:A 【分析】根据分式的减法可以解答本题. 【详解】解:()()214a 241a 2a 4a 2a 2a 2+--==--+-+, 故选:A . 【点睛】本题考查异分母分式的减法运算,解答本题的关键是明确公分母.二、填空题13.6【分析】先设第一组有x 人则第二组人数是15x 人根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1根据等量关系列出方程即可【详解】解:设第一组有解析:6 【分析】先设第一组有x 人,则第二组人数是1.5x 人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方程即可. 【详解】解:设第一组有x 人. 根据题意,得242711.5x x-=, 解得x=6.经检验,x=6是原方程的解,且符合题意. 答:第一组有6人, 故答案为6. 【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验.14.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案. 【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=,∵A 的次数等于B 的次数, ∴12x A JX B →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.15.2或6【分析】(1)根据材料中分式转化变形的方法即可把变形为满足要求的形式;(2)①根据材料中分式转化变形的方法即可把变形为满足要求的形式;②令可先求出a 与x 是整数时的对应值再从所得结果中找出符合条 解析:111a -+ 531a +- 2或6 【分析】(1)根据材料中分式转化变形的方法,即可把1a a +变形为满足要求的形式; (2)①根据材料中分式转化变形的方法,即可把321a a +-变形为满足要求的形式;②令325311a x a a +==+--,可先求出a 与x 是整数时的对应值,再从所得结果中找出符合条件的a ,x 的值,即可得出结论.【详解】 解:(1)1111111a a a a a +-==-+++; 故答案为:111a -+; (2)①323(1)553111a a a a a +-+==+---; 故答案为:531a +-; ②∵323(1)553111a a a a a +-+==+--- 令531x a =+-, 当x , a 都为整数时,11a -=±或15a -=±,解得a =2或a =0或a =6或a =-4,当a =2时,x =8;当a =0时,x =-2;当a =6时,x =4;当a =-4时,x =2;∵x , a 都为正整数,∴符合条件的a 的值为2或6.故答案为:2或6.【点睛】此题考查了分式的加减及求分式的值等知识,理解题意并熟练掌握分式的基本性质及运算法则是解本题的关键.16.【分析】通过观察可发现规律:则原式=即可计算出结果【详解】故答案为:【点睛】本题考查分式的运算解题的关键是发现已知式子的规律 解析:1n n + 【分析】通过观察可发现规律:()11111n n n n =-++,则原式= 11111111112233411n n n n -+-+-+⋯+-+--+,即可计算出结果. 【详解】()()111111111111111111223344511223341111n n n n n n n n n n n ++++⋯++=-+-+-+⋯+-+-=-=⨯⨯⨯-+-+++ 故答案为:1n n +. 【点睛】本题考查分式的运算,解题的关键是发现已知式子的规律. 17.【分析】(1)分子是连续正整数分母是以x 为底指数是连续正整数第六个分式的分子是6分母是x6(2)分子是以x 为底指数是连续偶数分母是以y 为底指数是连续奇数第奇数个分式符号是正第偶数个分式符号为负第六个 解析:66x 1211x y - 31(1)n n n b a-- 【分析】(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,第六个分式的分子是6,分母是 x 6(2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,第六个分式是负号,分子是x 12,分母是 y 11,(3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个分式的符号是(-1)n , 分子是b 3n-1,分母是 a n ,【详解】解:(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,所以,第六个分式是66x , (2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,所以,第六个分式是1211x y-, (3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个符号为(-1)n ,所以,第六个分式是31(1)n nn b a-- 【点睛】 本题考查了数字之间的规律,连续正整数、奇数、偶数和依次递增3的数字规律,包括符号依次变化规律,熟练掌握特殊数字之间的规律是解题关键18.4038【分析】先根据已知图形得出代入方程中再将左边利用裂项化简解分式方程可得答案【详解】由图形知:∴∵∴故填:30;【点睛】本题考查图形的变化规律解题的关键是根据已知图形得到以及裂项的规律解析:4038【分析】先根据已知图形得出()1n a n n =+,代入方程中,再将左边利用()11111n n n n =-++裂项化简,解分式方程可得答案.【详解】由图形知:112a =⨯,223a =⨯,334a =⨯,∴ ()1n a n n =+,556=30a =⨯,∵123201922222020n a a a a +++⋅⋅⋅+=, ∴2222122334201920202020n +++⋅⋅⋅+=⨯⨯⨯⨯, 1111121223201920202020n ⎛⎫-+-+⋅⋅⋅+-= ⎪⎝⎭, 4038n =,故填:30;4038.【点睛】本题考查图形的变化规律,解题的关键是根据已知图形得到()1n a n n =+,以及裂项的规律()11111n n n n =-++. 19.【分析】先将分式方程化成整式方程求解然后再检验即可【详解】解:方程的两边同乘得:解这个方程得:经检验是原方程的解∴原方程的解是故答案为:【点睛】本题主要考查了解分式方程将分式方程化成整式方程求解是解 解析:3-【分析】先将分式方程化成整式方程求解,然后再检验即可.【详解】解:方程的两边同乘()()212x x +⨯-,得:221x x -=+,解这个方程,得:3x =-,经检验,3x =-是原方程的解,∴原方程的解是3x =-.故答案为:3-.【点睛】本题主要考查了解分式方程,将分式方程化成整式方程求解是解答本题的关键,对方程的解进行检验是解答本类题的易错点.20.4【分析】方程的右边是1有三种可能需要分类讨论第1种可能:指数为0底数不为0;第2种可能:底数为1;第3种可能:底数为-1指数为偶数【详解】解:(1)当x+2020=0x2+x -1≠0时解得x=﹣2解析:4【分析】方程的右边是1,有三种可能,需要分类讨论.第1种可能:指数为0,底数不为0;第2种可能:底数为1;第3种可能:底数为-1,指数为偶数.【详解】解:(1)当x+2020=0,x 2+x -1≠0时,解得x=﹣2020;(2)当x 2+x -1=1时,解得x=﹣2或1.(3)当x 2+x -1=﹣1,x+2020为偶数时,解得x=0因而原方程所有整数解是﹣2020,-2,1,0共4个.故答案为:4.【点睛】本题考查了:a 0=1(a 是不为0的任意数)以及1的任何次方都等于1.容易遗漏第3种可能情况,需特别注意.三、解答题21.(1)3;-2;(2)4【分析】(1)理解题意,根据有理数乘方及负整数指数幂的计算求解;(2)根据题意,由有理数的乘方计算求得a 与b 的值,然后求解【详解】解:(1)∵328=∴()2,8=3 ∵-22112=24=∴12,4⎛⎫= ⎪⎝⎭-2 故答案为:3;-2(2)∵()4,2a =,2416=∴a=16∵(),83b =,328=∴b=2∴()(),=2,16b a又∵4216=∴(),b a 的值为4【点睛】此题主要考查了有理数的乘方及负整数指数幂的运算,正确将原式变形是解题关键.22.1a -【分析】先把括号里分式通分,后变除法为乘法,因式分解后进行约分即可,将a 的值代入.【详解】原式=11(1)(1)1a a a a a +-+-⎛⎫⨯⎪+⎝⎭ =(1)(1)(1)a a a a a+-⨯+ 1a =-,当1a =时,原式=【点睛】本题考查了分式的化简求值,按照运算顺序,通分,因式分解,约分是解题的关键. 23.(1)3x ;±1;(2)1a a +,2a =,值为32【分析】(1)先化简,后把x=3或x=-3分别代入求值;(2)先化简,根据分母不能为零的原则,选择数值代入计算即可.【详解】(1)原式=212(2)2(2)x x x x x x +-+-⎛⎫⨯ ⎪--⎝⎭=23(2)2(2)x x x x -⨯-- =3x, ∵x 是9的平方根, ∴3x =±,∴原式=±1.(2)原式=2(1)(1)(1)(1)(1)(1)a a a a a a a ⎛⎫-++-⨯ ⎪-+⎝⎭ 1a a+=, 由题意当1,1,0a =-时,原分式没有意义,∴2a =,此时原分式32=. 【点睛】本题考查了分式的化简求值,选值时,确保每一个分式有意义是解题的关键.24.(1)2x =;(2)无解【分析】(1)去分母,化成整式方程求解即可;(2)去分母,化成整式方程求解即可;【详解】(1)分式两边同时乘以()3x -得, 213x x --=-,解得2x =,把2x =代入()3x -中得2310-=-≠,∴2x =是分式方程的解;(2)分式方程两边同时乘以()()22x x +-得,()()()222216x x x ---+=, 2244416x x x -+-+=,解得:2x =-,把2x =-代入()()22x x +-中得()()220x x +-=,∴分式方程无解.【点睛】本题主要考查了分式方程的求解,准确计算是解题的关键.25.(1)111n n -+;(2)20202021;(3)7x =.(1)观察已知等式可得:连续整数乘积的倒数等于较小数的倒数与较大数的倒数的差,据此可得111(1)1n n n n =-++; (2)利用所得规律列出算式1111111223320202021-+-+++-,再两两相消即可得112021-,计算后可得结果; (3)由所得规律对分式方程进行整理,可变形为111112232431x x x x x x +-+-=------,最终化简为1241x x =--,求解此方程即可. 【详解】 解:(1)∵111122=-⨯,1112323=-⨯,1113434=-⨯, ∴当n 为正整数时,111(1)1n n n n =-++. 故答案为:111n n -+. (2)111111223344520202021+++++⨯⨯⨯⨯⨯ 111111112233420202021=-+-+-+- 112021=- 20202021=. 故答案为:20202021. (3)原方程变形为:111112232431x x x x x x +-+-=------, ∴1241x x =--, 去分母,得:12(4)x x -=-,解得7x =,经检验,7x =是原方程的解.【点睛】本题考查了数字的变化规律及解分式方程,解题的关键是理解题意,找出数字的变化规律,并准确运用所得规律求解分式方程.26.0分别计算零指数幂、算术平方根、立方根,再进行加减运算即可.【详解】解:)03=1-3+2=0【点睛】本题考查了实数的运算,掌握零指数幂、算术平方根、立方根的性质是关键.。
上海上海中学八年级数学上册第五单元《分式》检测卷(包含答案解析)
一、选择题1.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( )A .扩大到原来的3倍B .缩小到原来的13C .保持不变D .无法确定2.已知分式24x x +的值是正数,那么x 的取值范围是( ) A .x >0 B .x >-4C .x ≠0D .x >-4且x ≠03.关于分式2634m nm n--,下列说法正确的是( )A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变 4.下列各分式中,最简分式是( )A .6()8()x y x y -+B .22y x x y --C .2222x y x y xy ++ D .222()x y x y -+5.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( ) A .50.2510-⨯B .60.2510-⨯C .72.510-⨯D .62.510-⨯6.计算2m m 1m m-1+-的结果是( ) A .mB .-mC .m +1D .m -17.下列变形不正确...的是( ) A .1a ba b a b -=-- B .1a b a b a b +=++ C .221a b a b a b+=++D .221-=-+a b a b a b8.若分式293x x -+的值为0,则x 的值为( )A .4B .4-C .3或-3D .39.化简2111313x x x x +⎫⎛-÷ ⎪---⎝⎭的结果是( ) A .2B .23x - C .41x x -- D .21x -10.分式242x x -+的值为0,则x 的值为( )A .2-B .2-或2C .2D .1或211.2a ab b a ++-的结果是( ).A .2a -B .4aC .2b a b--D .b a- 12.下列各式计算正确的是( )A .33x x y y=B .632m m m=C .22a b a b a b+=++D .32()()a b a b b a -=-- 二、填空题13.计算:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=_____.14.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________. (2)方程{}3min 2,322x x x--=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________. 15.若32a b =,则22a ba+=____. 16.211a a a-+=+_________.17.已知215a a+=,那么2421a a a =++________. 18.已知0534x y z==≠,则2222x y z xy xz yz -+=+-______. 19.计算:262393x x x x -÷=+--______. 20.计算:22a 1a 1a 2a a--÷+=____. 三、解答题21.先化简,再求值:()()()()2222222a b a b b a a a b a ⎡⎤-+-+--÷⎣⎦,其中12a =,112b -⎛⎫=- ⎪⎝⎭.22.(1)计算:1301|6|(2)(2)3π-⎛⎫-÷--⨯- ⎪⎝⎭; (2)先化简,再求值:(3)(2)()x x y x y x y +-++,其中1x =-,2y =.23.先化简,再求值:22141244x x x xx,其中3x =-24.解答下面两题: (1)解方程:35322x x x-+=-- (2)化简:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭ 25.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯. 将以上三个等式左、右两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯ (1)若n 为正整数,猜想并填空:1(1)n n =+______.(2)计算111111223344520202021+++++⨯⨯⨯⨯⨯的结果为______.(3)解分式方程:11122(2)(3)(3)(4)1x x x x x x ++=------. 26.计算 (1)2152224-⨯+÷; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦; (4)()()()3323231333xx x x ⎛⎫-+--⋅ ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A解析:A 【分析】将x 变为3x ,y 变为3y 计算后与原式比较即可得到答案. 【详解】222(3)93333()x x x x y x y x y==⨯+++,故分式的值扩大到原来的3倍, 故选:A . 【点睛】此题考查分式的基本性质,正确掌握积的乘方运算,分解因式是解题的关键.2.D解析:D 【分析】若24x x+的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围. 【详解】解:∵24x x +>0, ∴x +4>0,x≠0, ∴x >−4且x≠0. 故选:D . 【点睛】本题考查分式值的正负性问题,若对于分式ab(b≠0)>0时,说明分子分母同号;分式ab(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 3.D解析:D 【分析】根据分式的基本性质即可求出答案. 【详解】 解:A 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m nm n m n ⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意;C、226212=32438m n m nm n m n-⨯--⨯-,故分子、分母的中n扩大2倍,m不变,分式的值发生变化,故该说法不符合题意;D、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m、n均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4.C解析:C【分析】分式的分子和分母没有公因式的分式即为最简分式,根据定义解答.【详解】A、6()8()x yx y-+=3()4()x yx y-+,故该项不是最简分式;B、22y xx y--=-x-y,故该项不是最简分式;C、2222x yx y xy++分子分母没有公因式,故该项是最简分式;D、222()x yx y-+=x yx y-+,故该项不是最简分式;故选:C.【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.5.D解析:D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】0.0000025=62.510-⨯,故选:D.【点睛】此题考查了科学记数法,注意n的值的确定方法:当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.6.A解析:A【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果. 【详解】原式=211m m m m ---=21m m m--=(1)1m m m --=m , 故选:A . 【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.7.C解析:C 【分析】A 、B 两项利用同分母分式的加减法法则计算,约分即可得到结果;C 、D 通过能否继续进行因式分解,继续化简,即可得到答案. 【详解】 A. =1a b a b a b a b a b--=---,故此项正确; B. =1a b a b a b a b a b++=+++,故此项正确; C. 22a ba b ++为最简分式,不能继续化简,故此项错误;D.()()221a b a b a b a b a b a b--==-+-+,故此项正确;故选C . 【点睛】此题考查了分式的加减法、约分,熟练掌握运算法则是解本题的关键.8.D解析:D 【分析】先根据分式的值为0可得290x ,再利用平方根解方程可得3x =±,然后根据分式的分母不能为0即可得. 【详解】由题意得:2903x x -=+,则290x ,即29x =,由平方根解方程得:3x =±, 分式的分母不能为0, 30x ∴+≠,解得3x ≠-,则x 的值为3, 故选:D . 【点睛】本题考查了分式的值、分式有意义的条件、利用平方根解方程,掌握理解分式的值是解题关键.9.D解析:D 【分析】利用乘法分配律计算即可 【详解】 解:原式=11(3)(3)3(1)(1)x x x x x x +⋅--⋅--+-=1-31x x --=21x -, 故选D . 【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.10.C解析:C 【分析】分式的值为零时,分子等于零,分母不等于零. 【详解】 解:依题意,得 x 2-4=0,且x+2≠0, 所以x 2=4,且x≠-2, 解得,x=2. 故选:C . 【点睛】本题考查了求一个数的平方根,分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.11.C解析:C 【分析】根据分式的加减运算的法则计算即可. 【详解】222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.12.D解析:D【分析】根据分式的基本性质进行判断即可得到结论.【详解】解:A、33xy是最简分式,所以33x xy y≠,故选项A不符合题意;B、624mmm=,故选项B不符合题意;C、22a ba b++是最简分式,所以22a ba ba b+≠++,故选项C不符合题意;D、3322()()()()a b a ba bb a a b--==---,正确,故选:D.【点睛】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.二、填空题13.2a4b5【分析】直接利用积的乘方运算法则化简再利用整式的除法运算法则计算得出答案【详解】解:(﹣2a﹣2b)2÷2a﹣8b﹣3=4a﹣4b2÷2a﹣8b﹣3=2a-4-(-8)b2-(-3)=2a解析:2a4b5.【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【详解】解:(﹣2a﹣2b)2÷2a﹣8b﹣3=4a﹣4b2÷2a﹣8b﹣3=2a-4-(-8)b2-(-3),=2a4b5.故答案为:2a4b5.【点睛】本题考查了整数指数幂的运算,熟练应用法则是解题关键.14.-3【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程求解即可;(3)根据题中的新定义化简求出分式方程的解检验即可【详解】解:(1)根据题意;(2)原方程为:去分母得解得:经检验是该解析:-3 34x = 0x = 【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程,求解即可;(3)根据题中的新定义化简,求出分式方程的解,检验即可. 【详解】解:(1)根据题意,{}min 2,33--=-;(2)原方程为:3322x x x-=---, 去分母得33(2)x x +=--,解得:34x =,经检验34x =是该方程的根, 故{}3min 2,322xx x--=---的解为:34x =;(3)当1322x x <--时,x >2,方程变形得:11222x x x -=---, 去分母得:1=x-1-2x+4, 解得:x=2,不符合题意;当1322x x >--时,即x <2,方程变形得:31222x x x -=---, 解得:x=0,经检验x=0是分式方程的解, 综上,所求方程的解为x=0.故答案为:-3,34x =,0x =. 【点睛】本题考查新定义的实数运算,解分式方程.能将题目新定义的运算化为一般运算是解题关键.15.2【分析】将代入式子化简即可得到答案【详解】∴原式故答案为:2【点睛】此题考查分式的化简求值解题的关键是正确代入及掌握分式化简方法解析:2 【分析】将32a b =代入式子化简即可得到答案. 【详解】23b a =,∴原式34222a a aa a+===. 故答案为:2.【点睛】此题考查分式的化简求值,解题的关键是正确代入及掌握分式化简方法.16.【分析】先通分再分母不变分子相减即可求解【详解】故答案为:【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键 解析:11a + 【分析】先通分,再分母不变,分子相减即可求解. 【详解】222222211(1)11111111(1)(1)11a a a a a a a a a a a a a a a a a a a +--+=--=-=-==+++++++-++- 故答案为:11a + 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.17.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案. 【详解】 ∵215a a+=,∴21a +=5a ,∴2421a a a =++()()2222222221242451a a a a a a a a===-+- 故答案为:124. 【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键.18.1【分析】设从而可得再代入所求的分式化简求值即可得【详解】由题意设则因此故答案为:1【点睛】本题考查了分式的求值根据已知等式将字母用同一个字母表示出来是解题关键解析:1【分析】 设0534x y z k ===≠,从而可得5,3,4x k y k z k ===,再代入所求的分式化简求值即可得.【详解】 由题意,设0534x y z k ===≠,则5,3,4x k y k z k ===, 因此22222222(3)(4(5))535434x y z k k xy x k z yz k k k k k k-+-⋅+=+-⋅+⋅-⋅, 222222181615201252k k k k k k-+=+-, 222323k k=, 1=,故答案为:1.【点睛】本题考查了分式的求值,根据已知等式,将字母,,x y z 用同一个字母表示出来是解题关键.19.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+ 1=. 故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 20.【分析】根据分式除法法则先将除法转化为乘法再运用分式的乘法法则进行计算即可得出结果【详解】解:故答案为:【点睛】本题考查了分式的除法运算掌握分式的乘除法的关系及运算法则是解题的关键 解析:12a a ++ 【分析】根据分式除法法则先将除法转化为乘法,再运用分式的乘法法则进行计算,即可得出结果.【详解】 解:22a 1a 1a 2a a--÷+ ()()()a 1a 1a a a 2a 1+-=⋅+- 12a a +=+ 故答案为:12a a ++ 【点睛】本题考查了分式的除法运算,掌握分式的乘、除法的关系及运算法则是解题的关键.三、解答题21.a b --,32【分析】原式中括号中利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:()()()()2222222a b a b b a a a b a ⎡⎤-+-+--÷⎣⎦()22222444422a ab b a b a ab a ⎡⎤=-++---÷⎣⎦()2224422a ab a ab a =--+÷()2222a ab a =--÷a b =--, ∵1122b -⎛⎫=-=- ⎪⎝⎭∴当12a =,2b =-时,原式()13222=---=. 【点睛】 本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键. 22.(1)10;(2)22x y --;-5【分析】(1)实数的混合运算,注意先算乘方,然后算乘除,最后算加减,如果有小括号,先算小括号里面的;(2)整式的混合运算,注意先算乘法,然后再算加减进行合并同类项的化简计算,最后代入求值【详解】解:(1)1301|6|(2)(2)3π-⎛⎫-÷--⨯- ⎪⎝⎭=63(8)1÷--⨯=2+8=10(2)(3)(2)()x x y x y x y +-++=2223(22)x xy x xy xy y +-+++=222323x xy x xy y +---=22x y --当1x =-,2y =时,原式=22(1)2145---=--=-【点睛】本题考查实数的混合运算,整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 23.32x +,3-. 【分析】 先算括号里面的,再算除法,最后将x 的值代入进行计算即可.【详解】 解:22141244x x x x x 22212=222x x x x x x x23=22x x x 23=22x x x3=2x当3x =-时,原式3=332. 【点睛】本题考查的是分式的化简求值,熟悉相关运算法则是解题的关键.24.(1)1x =-是该方程的解;(2)(1)x x +.【分析】(1)去分母将分式方程化为整式方程,解整式方程,最后验证根即可;(2)先计算括号内的,再将除法化为乘法分别因式分解后,约分即可.【详解】解:(1)去分母得:353(2)x x --=-,去括号得3536x x --=-,移项后合并得:1x =-,经检验,1x =-是该方程的解; (2)原式=22321121x x x x x x x x ⎛⎫+--÷ ⎪++++⎝⎭ =2232121x x x x x x x +--÷+++ =2222112x x x x x x -+++- =2(2)(1)12x x x x x -++- =(1)x x +.【点睛】本题考查解分式方程和分式的混合运算.(1)中注意分式方程一定要验根;(2)注意运算顺序,其次除法化为乘法后才能约分.25.(1)111n n -+;(2)20202021;(3)7x =. 【分析】(1)观察已知等式可得:连续整数乘积的倒数等于较小数的倒数与较大数的倒数的差,据此可得111(1)1n n n n =-++; (2)利用所得规律列出算式1111111223320202021-+-+++-,再两两相消即可得112021-,计算后可得结果; (3)由所得规律对分式方程进行整理,可变形为111112232431x x x x x x +-+-=------,最终化简为1241x x =--,求解此方程即可.【详解】解:(1)∵111122=-⨯,1112323=-⨯,1113434=-⨯, ∴当n 为正整数时,111(1)1n n n n =-++. 故答案为:111n n -+. (2)111111223344520202021+++++⨯⨯⨯⨯⨯ 111111112233420202021=-+-+-+- 112021=- 20202021=. 故答案为:20202021. (3)原方程变形为:111112232431x x x x x x +-+-=------, ∴1241x x =--, 去分母,得:12(4)x x -=-,解得7x =,经检验,7x =是原方程的解.【点睛】本题考查了数字的变化规律及解分式方程,解题的关键是理解题意,找出数字的变化规律,并准确运用所得规律求解分式方程.26.(1)5;(2)-42;(3)222xy x y +;(4)67x .【分析】(1)根据有理数混合运算法则计算即可;(2)根据负指数整数幂、零指数幂、绝对值的意义及乘方,计算即可;(3)去括号,然后合并同类项即可;(4)根据积的乘方、幂的乘方运算法则计算即可.【详解】 解:(1)2152224-⨯+÷ =115522-+=;(2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭ =271161-⨯-+ =2716142--+=-;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦ =22223242xy x y x y xy +-- =222xy x y +;(4)()()()3323231333xx x x ⎛⎫-+--⋅ ⎪⎝⎭ =6633192727x x x x -+-⋅=67x .【点睛】 本题主要考查有理数的混合运算、整式的混合运算,解题的关键是熟练运用运算法则.。
上海中国中学八年级数学上册第五单元《分式》测试(包含答案解析)
一、选择题1.关于x 的一元一次不等式组31,224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my y y y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9 B .10 C .13 D .142.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ay y y ++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4 B .5 C .6 D .33.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6- 4.若关于x 的方程1044m x x x --=--无解,则m 的值是( ) A .2-B .2C .3-D .3 5.关于代数式221a a +的值,以下结论不正确的是( ) A .当a 取互为相反数的值时,221a a +的值相等 B .当a 取互为倒数的值时,221a a +的值相等 C .当1a >时,a 越大,221a a+的值就越大 D .当01a <<时,a 越大,221a a+的值就越大 6.若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .0x = C .1x ≠- D .2x =7.若分式293x x -+的值为0,则x 的值为( ) A .4 B .4- C .3或-3 D .38.计算221(1)(1)x x x +++的结果是( ) A .1B .1+1xC .x +1D .21(+1)x 9.计算23211x x x x +-++的结果为( ) A .1 B .3 C .31x + D .31x x ++ 10.在代数式2π,15x +,221x x --,33x -中,分式有( ) A .1个B .2个C .3个D .4个 11.如果111a b a b +=+,则b a a b +的值为( ) A .2 B .1C .1-D .2- 12.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( ) A .102x x x -<<B .012x x x -<<C .021x x x -<<D .120x x x -<< 二、填空题13.计算22a b a b a b-=-- _________. 14.分式2222,39a b b c ac的最简公分母是______. 15.计算211()(1)11m m m -⨯--+的结果是______. 16.2112111a a a a +-+--=___________. 17.计算:()222333a ba b --⋅=_______________. 18.已知114y x-=,则分式2322x xy y x xy y +---的值为______.19.计算:11|1|3-⎛⎫-= ⎪⎝⎭______. 20.方程11212x x =+-的解是x =_____. 三、解答题21.已知M =222111x x x x x ++---, (1)化简M ;(2)请从-2,1,2这三个整数中选一个合适的数代入,求M 的值.22.已知点()0,A y 在y 轴正半轴上,以OA 为边作等边OAB ,其中y 是方程31222y +-31y =-的解. (1)求点A 的坐标;(2)如图1,点P 在x 轴正半轴上,以AP 为边在第一象限内作等边APQ ,连QB 并延长交x 轴于点C ,求证:OC BC =; (3)如图2,若点M 为y 轴正半轴上一动点,点M 在点A 的上边,连MB ,以MB 为边在第一象限内作等边MBN △,连NA 并延长交x 轴于点D ,当点M 运动时,DN AM -的值是否发生变化?若不变,求出其值;若变化,求出其变化的范围.23.①先化简,再求值:12(1)y x y x y ⋅--+÷221y x -,其中x=y+2020. ②解方程:239x --112626x x =-+. 24.列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步.在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.25.先化简,再求值.(1)22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x 是9的平方根; (2)2222221211⎛⎫-+-÷ ⎪-+-⎝⎭a a a a a a a ,然后从-1,0,1,2中选一个合适的数作为a 的值代入求值.26.观察下列等式:第1个等式:111122=-⨯; 第2个等式:1112323=-⨯; 第3个等式:1113434=-⨯;……(1)写出第5个等式:________________;(2)探究规律:猜想第n 个等式,并证明;(3)问题解决:一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,……,第n 次倒出的水量是1n 升的11n +,如果不考虑实际操作因素,按照这种倒水的方法,这1升水能倒完吗?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可.【详解】 解:31224x m x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得x≤2m+2,解②得x≤4,∵不等式组31224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4,∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得my-1+y-2=3y , ∴32y m =-,∵m≥1,分式方程13122my y y y --+=--有整数解, ∴m=1,3,5,∵y-2≠0,∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意,1+3+5=9.故选A .【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键. 2.A解析:A【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可.【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩, ∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解, ∴2015a +<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a =, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3∴所有满足条件的整数a 的值之和是4,故选A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.3.D解析:D【分析】 先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可.【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解, ∴12x m -≤≤-,∴21m -≥-,得3m ≤,∴53m -≤≤,∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3,其和为:-6,故选:D .【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键. 4.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0,∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 5.D解析:D【分析】根据相反数的性质,倒数的性质以及不等式的性质来解决代数式的值即可;【详解】当a 取互为相反数的值时,即取m 和-m ,则-m+m=0,当a 取m 时,①222211=m a a m ++ ,当a 取-m 时,②()()222222111a m m a m m +=-+=+- , ①=②,故A 正确; B 、当a 取互为倒数的值时,即取m 和1m ,则11m m ⨯= , 当a 取m 时,①222211=m a a m ++,当a 取1m 时,②2222221111m 1m a m a m ⎛⎫+=+=+ ⎪⎝⎭⎛⎫ ⎪⎝⎭①=②,故B 正确;C 、可举例判断,由a >1得,取a=2,3(2<3) 则22112=424++< 22113=939++ , 故C 正确; D 、可举例判断,由01a <<得,取a=12,13(12>13) 2222111111=4+=924391123⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭< , 故D 错误;故选:D .【点睛】本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键.6.A解析:A【分析】根据分式有意义分母不为零即可得答案.【详解】∵分式2x x -有意义, ∴x-2≠0,解得:x≠2.故选:A .【点睛】 本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.7.D解析:D【分析】先根据分式的值为0可得290x ,再利用平方根解方程可得3x =±,然后根据分式的分母不能为0即可得.【详解】 由题意得:2903x x -=+, 则290x ,即29x =,由平方根解方程得:3x =±,分式的分母不能为0,30x ∴+≠,解得3x ≠-,则x 的值为3,故选:D .【点睛】本题考查了分式的值、分式有意义的条件、利用平方根解方程,掌握理解分式的值是解题关键.8.B解析:B【分析】根据同分母分式加法法则计算.【详解】221(1)(1)x x x +++=211(1)1x x x +=++, 故选:B .【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.9.C解析:C【分析】直接进行同分母的加减运算即可.【详解】 解:23211x x x x +-++=2321x x x +-+=31x +, 故选C .【点睛】 本题考查了同分母的分式的运算,解题的关键是熟练掌握分式的运算法则.10.B解析:B【分析】根据分式的定义逐个判断即可得.【详解】 常数2π是单项式, 15x +是多项式, 221x x --和33x -都是分式, 综上,分式有2个,故选:B .【点睛】本题考查了分式的定义,掌握理解分式的定义是解题关键.11.C解析:C【分析】 先对111a b a b +=+变形得到()2a b ab +=,然后将b a a b +化成22a b ab+,再结合完全平方公式得到()22a b ab ab+-,最后将()2a b ab +=代入即可解答. 【详解】解:∵111b a a b a b ab ab ab a b++=+==+,即()2a b ab += ∴()22222221a b ab b a b a a b ab ab ab a b ab ab ab ab ab ab+-+--+=+=====-. 故选C .【点睛】本题主要考查了分式的减法、完全平方公式的应用以及代数式求值,灵活运用完全平方公式是解答本题的关键.12.D解析:D【分析】 根据负整数指数幂的运算法则可得110x x-=<,根据非零数的零次幂可得0x 1=,根据平方的结果可得20x 1<<,从而可得结果.【详解】解:∵1x 0-<<,∴20x 1<<,0x 1=,11x0x-=<, ∴120x x x -<<.故选:D .【点睛】本题主要考查了代数式的大小比较,需结合幂的运算法则进行求解. 二、填空题13.【分析】根据分式运算的性质结合平方差公式计算即可得到答案【详解】故答案为:【点睛】本题考查了分式平方差公式的知识;解题的关键是熟练掌握分式加减运算平方差公式的性质从而完成求解解析:+a b【分析】根据分式运算的性质,结合平方差公式计算,即可得到答案.【详解】22a b a b a b ---()()22a b a b a b a b a b a b+--===+-- 故答案为:+a b .【点睛】本题考查了分式、平方差公式的知识;解题的关键是熟练掌握分式加减运算、平方差公式的性质,从而完成求解.14.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】 分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 15.2【分析】利用乘法分配律展开括号再计算加减法【详解】故答案为:2【点睛】此题考查分式的混合运算掌握乘法分配律计算法则是解题的关键 解析:2【分析】利用乘法分配律展开括号,再计算加减法.【详解】()211()(1)11211m m m m m -⨯-=+--=-+. 故答案为:2.【点睛】 此题考查分式的混合运算,掌握乘法分配律计算法则是解题的关键.16.0【分析】先通分再分母不变分子相减即可求解【详解】故答案为:0【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键解析:0【分析】先通分,再分母不变,分子相减即可求解.【详解】2211211201111a a a a a a a a -++-+-==+---. 故答案为:0.【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.17.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b ----+-===故答案为:3a b . 【点睛】本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.18.【分析】先根据题意得出x-y=4xy 然后代入所求的式子进行约分就可求出结果【详解】∵∴x-y=4xy ∴原式=故答案为:【点睛】此题考查分式的基本性质正确对已知式子进行化简约分正确进行变形是关键 解析:112【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果.【详解】 ∵114y x-=, ∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点睛】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键. 19.【分析】根据实数的性质即可化简求解【详解】解:故答案为:【点睛】本题主要考查了实数的运算解题的关键是掌握负指数幂的运算解析:4【分析】根据实数的性质即可化简求解.【详解】解:1|131(14)3--==-故答案为:4【点睛】本题主要考查了实数的运算,解题的关键是掌握负指数幂的运算. 20.【分析】先将分式方程化成整式方程求解然后再检验即可【详解】解:方程的两边同乘得:解这个方程得:经检验是原方程的解∴原方程的解是故答案为:【点睛】本题主要考查了解分式方程将分式方程化成整式方程求解是解 解析:3-【分析】先将分式方程化成整式方程求解,然后再检验即可.【详解】解:方程的两边同乘()()212x x +⨯-,得:221x x -=+,解这个方程,得:3x =-,经检验,3x =-是原方程的解,∴原方程的解是3x =-.故答案为:3-.【点睛】本题主要考查了解分式方程,将分式方程化成整式方程求解是解答本题的关键,对方程的解进行检验是解答本类题的易错点.三、解答题21.(1)M =11x -;(2)当x=-2时,A =13-;当x=2时,A =1. 【分析】(1)根据异分母分式的加减法法则进行计算即可;(2)根据分式成立的条件选取合适的x 的值代入化简结果进行计算即可.【详解】 解:(1)M =222111x x x x x ++--- =22221(1)11x x x x x x +++--- =222211x x x x x ++--- =(1)(1)1x x x ++-=11x - (2)∵M =11x - ∴x≠1,∴x 可以取-2或2.当x=-2时,A =11x -=-13. 或者当x=2时,A =11x -=1. 【点睛】本题考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.22.(1)()0,4A ;(2)见解析;(3)DN AM -的值不变,其值为12.【分析】(1)解分式方程求出y 即可知道A 点坐标;(2)证明△AOP ≌△ABQ ,进而得到∠ABQ=∠AOP=90°,再由∠AOB=∠ABO=60°得到∠BOC=∠OCB=30°,由此可以证明CO=CB ;(3)证明△ABN ≌△OBM ,得到OM AN =,60BAN BOM ∠=∠=︒,进而求出∠DAO=60°,在Rt △DAO 中求出DA=2AO=8,最后DN-AM=(DA+AN)-(MO-AO)= (DA+AN)-(AN-AO)=8+4=12.【详解】解:(1)∵y 是方程3132221y y +=--的解, 方程两边同时乘以最简公分母2(1)-y :解得4y =经检验4y =是原方程的解∴点()0,4A .(2)∵APQ 、ABO 都是等边三角形∴AO AB =,AP AQ =,60BAO PAQ ∠=∠=︒,∴PAO BAQ ∠=∠,∴()≌PAO QAB SAS △△,∴90QBA POA ∠=∠=︒, ∵ABO 是等边三角形,∴60AOB ABO ∠=∠=︒,∴30COB CBO ∠=∠=︒∴CO BC =.(3)其值不会变化,且12DN AM -=,理由如下:∵AOB ∆、MBN ∆都是等边三角形,∴4BO AB AO ===,MB BN =,60BAO ABO MBN ∠=∠=∠=︒,∴OBM ABN ∠=∠,∴()ABN OBM SAS ≌△△, ∴OM AN =,60BAN BOM ∠=∠=︒,∴4AN OM OA AM AM ==+=+,∵18060OAD OAB BAN ∠=︒-∠-∠=︒,∴30ADO ∠=︒∴28AD AO ==∴4812DN AM AN AD AM AM AM -=+-=++-=即DN AM -的值不变,其值为12. 【点睛】本题是三角形综合题,考查了分式方程的解法,等边三角形性质,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力.23.①x -y ;2020;②原方程无解.【分析】(1)根据分式的运算法则,先化简分式,再代入求值.(2)先变形,再把分式方程转化为整式方程,求出方程的解,再进行检验即可.【详解】解:①12(1)y x y x y ⋅--+÷221y x - =1()()1y x y x y x x y x y -+-⋅⋅-+ =x-y由x=y+2020得x-y=2020;②原方程可化为:3(3)(3)x x +-—112(3)2(3)x x =-+ 方程两边同乘以2(x+3)(x-3)得:6-(x+3)=x-3解得,x=3检验:把x=3代入2(x+3)(x-3)=0所以x=3不是原方程的解,即原方程无解本题考查了分式的化简和解分式方程,,掌握运算法则是解决本题的关键.24.这名女生跑完800米所用时间是224秒【分析】设这名女生跑完800米所用时间x 秒,由题意可得关于x 的分式方程,解分式方程并经过检验即可得到问题答案.【详解】解:设这名女生跑完800米所用时间x 秒,则这名男生跑完1000米所用时间(56)x +秒, 根据题意,得800100056x x =+. 解得:224=x .经检验,224=x 是所列方程的解,并且符合实际问题的意义.答:这名女生跑完800米所用时间是224秒.【点睛】本题考查分式方程的应用,根据题目中的数量关系正确地列出分式方程并求解是解题关键.25.(1)3x ;±1;(2)1a a +,2a =,值为32【分析】(1)先化简,后把x=3或x=-3分别代入求值;(2)先化简,根据分母不能为零的原则,选择数值代入计算即可.【详解】(1)原式=212(2)2(2)x x x x x x +-+-⎛⎫⨯ ⎪--⎝⎭ =23(2)2(2)x x x x -⨯-- =3x, ∵x 是9的平方根, ∴3x =±,∴原式=±1.(2)原式=2(1)(1)(1)(1)(1)(1)a a a a a a a ⎛⎫-++-⨯ ⎪-+⎝⎭ 1a a+=, 由题意当1,1,0a =-时,原分式没有意义, ∴2a =,此时原分式32=.本题考查了分式的化简求值,选值时,确保每一个分式有意义是解题的关键.26.(1)1115656=-⨯ (2)()11111n n n n =-++;证明见解析 (3)不能;见解析 【分析】(1)观察各等式,找出分子分母中的数与序号的关系即可写出第五个等式;(2)根据题目中的式子,可以写出生意人猜想,并验证猜想是否正确;(3)根据题意求出前n 次倒水量之和,再与1进行比较即可.【详解】解:(1)第5个等式:1115656=-⨯; 故答案为:1115656=-⨯; (2)猜想:()11111n n n n =-++,证明: 等式右边()()()11111111n n n n n n n n n n +=-=-==++++等式左边, ∴猜想成立;(3)由题意可得:第n 次倒出水量:()11L n n +, ∴前n 次总共倒出水量:()11111223341n n ++++⨯⨯⨯+ 1111112231n n =-+-++-+ 111n =-+ 1n n =+, ∵11n n <+, ∴这1L 水不能倒完.【点睛】本题主要考查了数字变化规律的问题,通过观察、分析、归纳并发现其中的规律,并应用发现的规律解决问题,解题的关键是发现分子分母中的数与序号的关系.。
人教版初中数学八年级数学上册第五单元《分式》检测(答案解析)
一、选择题1.计算:2x y x y x y xy-⋅-=( ) A .x B .y x C .y D .1x2.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( )A .1B .2C .3D .43.已知2340x x --=,则代数式24x x x --的值是( ) A .3 B .2 C .13 D .124.要使分式()()221x x x ++-有意义,x 的取值应满足( )A .1x ≠B .2x ≠-C .1x ≠或2x ≠-D .1x ≠且2x ≠- 5.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y-中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式 6.化简2111313x x x x +⎫⎛-÷ ⎪---⎝⎭的结果是( ) A .2 B .23x - C .41x x -- D .21x - 7.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1- B .1 C .3 D .3-8.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5 B .6 C .7 D .89.下列计算正确的个数为( )①555•2a a a =;②5510b b b +=;③1644n n ÷=;④247••y y y y =;⑤()()23•x x x --=-;⑥()7214a a --=;⑦()()234214•a a a -=;⑧()242a a a ÷-=-;⑨()03.141π-=.A .2B .3C .4D .510.下列计算正确的是( )A .1112a a a += B .2211()()a b b a +--=0 C .m n a -﹣m n a+=0 D .11a b b a +--=0 11.下列各式中,无论x 取何值,分式都有意义的是( ). A .132x - B .213x + C .231x x + D .21x x + 12.若分式2132x x x --+的值为0,则x 的值为( ) A .1- B .0C .1D .±1 二、填空题13.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++.参考上面的方法,解决下列问题:(1)将1a a +变形为满足以上结果要求的形式:1a a =+_________; (2)①将321a a +-变形为满足以上结果要求的形式:321a a +=-_________;②若321a a +-为正整数,且a 也为正整数,则a 的值为__________. 14.若分式方程13322a x x x--=--有增根,则a 的值是________. 15.如图是一个数值转换器,每次输入3个不为零的数,经转换器转换后输出3个新数,规律如下:当输入数分别为x ,y ,z 时,对应输出的新数依次为11x y z ++,11y z x ++,11z x y++.例如,输入1,2,3,则输出65,34,23.那么当输出的新数为13,14,15时,输入的3个数依次为____.16.如果实数x、y满足方程组30233x yx y+=⎧⎨+=⎩,求代数式(xyx y++2)÷1x y=+_____.17.计算:22311x x x-=+-____________.18.已知方程3a1aa44a--=--,且关于x的不等式组x ax b>⎧⎪⎨⎪≤⎩只有4个整数解,那么b的取值范围是____________.19.分式2(1)(3)32m mm m---+的值为0,则m=______________.20.计算:()30120202-⎛⎫---=⎪⎝⎭______.三、解答题21.(1)先化简,再求值:22228424m mm m m m+-⎛⎫+÷⎪--⎝⎭,其中m满足2430m m++=.(2)如图,在等边ABC中,D.E分别在边BC、AC上,且//DE AB,过点E作EF DE⊥交BC的延长线于点F.若3cmCD=,求DF的长.22.武汉某道路工程项目,若由甲、乙两工程队合作20天可完工;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲、乙工程队合作施工时对道路交通有影响,独施工时对交通无影响且要求整个工期不能超过24天,问如何安排两队施工,对道路交通的影响会最小?23.解方程:(1)3311xx x+=--(2)23425525x x x +=-+- 24.解答下列各题: (1)计算:()()()2233221x x x x x -⋅++--+(2)计算:()()()33323452232183a b cac a b a c -⋅÷-÷ (3)解分式方程:11222x x x++=-- 25.列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步.在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.26.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯. 将以上三个等式左、右两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯ (1)若n 为正整数,猜想并填空:1(1)n n =+______. (2)计算111111223344520202021+++++⨯⨯⨯⨯⨯的结果为______. (3)解分式方程:11122(2)(3)(3)(4)1x x x x x x ++=------.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据分式乘法计算法则解答.【详解】解:2x y x y x y xy-⋅-=x ,故选:A .【点睛】此题考查分式的乘法计算法则,熟记计算法则是解题的关键.2.B解析:B【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答.【详解】解:分式方程不一定会产生增根,故①错误; 方程4102x -=+的根为x=2,故②正确; 方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x+=+-是分式方程,故④正确; 故选:B .【点睛】 此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.3.D解析:D【分析】利用等式的性质对2340x x --=变形可得43x x-=,利用分式的性质对24x x x --变形可得141x x--,从而代入求值即可. 【详解】由条件2340x x --=可知,0x ≠, ∴430x x --=,即:43x x-=, 根据分式的性质得:21144411x x x x x x x==------, 将43x x-=代入上式得:原式11312==-, 故选:D .【点睛】 本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键.4.D解析:D【分析】根据分式有意义的条件得出x +2≠0且x ﹣1≠0,计算即可.【详解】解:要使分式()()221x x x ++-有意义,必须满足x +2≠0且x ﹣1≠0,解得:x ≠﹣2且x ≠1,故选:D .【点睛】本题考查了分式有意义的条件,能根据分式有意义的条件得出x +2≠0且x ﹣1≠0是解此题的关键.5.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误; B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】 此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.6.D解析:D【分析】利用乘法分配律计算即可【详解】解:原式=11(3)(3)3(1)(1)x x x x x x +⋅--⋅--+-=1-31x x --=21x -, 故选D .【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.D解析:D【分析】先将分式方程化为整式方程,再将1x =代入求解即可.【详解】解:原式化简为81233ax a x +=-,将1x =代入得81233a a +=-解得-3a =.当a =-3时a -x=-3-1=-4≠0∴a =-3故选则:D .【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.8.C解析:C【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值.【详解】 解分式方程2311a x x +=--,得53a x -=, ∵分式方程2311a x x +=--的解为非负数, ∴503a -≥, 解得a ≤5,∵关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩, ∵不等式组的解集为2y <-,∴2a ≥-,∵x-1≠0,∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个,故选:C .【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.9.C解析:C【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,零指数幂及积的乘方可得答案.【详解】解:①5510•a a a =,故①错误;②5552b b b +=,故②错误;③2164444n n n n n ÷=÷=,故③错误;④247••y y y y =,故④正确;⑤()()23•x x x --=-,故⑤正确;⑥()7214a a --=,故⑥正确; ⑦()()23428614•a a a a a -=-⋅=-,故⑦错误; ⑧()242a a a ÷-=,故⑧错误;⑨()03.141π-=,故⑨正确,正确的有4个.故选:C .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,零指数幂及积的乘方,解题的关键是灵活运用运算法则. 10.D解析:D【分析】直接根据分母不变,分子相加运算出结果即可.【详解】解:A 、112a a a+=,故错误; B 、原式=2211()()a b a b +--=22()a b -,故错误;C 、原式=m n m n a ---=﹣2n a ,故错误; D 、原式=11a b a b---=0,故正确. 故选D .【点睛】 本题主要考查了分式的加减法,解题的关键是掌握运算法则,此题基础题,比较简单. 11.B解析:B【分析】根据分式有意义的条件:分母不等于0确定答案.【详解】A 、若3x-2≠0,即23x ≠时分式有意义,故该选项不符合题意; B 、∵230x +>,∴无论x 取何值,分式都有意义,故该项符合题意; C 、∵20x ≥,∴x ≠0时分式有意义,故该选项不符合题意;D 、若210x +≠即12x ≠-时分式有意义,故该选项不符合题意; 故选:B .【点睛】此题考查分式有意义的的条件:分母不等于0. 12.A解析:A【分析】根据分式值为零的条件列出方程和不等式,解方程和不等式得到答案.【详解】由题意得:|x|−1=0,x 2−3x+2≠0,解得,x =-1,故选:A .【点睛】本题考查的是分式为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.二、填空题13.2或6【分析】(1)根据材料中分式转化变形的方法即可把变形为满足要求的形式;(2)①根据材料中分式转化变形的方法即可把变形为满足要求的形式;②令可先求出a 与x 是整数时的对应值再从所得结果中找出符合条 解析:111a -+ 531a +- 2或6【分析】(1)根据材料中分式转化变形的方法,即可把1a a +变形为满足要求的形式; (2)①根据材料中分式转化变形的方法,即可把321a a +-变形为满足要求的形式;②令325311a x a a +==+--,可先求出a 与x 是整数时的对应值,再从所得结果中找出符合条件的a ,x 的值,即可得出结论.【详解】 解:(1)1111111a a a a a +-==-+++; 故答案为:111a -+; (2)①323(1)553111a a a a a +-+==+---; 故答案为:531a +-; ②∵323(1)553111a a a a a +-+==+--- 令531x a =+-, 当x , a 都为整数时,11a -=±或15a -=±,解得a =2或a =0或a =6或a =-4,当a =2时,x =8;当a =0时,x =-2;当a =6时,x =4;当a =-4时,x =2;∵x , a 都为正整数,∴符合条件的a 的值为2或6.故答案为:2或6.【点睛】此题考查了分式的加减及求分式的值等知识,理解题意并熟练掌握分式的基本性质及运算法则是解本题的关键.14.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.15.11【分析】根据转换器转换后输出3个新数得到关于xyz 的方程组解之即可【详解】解:根据题意得:则3(x+y+z )=xy+zx①4(x+y+z )=xy+yz②5(x+y+z )=yz+zx③①+②+③得 解析:113,112,11 【分析】 根据转换器转换后输出3个新数得到关于x 、y 、z 的方程组,解之即可【详解】解:根据题意得:111=3++x y z ,111=4++y z x ,111=5++z x y , 则3(x+y+z )=xy+zx①,4(x+y+z )=xy+yz②,5(x+y+z )=yz+zx③,①+②+③,得6(x+y+z )=xy+yz+zx ,④④﹣①,得3(x+y+z )=yz⑤,④﹣②,得2(x+y+z )=zx⑥,④﹣③,得x+y+z=xy⑦, ∴23x y =,z=2y , 把23x y =,z=2y 代入⑦,得y (2y ﹣11)=0, ∴y=112(由题意知y≠0), ∴x=113,z=11, ∴x=113,y=112,z=11【点睛】本题考查了分式的混合运算、方程组的计算.解题关键是求出6(x+y+z )=xy+yz+zx ,进而用y 分别表示x 、z .16.1【分析】先进行分式计算再解方程组代入即可求解【详解】解:原式==xy+2x+2y 解方程组得:当x=3y=﹣1时原式=﹣3+6﹣2=1故答案为:1【点睛】此题考查了分式的化简求值熟练进行分式化简解出解析:1【分析】先进行分式计算,再解方程组,代入即可求解.【详解】解:原式=()22xy x y x y x y++⋅++=xy +2x +2y , 解方程组30233x y x y +=⎧⎨+=⎩得:31x y =⎧⎨=-⎩, 当x =3,y =﹣1时,原式=﹣3+6﹣2=1.故答案为:1.【点睛】此题考查了分式的化简求值,熟练进行分式化简,解出二元一次方程组是解本题的关键. 17.【分析】根据通分可化成同分母分式根据同分母分式的加减可得答案【详解】故答案为:【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键 解析:323x x x-- 【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案.【详解】()()()()()()()3313323111111x x x x x x x x x x x x x x x x-----==+-+-+--. 故答案为:323x x x--. 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键. 18.【分析】分式方程去分母转化为整式方程求出整式方程的解得到a 的值经检验确定出分式方程的解根据已知不等式组只有4个整数解即可确定出b 的范围【详解】解:分式方程去分母得:3﹣a ﹣a2+4a =﹣1整理得:a解析:34b ≤<【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a 的值,经检验确定出分式方程的解,根据已知不等式组只有4个整数解,即可确定出b 的范围.【详解】解:分式方程去分母得:3﹣a ﹣a 2+4a =﹣1,整理,得:a 2﹣3a ﹣4=0,即(a ﹣4)(a +1)=0,解得:a =4或a =﹣1,经检验a =4是增根,故分式方程的解为a =﹣1,∴原不等式组的解集为﹣1<x ≤b ,∵不等式组只有4个整数解,∴3≤b <4,故答案为:3≤b <4.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,弄清题意是解本题的关键. 19.3【分析】要使分式的值为0必须分式分子的值为0并且分母的值不为0【详解】解:要使分式由分子解得:或3;而时分母;当时分母分式没有意义所以的值为3故答案为:3【点睛】本题主要考查了分式的值为零的条件要 解析:3【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【详解】解:要使分式由分子(1)(3)0m m --=.解得:1m =或3;而3m =时,分母23220m m -+=≠;当1m =时分母2321320m m -+=-+=,分式没有意义.所以m 的值为3.故答案为:3.【点睛】本题主要考查了分式的值为零的条件,要注意分母的值一定不能为0,分母的值是0时分式没有意义.20.9【分析】根据零指数幂与负整数指数幂的运算法则进行求解【详解】故答案为:9【点睛】本题考查了零指数幂与负整数指数幂熟练掌握其运算法则是解题的关键解析:9【分析】根据零指数幂与负整数指数幂的运算法则进行求解.【详解】()30120201(8)1892-⎛⎫---=--=+= ⎪⎝⎭. 故答案为:9.【点睛】 本题考查了零指数幂与负整数指数幂,熟练掌握其运算法则是解题的关键.三、解答题21.(1)()212m +,1;(2)6cm 【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将已知方程变形后代入计算即可求出值(2) 先求得CD =DE ,然后由Rt △DEF 中30°所对的边等于斜边的一半进行求解即可.【详解】(1)解:原式()2(2)28(2)(2)(2)m m m m m m m m +-⎛⎫+=+÷⎪--+⎝⎭ ()()()()()()()()()()()2222822222222212m m m m m m m m m m m m m m m m +-=⨯-++--=⨯+-+-=+ 2430m m ++=∴22(2)44341m m m +=++=-+=∴原式1=;(2)∵ABC 是等边三角形,∴60B A ︒∠=∠=,∵//DE AB ,∴60EDC B ︒∠=∠=,60DEC A ︒∠=∠=,∴EDC △是等边三角形.∵EF DE ⊥,∴90DEF ︒∠=,∴9030F EDC ︒︒∠=-∠=;∴26cm DF DE ==.【点睛】本题有两个问题第(1)题考查了分式的化简求值,以及分式的乘除法,熟练掌握运算法则是解本题的关键. 第(2)题主要考查的是等边三角形的性质和30°所对的边等于斜边的一半,熟练掌握相关知识是解题的关键.22.(1)甲单独做需60天,乙单独做需30天;(2)应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【分析】(1)设甲单独做需x 天,则甲的工作效率为1x ,乙的工作效率为1120x-,根据“若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完成”,即可得出关于x 的分式方程,解之并检验后即可得出结论;(2)分两种情况:①若剩下工程甲单独做还需(603m -)天,②若剩下工程乙单独做还需(30 1.5)m -天,列出不等式,即可求解.【详解】(1)设甲单独做需x 天,则甲的工作效率为1x ,乙的工作效率为1120x-, 401110120x x ⎛⎫∴+-= ⎪⎝⎭,解得:60x =, 经检验60x =为原方程的解,∴甲单独做需60天,乙单独做需30天;(2)设甲、乙合作了m 天①若剩下工程甲单独做还需1120603160m m -=- 60324m m ∴+-≤,解得:18m ≥;②若剩下工程乙单独做还需112030 1.5130m m -=- 30 1.524m m ∴+-≤,解得:12m ≥由①②可知m 的最小值为12,所以应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【点睛】本题主要考查分式的实际应用以及一元一次不等的实际应用,找到等量关系和不等量关系,列出方程和不等式,是解题的关键.23.(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.24.(1)5x -;(2)19b ;(3)23x =【分析】(1)首先利用同底数幂的乘法法则、平方差公式、完全平方公式计算,然后合并同类项求出答案;(2)先算积的乘方、幂的乘方,再从左到右计算同底数幂的乘法除法求出答案;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()()2233221x x x x x -⋅++--+=223421x x x x +----=5x -;(2)()()()33323452232183a b cac a b a c -⋅÷-÷ =()()963345662721827a b c ac a b a c -⋅÷-÷=()()10664566541827a b c a b a c -÷-÷=()6666327a bc a c ÷ =19b ; (3)解分式方程:11222x x x++=-- 去分母得:1+2(x-2)=-(1+x ),去括号合并得,2x-3=-1-x ,移项合并得,3x=2,解得:23x =, 经检验23x =是分式方程的解. 【点睛】 此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.也考查了解分式方程,去分母转化为整式方程是关键.25.这名女生跑完800米所用时间是224秒【分析】设这名女生跑完800米所用时间x 秒,由题意可得关于x 的分式方程,解分式方程并经过检验即可得到问题答案.【详解】解:设这名女生跑完800米所用时间x 秒,则这名男生跑完1000米所用时间(56)x +秒, 根据题意,得800100056x x =+. 解得:224=x .经检验,224=x 是所列方程的解,并且符合实际问题的意义.答:这名女生跑完800米所用时间是224秒.【点睛】本题考查分式方程的应用,根据题目中的数量关系正确地列出分式方程并求解是解题关键.26.(1)111n n -+;(2)20202021;(3)7x =. 【分析】(1)观察已知等式可得:连续整数乘积的倒数等于较小数的倒数与较大数的倒数的差,据此可得111(1)1n n n n =-++; (2)利用所得规律列出算式1111111223320202021-+-+++-,再两两相消即可得112021-,计算后可得结果; (3)由所得规律对分式方程进行整理,可变形为111112232431x x x x x x +-+-=------,最终化简为1241x x =--,求解此方程即可. 【详解】 解:(1)∵111122=-⨯,1112323=-⨯,1113434=-⨯, ∴当n 为正整数时,111(1)1n n n n =-++.故答案为:111n n -+. (2)111111223344520202021+++++⨯⨯⨯⨯⨯ 111111112233420202021=-+-+-+- 112021=- 20202021=. 故答案为:20202021. (3)原方程变形为:111112232431x x x x x x +-+-=------, ∴1241x x =--, 去分母,得:12(4)x x -=-,解得7x =,经检验,7x =是原方程的解.【点睛】本题考查了数字的变化规律及解分式方程,解题的关键是理解题意,找出数字的变化规律,并准确运用所得规律求解分式方程.。
上海市八年级数学上册第五单元《分式》测试题(有答案解析)
一、选择题1.关于分式2634m nm n--,下列说法正确的是()A.分子、分母中的m、n均扩大2倍,分式的值也扩大2倍B.分子、分母的中m扩大2倍,n不变,分式的值扩大2倍C.分子、分母的中n扩大2倍,m不变,分式的值不变D.分子、分母中的m、n均扩大2倍,分式的值不变2.如果关于x的分式方程6312233ax xx x--++=--有正整数解,且关于y的不等式组521510yy a-⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a的和为()A.2 B.3 C.6 D.113.化简分式2xy xx+的结果是()A.yxB.1yx+C.1y+D.y xx+4.若方程21224kx x-=--有增根,则k=()A.4-B.14-C.4 D.145.如图,若a为负整数,则表示2a111a a1⎛⎫÷-⎪-+⎝⎭的值的点落在()A.段①B.段②C.段③D.段④6.若整数a使得关于x的不等式组3(1)32(1)x ax x>⎧⎨-+>+⎩的解集为2x>,且关于x的分式方程21111axx x+=---的解为整数,则符合条件的所有整数a的和是()A.2-B.1-C.1 D.27.在同一平面内,我们把两条直线相交将平面分得的区域数记为1a,三条直线两两相交最多将平面分得的区域数记为2a,四条直线两两相交最多将平面分得的区域数记为()3,,1a n⋅⋅⋅+条直线两两相交最多将平面分得的区域数记为na,若121111011111n a a a ++⋅⋅⋅+=---,则n =( ) A .10 B .11 C .20 D .218.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5 B .6 C .7 D .89.下列计算正确的个数为( )①555•2a a a =;②5510b b b +=;③1644n n ÷=;④247••y y y y =;⑤()()23•x x x --=-;⑥()7214a a --=;⑦()()234214•a a a -=;⑧()242a a a ÷-=-;⑨()03.141π-=.A .2B .3C .4D .510.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++ B .222()x y x y +- C .222()x y x y -+ D .222()x y x y ++ 11.已知227x ,y ==-,则221639y x y x y ---的值为( ) A .-1B .1C .-3D .3 12.计算a b a b a ÷⨯的结果是() A .a B .2a C .2b a D .21a 二、填空题13.科学家使用冷冻显微术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为__________.14.计算:112a a-=________. 15.如图,将形状大小完全相同的“□”按照一定规律摆成下列图形,第1幅图中“□”的个数为1a ,第2幅图中“□”的个数为2a ,第3幅图中“□”的个数为3a ,……,以此类推,若123201922222020n a a a a +++⋅⋅⋅+=(n 为正整数),则(1)5a =________;(2)n 的值为________.16.要使分式2x x 1+有意义,那么x 应满足的条件是________ . 17.已知114y x-=,则分式2322x xy y x xy y +---的值为______. 18.计算3224423y x x y⎛⎫-⋅ ⎪⎝⎭的结果是________. 19.已知关于x 的方程321x m x -=-的解是正数,则m 的取值范围为____________. 20.已知:4a b +=,2210a b +=,求11a b+=______. 三、解答题21.解分式方程:(1)13x -+2=43x x --; (2)()3211x x x x +---= 0 22.己知A 、B 两地相距240千米,甲从A 地去B 地,乙从B 地去A 地,甲比乙早出发3小时,两人同时到达目的地.已知乙的速度是甲的速度的2倍.(1)甲每小时走多少千米?(2)求甲乙相遇时乙走的路程.23.先化简,再求值:2246221121x x x x x x ++⎛⎫-÷⎪---+⎝⎭,其中x 取-1、+1、-2、-3中你认为合理的数.24.水果店在批发市场购买某种水果销售,第一次用2000元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用2496元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)第一次水果的进价是每千克多少元?(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元? 25.先化简,再求值.(1)22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x 是9的平方根; (2)2222221211⎛⎫-+-÷ ⎪-+-⎝⎭a a a a a a a ,然后从-1,0,1,2中选一个合适的数作为a 的值代入求值.26.计算:(1)化简:()()22n m n m n -++;(2)解分式方程:2132163x x x -=---.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据分式的基本性质即可求出答案.【详解】解:A 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m n m n m n⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意; C 、226212=32438m n m n m n m n-⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意; D 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 2.B解析:B【分析】根据分式方程的解为正整数解,即可得出a =0,1,2,5,11,根据不等式组的解集为a−1<4,即可得出a <5,找出a 的所有的整数,将其相加即可得出结论.【详解】解:∵分式方程有解,∴解分式方程得x =121a +, ∵x≠3, ∴121a +≠3,即a≠3, 又∵分式方程有正整数解,∴a =0,1,2,5,11,又∵不等式组至少有2个整数解,∴解不等式组得51y y a ≤⎧⎨-⎩>, ∴a−1<4,解得,a <5,∴a =0,1,2,∴0+1+2=3,故选:B .【点睛】本题考查了一元一次不等式组的整数解、分式方程的解,有一定难度,注意分式方程中的解要满足分母不为0的情况. 3.B解析:B【分析】先把分子因式分解,再约分即可.【详解】 解:22(1)1xy x x y y x x x+++==. 故选:B .【点睛】 本题考查了分式的约分,解题关键是先把分子因式分解,再和分母约分.4.B解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义, ∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可. 5.C解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数, 则1101a 2<<-. 故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 6.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①② 解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1, ∴211a≠-,∴a≠-1, ∴a≤2且a≠-1,则a=0、2,∴符合条件的所有整数a 的和=0+2=2,故选:D .【点睛】 本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.7.C解析:C【分析】根据直线相交得到交点个数的规律,再利用裂项法进行有理数的运算即可解题.【详解】根据题意得,2条直线最多将平面分成4个区域1=4a ,3条直线最多将平面分成7个区域2=7a ,4条直线最多将平面分成11个区域3=11a ,5条直线最多将平面分成16个区域4=16a则11=3=1+2a -, 21=6=1+2+3a -,31=10=1+2+3+4a -,41=15=1+2+3+4+5a - 1=1+2+3+4+51n a n ∴-++12111111n a a a ∴++⋅⋅⋅+--- 111=1+21+2+31+2+3++(n+1)++⋅⋅⋅+ 111=(1+2)2(1+3)3(1+n+1)(n+1)222++⋅⋅⋅+⨯⨯11122334(1)(2)n n ⎡⎤=+++⎢⎥⨯⨯++⎣⎦ 1111112233412n n ⎡⎤=-+-++-⎢⎥++⎣⎦ 11222n ⎡⎤=-⎢⎥+⎣⎦ 2n n =+ 121111011111n a a a ++⋅⋅⋅+=--- 10211n n ∴=+ 2101211n ∴-=+ 21211n ∴=+ 222n ∴+= 20n ∴=经检验n=20是原方程的根故选:C .【点睛】本题考查相交线,是重要考点,难度一般,掌握相关知识是解题关键.8.C解析:C【分析】根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值.【详解】 解分式方程2311a x x +=--,得53a x -=, ∵分式方程2311a x x +=--的解为非负数, ∴503a -≥, 解得a ≤5,∵关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩, ∵不等式组的解集为2y <-,∴2a ≥-,∵x-1≠0,∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个,故选:C .【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.9.C解析:C【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,零指数幂及积的乘方可得答案.【详解】解:①5510•a a a =,故①错误;②5552b b b +=,故②错误;③2164444n n n n n ÷=÷=,故③错误;④247••y y y y =,故④正确;⑤()()23•x x x --=-,故⑤正确;⑥()7214a a --=,故⑥正确;⑦()()23428614•a a a a a -=-⋅=-,故⑦错误;⑧()242a a a ÷-=,故⑧错误;⑨()03.141π-=,故⑨正确,正确的有4个.故选:C .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,零指数幂及积的乘方,解题的关键是灵活运用运算法则. 10.C解析:C【分析】根据分式的除法法则计算即可.【详解】2222x y x y x y x y -+÷+-()()22x y x y x y x y x y +--=⨯++222()x y x y -=+ 【点睛】此题考查分式的除法法则:先把除式的分子分母颠倒位置,再化为最简分式即可. 11.B解析:B【分析】先通分,再把分子相加减,把x 、y 的值代入进行计算即可.【详解】原式=()()16333y x y x y x y --+- =()()3633x y y x y x y +-+-=()()333x y x y x y -+- =13x y+, 当227x ,y ==-,原式=112221=-, 故选B .【点睛】 本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.12.C解析:C【分析】先把除法变成乘法,然后约分即可.【详解】解:2a b b b ba ab a a a a÷⨯=⋅⋅=,故选:C.【点睛】本题考查了分式的乘除混合运算,解题的关键是熟练掌握乘除混合运算法则.二、填空题13.2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000022=2.2×10−10,故答案为:2.2×10−10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.【分析】根据异分母分式加减法法则计算即可【详解】原式故答案为:【点睛】本题考查了分式的加减—异分母分式的减法关键是掌握分式加减的计算法则解析:12a.【分析】根据异分母分式加减法法则计算即可.【详解】原式211 222a a a =-=.故答案为:12a.【点睛】本题考查了分式的加减—异分母分式的减法,关键是掌握分式加减的计算法则. 15.4038【分析】先根据已知图形得出代入方程中再将左边利用裂项化简解分式方程可得答案【详解】由图形知:∴∵∴故填:30;【点睛】本题考查图形的变化规律解题的关键是根据已知图形得到以及裂项的规律解析:4038【分析】先根据已知图形得出()1n a n n =+,代入方程中,再将左边利用()11111n n n n =-++裂项化简,解分式方程可得答案.【详解】由图形知:112a =⨯,223a =⨯,334a =⨯,∴ ()1n a n n =+,556=30a =⨯,∵123201922222020n a a a a +++⋅⋅⋅+=, ∴2222122334201920202020n +++⋅⋅⋅+=⨯⨯⨯⨯, 1111121223201920202020n ⎛⎫-+-+⋅⋅⋅+-= ⎪⎝⎭, 4038n =,故填:30;4038.【点睛】本题考查图形的变化规律,解题的关键是根据已知图形得到()1n a n n =+,以及裂项的规律()11111n n n n =-++. 16.【分析】根据分式有意义的条件是分母不等于零可得答案【详解】由题意得:解得:故答案为:【点睛】本题主要考查了分式有意义的条件关键是掌握分式有意义的条件是分母不等于零解析:1x ≠-【分析】根据分式有意义的条件是分母不等于零可得答案.【详解】由题意得:10x +≠,解得:1x ≠-,故答案为:1x ≠-.【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零. 17.【分析】先根据题意得出x-y=4xy 然后代入所求的式子进行约分就可求出结果【详解】∵∴x-y=4xy ∴原式=故答案为:【点睛】此题考查分式的基本性质正确对已知式子进行化简约分正确进行变形是关键 解析:112【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果.【详解】 ∵114y x-=, ∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点睛】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键. 18.【分析】先算乘方再算乘除即可得到答案【详解】解:故答案为:【点睛】本题考查分式的化简求值属于基础题 解析:26y x- 【分析】先算乘方,再算乘除即可得到答案.【详解】 解:3224423y x x y⎛⎫-⋅ ⎪⎝⎭ 6234483y x x y=-⋅ 26y x=-. 故答案为:26y x-. 【点睛】本题考查分式的化简求值,属于基础题.19.m >2且m≠3【分析】先给分式方程去分母化为整式方程用m 表示出方程的解再由解为正数求出m 的取值范围即可【详解】解:去分母得:3x ﹣m=2(x﹣1)解得:x=m ﹣2∵分式方程的解是正数且x≠1∴m ﹣2解析:m >2且m≠3【分析】先给分式方程去分母化为整式方程,用m 表示出方程的解,再由解为正数求出m 的取值范围即可.【详解】解:去分母,得:3x ﹣m=2(x ﹣1),解得:x=m ﹣2,∵分式方程的解是正数,且x≠1,∴m ﹣2>0,且m ﹣2≠1,解得:m >2且m≠3,故答案为:m >2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.20.【分析】根据a2+b2=(a+b )2-2ab 把相应数值代入即可求解【详解】解:∵a+b=4∴a2+b2=(a+b )2-2ab=10即42-2ab=10解得ab=3∴故答案为:【点睛】本题主要考查了完 解析:43【分析】根据a 2+b 2=(a+b )2-2ab ,把相应数值代入即可求解.【详解】解:∵a+b=4,∴a 2+b 2=(a+b )2-2ab=10,即42-2ab=10,解得ab=3. ∴1143a b a b ab ++== 故答案为:43. 【点睛】 本题主要考查了完全平方公式以及分式的运算,熟记公式是解答本题的关键.三、解答题21.(1)x =1;(2)无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程无解;【详解】解:(1)去分母得:1+2(x ﹣3)=x ﹣4,解得:x =1,经检验x =1是分式方程的解;(2)去分母,得3x-(x+2)=0,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.22.(1)40千米;(2)80千米【分析】(1)设甲每小时走x 千米,则乙每小时走2x 千米,根据题意列出分式方程,即可求解; (2)设相遇时甲出发t 小时,根据相遇时甲乙路程和为240千米列出方程,求解即可.【详解】解:(1)设甲每小时走x 千米,则乙每小时走2x 千米, 根据题意可得:24024032x x -=, 解得40x =,经检验得40x =是原分式方程的解,∴甲每小时走40千米;(2)设相遇时甲出发t 小时,由(1)可得乙每小时走80千米,根据题意可得:()40803240t t +-=,解得4t =,此时乙走的路程为()804380⨯-=千米.【点睛】本题考查分式方程的应用,根据题意找出等量关系,并列出方程是解题的关键. 23.22(1)x x -+;3x =-;4 【分析】先算分式的减法运算,再把除法化为乘法,进行约分化简,再代入求值,即可.【详解】原式2462(1)2(1)(1)(1)(1)(1)x x x x x x x x ⎡⎤+++=-÷⎢⎥+-+--⎣⎦224(1)(1)(1)(2)x x x x x +-=⋅+-+ ()211x x -=+221x x -=+ 当3x =-时,原式2(3)2431⨯--==-+. 【点睛】 本题主要考查分式的化简求值,掌握分式的混合运算法则,是解题的关键.24.(1)第一次水果进价是每千克4元;(2)该水果店在这两次销售中,总体上是盈利,且盈利3104元【分析】(1)设第一次水果的进价是每千克x 元,则第二次水果的进价是每千克1.2x 元,根据数量=总价÷单价结合第二次比第一次多购进20千克,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用数量=总价÷单价可求出第一次购进水果数量,由总利润=每千克利润×销售数量可求出第一次购进水果的销售利润,同理可求出第二次购进水果的销售利润,将二者相加即可得出结论.【详解】解:(1)设第一次水果进价为每千克x 元,则第二次水果进价为每千克1.2x 元. 依题意列方程得,2000249620 1.2x x+= 解得,4x =经检验,4x =是方程的根,且符合题意. ∴第一次水果进价是每千克4元.(2)第一次售完水果盈利为:()20009425004-⨯=(元) 第二次售完水果盈利为:()()200010 4.81005 4.8(20100)6044-⨯+-⨯+-=(元) 25006043104+=(元)∴该水果店在这两次销售中,总体上是盈利,且盈利3104元.【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.25.(1)3x ;±1;(2)1a a +,2a =,值为32【分析】 (1)先化简,后把x=3或x=-3分别代入求值;(2)先化简,根据分母不能为零的原则,选择数值代入计算即可.【详解】(1)原式=212(2)2(2)x x x x x x +-+-⎛⎫⨯ ⎪--⎝⎭ =23(2)2(2)x x x x -⨯-- =3x, ∵x 是9的平方根, ∴3x =±,∴原式=±1.(2)原式=2(1)(1)(1)(1)(1)(1)a a a a a a a ⎛⎫-++-⨯ ⎪-+⎝⎭ 1a a+=, 由题意当1,1,0a =-时,原分式没有意义, ∴2a =,此时原分式32=. 【点睛】本题考查了分式的化简求值,选值时,确保每一个分式有意义是解题的关键.26.(1)24m mn +;(2)x=1【分析】(1)根据单项式乘多项式法则和完全平方公式,即可得到结果;(2)通过去分母,把分式方程化为整式方程,即可求解.【详解】(1)原式=22222mn n m mn n -+++=24m mn +;(2)2132163x x x -=--- 213213(21)x x x -=--- 2(21)3x x --=-423x x --=-55=xx=1,经检验,x=1是方程的解,∴x=1.【点睛】本题主要考查整式的混合运算以及解分式方程,熟练掌握完全平方公式以及解分式方程的步骤,是解题的关键.。
上海所在地区八年级数学上册第五单元《分式》检测题(答案解析)
一、选择题1.关于x的一元一次不等式组31, 224xm xx x⎧-≤+⎪⎨⎪-≤⎩的解集为4x≤,且关于y的分式方程13122my yy y--+=--有整数解,则符合条件的所有整数m的和为()A.9 B.10 C.13 D.142.如果分式2121xx-+的值为0,则x的值是()A.1B.0C.1-D.±13.如图,若x为正整数,则表示3211327121(1)(1)543x x xx xx x x x--++--÷++++的值的点落在().A.段①B.段②C.段③D.段④4.下列各式中,正确的是()A.22a ab b=B.11a ab b+=+C.2233a b aab b=D.232131a ab b++=--5.下列说法正确的是()A.分式242xx--的值为零,则x的值为2±B.根据分式的基本性质,mn可以变形为22mxnxC.分式32xyx y-中的,x y都扩大3倍,分式的值不变D.分式211xx++是最简分式6.若整数a使得关于x的不等式组3(1)32(1)x ax x>⎧⎨-+>+⎩的解集为2x>,且关于x的分式方程21111axx x+=---的解为整数,则符合条件的所有整数a的和是()A.2-B.1-C.1 D.27.若分式()22222x y x y a x a y ax ay+-÷-+的值等于5,则a 的值是( ) A .5B .-5C .15D .15-8.若实数a 使关于x 的不等式组313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .19.22()-n b a (n为正整数)的值是( )A .222+n n b aB .42n n b aC .212+-n n b aD .42-nn b a10.若分式2-3xx 在实数范围内有意义,则实数x 的取值范围是( ) A .x >32 B .x <32 C .x =32D .x ≠3211.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1C .2D .112.计算a ba b a÷⨯的结果是() A .aB .2aC .2b aD .21a 二、填空题13.计算2216816a a a -++÷428a a -+=__________.14.计算22a b a b a b-=-- _________.15.若32a b =,则22a ba+=____. 16.计算:112a a-=________.17.化简23x x+=____. 18.化简:(﹣2y x)3÷(223⋅y x x y )=_______________.19.已知关于x 的方程321x mx -=-的解是正数,则m 的取值范围为____________. 20.已知:4a b +=,2210a b +=,求11a b+=______. 三、解答题21.解分式方程: (1)13x -+2=43x x --;(2)()3211x x x x +---= 0 22.计算:(1)()()22x y x x y -++;(2)22362369m m m m m -⎛⎫-÷ ⎪--+⎝⎭. 23.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元 (2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 24.在今年新冠肺炎防疫工作中,学校购买了A 、B 两种不同型号的口罩,已知A 型口罩的单价比B 型口罩的单价多1.5元,且用8000元购买A 型口罩的数量与用5000元购买B 型口罩的数量相同.(1)求A 、B 两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B 型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A 型口罩的数量最多是多少个? 25.小红到离家2100米的学校参加艺术节联欢会,到学校时发现演出道具忘在家中,此时距联欢会开始还有45分钟,于是她马上步行回家取道具,随后骑自行车返回学校.已知小红骑自行车到学校比她从学校步行到家用时少20分钟,且骑自行车的平均速度是步行平均速度的3倍.(1)小红步行的平均速度(单位:米/分)是多少?(2)小红能否在联欢会开始前赶到学校?(通过计算说明你的理由)26.计算:2212yx y x y ---.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可. 【详解】解:31224xm x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得 x≤2m+2, 解②得 x≤4,∵不等式组31224xm x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4, ∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得 my-1+y-2=3y , ∴32y m =-, ∵m≥1,分式方程13122my yy y--+=--有整数解, ∴m=1,3,5, ∵y-2≠0, ∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意,1+3+5=9. 故选A . 【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键.2.D解析:D 【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案. 【详解】解:∵分式2121x x -+值为0,∴2x+1≠0,210x -=, 解得:x=±1. 故选:D . 【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零分母不为零是解题关键.3.B解析:B 【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择. 【详解】原式221(1)71211543(1)x x x x x x x-++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x-++=-++++ 1111x x x-=-++ 1x x =+ 又因为x 为正整数,所以1121x x ≤<+, 故选B . 【点睛】本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.4.C解析:C 【分析】利用分式的基本性质变形化简得出答案. 【详解】A .22a a b b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B .11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误; C .2233a b a ab b=,从左边到右边分子和分母同时除以ab ,分式的值不变,故正确; D .232131a a b b ++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误. 故选:C . 【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.5.D解析:D 【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案. 【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误;C 、分式32xyx y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误;D 、分式211x x ++是最简分式,正确; 故选:D . 【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.6.D解析:D 【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和. 【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①②解不等式①得,x a >; 解不等式②得,2x >; ∵不等式组的解集为2x >, ∴a≤2,解方程21111ax x x+=---得:21x a =-∵分式方程的解为整数, ∴11a -=±或2± ∴a=0、2、-1、3 又x≠1,∴211a≠-,∴a≠-1, ∴a≤2且a≠-1, 则a=0、2,∴符合条件的所有整数a 的和=0+2=2, 故选:D . 【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.7.C解析:C 【分析】先进行分式除法,化简后得到关于a 的式子,列方程即可求解. 【详解】解:()22222x y x y a x a y ax ay+-÷-+ ()22()(()=))(a x y a x x y y y x x y ++-⨯-+, 1=a, 根据题意,15a=,解得,15a =, 经检验,15a =是原方程的解, 故选C 【点睛】本题考查了分式的除法和分式方程的解法,正确化简分式,列出分式方程,是解决问题的关键.8.D解析:D 【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②,由①得:x ≤﹣3, 由②得:x ≥a+2, ∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解, 所以﹣7<a+2≤﹣3, 解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去), 当a =﹣6时,y =﹣2.5(不是整数,舍去), 当a =﹣5时,y =﹣2(是整数,符合题意), 所以符合条件的所有整数a 为﹣5.【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.9.B解析:B 【分析】根据分式的乘方计算法则解答. 【详解】2422()-=nn n b b a a . 故选:B . 【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.10.D解析:D 【分析】根据分式有意义的条件是分母不等于零列出不等式,解不等式得到答案. 【详解】解:由题意得,2x-3≠0, 解得,x ≠32, 故答案为:D . 【点睛】本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.11.C解析:C 【分析】先根据分式为零的条件列出不等式组,然后再求解即可. 【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C . 【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.12.C【分析】先把除法变成乘法,然后约分即可. 【详解】解:2a b b b b a a b a a a a÷⨯=⋅⋅=,故选:C . 【点睛】本题考查了分式的乘除混合运算,解题的关键是熟练掌握乘除混合运算法则.二、填空题13.-2【分析】原式利用除法法则变形约分即可得到结果【详解】解:原式==-2故答案为:-2【点睛】本题考查了分式的除法熟练掌握运算法则是解本题的关键解析:-2 【分析】原式利用除法法则变形,约分即可得到结果 【详解】 解:原式=2(4)(4)2(4)(4)4a a a a a-++-⋅+-=-2, 故答案为:-2. 【点睛】本题考查了分式的除法,熟练掌握运算法则是解本题的关键.14.【分析】根据分式运算的性质结合平方差公式计算即可得到答案【详解】故答案为:【点睛】本题考查了分式平方差公式的知识;解题的关键是熟练掌握分式加减运算平方差公式的性质从而完成求解 解析:+a b【分析】根据分式运算的性质,结合平方差公式计算,即可得到答案. 【详解】22a b a b a b ---()()22a b a b a b a b a b a b+--===+-- 故答案为:+a b . 【点睛】本题考查了分式、平方差公式的知识;解题的关键是熟练掌握分式加减运算、平方差公式的性质,从而完成求解.15.2【分析】将代入式子化简即可得到答案【详解】∴原式故答案为:2【点睛】此题考查分式的化简求值解题的关键是正确代入及掌握分式化简方法 解析:2【分析】将32a b =代入式子化简即可得到答案.【详解】23b a =,∴原式34222a a a a a+===. 故答案为:2.【点睛】 此题考查分式的化简求值,解题的关键是正确代入及掌握分式化简方法.16.【分析】根据异分母分式加减法法则计算即可【详解】原式故答案为:【点睛】本题考查了分式的加减—异分母分式的减法关键是掌握分式加减的计算法则 解析:12a. 【分析】 根据异分母分式加减法法则计算即可.【详解】 原式211222a a a=-=. 故答案为:12a . 【点睛】本题考查了分式的加减—异分母分式的减法,关键是掌握分式加减的计算法则. 17.【分析】原式利用同分母分式的加法法则计算即可得到结果【详解】故答案为:【点睛】此题考查了分式的加减法熟练掌握运算法则是解本题的关键 解析:5x. 【分析】 原式利用同分母分式的加法法则计算即可得到结果.【详解】232+3x x x+=5x =. 故答案为:5x【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.18.﹣【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】解:原式=﹣÷=﹣•=﹣故答案为:﹣【点睛】本题考查分式的混合运算按照正确的运算顺序进行运算并及时化简是解题的关键解析:﹣2 5 y x【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】解:原式=﹣36yx÷yx=﹣36yx•xy=﹣25yx,故答案为:﹣25yx.【点睛】本题考查分式的混合运算,按照正确的运算顺序进行运算并及时化简是解题的关键.19.m>2且m≠3【分析】先给分式方程去分母化为整式方程用m表示出方程的解再由解为正数求出m的取值范围即可【详解】解:去分母得:3x﹣m=2(x ﹣1)解得:x=m﹣2∵分式方程的解是正数且x≠1∴m﹣2解析:m>2且m≠3【分析】先给分式方程去分母化为整式方程,用m表示出方程的解,再由解为正数求出m的取值范围即可.【详解】解:去分母,得:3x﹣m=2(x﹣1),解得:x=m﹣2,∵分式方程的解是正数,且x≠1,∴m﹣2>0,且m﹣2≠1,解得:m>2且m≠3,故答案为:m>2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.20.【分析】根据a2+b2=(a+b)2-2ab把相应数值代入即可求解【详解】解:∵a+b=4∴a2+b2=(a+b)2-2ab=10即42-2ab=10解得ab=3∴故答案为:【点睛】本题主要考查了完 解析:43【分析】根据a 2+b 2=(a+b )2-2ab ,把相应数值代入即可求解.【详解】解:∵a+b=4,∴a 2+b 2=(a+b )2-2ab=10,即42-2ab=10,解得ab=3. ∴1143a b a b ab ++== 故答案为:43. 【点睛】 本题主要考查了完全平方公式以及分式的运算,熟记公式是解答本题的关键.三、解答题21.(1)x =1;(2)无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程无解;【详解】解:(1)去分母得:1+2(x ﹣3)=x ﹣4,解得:x =1,经检验x =1是分式方程的解;(2)去分母,得3x-(x+2)=0,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.22.(1)222x y +;(2)36m m -+ 【分析】(1)先根据完全平方公式、单项式与多项式的乘法法则计算,再合并同类项即可; (2)把括号内通分,并把除法转化为除法,然后约分化简即可.【详解】(1)原式22222x xy y x xy =-+++222x y =+;(2)原式=2226693336m m m m m m m --+⎛⎫-⨯ ⎪---⎝⎭ ()()()236366m m m m m --=⋅--+ 36m m -=+. 【点睛】 本题考查了整式的混合运算,以及分式的混合运算,熟练掌握运算法则是解答本题的关键.23.(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =, 经检验, = 5x 是原方程的解,且符合题意,1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.24.(1)4元;2.5元 (2)800个【分析】(1)设A 型口罩的单价为x 元,则B 型口罩的单价为( 1.5)x 元,根据“用8000元购买A 型口罩的数量与用5000元购买B 型口罩的数量相同”列出方程并解答;(2)设增加购买A 型口罩的数量是m 个,根据“增加购买B 型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元”列出不等式并解答即可.【详解】解:(1)设A 型口罩的单价为x 元,则B 型口罩的单价为()1.5x -元, 根据题意,得800050001.5x x =-. 解方程,得:4x =.经检验:4x =是原方程的根,且符合题意.所以 1.5 2.5x -=.答:A 型口罩的单价为4元,则B 型口罩的单价为2.5元.(2)设增加购买A 型口罩的数量是m 个,根据题意,得:2.5247200m m ⨯+≤.解不等式,得:800m ≤.答:增加购买A 型口罩的数量最多是800个.【点睛】本题主要考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.25.(1)70米/分;(2)能,见解析【分析】(1)设小红步行的平均速度为x 米/分,则骑自行车的平均速度为3x 米/分.由小红骑自行车到学校比她从学校步行到家用时少20分钟为等量关系建立方程求出其解即可; (2)根据(1)求出的结论计算小红往返的时间之和与45分钟作比较就可以得出结论.【详解】(1)解:设小红步行的平均速度是x 米/分,则骑自行车的平均速度是3x 米/分. 根据题意,得21002100203x x-=,方程两边同乘最简公分母3x ,得6300210060x -=,解得70x =.检验:把70x =代入最简公分母3x ,得33700x =⨯≠,因此,70x =是原方程的根.答:小红步行的平均速度是70米/分.(2)由(1),得70x =,3210x =,所以小红骑自行车的速度是210米/分,于是,小红回家取道具共花时间:2100210030104070210+=+=(分), 由于4045<,因此,小红能在联欢会开始前赶到学校.【点睛】本题是一道行程问题的应用题,考查了列分式方程解实际问题,分式方程的解法,解答时小红骑自行车到学校比她从学校步行到家用时少20分钟为等量关系建立方程是关键.26.1x y+ 【分析】首先把两分式通分化为同分母分式后,再按照分母不变,分子相加减的法则计算.【详解】 解:原式2()()()()x y y x y x y x y x y +=-+-+- 2()()x y y x y x y +-=+-. ()()x y x y x y -=+-. 1x y=+. 【点睛】本题考查分式的加减运算,熟练掌握异分母分式的加减法则是解题关键.。
上海市八年级数学上册第五单元《分式》检测题(含答案解析)
一、选择题1.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ay y y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .3 2.关于x 的分式方程5222m x x+=--有增根,则m 的值为( ) A .2m = B .2m =- C .5m = D .5m =-3.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510y y a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2 B .3 C .6 D .114.若a =1,则2933a a a -++的值为( ) A .2 B .2- C .12 D .12- 5.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600 6.大爱无疆,在爆发新冠病毒疫情后,甲,乙两家单位分别组织了员工捐款.已知甲单位捐款7500元,乙单位捐款9800元,甲单位捐款人数比乙单位少10人,且甲单位人均捐款额比乙单位多20元,若设甲单位的捐款人数为x ,则可列方程为( )A .7500980020x x 10-=- B .9800750020x 10x -=-C .7500980020x x 10-=+D .9800750020x 10x-=+ 7.为推进垃圾分类,推动绿色发展,宜宾天原化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台,两种型号机器人的单价和为140万元.若设乙型机器人每台x 万元,根据题意,所列方程正确的是( )A .4605801x 140x -=-B .4605801140x x =--C .4605801x 140x =+-D .4605801140x x-=- 8.若分式293x x -+的值为0,则x 的值为( ) A .4B .4-C .3或-3D .3 9.下列计算正确的是( ) A .22a a a ⋅=B .623a a a ÷=C .2222a b ba a b -=-D .3339()28a a -=- 10.将0.50.0110.20.03x x +-=的分母化为整数,得( ) A .0.50.01123x x +-= B .5051003x x +-= C .0.50.01100203x x +-= D .50513x x +-= 11.已知a 、b 为实数且满足a ≠﹣1,b ≠﹣1,设M =11a b a b +++,N =1111a b +++,则下列两个结论( ) ①ab =1时,M =N ;ab >1时,M <N .②若a +b =0,则M •N ≤0.A .①②都对B .①对②错C .①错②对D .①②都错 12.已知227x ,y ==-,则221639y x y x y ---的值为( ) A .-1 B .1 C .-3 D .3二、填空题13.甲、乙两同学的家与学校的距离均为3000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校,已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校结果甲同学比乙同学早到2分钟,若甲同学到达学校时,乙同学离学校还有m 米,则m =________.14.已知实数a 、b 满足32a b =,则a b a b +-_________. 15.计算:()0322--⋅=________.16.如图,将形状大小完全相同的“□”按照一定规律摆成下列图形,第1幅图中“□”的个数为1a ,第2幅图中“□”的个数为2a ,第3幅图中“□”的个数为3a ,……,以此类推,若123201922222020n a a a a +++⋅⋅⋅+=(n 为正整数),则(1)5a =________;(2)n 的值为________.17.分式2(1)(3)32m m m m ---+的值为0,则m =______________. 18.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5400元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数多100盒,且每盒花的进价比第一批的进价少3元.设第一批盒装花的进价是x 元,则根据题意可列方程为________.19.方程22020(1)1x x x ++-=的整数解的个数是_____.20.计算:()30120202-⎛⎫---= ⎪⎝⎭______. 三、解答题21.先化简,再求值:213(1)211x x x x x +--÷-+-,其中4x =-. 22.(1)计算:(-14)-2-2)0+(-5)9×(-0.28); (2)因式分解:(1-a )2+4(a-1);(3)计算:(x+3)2-(x+2)(x-1).23.计算:(1)2202()2(3)(71)3---;(2)22(1)(21)(21)3(4)m m m m ⎡⎤+-+--÷-⎣⎦;(3)2221121x x x x x x --+-+ 24.先化简,再求值:22121124x x x x -+⎛⎫+÷ ⎪--⎝⎭,其中3x =. 25.先化简,再求值:213(1)211x x x x x +--÷-+-,其中x =12. 26.先化简,再求值:2222631121x x x x x x x ++-÷+--+,其中2x =-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可.【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩, ∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解, ∴2015a +<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a =, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3∴所有满足条件的整数a 的值之和是4,故选A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.2.D解析:D【分析】先把分式方程化为整式方程,再把增根代入整式方程,即可求解.【详解】5222m x x+=-- 去分母得:52(2)x m +-=-,∵关于x 的分式方程5222m x x+=--有增根,且增根x=2, ∴把x=2代入52(2)x m +-=-得,5m =-,即:m=-5, 故选D .【点睛】本题主要考查分式方程的增根,掌握分式方程增根的定义:使分式方程的分母为零的根,叫做分式方程的增根,是解题的关键.3.B解析:B【分析】根据分式方程的解为正整数解,即可得出a =0,1,2,5,11,根据不等式组的解集为a−1<4,即可得出a <5,找出a 的所有的整数,将其相加即可得出结论.【详解】解:∵分式方程有解,∴解分式方程得x =121a +, ∵x≠3, ∴121a +≠3,即a≠3, 又∵分式方程有正整数解,∴a =0,1,2,5,11,又∵不等式组至少有2个整数解,∴解不等式组得51y y a ≤⎧⎨-⎩>, ∴a−1<4,解得,a <5,∴a =0,1,2,∴0+1+2=3,故选:B .【点睛】本题考查了一元一次不等式组的整数解、分式方程的解,有一定难度,注意分式方程中的解要满足分母不为0的情况. 4.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 5.A解析:A【分析】先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 6.C解析:C【分析】由设甲单位的捐款人数为x ,甲单位捐款人数比乙单位少10人,得到乙单位人数为(x+10),根据甲单位人均捐款额比乙单位多20元列得方程.【详解】 解:由题意得:7500980020x x 10-=+, 故选:C .【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键. 7.B解析:B【分析】设乙型机器人每台x 万元,由两种型号机器人的单价和为140万元得甲型机器人每台()140x -万元,根据用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台列得方程.【详解】解:设乙型机器人每台x 万元,则甲型机器人每台()140x -万元,根据题意,可得4605801140x x=--. 故选:B.【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键.8.D解析:D【分析】先根据分式的值为0可得290x ,再利用平方根解方程可得3x =±,然后根据分式的分母不能为0即可得.【详解】 由题意得:2903x x -=+, 则290x ,即29x =,由平方根解方程得:3x =±,分式的分母不能为0,30x ∴+≠,解得3x ≠-,则x 的值为3,故选:D .【点睛】本题考查了分式的值、分式有意义的条件、利用平方根解方程,掌握理解分式的值是解题关键.9.C解析:C【分析】A 、B 两项利用同底数幂的乘除法即可求解,C 项利用合并同类项法则计算即可,D 项利用分式的乘方即可得到结果,即可作出判断.【详解】解:A 、原式=a 3,不符合题意;B 、原式=a 4,不符合题意;C 、原式=-a 2b ,符合题意;D 、原式=3278a -,不符合题意, 故选:C .【点睛】此题考查了分式的乘方,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键. 10.D解析:D【分析】根据分式的基本性质求解.【详解】 解:将0.50.0110.20.03x x +-=的分母化为整数,可得50513x x +-=. 故选:D .【点睛】本题考查一元一次方程的化简,熟练掌握分式的基本性质解题关键. 11.C解析:C【分析】对于①,计算M-N 的值可以判断M>N 还是M<N ;对于②,计算M N 的值,然后根据a 、b 满足的条件判断其大于0还是小于0.【详解】∵M =11a b a b +++,N = 1111a b +++, ∴M ﹣ N =11a b a b +++﹣( 1111a b +++) =22(1)(1)ab a b -++, ①当ab =1时,M ﹣N =0,∴M =N ,当ab >1时,2ab >2,∴2ab ﹣2>0,当a <0时,b <0,(a +1)(b +1)>0或(a +1)(b +1)<0,∴M ﹣N >0或M ﹣N <0,∴M >N 或M <N ;故①错误;②M •N =(11a b a b +++)•( 1111a b +++) =()()()()221111a a b b a b a b +++++++.∵a +b =0, ∴原式=()()2211a b a b +++ =224(1)(1)ab a b ++. ∵a ≠﹣1,b ≠﹣1,∴(a +1)2(b +1)2>0.∵a +b =0,∴ab ≤0,M •N ≤0,故②对.故选:C .【点睛】本题考查分式运算的应用,熟练掌握分式的运算法则是解题关键.12.B解析:B【分析】先通分,再把分子相加减,把x 、y 的值代入进行计算即可.【详解】原式=()()16333y x y x y x y --+- =()()3633x y yx y x y +-+-=()()333x y x y x y -+- =13x y+, 当227x ,y ==-,原式=112221=-, 故选B .【点睛】 本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.二、填空题13.600【分析】设乙骑自行车的速度为x 米/分钟则甲步行速度是x 米/分钟公交车的速度是2x 米/分钟根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟列方程即可得到乙的速度甲同学到达学校时乙解析:600【分析】设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟,列方程即可得到乙的速度,甲同学到达学校时,乙同学离学校还有2x 米,即可得到结论;【详解】解:设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意得 600300060030002122x x x -+=- , 解得:x=300米/分钟,经检验x=300是方程的根,则乙骑自行车的速度为300米/分钟.那么甲同学到达学校时,乙同学离学校还=2×300=600米.故答案为:600.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 14.5【分析】根据已知用b 表示a 然后把a 的值代入所求的代数式分子分母约掉b 后可以得到解答【详解】∴∴故答案为:5【点睛】本题考查分式的化简与求值熟练掌握分式化简与求值的各种方法是解题关键解析:5【分析】根据已知用b 表示a ,然后把a 的值代入所求的代数式,分子分母约掉b 后可以得到解答.【详解】 32a b =, ∴32a b =∴32532b ba b a b b b ++==--, 故答案为:5.【点睛】本题考查分式的化简与求值,熟练掌握分式化简与求值的各种方法是解题关键. 15.【分析】根据零指数幂定义及负整数指数幂定义解答【详解】故答案为:【点睛】此题考查实数的计算掌握零指数幂定义及负整数指数幂定义是解题的关键 解析:18【分析】根据零指数幂定义及负整数指数幂定义解答.【详解】()0322--⋅=118⨯=18, 故答案为:18. 【点睛】此题考查实数的计算,掌握零指数幂定义及负整数指数幂定义是解题的关键. 16.4038【分析】先根据已知图形得出代入方程中再将左边利用裂项化简解分式方程可得答案【详解】由图形知:∴∵∴故填:30;【点睛】本题考查图形的变化规律解题的关键是根据已知图形得到以及裂项的规律解析:4038【分析】先根据已知图形得出()1n a n n =+,代入方程中,再将左边利用()11111n n n n =-++裂项化简,解分式方程可得答案.【详解】由图形知:112a =⨯,223a =⨯,334a =⨯,∴ ()1n a n n =+,556=30a =⨯, ∵ 123201922222020n a a a a +++⋅⋅⋅+=, ∴2222122334201920202020n +++⋅⋅⋅+=⨯⨯⨯⨯, 1111121223201920202020n ⎛⎫-+-+⋅⋅⋅+-= ⎪⎝⎭,故填:30;4038.【点睛】本题考查图形的变化规律,解题的关键是根据已知图形得到()1n a n n =+,以及裂项的规律()11111n n n n =-++. 17.3【分析】要使分式的值为0必须分式分子的值为0并且分母的值不为0【详解】解:要使分式由分子解得:或3;而时分母;当时分母分式没有意义所以的值为3故答案为:3【点睛】本题主要考查了分式的值为零的条件要 解析:3【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【详解】解:要使分式由分子(1)(3)0m m --=.解得:1m =或3;而3m =时,分母23220m m -+=≠;当1m =时分母2321320m m -+=-+=,分式没有意义.所以m 的值为3.故答案为:3.【点睛】本题主要考查了分式的值为零的条件,要注意分母的值一定不能为0,分母的值是0时分式没有意义.18.【分析】设第一批盒装花的进价是x 元/盒则第一批进的数量是:第二批进的数量是:再根据等量关系:第二批进的数量=第一批进的数量+100可得方程【详解】解:设第一批盒装花的进价是元/盒则故答案是:【点睛】 解析:54003000100x 3x=+- 【分析】设第一批盒装花的进价是x 元/盒,则第一批进的数量是:3000x ,第二批进的数量是:5400x 3-,再根据等量关系:第二批进的数量=第一批进的数量+100可得方程. 【详解】解:设第一批盒装花的进价是x 元/盒,则54003000100x 3x=+-, 故答案是:54003000100x 3x=+-.本题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.19.4【分析】方程的右边是1有三种可能需要分类讨论第1种可能:指数为0底数不为0;第2种可能:底数为1;第3种可能:底数为-1指数为偶数【详解】解:(1)当x+2020=0x2+x -1≠0时解得x=﹣2解析:4【分析】方程的右边是1,有三种可能,需要分类讨论.第1种可能:指数为0,底数不为0;第2种可能:底数为1;第3种可能:底数为-1,指数为偶数.【详解】解:(1)当x+2020=0,x 2+x -1≠0时,解得x=﹣2020;(2)当x 2+x -1=1时,解得x=﹣2或1.(3)当x 2+x -1=﹣1,x+2020为偶数时,解得x=0因而原方程所有整数解是﹣2020,-2,1,0共4个.故答案为:4.【点睛】本题考查了:a 0=1(a 是不为0的任意数)以及1的任何次方都等于1.容易遗漏第3种可能情况,需特别注意.20.9【分析】根据零指数幂与负整数指数幂的运算法则进行求解【详解】故答案为:9【点睛】本题考查了零指数幂与负整数指数幂熟练掌握其运算法则是解题的关键解析:9【分析】根据零指数幂与负整数指数幂的运算法则进行求解.【详解】()30120201(8)1892-⎛⎫---=--=+= ⎪⎝⎭. 故答案为:9.【点睛】 本题考查了零指数幂与负整数指数幂,熟练掌握其运算法则是解题的关键.三、解答题21.1x x -;45【分析】 分式的混合运算,注意先算乘除,然后算加减,有小括号先算小括号里的,然后代入求值【详解】 解:213(1)211x x x x x +--÷-+- =2221(1)1(1)3x x x x x x -+-+-⨯-- =222111(1)3x x x x x x -+---⨯-- 2231(1)3x x x x x --=⨯-- 2(3)1(1)3x x x x x --=⨯-- 1x x =- 当4x =-时,原式441415x x -===---. 【点睛】 本题考查分式的混合运算,分式的化简求值,掌握运算顺序和计算法则正确计算是解题关键.22.①20;②(a-1)(a+3);③5x+11.【分析】(1)根据负指数幂,零指数幂及乘方法则计算即可;(2)提取公因式(a-1),进而分解因式即可;(3)先运用完全平方公式与多项式的乘法去括号,然后合并同类项.【详解】解原式=16-1+5×(-5×0.2)8=20(2)原式=(a-1)2+4(a-1)=(a-1)(a-1+4)=(a-1)(a+3)(3)原式=x 2+6x+9-(x 2+x-2)=x 2+6x+9-x 2-x+2=5x+11.【点睛】本题考查了负指数幂,零指数幂及乘方法则,提取公因式法分解因式及整式的混合运算,熟练运用运算性质是解题的关键.23.(1)0;(2)112m -;(3)x 【分析】(1)根据实数的混合运算的法则计算即可;(2)利用完全平方公式,平方差公式去括号、合并同类项后再计算除法即可; (3)根据分式乘法的法则进行计算即可.【详解】解:(1)原式=23212⎛⎫- ⎪⎝⎭=92314--+ =0.25﹣3+1=-1.75; (2)原式=()()222424134m m m m ++-+-÷- =()()2244m m m -+÷- =22444m m m m-+-- =112m -; (3)原式=()()()()2111·11x x x x x x +--+- =x .【点睛】本题考查实数的混合运算、整式的混合运算、完全平方公式,平方差公式,分式的乘法运算,正确计算负整数指数幂、零指数幂、多项式乘法公式和因式分解是解题关键.24.21x x +-;52【分析】 先计算括号内的运算,然后计算除法,把分式进行化简得到最简分式,再把3x =代入计算,即可得到答案.【详解】解:原式=()()()22212211x x x x x x x +--+⨯=---; 当3x =时,原式=522331=-+. 【点睛】 本题考查了分式的混合运算,分式的化简求值,解题的关键是掌握运算法则进行计算. 25.1x x -,-1.【分析】先计算括号内,再将除法化为乘法,分别因式分解后约分,将x =12代入计算即可. 【详解】 解:原式=222113211x x x x x x x -+---÷-+- =2233211x x x x x x --÷-+- =2(3)1(1)3x x x x x ---- =1x x -, 当x =12时, 原式=121112=--. 【点睛】本题考查分式的化简求值.属于常考题型,熟练掌握分式混合运算的法则是解题的关键.26.21x +,-2 【分析】 先将分式的分子分母因式分解,同时将除法转化为乘法,再计算分式的乘法,最后计算分式的减法即可.【详解】解:2222631121x x x x x x x ++-÷+--+ 222(3)(1)1(1)(1)3x x x x x x x +-=-⋅++-+ 22(1)11x x x x -=-++ 21x =+, 当2x =-时,原式222211===--+-. 【点睛】 本题主要考查分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键.。
(人教版)上海市八年级数学上册第五单元《分式》测试卷(答案解析)
一、选择题1.化简221x x x ++÷(1-11x +)的结果是( ) A .11x + B .11x - C .x+1 D .x-12.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6- 3.关于代数式221a a +的值,以下结论不正确的是( ) A .当a 取互为相反数的值时,221a a +的值相等 B .当a 取互为倒数的值时,221a a +的值相等 C .当1a >时,a 越大,221a a+的值就越大 D .当01a <<时,a 越大,221a a+的值就越大 4.世界上数小的开花结果植物是激大利亚的出水浮萍,这种植物的果实像一个微小的无花架,质做只有0.000000076克,0.000000076用科学记数法表示正确的是( ) A .-60.7610⨯ B .-77.610⨯ C .-87.610⨯ D .-97.610⨯ 5.如果a ,b ,c ,d 是正数,且满足a +b +c +d =2,11a b c b c d ++++++11a c d a b d+++++=4,那么d a a b c b c d ++++++b c a c d a b d+++++的值为( ) A .1 B .12 C .0 D .46.若a =1,则2933a a a -++的值为( ) A .2 B .2- C .12 D .12- 7.已知2340x x --=,则代数式24x x x --的值是( ) A .3 B .2 C .13 D .128.为推进垃圾分类,推动绿色发展,宜宾天原化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台,两种型号机器人的单价和为140万元.若设乙型机器人每台x万元,根据题意,所列方程正确的是()A.4605801x140x-=-B.4605801140x x=--C.4605801x140x=+-D.4605801140x x-=-9.已知1x=是分式方程2334axa x+=-的解,则a的值为()A.1-B.1C.3D.3-10.3333x a a yx y y x+--+++等于()A.33x yx y-+B.x y-C.22x xy y-+D.22x y+11.2222x y x yx y x y-+÷+-的结果是()A.222()x yx y++B.222()x yx y+-C.222()x yx y-+D.222()x yx y++12.如果111a b a b+=+,则b aa b+的值为()A.2 B.1 C.1-D.2-二、填空题13.若关于x的分式方程233x mx x=---的解为正数,则常数m的取值范围是______.14.2112111aa a a+-+--=___________.15.PM2.5是指大气中直径小于或等于2.5微米(0.0000000025千米)的颗粒物,也称为可入肺颗粒物.2.5微米用科学记数法表示为________千米.16.如图,将形状大小完全相同的“□”按照一定规律摆成下列图形,第1幅图中“□”的个数为1a,第2幅图中“□”的个数为2a,第3幅图中“□”的个数为3a,……,以此类推,若123201922222020na a a a+++⋅⋅⋅+=(n为正整数),则(1)5a=________;(2)n的值为________.17.若分式2221x x --的值为正整数,则x =_____________. 18.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________. 19.(1) 计算:(-a 2b )2=________;(2)若p +3=(-2020)0,则p =________;(3)若(x +2)0=1,则x 应满足的条件是________.20.计算:22a 1a 1a 2a a--÷+=____. 三、解答题21.在今年新冠肺炎防疫工作中,学校购买了A 、B 两种不同型号的口罩,已知A 型口罩的单价比B 型口罩的单价多1.5元,且用8000元购买A 型口罩的数量与用5000元购买B 型口罩的数量相同.(1)求A 、B 两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B 型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A 型口罩的数量最多是多少个? 22.在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要时间比规定时间早25天,乙单独完成这项工程需要时间比规定时间多20天.若由甲乙两队先合作10天,剩下的工程由乙队单独做,正好在规定时间内完成(既没提前,也没延后).(1)求规定时间是多少天?(2)乙队单独施工2天后,甲队开始加入合作,合作时,甲队的人数增加了10%,每个人的效率提高了3a %,同时乙队的人数增加了a %,每个人的效率提高了40%,结果合作20天完成了任务,求a 的值(假设每队每人的效率相等).23.武汉某道路工程项目,若由甲、乙两工程队合作20天可完工;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲、乙工程队合作施工时对道路交通有影响,独施工时对交通无影响且要求整个工期不能超过24天,问如何安排两队施工,对道路交通的影响会最小?24.(11201(2)(3)2π-⎛⎫---+ ⎪⎝⎭ (2)化简:2(2)()x x y x y --+25.先化简,再求值.(1)22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x 是9的平方根; (2)2222221211⎛⎫-+-÷ ⎪-+-⎝⎭a a a a a a a ,然后从-1,0,1,2中选一个合适的数作为a 的值代入求值.26.先化简,再求值:2222631121x x x x x x x ++-÷+--+,其中2x =-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ , 故选A.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键. 2.D解析:D【分析】 先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可.【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解, ∴12x m -≤≤-,∴21m -≥-,得3m ≤,∴53m -≤≤,∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3,其和为:-6,故选:D .【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键. 3.D解析:D【分析】根据相反数的性质,倒数的性质以及不等式的性质来解决代数式的值即可;【详解】当a 取互为相反数的值时,即取m 和-m ,则-m+m=0,当a 取m 时,①222211=m a a m ++ ,当a 取-m 时,②()()222222111a m m a m m +=-+=+- , ①=②,故A 正确; B 、当a 取互为倒数的值时,即取m 和1m ,则11m m ⨯= , 当a 取m 时,①222211=m a a m ++,当a 取1m 时,②2222221111m 1m a m a m ⎛⎫+=+=+ ⎪⎝⎭⎛⎫ ⎪⎝⎭①=②,故B 正确;C 、可举例判断,由a >1得,取a=2,3(2<3) 则22112=424++< 22113=939++ , 故C 正确; D 、可举例判断,由01a <<得,取a=12,13(12>13)2222111111=4+=924391123⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭< , 故D 错误;故选:D .【点睛】本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键. 4.C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】0.000000076=87.610-⨯,故选:C【点睛】此题考查了科学记数法,注意n 的值的确定方法,当原数小于1时,n 是负整数,n 等于原数左数第一个非零数字前0的个数,按此方法即可正确求解5.D解析:D【分析】根据a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++,将所求式子变形便可求出.【详解】∵a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++, ∴d a b c a b c b c d a c d a b d+++++++++++ =2()2()2()2()a b c b c d a c d a b d a b c b c d a c d a b d-++-++-++-+++++++++++++ =2a b c ++﹣1+2b c d ++﹣1+2a c d ++﹣1+2a b d++﹣1 =2×(1111a b c b c d a c d a b d+++++++++++)﹣4 =2×4﹣4=8﹣4=4,故选:D .【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.6.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 7.D解析:D【分析】利用等式的性质对2340x x --=变形可得43x x-=,利用分式的性质对24x x x --变形可得141x x--,从而代入求值即可. 【详解】由条件2340x x --=可知,0x ≠, ∴430x x --=,即:43x x-=, 根据分式的性质得:21144411x x x x x x x==------, 将43x x-=代入上式得:原式11312==-, 故选:D .【点睛】 本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键.8.B解析:B【分析】设乙型机器人每台x 万元,由两种型号机器人的单价和为140万元得甲型机器人每台()140x -万元,根据用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台列得方程.【详解】解:设乙型机器人每台x 万元,则甲型机器人每台()140x -万元,根据题意,可得4605801140x x=--. 故选:B.【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键.9.D解析:D【分析】先将分式方程化为整式方程,再将1x =代入求解即可.【详解】解:原式化简为81233ax a x +=-,将1x =代入得81233a a +=-解得-3a =.当a =-3时a -x=-3-1=-4≠0∴a =-3故选则:D .【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.10.A解析:A【分析】按同分母分式相减的法则计算即可.【详解】333333x a a y x y x y y x x y+---+=+++ 故选:A【点睛】本题考查同分母分式相加减法则:分母不变,分子相加减.11.C解析:C【分析】根据分式的除法法则计算即可.【详解】2222x y x y x y x y -+÷+-()()22x y x y x y x y x y +--=⨯++222()x y x y -=+ 【点睛】此题考查分式的除法法则:先把除式的分子分母颠倒位置,再化为最简分式即可. 12.C解析:C【分析】 先对111a b a b +=+变形得到()2a b ab +=,然后将b a a b +化成22a b ab+,再结合完全平方公式得到()22a b ab ab +-,最后将()2a b ab +=代入即可解答. 【详解】解:∵111b a a b a b ab ab ab a b++=+==+,即()2a b ab += ∴()22222221a b ab b a b a a b ab ab ab a b ab ab ab ab ab ab+-+--+=+=====-. 故选C .【点睛】本题主要考查了分式的减法、完全平方公式的应用以及代数式求值,灵活运用完全平方公式是解答本题的关键.二、填空题13.且【分析】分式方程去分母转化为整式方程由分式方程的解为正数确定出a 的范围即可【详解】解:∵∴∴∵方程的解为正数则∴∵∴;∴常数的取值范围是且;故答案为:且【点睛】此题考查了分式方程的解分式有意义的条 解析:6m <且3m ≠-【分析】分式方程去分母转化为整式方程,由分式方程的解为正数确定出a 的范围即可.【详解】解:∵233x m x x=---, ∴62x x m =--,∴63m x -=, ∵方程的解为正数,则603m x -=>, ∴6m <, ∵633m x -=≠, ∴3m ≠-;∴常数m 的取值范围是6m <且3m ≠-;故答案为:6m <且3m ≠-.【点睛】此题考查了分式方程的解,分式有意义的条件,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.14.0【分析】先通分再分母不变分子相减即可求解【详解】故答案为:0【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键解析:0【分析】先通分,再分母不变,分子相减即可求解.【详解】2211211201111a a a a a a a a -++-+-==+---. 故答案为:0.【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.15.【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数的绝对值<解析:92.510-⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】2.5微米=92.510-⨯千米,故答案为:92.510-⨯.【点睛】此题考查科学记数法,注意n 的值的确定方法,当原数小于1时,n 等于原数左数第一个非零数字前零的个数,按此方法即可正确求解.16.4038【分析】先根据已知图形得出代入方程中再将左边利用裂项化简解分式方程可得答案【详解】由图形知:∴∵∴故填:30;【点睛】本题考查图形的变化规律解题的关键是根据已知图形得到以及裂项的规律解析:4038【分析】先根据已知图形得出()1n a n n =+,代入方程中,再将左边利用()11111n n n n =-++裂项化简,解分式方程可得答案.【详解】由图形知:112a =⨯,223a =⨯,334a =⨯,∴ ()1n a n n =+,556=30a =⨯,∵123201922222020n a a a a +++⋅⋅⋅+=, ∴2222122334201920202020n +++⋅⋅⋅+=⨯⨯⨯⨯, 1111121223201920202020n ⎛⎫-+-+⋅⋅⋅+-= ⎪⎝⎭, 4038n =,故填:30;4038.【点睛】本题考查图形的变化规律,解题的关键是根据已知图形得到()1n a n n =+,以及裂项的规律()11111n n n n =-++. 17.0【分析】先把分式进行因式分解然后约分再根据分式的值是正整数得出的取值从而得出的值【详解】要使的值是正整数则分母必须是2的约数即或则或1(舍去)故答案为:【点睛】本题考查了分式的化简分式的值;掌握分 解析:0【分析】 先把分式2221x x --进行因式分解,然后约分,再根据分式的值是正整数,得出1x +的取值,从而得出x 的值.【详解】2222(1)21(1)(1)1x x x x x x --==-+-+,要使21x +的值是正整数,则分母1x +必须是2的约数, 即11x +=或12x +=,则0x =或1(舍去),故答案为:0.【点睛】本题考查了分式的化简、分式的值;掌握分式的化简,根据分式的值为正整数.利用约数的方法进行分析是解决问题的关键.18.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】 设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件, 依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.19.-2x-2【分析】(1)根据积的乘方计算公式得出答案;(2)根据零次幂的定义得到(-2020)0由此求出p 的值;(3)根据零次幂的定义得到x+20求出结果【详解】(1)(-a2b )2=故答案为:;(解析:42a b -2 x ≠-2【分析】(1)根据积的乘方计算公式得出答案;(2)根据零次幂的定义得到(-2020)0,,由此求出p 的值;(3)根据零次幂的定义得到x+2≠0求出结果.【详解】(1)(-a 2b )2=42a b ,故答案为:42a b ;(2)∵(-2020)0=1,∴p +3=(-2020)0=1,∴p=-2,故答案为:-2;(3)∵(x +2)0=1,∴x+2≠0,x ≠-2,故答案为:x ≠-2.【点睛】此题考查整式的积的乘方计算公式,零次幂的定义,熟记计算公式是解题的关键. 20.【分析】根据分式除法法则先将除法转化为乘法再运用分式的乘法法则进行计算即可得出结果【详解】解:故答案为:【点睛】本题考查了分式的除法运算掌握分式的乘除法的关系及运算法则是解题的关键 解析:12a a ++ 【分析】根据分式除法法则先将除法转化为乘法,再运用分式的乘法法则进行计算,即可得出结果.【详解】 解:22a 1a 1a 2a a--÷+ ()()()a 1a 1a a a 2a 1+-=⋅+- 12a a +=+ 故答案为:12a a ++ 【点睛】本题考查了分式的除法运算,掌握分式的乘、除法的关系及运算法则是解题的关键.三、解答题21.(1)4元;2.5元 (2)800个【分析】(1)设A 型口罩的单价为x 元,则B 型口罩的单价为( 1.5)x 元,根据“用8000元购买A 型口罩的数量与用5000元购买B 型口罩的数量相同”列出方程并解答;(2)设增加购买A 型口罩的数量是m 个,根据“增加购买B 型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元”列出不等式并解答即可.【详解】解:(1)设A 型口罩的单价为x 元,则B 型口罩的单价为()1.5x -元, 根据题意,得800050001.5x x =-. 解方程,得:4x =.经检验:4x =是原方程的根,且符合题意.所以 1.5 2.5x -=.答:A 型口罩的单价为4元,则B 型口罩的单价为2.5元.(2)设增加购买A 型口罩的数量是m 个,根据题意,得:2.5247200m m ⨯+≤.解不等式,得:800m ≤.答:增加购买A 型口罩的数量最多是800个.【点睛】本题主要考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.22.(1)70天;(2)a=10 .【分析】(1)设规定时间为x 天,根据题意可以得到关于x 的分式方程,解方程并检验即可得到解答;(2)由(1)可以得到甲乙两队每天的效率分别为114590,,因为效率与人数成正比,所以人数增加了多少,效率也增加了多少,根据这个可由已知列出关于a 的一元一次方程,解方程即可得到a 的值.【详解】解:(1)设规定时间为x 天,则由题意可得:()11110101202520x x x x ⎛⎫+⨯+-⨯= ⎪+-+⎝⎭, 解之得:x=70,经检验,x=70是原方程的解且符合题意,∴规定时间是70天 .答:规定时间是70天 .(2)由(1)可知甲乙两队每天的效率分别为114590,, ∴由题意可得: ()()()()111220110%13%1%140%1904590a a ⎡⎤⨯+⨯⨯+++⨯++=⎢⎥⎣⎦, 解之可得:a=10.【点睛】本题考查分式方程和一元一次方程的综合运用,熟练掌握分式方程与一元一次方程的解法及工程问题中的数量关系是解题关键.23.(1)甲单独做需60天,乙单独做需30天;(2)应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【分析】(1)设甲单独做需x 天,则甲的工作效率为1x ,乙的工作效率为1120x-,根据“若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完成”,即可得出关于x 的分式方程,解之并检验后即可得出结论;(2)分两种情况:①若剩下工程甲单独做还需(603m -)天,②若剩下工程乙单独做还需(30 1.5)m -天,列出不等式,即可求解.【详解】(1)设甲单独做需x 天,则甲的工作效率为1x ,乙的工作效率为1120x-, 401110120x x ⎛⎫∴+-= ⎪⎝⎭,解得:60x =, 经检验60x =为原方程的解,∴甲单独做需60天,乙单独做需30天;(2)设甲、乙合作了m 天①若剩下工程甲单独做还需1120603160m m -=- 60324m m ∴+-≤,解得:18m ≥;②若剩下工程乙单独做还需112030 1.5130m m -=- 30 1.524m m ∴+-≤,解得:12m ≥由①②可知m 的最小值为12,所以应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【点睛】本题主要考查分式的实际应用以及一元一次不等的实际应用,找到等量关系和不等量关系,列出方程和不等式,是解题的关键.24.(1)8;(2)24y xy --【分析】(1)先计算算术平方根,乘方,零次幂及负整数指数幂,再计算加减法;(2)先计算单项式乘以多项式及完全平方公式,再合并同类项.【详解】解:(1)原式3412=+-+8=;(2)原式22222x xy x y xy =----24y xy =--.【点睛】此题考查实数的混合运算及整式的混合运算,掌握实数算术平方根,乘方,零次幂及负整数指数幂计算法则,以及整式的单项式乘以多项式及完全平方公式计算法则是解题的关键.25.(1)3x ;±1;(2)1a a +,2a =,值为32【分析】(1)先化简,后把x=3或x=-3分别代入求值;(2)先化简,根据分母不能为零的原则,选择数值代入计算即可.【详解】(1)原式=212(2)2(2)x x x x x x +-+-⎛⎫⨯ ⎪--⎝⎭ =23(2)2(2)x x x x -⨯-- =3x, ∵x 是9的平方根, ∴3x =±,∴原式=±1.(2)原式=2(1)(1)(1)(1)(1)(1)a a a a a a a ⎛⎫-++-⨯ ⎪-+⎝⎭ 1a a+=, 由题意当1,1,0a =-时,原分式没有意义, ∴2a =,此时原分式32=. 【点睛】本题考查了分式的化简求值,选值时,确保每一个分式有意义是解题的关键. 26.21x +,-2 【分析】 先将分式的分子分母因式分解,同时将除法转化为乘法,再计算分式的乘法,最后计算分式的减法即可.【详解】解:2222631121x x x x x x x ++-÷+--+ 222(3)(1)1(1)(1)3x x x x x x x +-=-⋅++-+ 22(1)11x x x x -=-++ 21x =+, 当2x =-时,原式222211===--+-. 【点睛】 本题主要考查分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键.。
上海上海第中学八年级数学上册第五单元《分式》检测(包含答案解析)
一、选择题1.已知分式24x x +的值是正数,那么x 的取值范围是( ) A .x >0 B .x >-4C .x ≠0D .x >-4且x ≠02.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度3.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ay y y ++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .3 4.化简分式2xy x x +的结果是( ) A .y x B .1y x + C .1y + D .y x x+ 5.若关于x 的方程1044m x x x --=--无解,则m 的值是( ) A .2- B .2 C .3- D .36.计算:2x y x y x y xy-⋅-=( ) A .x B .y x C .y D .1x7.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④8.若x 2y 5=,则x y y +的值为( ) A .25 B .72 C .57 D .759.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .210.若数a 使关于x 的分式方程2311a x x +=--的解为非负数,且使关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5 B .6 C .7 D .811.下列式子的变形正确的是( )A .22b b a a= B .22+++a b a b a b = C .2422x y x y x x --= D .22m n n m-=- 12.下列分式中,最简分式是( )A .211x x +- B .2211x x -+ C .2222x xy y x xy -+- D .21628x x -+ 二、填空题 13.当m=______时,解分式方程1m 233(2x 1)2x 1+=--会出现增根. 14.若关于x 的分式方程233x m x x=---的解为正数,则常数m 的取值范围是______. 15.某校要建立两个计算机教室,为此要购买相同数量的A 型计算机和B 型计算机.已知一台A 型计算机的售价比一台B 型计算机的售价便宜400元,如果购买A 型计算机需要224 000元,购买B 型计算机需要240 000元.求一台A 型计算机和一台B 型计算机的售价分别是多少元. 设一台B 型计算机的售价是x 元,依题意列方程为__.16.211a a a-+=+_________. 17.化简:(﹣2y x)3÷(223⋅y x x y )=_______________. 18.计算:()222333a b a b --⋅=_______________.19.若关于x 的分式方程11222mx x x-=---无解,则m =______. 20.方程22020(1)1x x x ++-=的整数解的个数是_____.三、解答题21.(1)计算:22y x x y x y-++ (2)解方程:4322x x x =+-- 22.计算:2212y x y x y ---. 23.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,24.分式计算与解方程:(1)21211a a a a----; (2)121221x x x +=-+. 25.先化简,再求值:22131x x x x x ---+-,其中2x =. 26.观察下列等式: 111122=-⨯,1112323=-⨯,1113434=-⨯. 将以上三个等式左、右两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯ (1)若n 为正整数,猜想并填空:1(1)n n =+______. (2)计算111111223344520202021+++++⨯⨯⨯⨯⨯的结果为______.(3)解分式方程:11122(2)(3)(3)(4)1x x x x x x ++=------.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】 若24x x +的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围.【详解】 解:∵24x x +>0, ∴x +4>0,x≠0,∴x >−4且x≠0.故选:D .【点睛】 本题考查分式值的正负性问题,若对于分式a b(b≠0)>0时,说明分子分母同号;分式a b(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 2.D解析:D【分析】根据计划所用时间-实际所用时间=6,可知方程中未知数x 所表示的量.【详解】解:设原计划每天铺设管道x 米,则实际每天铺设管道()110%x +, 根据题意,可列方程:6606(110%)660x x -=+, 所以小明所列方程中未知数x 所表示的量是计划每天铺设管道的长度,故选:D .【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系. 3.A解析:A【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可.【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩, ∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解, ∴2015a +<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a =, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3∴所有满足条件的整数a 的值之和是4,故选A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.4.B解析:B【分析】先把分子因式分解,再约分即可.【详解】 解:22(1)1xy x x y y x x x+++==. 故选:B .【点睛】 本题考查了分式的约分,解题关键是先把分子因式分解,再和分母约分.5.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x=4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0,∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 6.A解析:A【分析】根据分式乘法计算法则解答.【详解】 解:2x y x y x y xy-⋅-=x , 故选:A .【点睛】此题考查分式的乘法计算法则,熟记计算法则是解题的关键.7.B解析:B【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择.【详解】 原式221(1)71211543(1)x x x x x x x -++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x-++=-++++ 1111x x x -=-++ 1x x =+ 又因为x 为正整数,所以1121x x ≤<+, 故选B .【点睛】 本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.8.D解析:D【分析】 根据同分母分式的加法逆运算得到x y x y y y y +=+,将x 2y 5=代入计算即可. 【详解】解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D .【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.9.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①② 解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1,∴211a≠-,∴a≠-1, ∴a≤2且a≠-1,则a=0、2, ∴符合条件的所有整数a 的和=0+2=2,故选:D .【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.10.C解析:C【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值.【详解】 解分式方程2311a x x +=--,得53a x -=, ∵分式方程2311a x x +=--的解为非负数, ∴503a -≥, 解得a ≤5,∵关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩, ∵不等式组的解集为2y <-,∴2a ≥-,∵x-1≠0,∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个,故选:C .【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.11.C解析:C【分析】根据分式的性质逐一判断即可.【详解】解:A. 22b b a a=不一定正确; B. 22+++a b a b a b=不正确; C.2422x y x y x x --=分子分母同时除以2,变形正确; D. 22m n n m-=-不正确; 故选:C .【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.12.B解析:B【分析】最简分式的标准是分子、分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分;【详解】A 、()()21111111x x x x x x ++==-+-- ; B 、2211x x -+ 的分子分母不能再进行约分,是最简分式; C 、()()22222x y x xy y x y x xy x x y x --+-==-- ; D 、()()()24416428242x x x x x x +---==++ ; 故选:B .【点睛】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意;.二、填空题13.6【分析】分式方程的增根使分式中分母为0所以分式方程会出现增根只能是x=增根不符合原分式方程但是适合分式方程去分母后的整式方程于是将x=代入该分式方程去分母后的整式方程中即可求出m 的值【详解】解:由 解析:6【分析】分式方程的增根使分式中分母为0,所以分式方程1m 233(2x 1)2x 1+=--会出现增根只能是x=12,增根不符合原分式方程,但是适合分式方程去分母后的整式方程,于是将x=12代入该分式方程去分母后的整式方程中即可求出m 的值.【详解】 解:由题意知分式方程()1m 2332x 12x 1+=--会出现增根是x=12, 去分母得7-2x=m将x=12代入得m=6 即当m=6时,原分式方程会出现增根.故答案为6.【点睛】本题考查了分式方程增根的性质,增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.14.且【分析】分式方程去分母转化为整式方程由分式方程的解为正数确定出a 的范围即可【详解】解:∵∴∴∵方程的解为正数则∴∵∴;∴常数的取值范围是且;故答案为:且【点睛】此题考查了分式方程的解分式有意义的条 解析:6m <且3m ≠-【分析】分式方程去分母转化为整式方程,由分式方程的解为正数确定出a 的范围即可.【详解】解:∵233x m x x=---, ∴62x x m =--, ∴63m x -=, ∵方程的解为正数,则603m x -=>, ∴6m <, ∵633m x -=≠, ∴3m ≠-;∴常数m 的取值范围是6m <且3m ≠-;故答案为:6m <且3m ≠-.【点睛】此题考查了分式方程的解,分式有意义的条件,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.15.【分析】本题的等量关系是:224000元购买A 型计算机的数量=240000元购买B 型计算机数量依此列出方程即可【详解】解:设B 型计算机每台需x 元则A 型计算机每台需(x-400)元依题意有故填【点睛】 解析:240000224000400x x =- 【分析】本题的等量关系是:224 000元购买A 型计算机的数量=240 000元购买B 型计算机数量,依此列出方程即可.【详解】解:设B 型计算机每台需x 元,则A 型计算机每台需(x-400)元,依题意有240000224000400x x =- 故填,240000224000400x x =-. 【点睛】 考查了分式方程的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系,本题重点是熟悉单价,总价,数量之间的关系.16.【分析】先通分再分母不变分子相减即可求解【详解】故答案为:【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键 解析:11a + 【分析】先通分,再分母不变,分子相减即可求解.【详解】222222211(1)11111111(1)(1)11a a a a a a a a a a a a a a a a a a a +--+=--=-=-==+++++++-++- 故答案为:11a + 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键. 17.﹣【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】解:原式=﹣÷=﹣•=﹣故答案为:﹣【点睛】本题考查分式的混合运算按照正确的运算顺序进行运算并及时化简是解题的关键解析:﹣25y x【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】 解:原式=﹣36y x ÷y x=﹣36y x •x y=﹣25y x, 故答案为:﹣25y x. 【点睛】本题考查分式的混合运算,按照正确的运算顺序进行运算并及时化简是解题的关键. 18.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b ----+-===故答案为:3a b . 【点睛】本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.19.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键. 20.4【分析】方程的右边是1有三种可能需要分类讨论第1种可能:指数为0底数不为0;第2种可能:底数为1;第3种可能:底数为-1指数为偶数【详解】解:(1)当x+2020=0x2+x -1≠0时解得x=﹣2解析:4【分析】方程的右边是1,有三种可能,需要分类讨论.第1种可能:指数为0,底数不为0;第2种可能:底数为1;第3种可能:底数为-1,指数为偶数.【详解】解:(1)当x+2020=0,x 2+x -1≠0时,解得x=﹣2020;(2)当x 2+x -1=1时,解得x=﹣2或1.(3)当x 2+x -1=﹣1,x+2020为偶数时,解得x=0因而原方程所有整数解是﹣2020,-2,1,0共4个.故答案为:4.【点睛】本题考查了:a 0=1(a 是不为0的任意数)以及1的任何次方都等于1.容易遗漏第3种可能情况,需特别注意.三、解答题21.(1)y x -;(2)5x =.【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++,=22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.22.1x y+ 【分析】首先把两分式通分化为同分母分式后,再按照分母不变,分子相加减的法则计算.【详解】 解:原式2()()()()x y y x y x y x y x y +=-+-+- 2()()x y y x y x y +-=+-. ()()x y x y x y -=+-. 1x y=+. 【点睛】本题考查分式的加减运算,熟练掌握异分母分式的加减法则是解题关键.23.(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元;(2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键.24.(1)1a -;(2)13x =【分析】(1)先对分式变形化成同分母的分式,然后利用同分母分式的运算法则运算即可; (2)利用分式的性质,将分式方程化成整式方程,然后再求解,最后验根得出结果.【详解】 解:(1)21211a a a a ----21211a a a a -=+--2211a a a -+=-()211a a -=-1a =-; (2)121221x x x +=-+ 方程两边同乘()()221x x -+,得:()()()()2122122x x x x x ++-+=- 解得:13x =, 检验:当13x =时,()()2210x x -+≠, 所以,原方程的解为13x =. 【点睛】本题考查分式的加减运算及解分式方程,熟练掌握分式运算的法则及解分式方程的方法是解题的关键.25.()11x x -,12【分析】此题需先根据分式的混合运算顺序和法则把22131x x x x x ---+-进行化简,然后把x 代入即可.【详解】 解:原式=()13(1)(1)1x x x x x x ---++- =()(1)(1)(3)(1)(1)(1)1x x x x x x x x x x ----+-+- =22(1)(11)23x x x x x x x -+--++ ()11x x =- 当2x =时,原式12=【点睛】此题考查了分式的化简求值,分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.26.(1)111n n -+;(2)20202021;(3)7x =. 【分析】(1)观察已知等式可得:连续整数乘积的倒数等于较小数的倒数与较大数的倒数的差,据此可得111(1)1n n n n =-++; (2)利用所得规律列出算式1111111223320202021-+-+++-,再两两相消即可得112021-,计算后可得结果; (3)由所得规律对分式方程进行整理,可变形为111112232431x x x x x x +-+-=------,最终化简为1241x x =--,求解此方程即可. 【详解】 解:(1)∵111122=-⨯,1112323=-⨯,1113434=-⨯, ∴当n 为正整数时,111(1)1n n n n =-++. 故答案为:111n n -+.(2)111111223344520202021+++++⨯⨯⨯⨯⨯ 111111112233420202021=-+-+-+- 112021=- 20202021=. 故答案为:20202021. (3)原方程变形为:111112232431x x x x x x +-+-=------, ∴1241x x =--, 去分母,得:12(4)x x -=-,解得7x =,经检验,7x =是原方程的解.【点睛】本题考查了数字的变化规律及解分式方程,解题的关键是理解题意,找出数字的变化规律,并准确运用所得规律求解分式方程.。
(人教版)上海市八年级数学上册第五单元《分式》检测卷(包含答案解析)
一、选择题1.关于x 的一元一次不等式组31,224xm x x x ⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my yy y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9 B .10C .13D .142.关于分式2634m nm n--,下列说法正确的是( )A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变 3.若关于x 的方程1044m xx x--=--无解,则m 的值是( ) A .2- B .2C .3-D .34.已知分式34x x -+的值为0,则x 的值是( ) A .3 B .0C .-3D .-45.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .146.若数a 关于x 的不等式组()()11223321xx x a x ⎧-≤-⎪⎨⎪-≥-+⎩ 恰有三个整数解,且使关于y 的分式方程13y 2a2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2B .3C .4D .57.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每名同学比原来少分摊3元车费.设原来参加游览的学生共x 人.则所列方程是( ) A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=- D .18018032x x -=+8.若实数a 使关于x 的不等式组313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .19.3333x a a y x y y x +--+++等于( ) A .33x y x y-+B .x y -C .22x xy y -+D .22xy +10.化简232a b c a b c c ba b c a c b c a b-+-+--++--+--的结果是( )A .0B .1C .-1D .2(2)b c c a b---11.若分式 2132x x x --+的值为0,则x 的值为( )A .1-B .0C .1D .±112.若220.3,3a b --=-=-,213c -⎛⎫=- ⎪⎝⎭,013d ⎛⎫=- ⎪⎝⎭,则( ) A .a b c d <<<B .b a c d <<<C .b a d c <<<D .a b d c <<<二、填空题13.如果实数x 、y 满足方程组30233x y x y +=⎧⎨+=⎩,求代数式(xy x y ++2)÷1x y =+_____. 14.化简分式:2121211a a a a +⎛⎫÷+= ⎪-+-⎝⎭_________.15.计算211()(1)11m m m -⨯--+的结果是______. 16.H 7N 9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小为________米.17.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________. 18.要使分式2xx 1+有意义,那么x 应满足的条件是________ . 19.已知114y x-=,则分式2322x xy y x xy y +---的值为______.20.某工人现在平均每天比原计划多做20个零件,现在做4000个零件和原来做3000个零件的时间相同,问现在平均每天做______个零件.三、解答题21.计算(1)2201920200112202132-⎛⎫⎛⎫---⨯+ ⎪ ⎪⎝⎭⎝⎭;(2)22224122x x x x x x x --+---. 22.阅读理解材料1:小学时常常会遇到将一个假分数写成带分数的问题,在这个计算的过程中,先计算分子中有几个分母求出整数部分,再把剩余的部分写成一个真分数,例如:52211333=+=. 类似的,我们可以将下列的分式写成一个整数与一个新分式的和. 例如:111x x x+=+. 1(1)221111x x x x x +-+==+---. 材料2:为了研究字母x 和分式1x值的变化关系,小明制作了表格,并得到数据如下:请根据上述材料完成下列问题:(1)把下面的分式写成一个整数与一个新分式的和的形式:2x x +=__________________;12x x +=-___________________; (2)当0x >时,随着x 的增大,分式2x x+的值___________(增大或减小); (3)当1x >-时,随着x 的增大,分式231x x ++的值无限趋近一个数,请写出这个数,并说明理由.23.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,24.计算:0212|( 3.14)()2π---+-25.(1)不改变分式的值,把下列分子和分母的最高次的系数都化为正数2342n n -=-+________. (2)不改变分式的值,把下列分子和分母的中各项系数都化为整数0.20.50.3x yx y-=-_______.(3)若分式231x x +-的值是整数,求整数x 的值. (4)已知12x x +=,求2421x x x ++的值. 26.某工程队用甲、乙两台隧道挖掘机从两个方向挖掘同一条隧道,因为地质条件不同,甲、乙的挖掘速度不同,已知甲、乙同时挖掘3天,可以挖216米,若甲挖2天,乙挖5天可以挖掘270米.(1)请问甲、乙挖掘机每天可以挖掘多少米?(2)若隧道的总长为2400米,甲、乙挖掘机工作20天后,因为甲挖掘机进行设备更新,乙挖掘机设备老化,甲比原来每天多挖m 米,同时乙比原来少挖m 米,最终,甲、乙两台挖掘机完成的时间相同,且各完成隧道总长的一半,请求出m .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可. 【详解】解:31224xm x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得 x≤2m+2,解②得 x≤4,∵不等式组31224xm x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4, ∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得 my-1+y-2=3y , ∴32y m =-, ∵m≥1,分式方程13122my yy y--+=--有整数解, ∴m=1,3,5, ∵y-2≠0, ∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意, 1+3+5=9. 故选A . 【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键.2.D解析:D 【分析】根据分式的基本性质即可求出答案. 【详解】 解:A 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m nm n m n ⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意;C 、226212=32438m n m nm n m n -⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意;D 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意; 故选:D . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.3.D解析:D 【分析】根据方程1044m xx x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值. 【详解】解:去分母得:m +1−x =0,∵方程1044m xx x --=--无解, ∴x =4是方程的增根, ∴m =3. 故选:D . 【点睛】本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根.4.A解析:A 【分析】根据分式的值为0的条件可以求出x 的值;分式为0时,分子为0分母不为0; 【详解】由分式的值为0的条件得x-3=0,x+4≠0, 由x-3=0,得x=3, 由x+4≠0,得x≠-4, 综上,得x=3时,分式34x x -+ 的值为0; 故选:A . 【点睛】本题考查了分式的值为0的情况,若分式的值为0,需要同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可.5.B解析:B 【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可. 【详解】去分母得:()()22421x k x --+=,整理得:22290x kx k ---=, ∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义, ∴14k =- 故选:B 【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.6.A解析:A 【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案. 【详解】解:()()11223321xx x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2, 解不等式②得:x≥2a -,∵不等式组恰有三个整数解, ∴-1<2a -≤0, 解得12a ≤<, 解分式方程132211y ay y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩,解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2. 故选择:A . 【点睛】本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.7.D解析:D 【分析】设原来参加游览的学生共x 人,增加2人后的人数为(x+2)人,用租价180元除以人数,根据后来每名同学比原来少分摊3元车费列方程. 【详解】设原来参加游览的学生共x 人,由题意得18018032x x -=+, 故选:D . 【点睛】此题考查分式的实际应用,正确理解题意是解题的关键.8.D解析:D 【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②,由①得:x ≤﹣3, 由②得:x ≥a+2, ∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解, 所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去), 当a =﹣6时,y =﹣2.5(不是整数,舍去), 当a =﹣5时,y =﹣2(是整数,符合题意), 所以符合条件的所有整数a 为﹣5. 故选:D . 【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.9.A解析:A 【分析】按同分母分式相减的法则计算即可. 【详解】333333x a a y x y x y y x x y+---+=+++ 故选:A 【点睛】本题考查同分母分式相加减法则:分母不变,分子相加减.10.A解析:A 【分析】通过变号,把分母变成同分母,相加即可. 【详解】 原式=232a b c a b c c ba b c a b c a b c-+-+---+-+-+-,=23()(2)a b c a b c c b a b c-+--+--+-,=232a b c a b c c ba b c-+-+--++-,=0.故选:A 【点睛】本题考查了分式的加减,先把分母通过变号变为同分母是解题关键.11.A解析:A 【分析】根据分式值为零的条件列出方程和不等式,解方程和不等式得到答案. 【详解】由题意得:|x|−1=0,x 2−3x+2≠0,解得,x =-1, 故选:A . 【点睛】本题考查的是分式为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.12.D解析:D 【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案. 【详解】解:21000.39a -=-=-,2193b -==--,2913c -⎛⎫=- ⎪⎭=⎝,0113d ⎛⎫=-= ⎪⎝⎭,∵10011999-<-<<, ∴a b d c <<<,故选D . 【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.二、填空题13.1【分析】先进行分式计算再解方程组代入即可求解【详解】解:原式==xy+2x+2y 解方程组得:当x=3y=﹣1时原式=﹣3+6﹣2=1故答案为:1【点睛】此题考查了分式的化简求值熟练进行分式化简解出解析:1 【分析】先进行分式计算,再解方程组,代入即可求解. 【详解】 解:原式=()22xy x yx y x y++⋅++=xy +2x +2y ,解方程组30233x y x y +=⎧⎨+=⎩得:31x y =⎧⎨=-⎩, 当x =3,y =﹣1时,原式=﹣3+6﹣2=1.故答案为:1.【点睛】此题考查了分式的化简求值,熟练进行分式化简,解出二元一次方程组是解本题的关键. 14.【分析】先计算括号内的加法再将除法化为乘法再计算乘法即可【详解】解:===故答案为:【点睛】本题考查分式的混合运算掌握运算顺序和每一步的运算法则是解题关键 解析:11a - 【分析】先计算括号内的加法,再将除法化为乘法,再计算乘法即可.【详解】 解:2121211a a a a +⎛⎫÷+ ⎪-+-⎝⎭ =2112211a a a a a +-+÷-+- =211(1)1a a a a +-⋅-+ =11a -, 故答案为:11a -. 【点睛】本题考查分式的混合运算.掌握运算顺序和每一步的运算法则是解题关键.15.2【分析】利用乘法分配律展开括号再计算加减法【详解】故答案为:2【点睛】此题考查分式的混合运算掌握乘法分配律计算法则是解题的关键 解析:2【分析】利用乘法分配律展开括号,再计算加减法.【详解】()211()(1)11211m m m m m -⨯-=+--=-+. 故答案为:2.【点睛】 此题考查分式的混合运算,掌握乘法分配律计算法则是解题的关键.16.【分析】根据题意列得这个病毒直径为计算并用科学记数法表示即可【详解】故答案为:【点睛】此题考查实数的乘法计算科学记数法正确理解题意列式并会用科学记数法表示结果是解题的关键解析:8310-⨯【分析】根据题意列得这个病毒直径为93010-⨯,计算并用科学记数法表示即可.【详解】983010310--⨯=⨯,故答案为:8310-⨯ .【点睛】此题考查实数的乘法计算,科学记数法,正确理解题意列式并会用科学记数法表示结果是解题的关键.17.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】 设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件, 依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.18.【分析】根据分式有意义的条件是分母不等于零可得答案【详解】由题意得:解得:故答案为:【点睛】本题主要考查了分式有意义的条件关键是掌握分式有意义的条件是分母不等于零解析:1x ≠-【分析】根据分式有意义的条件是分母不等于零可得答案.【详解】由题意得:10x +≠,解得:1x ≠-,故答案为:1x ≠-.【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零. 19.【分析】先根据题意得出x-y=4xy 然后代入所求的式子进行约分就可求出结果【详解】∵∴x-y=4xy ∴原式=故答案为:【点睛】此题考查分式的基本性质正确对已知式子进行化简约分正确进行变形是关键 解析:112【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果.【详解】 ∵114y x-=, ∴x-y=4xy , ∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点睛】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键. 20.80【分析】设现在每天做x 个零件则原计划每天做个零件根据工作时间=工作总量÷工作效率结合现在做4000个零件和原来做3000个零件的时间相同即可得出关于x 的方程求解即可【详解】设现在每天做x 个零件则解析:80【分析】设现在每天做x 个零件,则原计划每天做()20x -个零件,根据工作时间=工作总量÷工作效率,结合现在做4000个零件和原来做3000个零件的时间相同,即可得出关于x 的方程,求解即可.【详解】设现在每天做x 个零件,则原计划每天做()20x -个零件, 依题意得:4000300020x x =-, 解得:80x =;经检验x=80是原方程的解∴现在平均每天做80个零件故答案为:80.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解答本题的关键.三、解答题21.(1)12;(2)3x . 【分析】(1)先分别计算负整数指数幂,逆运用同底数幂的乘法和计算零指数幂,再将结果相加即可;(2)将原分式的分子分母分别因式分解后约分,再计算同分母分式的减法运算即可.【详解】解:(1)原式=2019122921⎛⎫--⨯⨯+ ⎪⎝⎭=()9121--⨯+=9+2+1=12; (2)原式=2(1)(2(2))(1))(2x x x x x x x -+---- =12x xx x +-- =21x xx +-+ =3x. 【点睛】 本题考查零指数幂和负整数指数幂,同底数幂的乘法,分式的减法等.(1)中能逆运用同底数幂的乘法正确计算是解题关键;(2)中注意分式加减时,能约分,先给各自分别约分,再进行加减运算.22.(1)21x +,312x +-;(2)减小;(3)2,理由见解析 【分析】(1)把分子写成分母的倍数与另一个整式的和,再逆用分式的加减法则即可得到解答; (2)把2x x +变成21x +,再根据 1x 随x 的变化趋势可以得解; (3)先得231211x x x +=+++,然后根据随着x 的值的增大, 11x +的值逐渐减小并趋于0可以得到解答.【详解】解:(1)∵2221x x x x x x +=+=+,123233122222x x x x x x x x +-+-==+=+-----, 故答案为23112x x ++-,; (2)∵221x x x +=+,且由材料2可得: x>0时, 1x随x 的增大而减小, ∴当 x>0 时,随着x 的增大,分式2x x +的值减小; (3)2理由如下: 231211x x x +=+++, 随着x 的值的增大,11x +的值逐渐减小并趋于0, ∴随着x 的值的增大,231x x ++的值无限趋近于2. 【点睛】 本题考查分式运算的规律探索,根据材料得到一定规律并灵活运用于所给问题的解决是解题关键.23.(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元; (2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键.24.5【分析】先计算绝对值、0指数、负指数,再加减.【详解】解: 0212|( 3.14)()2π---+-214=+5=【点睛】本题考查了包含绝对值、0指数和负指数的实数计算,准确应用各种法则,熟练计算是解题关键.25.(1)2324n n --;(2)10253x y x y --;(3)0,2,6,-4;(4)13 【分析】(1)利用分式的基本性质,分子、分母都乘以-1即可;(2)利用分式的基本性质,分子、分母都乘以10 即可;(3)将分式变形得521x +-,要使结果是整数,x-1=±1,或x-1=±5,进而求出x 的整数值即可;(4)倒数法,先求出要求的代数式的倒数,利用整体代入的方法进行计算即可.【详解】解:(1)根据分式基本性质,分子、分母都乘以-1得, 2342n n -=-+2324n n --; (2)根据分式基本性质,分子、分母都乘以10得,0.20.50.3x y x y -=-10253x y x y--; (3)231x x +-=2251x x -+-=22511x x x -+--=521x +-, 要使分式的值为整数,∴x-1=±1,或x-1=±5,解得,x 1=0,x 2=2,x 3=6,x 4=-4,答:整数x 的值为0,2,6,-4. (4)∵12x x +=, ∴221422x x+=-=, ∵422221113x x x x x ++=++=,∴242113x x x =++. 【点睛】本题考查分式的基本性质、分式的加减运算,掌握分式的基本性质和计算法则是正确解答的前提.26.(1)甲每天挖30米,乙每天挖42米;(2)m=15【分析】(1)设甲、乙每天分别挖x 、y 米.等量关系:3(甲+乙)216=米、2⨯甲5+⨯乙270=;(2)由题意可知20天后甲完成(30×20)米,剩余1(24003020)2⨯-⨯米,乙完成(4220⨯)米,剩余1(24004220)2⨯-⨯米,根据关键描述语:甲、乙两台挖掘机在相同时间里各完成隧道总长的一半列出方程,解之即可.【详解】解:(1)设甲、乙每天分别挖x 、y 米.依题意得:3()21625270x y x y +=⎧⎨+=⎩. 解得3042x y =⎧⎨=⎩. 答:甲每天挖30米,乙每天挖42米;(2)由题意可知:20天后甲完成(30×20)米,剩余1(24003020)2⨯-⨯米,乙完成(4220⨯)米,剩余1(24004220)2⨯-⨯米, 依题意得:112400302024004220223042m m⨯-⨯⨯-⨯=+-, 解得:m=15,经检验:m=15是原方程的解.【点睛】本题考查了二元一次方程组的应用,分式方程的应用,找到等量关系是解题的关键,切记,分式方程一定要验根.。
上海民办文绮中学八年级数学上册第五单元《分式》检测(包含答案解析)
一、选择题1.分式293x x --等于0的条件是( )A .3x =B .3x =-C .3x =±D .以上均不对2.世界上数小的开花结果植物是激大利亚的出水浮萍,这种植物的果实像一个微小的无花架,质做只有0.000000076克,0.000000076用科学记数法表示正确的是( ) A .-60.7610⨯ B .-77.610⨯ C .-87.610⨯ D .-97.610⨯ 3.下列运算正确的是( )A .236a a a ⋅=B .22a a -=-C .572a a a ÷=D .0(2)1(0)a a =≠4.若使分式2xx -有意义,则x 的取值范围是( ) A .2x ≠B .0x =C .1x ≠-D .2x =5.下列变形不正确的是( ) A .1122x xx x+-=--- B .b a a bc c--+=- C .a b a bm m -+-=- D .22112323x x x x--=--- 6.若x 2y 5=,则x yy+的值为( ) A .25B .72C .57D .757.要使分式()()221x x x ++-有意义,x 的取值应满足( )A .1x ≠B .2x ≠-C .1x ≠或2x ≠-D .1x ≠且2x ≠-8.为推进垃圾分类,推动绿色发展,宜宾天原化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台,两种型号机器人的单价和为140万元.若设乙型机器人每台x 万元,根据题意,所列方程正确的是( ) A .4605801x 140x -=- B .4605801140x x =-- C .4605801x 140x =+- D .4605801140x x-=- 9.已知a 、b 为实数且满足a ≠﹣1,b ≠﹣1,设M =11a b a b +++,N =1111a b +++,则下列两个结论( )①ab =1时,M =N ;ab >1时,M <N .②若a +b =0,则M •N ≤0. A .①②都对B .①对②错C .①错②对D .①②都错10.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .2222x xy y x xy-+- D .21628x x -+11.22()-n b a (n为正整数)的值是( )A .222+n n b aB .42n n b aC .212+-n n b aD .42-nn b a12.使分式2221x x x ---的值为0的所有x 的值为( )A .2或1-B .2-或1C .2D .1二、填空题13.计算:22x x xy x y x -⋅=-____________________. 14.已知13x x-=,则21x x ⎛⎫+= ⎪⎝⎭________.15.某校要建立两个计算机教室,为此要购买相同数量的A 型计算机和B 型计算机.已知一台A 型计算机的售价比一台B 型计算机的售价便宜400元,如果购买A 型计算机需要224 000元,购买B 型计算机需要240 000元.求一台A 型计算机和一台B 型计算机的售价分别是多少元. 设一台B 型计算机的售价是x 元,依题意列方程为__.16.H 7N 9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小为________米.17.PM2.5是指大气中直径小于或等于2.5微米(0.0000000025千米)的颗粒物,也称为可入肺颗粒物.2.5微米用科学记数法表示为________千米.18.对于两个不相等的实数a ,b ,我们规定符号Min{,}a b 表示a ,b 中的较小的值,如Min{3,4}3=,按照这个规定,方程135Min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_____________.19.计算35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=__. 20.已知(3)1a a -=,则整数a 的值为______.三、解答题21.已知M =222111x x x x x ++---, (1)化简M ;(2)请从-2,1,2这三个整数中选一个合适的数代入,求M 的值. 22.解分式方程: (1)13x -+2=43x x --;(2)()3211x x x x +---= 0 23.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等 (1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 24.计算:(1)2031(2021)|13|(2)4; (2)2222()()ab a abb ab a abb .25.先化简,再求值:22121124x x x x -+⎛⎫+÷ ⎪--⎝⎭,其中3x =. 26.先化简,再求值:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中a 与2,3构成ABC 的三边长,且a 为整数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据分式等于0的条件:分子为0,分母不为0解答. 【详解】由题意得:290,30x x -=-≠, 解得x=-3, 故选:B . 【点睛】此题考查分式的值等于0的条件,熟记计算方法是解题的关键.2.C解析:C 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】0.000000076=87.610-⨯, 故选:C 【点睛】此题考查了科学记数法,注意n 的值的确定方法,当原数小于1时,n 是负整数,n 等于原数左数第一个非零数字前0的个数,按此方法即可正确求解3.D解析:D 【分析】运用同底数幂乘法、负整数次幂、同底数幂除法以及零次幂的知识逐项排查即可. 【详解】解:A. 235a a a ⋅=,故A 选项不符合题意; B. 221aa-=,故B 选项不符合题意; C. 572a a a -÷=,故C 选项不符合题意; D. 0(2)1(0)a a =≠,故D 选项符合题意. 故填:D . 【点睛】本题主要考查了同底数幂乘法、负整数次幂、同底数幂除法、零次幂等的知识点,灵活运用相关运算法则是解答本题的关键.4.A解析:A 【分析】根据分式有意义分母不为零即可得答案. 【详解】∵分式2xx -有意义, ∴x-2≠0, 解得:x≠2. 故选:A . 【点睛】本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.5.A解析:A 【分析】答题首先清楚分式的基本性质,然后对各选项进行判断. 【详解】解:A 、1122x xx x+--=---,故A 不正确; B 、b a a b c c--+=-,故B 正确; C 、a b a bm m-+-=-,故C 正确; D 、22112323x x x x --=---,故D 正确. 故答案为:A . 【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.6.D解析:D 【分析】根据同分母分式的加法逆运算得到x y x y y y y +=+,将x 2y 5=代入计算即可. 【详解】解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D . 【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.7.D解析:D 【分析】根据分式有意义的条件得出x +2≠0且x ﹣1≠0,计算即可. 【详解】 解:要使分式()()221x x x ++-有意义,必须满足x +2≠0且x ﹣1≠0,解得:x ≠﹣2且x ≠1, 故选:D . 【点睛】本题考查了分式有意义的条件,能根据分式有意义的条件得出x +2≠0且x ﹣1≠0是解此题的关键.8.B解析:B【分析】设乙型机器人每台x 万元,由两种型号机器人的单价和为140万元得甲型机器人每台()140x -万元,根据用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台列得方程. 【详解】解:设乙型机器人每台x 万元,则甲型机器人每台()140x -万元,根据题意,可得4605801140x x=--.故选:B. 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键.9.C解析:C 【分析】对于①,计算M-N 的值可以判断M>N 还是M<N ;对于②,计算M N 的值,然后根据a 、b 满足的条件判断其大于0还是小于0. 【详解】 ∵M =11a b a b +++,N = 1111a b +++,∴M ﹣ N =11a b a b +++﹣( 1111a b +++)=22(1)(1)ab a b -++, ①当ab =1时,M ﹣N =0, ∴M =N ,当ab >1时,2ab >2, ∴2ab ﹣2>0,当a <0时,b <0,(a +1)(b +1)>0或(a +1)(b +1)<0, ∴M ﹣N >0或M ﹣N <0, ∴M >N 或M <N ; 故①错误; ②M •N =(11a b a b +++)•( 1111a b +++)=()()()()221111aa b b a b a b +++++++.∵a +b =0,∴原式=()()2211aba b +++=224(1)(1)aba b ++.∵a ≠﹣1,b ≠﹣1, ∴(a +1)2(b +1)2>0. ∵a +b =0, ∴ab ≤0, M •N ≤0, 故②对. 故选:C . 【点睛】本题考查分式运算的应用,熟练掌握分式的运算法则是解题关键.10.B解析:B 【分析】最简分式的标准是分子、分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分; 【详解】A 、()()21111111x x x x x x ++==-+-- ; B 、2211x x -+ 的分子分母不能再进行约分,是最简分式;C 、()()22222x y x xy y x y x xy x x y x--+-==-- ; D 、()()()24416428242x x x x x x +---==++ ; 故选:B . 【点睛】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意;.11.B解析:B 【分析】根据分式的乘方计算法则解答. 【详解】2422()-=nn n b b a a . 故选:B . 【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.12.C解析:C 【分析】先根据分式为零的条件列出不等式组,然后再求解即可. 【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2.故答案为C . 【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题13.1【分析】先将第二项的分子分解因式再约分化简即可【详解】故答案为:1【点睛】此题考查分式的乘法掌握乘法的计算法则是解题的关键解析:1 【分析】先将第二项的分子分解因式,再约分化简即可. 【详解】22x x xyx y x-⋅=-2()1x x x y x y x -⋅=-, 故答案为:1. 【点睛】此题考查分式的乘法,掌握乘法的计算法则是解题的关键.14.13【分析】把已知等式两边分别平方适当变形后再将所求代数式展开整体代入求解【详解】解:∵∴即∴故答案为:13【点睛】此题主要考查了分式的求值以及完全平方公式正确运用公式是解题关键解析:13 【分析】把已知等式两边分别平方适当变形后,再将所求代数式展开整体代入求解. 【详解】解:∵13x x-=, ∴2211()29x x x x -=+-=,即22111x x +=, ∴22211211213x x x x ⎛⎫+=++=+= ⎪⎝⎭,故答案为:13. 【点睛】此题主要考查了分式的求值以及完全平方公式,正确运用公式是解题关键.15.【分析】本题的等量关系是:224000元购买A 型计算机的数量=240000元购买B 型计算机数量依此列出方程即可【详解】解:设B 型计算机每台需x 元则A 型计算机每台需(x-400)元依题意有故填【点睛】解析:240000224000400x x =- 【分析】 本题的等量关系是:224 000元购买A 型计算机的数量=240 000元购买B 型计算机数量,依此列出方程即可. 【详解】解:设B 型计算机每台需x 元,则A 型计算机每台需(x-400)元,依题意有240000224000400x x =- 故填,240000224000400x x =-. 【点睛】考查了分式方程的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系,本题重点是熟悉单价,总价,数量之间的关系.16.【分析】根据题意列得这个病毒直径为计算并用科学记数法表示即可【详解】故答案为:【点睛】此题考查实数的乘法计算科学记数法正确理解题意列式并会用科学记数法表示结果是解题的关键 解析:8310-⨯【分析】根据题意列得这个病毒直径为93010-⨯,计算并用科学记数法表示即可. 【详解】983010310--⨯=⨯,故答案为:8310-⨯ . 【点睛】此题考查实数的乘法计算,科学记数法,正确理解题意列式并会用科学记数法表示结果是解题的关键.17.【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数的绝对值< 解析:92.510-⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】2.5微米=92.510-⨯千米, 故答案为:92.510-⨯. 【点睛】此题考查科学记数法,注意n 的值的确定方法,当原数小于1时,n 等于原数左数第一个非零数字前零的个数,按此方法即可正确求解.18.【分析】根据题中的新定义化简求出分式方程的解检验即可【详解】当<时>2方程变形得:=−2去分母得:1=解得:(不符合题意舍去);当>即<2方程变形得:=−2去分母得:3=解得:经检验是分式方程的解综 解析:4x =-【分析】根据题中的新定义化简,求出分式方程的解,检验即可. 【详解】 当12x -<32x -时,x >2,方程变形得:12x -=52x x --−2, 去分母得:1=()522x x ---, 解得:=2x -(不符合题意,舍去); 当12x ->32x -,即x <2,方程变形得:32x -=52x x --−2, 去分母得:3=()522x x ---, 解得:4x =-,经检验4x =-是分式方程的解, 综上,所求方程的解为4x =-. 故填:4x =-. 【点睛】此题考查了解分式方程,以及实数的运算,弄清题中的新定义是解本题的关键.19.【分析】首先计算积的乘方再计算中括号内的同底数幂的乘法最后计算单项式除以单项式即可得出答案【详解】解:===故答案为:【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式熟练掌握运算法则是解答此 解析:7a .【分析】首先计算积的乘方,再计算中括号内的同底数幂的乘法,最后计算单项式除以单项式即可得出答案.【详解】解:35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=1526()a a a -÷-=158()a a -÷-=7a .故答案为:7a .【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式,熟练掌握运算法则是解答此题的关键. 20.24【分析】由于底数和指数都不确定所以本题分三种情况进行讨论即可求解【详解】①若时∴;②若时1的任何次幂都等于1∴;③若时-1的偶次幂等于1∴而∴符合题意;故答案为:024【点睛】本题主要考查了零指 解析:2、4【分析】由于(3)1aa -=,底数和指数都不确定,所以本题分三种情况进行讨论即可求解.【详解】①若30a -≠时,(3)1a a -=,∴0a =;②若31a -=时,1的任何次幂都等于1,∴4a =;③若31a -=-时,-1的偶次幂等于1,∴2a =,而2(23)1-=,∴2a =符合题意;故答案为:0、2、4.【点睛】本题主要考查了零指数幂的性质以及有理数的乘方,正确把握定义是解题关键. 三、解答题21.(1)M =11x -;(2)当x=-2时,A =13-;当x=2时,A =1. 【分析】(1)根据异分母分式的加减法法则进行计算即可;(2)根据分式成立的条件选取合适的x 的值代入化简结果进行计算即可.【详解】解:(1)M =222111x x x x x ++--- =22221(1)11x x x x x x +++--- =222211x x x x x ++--- =(1)(1)1x x x ++- =11x - (2)∵M =11x - ∴x≠1,∴x 可以取-2或2.当x=-2时,A =11x -=-13. 或者当x=2时,A =11x -=1. 【点睛】本题考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.22.(1)x =1;(2)无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程无解;【详解】解:(1)去分母得:1+2(x ﹣3)=x ﹣4,解得:x =1,经检验x =1是分式方程的解;(2)去分母,得3x-(x+2)=0,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.23.(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =, 经检验, = 5x 是原方程的解,且符合题意,1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.24.(1)7;(2)32a .【分析】(1)根据绝对值、零指数幂、负整数指数幂、立方的运算分别进行计算,然后根据实数的运算法则求得计算结果;(2)先根据多项式乘以多项式的法则进行计算,再合并同类项即可.【详解】解:(1)2031(2021)|13|(2)416128=+--7=(2)2222()()a b a ab b a b a ab b322223a a b ab a b ab b =-++-++322223a a b ab a b ab b ++---3333a b a b =++-32a =. 【点睛】考查了整式的混合运算以及负整数指数幂、零指数幂、立方、绝对值运算等知识,熟练运用这些法则是解题关键.25.21x x +-;52【分析】 先计算括号内的运算,然后计算除法,把分式进行化简得到最简分式,再把3x =代入计算,即可得到答案.【详解】解:原式=()()()22212211x x x x x x x +--+⨯=---; 当3x =时,原式=522331=-+. 【点睛】 本题考查了分式的混合运算,分式的化简求值,解题的关键是掌握运算法则进行计算. 26.224a a -,6【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出a 的值,代入计算即可求出值.【详解】解:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭ ()22244422a a a a a a ---=÷--()()224224a a a a a --=⋅-- 224a a =-.∵a 与2,3构成ABC 的三边长, ∴ 3232a -<<+,即15a <<. ∵ a 为整数,∴ a 为2或3或4.当2a =时,分母20a -=(舍去); 当4a =时,分母40a -=(舍去). 故a 的值只能为3.∴当3a =时,222423436a a -=⨯-⨯=.【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键.。
最新人教版初中数学八年级数学上册第五单元《分式》测试卷(有答案解析)(2)
一、选择题1.下列命题中,属于真命题的是( ) A .如果0ab =,那么0a = B .253xx x-是最简分式 C .直角三角形的两个锐角互余 D .不是对顶角的两个角不相等2.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( ) A .50.2510-⨯B .60.2510-⨯C .72.510-⨯D .62.510-⨯3.已知2340x x --=,则代数式24xx x --的值是( )A .3B .2C .13D .124.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .145.若整数a 使得关于x 的不等式组3(1)32(1)x ax x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .26.化简2111313x x x x +⎫⎛-÷ ⎪---⎝⎭的结果是( ) A .2 B .23x - C .41x x -- D .21x - 7.将0.50.0110.20.03x x +-=的分母化为整数,得( ) A .0.50.01123x x +-= B .5051003xx +-= C .0.50.01100203x x +-= D .50513xx +-= 8.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .2222x xy y x xy-+-D .21628x x -+9.22()-n b a(n为正整数)的值是( )A .222+n n b aB .42n n b aC .212+-n n b aD .42-nn b a10.如果111a b a b +=+,则b a a b+的值为( ) A .2B .1C .1-D .2-11.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( )A .102x x x -<<B .012x x x -<<C .021x x x -<<D .120x x x -<<12.计算a ba b a÷⨯的结果是() A .aB .2aC .2b aD .21a二、填空题13.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 14.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店抓住商机购进甲、乙、丙三种口罩进行销售.已知销售每件甲种口罩的利润率为30%,每件乙种口罩的利润率为20%,每件丙种口罩的利润率为5%.当售出的甲、乙、丙口罩件数之比为1:3:2时,药店得到的总利润率为20%;当售出的甲、乙、丙口罩件数之比为3:2:2时,药店得到的总利润率为24%.因丙种口罩利润较低,现药店准备只购进甲、乙两种口罩进行销售,若该药店想要获得的总利润率为28%,则该药店应购进甲、乙两种口罩的数量之比是______. 15.方程31x xx x -=+的解是______. 16.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人. 17.已知234a b c ==(0abc ≠,a b c +≠),则=+a b ca b c -+-_____. 18.211a a a-+=+_________.19.化简:(﹣2y x)3÷(223⋅y x x y )=_______________.20.如果分式126x x --的值为零,那么x =________ . 三、解答题21.(1)解方程.22510111x x x -+=+--.(2)先化简分式(2241442a a a a ---+-)÷212a a a +-,然后在0,1,2中选一个你认为合适的a 值,代入求值.22.小强家距学校3000米,某天他步行去上学,走到路程的一半时发现忘记带课本,此时离上课时间还有23分钟,于是他立刻步行回家取课本,随后小强爸骑电瓶车送他去学校.已知小强爸骑电瓶车送小强到学校比小强步行到学校少用24分钟,且小强爸骑电瓶车的平均速度是小强步行的平均速度的5倍,小强到家取课本与小强爸启动电瓶车等共用4分钟.(1)求小强步行的平均速度与小强爸骑电瓶车的平均速度; (2)请你判断小强上学是否迟到,并说明理由. 23.先化简,再求值:22121124x x x x -+⎛⎫+÷ ⎪--⎝⎭,其中3x =.24.计算:0212|( 3.14)()2π---+-25.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时. (1)使用智能分拣设备后,每人每小时可分拣快件多少件?(2)已知某快递中转站平均每天需要分拣10万件快件,每天工作时间为8小时,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作? 26.先化简,再求值:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中a 与2,3构成ABC 的三边长,且a 为整数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可. 【详解】解:A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意;B.()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意;C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意; 故选:C . 【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.2.D解析:D 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】0.0000025=62.510-⨯,故选:D . 【点睛】此题考查了科学记数法,注意n 的值的确定方法:当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.3.D解析:D 【分析】利用等式的性质对2340x x --=变形可得43x x-=,利用分式的性质对24xx x --变形可得141x x--,从而代入求值即可. 【详解】由条件2340x x --=可知,0x ≠, ∴430x x --=,即:43x x-=, 根据分式的性质得:21144411x x x x x x x==------, 将43x x-=代入上式得:原式11312==-, 故选:D . 【点睛】本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键.4.B解析:B 【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可. 【详解】去分母得:()()22421x k x --+=,整理得:22290x kx k ---=, ∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义, ∴14k =- 故选:B 【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.5.D解析:D 【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和. 【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①②解不等式①得,x a >; 解不等式②得,2x >; ∵不等式组的解集为2x >, ∴a≤2,解方程21111ax x x+=---得:21x a =-∵分式方程的解为整数, ∴11a -=±或2± ∴a=0、2、-1、3 又x≠1,∴211a≠-,∴a≠-1, ∴a≤2且a≠-1, 则a=0、2,∴符合条件的所有整数a 的和=0+2=2, 故选:D . 【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.6.D解析:D 【分析】利用乘法分配律计算即可 【详解】解:原式=11(3)(3)3(1)(1)x x x x x x +⋅--⋅--+-=1-31x x --=21x -, 故选D . 【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.D解析:D 【分析】根据分式的基本性质求解. 【详解】解:将0.50.0110.20.03x x +-=的分母化为整数,可得50513x x +-=. 故选:D . 【点睛】本题考查一元一次方程的化简,熟练掌握分式的基本性质解题关键.8.B解析:B 【分析】最简分式的标准是分子、分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分; 【详解】A 、()()21111111x x x x x x ++==-+-- ; B 、2211x x -+ 的分子分母不能再进行约分,是最简分式;C 、()()22222x y x xy y x y x xy x x y x--+-==-- ; D 、()()()24416428242x x x x x x +---==++ ; 故选:B . 【点睛】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意;.9.B解析:B 【分析】根据分式的乘方计算法则解答. 【详解】2422()-=nn n b b a a . 故选:B . 【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.10.C解析:C 【分析】先对111a b a b +=+变形得到()2a b ab +=,然后将b a a b +化成22a b ab+,再结合完全平方公式得到()22a b abab+-,最后将()2a b ab +=代入即可解答.【详解】 解:∵111b a a b a b ab ab ab a b++=+==+,即()2a b ab += ∴()22222221a b ab b a b a a b ab ab ab a b ab ab ab ab ab ab +-+--+=+=====-. 故选C . 【点睛】本题主要考查了分式的减法、完全平方公式的应用以及代数式求值,灵活运用完全平方公式是解答本题的关键.11.D解析:D 【分析】根据负整数指数幂的运算法则可得110xx-=<,根据非零数的零次幂可得0x 1=,根据平方的结果可得20x 1<<,从而可得结果. 【详解】解:∵1x 0-<<, ∴20x 1<<,0x 1=,11x 0x-=<, ∴120x x x -<<. 故选:D . 【点睛】本题主要考查了代数式的大小比较,需结合幂的运算法则进行求解.12.C解析:C 【分析】先把除法变成乘法,然后约分即可. 【详解】解:2a b b b b a a b a a a a÷⨯=⋅⋅=,故选:C . 【点睛】本题考查了分式的乘除混合运算,解题的关键是熟练掌握乘除混合运算法则.二、填空题13.【分析】根据分式运算法则即可求出答案【详解】解:===当m+n=-3时原式=故答案为:【点睛】本题考查分式解题的关键是熟练运用分式的运算法则本题属于基础题型解析:13【分析】根据分式运算法则即可求出答案. 【详解】解:222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭=22(2)m n m mn n m m+-++÷ =2()m n mm m n +⋅-+ =1m n -+, 当m+n=-3时, 原式=13故答案为:13【点睛】本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型.14.【分析】设甲乙丙三种口罩的进价分别为xyz 根据题意可分别求出甲乙丙三种口罩的利润再根据当销售出的甲乙丙口罩件数之比为1:3:2时的总利润为20和当销售出的甲乙丙口罩件数之比为3:2:2时的总利润为2解析:83【分析】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,根据题意可分别求出甲、乙、丙三种口罩的利润.再根据当销售出的甲、乙、丙口罩件数之比为1:3:2时的总利润为20%和当销售出的甲、乙、丙口罩件数之比为3:2:2时的总利润为24%,列出等式,求出x 、y 、z 之间的关系.最后即可求出只购进甲、乙两种口罩,使总利润为28%时的甲、乙两种口罩的数量比. 【详解】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,则销售甲口罩的利润为30%x ,乙口罩的利润为20%y ,丙口罩的利润为5%z .当销售出的甲、乙、丙口罩件数之比为1:3:2时,设甲口罩售出a 件,则乙口罩售出3a 件,丙口罩售出2a 件. 根据题意可列等式:30%320%25%20%32a x a y a za x a y a z++=++,整理得:x =3z .当销售出的甲、乙、丙口罩件数之比为3:2:2时,设甲口罩售出3b 件,则乙口罩售出2b 件,丙口罩售出2b 件. 根据题意可列等式:330%220%25%24%322b x b y b zb x b y b z++=++,整理得:9x-4y =19z . ∴y =2z .现只购进甲、乙两种口罩,使总利润为28%,设甲口罩售出A 件,乙口罩售出B 件.则30%20%28%A x B y A x B y +=+,即30%320%228%32A z B zA zB z⨯⨯+⨯⨯=⨯+⨯. ∴83A B =. 故答案为:83. 【点睛】本题考查分式方程的实际应用.根据题意列出每一步的分式方程是解答本题的关键.15.【分析】两边同时乘以x(x+1)化分式方程为整式方程求解即可【详解】∵∴(x+1)(x-3)=∴-2x-3=∴2x+3=0∴x=经检验x=是原方程的解故填【点睛】本题考查了分式方程的解法熟练把分式方解析:32-. 【分析】两边同时乘以x(x+1),化分式方程为整式方程求解即可. 【详解】 ∵31x xx x -=+, ∴(x+1)(x-3)= 2x , ∴2x -2x-3= 2x , ∴2x+3=0, ∴x=32-, 经检验,x=32-是原方程的解, 故填32-. 【点睛】本题考查了分式方程的解法,熟练把分式方程转化为整式方程是解题的关键,验根是解题的一个重要环节,不能忽视.16.6【分析】先设第一组有x 人则第二组人数是15x 人根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1根据等量关系列出方程即可【详解】解:设第一组有解析:6 【分析】先设第一组有x 人,则第二组人数是1.5x 人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方程即可.【详解】解:设第一组有x 人. 根据题意,得242711.5x x-=, 解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人,故答案为6.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验. 17.3【分析】设=k 用k 表示出abc 的值代入代数式计算化简即可【详解】设=k 则a=2kb=3kc=4k ∴故答案为:3【点睛】此题考查分式的化简求值设设=k 用k 表示出abc 的值是解题的关键解析:3【分析】 设234a b c ===k ,用k 表示出a 、b 、c 的值,代入代数式计算化简即可. 【详解】 设234a b c ===k ,则a=2k ,b=3k ,c=4k , ∴2343=3+234a b c k k k k a b c k k k k-+-+==-+-, 故答案为:3.【点睛】 此题考查分式的化简求值,设设234a b c ===k ,用k 表示出a 、b 、c 的值是解题的关键. 18.【分析】先通分再分母不变分子相减即可求解【详解】故答案为:【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键 解析:11a + 【分析】先通分,再分母不变,分子相减即可求解.【详解】222222211(1)11111111(1)(1)11a a a a a a a a a a a a a a a a a a a +--+=--=-=-==+++++++-++-故答案为:11 a+【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.19.﹣【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】解:原式=﹣÷=﹣•=﹣故答案为:﹣【点睛】本题考查分式的混合运算按照正确的运算顺序进行运算并及时化简是解题的关键解析:﹣2 5 y x【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】解:原式=﹣36yx÷yx=﹣36yx•xy=﹣25yx,故答案为:﹣25yx.【点睛】本题考查分式的混合运算,按照正确的运算顺序进行运算并及时化简是解题的关键.20.1【分析】根据分式的值为零可得解方程即可得【详解】由题意得:解得分式的分母不能为零解得符合题意故答案为:1【点睛】本题考查了分式的值为零正确求出分式的值和掌握分式有意义的条件是解题关键解析:1【分析】根据分式的值为零可得10x-=,解方程即可得.【详解】由题意得:10x-=,解得1x=,分式的分母不能为零,260x∴-≠,解得3x≠,1x∴=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键.三、解答题21.(1)无解;(2)a ,1.【分析】(1)根据解分式方程的一般步骤解分式方程即可;(2)先根据分式的化简步骤将分式化为最简分式,再代入恰当的数值即可.【详解】解:(1)方程的两边都乘以(x +1)(x ﹣1)得,2(1)5(1)10x x --+=-∴2x-2-5x-5=-10解得1x =检验,当x =1时,(x +1)(x ﹣1)=0∴x =1是原方程的增根.∴原分式方程无解.(2)原式=2(2)(2)1(2)(2)21a a a a a a a ⎡⎤-+--⋅⎢⎥--+⎣⎦ =1(2)21a a a a a +-⋅-+ =a ,当a =0,2分式无意义,故当a =1时,原式=1.【点睛】本题主要考察了解分式方程及分式的化简求值,解题的关键是熟练掌握解分式方程的一般步骤及分式化简的一般步骤,注意分式有意义的条件.22.(1)小强步行的平均速度为100米/分钟,小强爸骑电瓶车的平均速度为500米/分钟;(2)小强不能按时到校,将会迟到,理由见解析【分析】(1)设小强步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,根据题意可得,小强爸骑电瓶车送小强到学校比小强步行到学校少用24分钟,据此列方程求解; (2)计算出小强从步行回家到骑车回到学校所用的总时间,然后和23进行比较即可.【详解】解:(1)设小强步行的平均速度为x 米/分钟,则小强爸骑电瓶车的平均速度为5x 米/分钟,根据题意得:30003000245x x-=, 解得100x =,经检验,100x =是分式方程的解,且符合题意,∴5500x =,即小强步行的平均速度为100米/分钟,小强爸骑电瓶车的平均速度为500米/分钟; (2)由(1)得,小强半途步行返家所需时间为3000210015÷÷=分钟,小强爸骑电瓶车送小强到学校所需时间为30005006÷=分钟,所以,从小强半途步行返家到小强爸骑电瓶车送他到学校共用时间为154625++=分钟23>分钟,故小强不能按时到校,将会迟到.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.21x x +-;52【分析】 先计算括号内的运算,然后计算除法,把分式进行化简得到最简分式,再把3x =代入计算,即可得到答案.【详解】解:原式=()()()22212211x x x x x x x +--+⨯=---; 当3x =时,原式=522331=-+. 【点睛】 本题考查了分式的混合运算,分式的化简求值,解题的关键是掌握运算法则进行计算.24.5【分析】先计算绝对值、0指数、负指数,再加减.【详解】解: 0212|( 3.14)()2π---+-214=+5=【点睛】本题考查了包含绝对值、0指数和负指数的实数计算,准确应用各种法则,熟练计算是解题关键.25.(1)使用智能分拣设备后每人每小时可分拣快件2100件;(2)每天只需要安排6名工人就可以完成分拣工作【分析】(1)设用传统方式每人每小时可分拣x 件,则用智能分拣设备后每人每小时可分拣25x件,利用时间差为4小时列方程80008000452520x x=-⨯,再解方程,检验即可得到答案; (2)利用每天工作总量(10万件)除以工作效率(每人每天分拣82584⨯⨯件),结果取符合题意的正整数即可得到答案.【详解】(1)解:设用传统方式每人每小时可分拣x 件,则用智能分拣设备后每人每小时可分拣25x 件, 由题意,得80008000452520x x=-⨯. 解得84x =.经检验,84x =是原方程的解,∴252100x =,∴使用智能分拣设备后每人每小时可分拣快件2100件;(2)∵1000002058425821=⨯⨯, ∵2055621<<, ∴每天只需要安排6名工人就可以完成分拣工作.【点睛】本题考查的是分式方程的应用,掌握工作量等于工作时间乘以工作效率是解题的关键. 26.224a a -,6【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出a 的值,代入计算即可求出值.【详解】 解:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭ ()22244422a a a a a a ---=÷-- ()()224224a a a a a --=⋅-- 224a a =-.∵a 与2,3构成ABC 的三边长,∴ 3232a -<<+,即15a <<.∵ a 为整数,∴ a 为2或3或4.当2a =时,分母20a -=(舍去);当4a =时,分母40a -=(舍去).故a 的值只能为3. ∴当3a =时,222423436a a -=⨯-⨯=.【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键.。
最新人教版初中数学八年级数学上册第五单元《分式》测试(答案解析)(1)
一、选择题1.关于代数式221a a+的值,以下结论不正确的是( ) A .当a 取互为相反数的值时,221a a+的值相等 B .当a 取互为倒数的值时,221a a +的值相等 C .当1a >时,a 越大,221a a +的值就越大 D .当01a <<时,a 越大,221a a +的值就越大 2.如果a ,b ,c ,d 是正数,且满足a +b +c +d =2,11a b c b c d ++++++11a c d ab d+++++=4,那么d a a b c b c d ++++++b ca c d ab d+++++的值为( )A .1B .12C .0D .43.下列各分式中,最简分式是( )A .6()8()x y x y -+B .22y x x y --C .2222x y x y xy ++D .222()x y x y -+4.下列变形不正确的是( ) A .1122x xx x+-=--- B .b a a bc c--+=- C .a b a bm m -+-=- D .22112323x x x x--=--- 5.计算2m m 1m m-1+-的结果是( ) A .mB .-mC .m +1D .m -16.若整数a 使得关于x 的不等式组3(1)32(1)x ax x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .2 7.下列变形不正确...的是( ) A .1a ba b a b-=-- B .1a b a b a b+=++C .221a b a b a b+=++D .221-=-+a b a b a b8.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++ B .222()x y x y +- C .222()x y x y-+ D .222()x y x y ++ 9.下列各式计算正确的是( )A .33x x y y=B .632m m m= C .22a b a b a b +=++D .32()()a b a b b a -=-- 10.下列各式中,无论x 取何值,分式都有意义的是( ).A .132x - B .213x + C .231x x + D .21xx + 11.若220.3,3a b --=-=-,213c -⎛⎫=- ⎪⎝⎭,013d ⎛⎫=- ⎪⎝⎭,则( ) A .a b c d <<< B .b a c d <<< C .b a d c <<< D .a b d c <<<12.化简214a 2a 4---的结果为( ) A .1a 2+ B .a 2+C .1a 2- D .a 2-二、填空题13.若x =2是关于x 的分式方程31k x x x -+-=1的解,则实数k 的值等于_____. 14.某校要建立两个计算机教室,为此要购买相同数量的A 型计算机和B 型计算机.已知一台A 型计算机的售价比一台B 型计算机的售价便宜400元,如果购买A 型计算机需要224 000元,购买B 型计算机需要240 000元.求一台A 型计算机和一台B 型计算机的售价分别是多少元. 设一台B 型计算机的售价是x 元,依题意列方程为__.15.当x _______时,分式22x x -的值为负. 16.若关于x 的方程1322m xx x-+=--的解是正数,则m =____________. 17.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品? 根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________. (2)乙型机器人每小时搬运产品_______________kg .18.约分:22618m nmn=-________________ 19.方程11212x x =+-的解是x =_____. 20.计算:22824x x-=+-__________. 三、解答题21.(1)计算:(-14)-2-(2)0+(-5)9×(-0.28); (2)因式分解:(1-a )2+4(a-1); (3)计算:(x+3)2-(x+2)(x-1).22.(1)先化简,再求值:22228424m m m m m m +-⎛⎫+÷ ⎪--⎝⎭,其中m 满足2430m m ++=.(2)如图,在等边ABC 中,D .E 分别在边BC 、AC 上,且//DE AB ,过点E 作EF DE ⊥交BC 的延长线于点F .若3cm CD =,求DF 的长.23.计算:(1)|﹣3|116238-(﹣2)2; (2)xy 2•(﹣2x 3x 2)3÷4x 5. 24.解分式方程:(1)1171.572x x += (2)21533x x x-+=-- 25.某人承包1125平方米的铺地砖任务,计划在一定的时间内完成,按计划工作3天后,提高了工作效率,使每天铺地砖的面积为原计划的1.5倍,结果提前4天完成了任务,则原计划每天铺地多少平方米?26.雪梨是石家庄市某地的特色时令水果.雪梨上市后,水果店的老板用2400元购进一批雪梨,很快售完;老板又用3750元购进第二批雪梨,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)求第一批雪梨每件进价是多少元?(2)老板以每件225元的价格销售第二批雪梨,售出80%后,为了尽快售完,剩下的决定打折促销,要使得第二批雪梨的销售利润为2460元,剩余的雪梨每件售价应该打几折?(利润=售价-进价)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据相反数的性质,倒数的性质以及不等式的性质来解决代数式的值即可; 【详解】当a 取互为相反数的值时,即取m 和-m ,则-m+m=0, 当a 取m 时,①222211=m a a m++ ,当a 取-m 时,②()()222222111a m m a m m +=-+=+- , ①=②,故A 正确;B 、当a 取互为倒数的值时,即取m 和1m ,则11m m⨯= , 当a 取m 时,①222211=m a a m ++,当a 取1m时,②2222221111m 1m a m a m ⎛⎫+=+=+ ⎪⎝⎭⎛⎫ ⎪⎝⎭①=②,故B 正确;C 、可举例判断,由a >1得,取a=2,3(2<3)则22112=424++< 22113=939++ , 故C 正确;D 、可举例判断,由01a <<得,取a=12,13(12>13) 2222111111=4+=924391123⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭< , 故D 错误;故选:D . 【点睛】本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键.2.D解析:D 【分析】 根据a +b +c +d =2,11114a b c b c d b c d b c d+++=++++++++,将所求式子变形便可求出. 【详解】 ∵a +b +c +d =2,11114a b c b c d b c d b c d+++=++++++++,∴d a b ca b c b c d a c d a b d+++++++++++=2()2()2()2()a b c b c d a c d a b d a b c b c d a c d a b d -++-++-++-+++++++++++++=2a b c ++﹣1+2b c d ++﹣1+2a c d ++﹣1+2a b d++﹣1 =2×(1111a b c b c d a c d a b d +++++++++++)﹣4=2×4﹣4 =8﹣4 =4,故选:D . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.3.C解析:C 【分析】分式的分子和分母没有公因式的分式即为最简分式,根据定义解答. 【详解】 A 、6()8()x y x y -+=3()4()x y x y -+,故该项不是最简分式;B 、22y x x y--=-x-y ,故该项不是最简分式;C 、2222x y x y xy ++分子分母没有公因式,故该项是最简分式;D、222()x yx y-+=x yx y-+,故该项不是最简分式;故选:C.【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.4.A解析:A【分析】答题首先清楚分式的基本性质,然后对各选项进行判断.【详解】解:A、1122x xx x+--=---,故A不正确;B、b a a bc c--+=-,故B正确;C、a b a bm m-+-=-,故C正确;D、22112323x xx x--=---,故D正确.故答案为:A.【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.5.A解析:A【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】原式=211m mm m---=21m mm--=(1)1m mm--=m,故选:A.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x>,得出a的范围,根据分式方程的解为整数即得到a的值,结合a的范围即可求得符合条件的所有整数a的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①②解不等式①得,x a >; 解不等式②得,2x >; ∵不等式组的解集为2x >, ∴a≤2,解方程21111ax x x+=---得:21x a =-∵分式方程的解为整数, ∴11a -=±或2± ∴a=0、2、-1、3 又x≠1,∴211a≠-,∴a≠-1, ∴a≤2且a≠-1, 则a=0、2,∴符合条件的所有整数a 的和=0+2=2, 故选:D . 【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.7.C解析:C 【分析】A 、B 两项利用同分母分式的加减法法则计算,约分即可得到结果;C 、D 通过能否继续进行因式分解,继续化简,即可得到答案. 【详解】 A. =1a b a b a b a b a b--=---,故此项正确; B. =1a b a b a b a b a b++=+++,故此项正确; C.22a ba b ++为最简分式,不能继续化简,故此项错误;D. ()()221a b a b a b a b a b a b--==-+-+,故此项正确;故选C . 【点睛】此题考查了分式的加减法、约分,熟练掌握运算法则是解本题的关键.8.C解析:C 【分析】根据分式的除法法则计算即可. 【详解】2222x y x y x y x y -+÷+-()()22x y x y x y x y x y +--=⨯++222()x y x y -=+ 【点睛】此题考查分式的除法法则:先把除式的分子分母颠倒位置,再化为最简分式即可.9.D解析:D 【分析】根据分式的基本性质进行判断即可得到结论. 【详解】解:A 、33x y 是最简分式,所以33x xy y ≠,故选项A 不符合题意;B 、624m m m=,故选项B 不符合题意;C 、22a b a b++是最简分式,所以22a b a b a b +≠++,故选项C 不符合题意; D 、3322()()()()a b a b a b b a a b --==---,正确, 故选:D . 【点睛】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.10.B解析:B 【分析】根据分式有意义的条件:分母不等于0确定答案. 【详解】A 、若3x-2≠0,即23x ≠时分式有意义,故该选项不符合题意; B 、∵230x +>,∴无论x 取何值,分式都有意义,故该项符合题意;C 、∵20x ≥,∴x ≠0时分式有意义,故该选项不符合题意;D 、若210x +≠即12x ≠-时分式有意义,故该选项不符合题意;故选:B . 【点睛】此题考查分式有意义的的条件:分母不等于0.11.D解析:D 【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案. 【详解】解:21000.39a -=-=-,2193b -==--,2913c -⎛⎫=- ⎪⎭=⎝,0113d ⎛⎫=-= ⎪⎝⎭,∵10011999-<-<<, ∴a b d c <<<,故选D . 【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.12.A解析:A 【分析】根据分式的减法可以解答本题. 【详解】解:()()214a 241a 2a 4a 2a 2a 2+--==--+-+, 故选:A . 【点睛】本题考查异分母分式的减法运算,解答本题的关键是明确公分母.二、填空题13.4【分析】将x=2代入求解即可【详解】将x=2代入=1得解得k=4故答案为:4【点睛】此题考查分式方程的解解一元一次方程正确理解方程的解是解题的关键解析:4 【分析】将x=2代入求解即可. 【详解】 将x=2代入31k x x x -+-=1,得112k -=,解得k=4,故答案为:4. 【点睛】此题考查分式方程的解,解一元一次方程,正确理解方程的解是解题的关键.14.【分析】本题的等量关系是:224000元购买A 型计算机的数量=240000元购买B 型计算机数量依此列出方程即可【详解】解:设B 型计算机每台需x 元则A 型计算机每台需(x-400)元依题意有故填【点睛】解析:240000224000400x x =- 【分析】 本题的等量关系是:224 000元购买A 型计算机的数量=240 000元购买B 型计算机数量,依此列出方程即可. 【详解】解:设B 型计算机每台需x 元,则A 型计算机每台需(x-400)元,依题意有240000224000400x x =- 故填,240000224000400x x =-. 【点睛】考查了分式方程的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系,本题重点是熟悉单价,总价,数量之间的关系.15.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠ 【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围. 【详解】 解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0, 故答案为:x <2且x≠0. 【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.16.m <5且m≠1【分析】将分式方程去分母转化为整式方程表示出x 根据x 为正数列出关于m 的不等式求出不等式的解集即可确定出m 的范围【详解】解:关于的方程的解是正数且解得m <5且m≠1故答案为:m <5且m≠解析:m <5且m≠1 【分析】将分式方程去分母转化为整式方程,表示出x ,根据x 为正数列出关于m 的不等式,求出不等式的解集即可确定出m 的范围.【详解】 解:1322m x x x-+=-- ()m+32=-1-x x5-m x=2关于x 的方程1322m x x x -+=--的解是正数, 5-m 02>且5-m 22≠ 解得m <5且m≠1,故答案为:m <5且m≠1【点睛】此题考查了分式方程的解,得出关于m 的不等式是解题的关键,注意任何时候考虑分母不为0.17.【分析】(1)设乙型机器人每小时搬运产品根据甲型机器人搬运所用时间与乙型机器人搬运所用时间相等列方程;设甲型机器人搬运所用时间为小时根据甲型机器人比乙型机器人每小时多搬运列方程;(2)设乙型机器人每 解析:80060010x x =+80060010yy =+ 【分析】(1)设乙型机器人每小时搬运xkg 产品,根据甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等列方程;设甲型机器人搬运800kg 所用时间为y 小时,根据甲型机器人比乙型机器人每小时多搬运10kg 列方程;(2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得80060010x x=+,解方程即可. 【详解】(1)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 设甲型机器人搬运800kg 所用时间为y 小时,由题意得80060010y y=+, 故答案为:80060010x x=+,80060010y y =+;(2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 解得x=30,经检验,x=30是方程的解,答:乙型机器人每小时搬运产品30kg .故答案为:30.【点睛】此题考查分式方程的实际应用,正确理解题意,利用直接设未知数的方法和间接设未知数的方法列方程解决问题,注意:解分式方程需检验.18.【分析】根据分式的基本性质:分子和分母同时除以6mn 化简【详解】故答案为:【点睛】此题考查分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不等于零的整式分式的值不变 解析:3m n-【分析】根据分式的基本性质:分子和分母同时除以6mn 化简.【详解】 22618m n mn=-3m n -, 故答案为:3m n-. 【点睛】此题考查分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不等于零的整式,分式的值不变. 19.【分析】先将分式方程化成整式方程求解然后再检验即可【详解】解:方程的两边同乘得:解这个方程得:经检验是原方程的解∴原方程的解是故答案为:【点睛】本题主要考查了解分式方程将分式方程化成整式方程求解是解 解析:3-【分析】先将分式方程化成整式方程求解,然后再检验即可.【详解】解:方程的两边同乘()()212x x +⨯-,得:221x x -=+,解这个方程,得:3x =-,经检验,3x =-是原方程的解,∴原方程的解是3x =-.故答案为:3-.【点睛】本题主要考查了解分式方程,将分式方程化成整式方程求解是解答本题的关键,对方程的解进行检验是解答本类题的易错点.20.【分析】根据异分母分式的加减法则解答即可【详解】解:原式=故答案为:【点睛】本题考查了分式的加减属于基础题目熟练掌握分式的加减运算法则是解题的关键 解析:22x - 【分析】根据异分母分式的加减法则解答即可.【详解】解:原式=()()()()()()()()()()22242222222282222x x x x x x x x x x x x +++-+-+=--==++--. 故答案为:22x -. 【点睛】本题考查了分式的加减,属于基础题目,熟练掌握分式的加减运算法则是解题的关键. 三、解答题21.①20;②(a-1)(a+3);③5x+11.【分析】(1)根据负指数幂,零指数幂及乘方法则计算即可;(2)提取公因式(a-1),进而分解因式即可;(3)先运用完全平方公式与多项式的乘法去括号,然后合并同类项.【详解】解原式=16-1+5×(-5×0.2)8=20(2)原式=(a-1)2+4(a-1)=(a-1)(a-1+4)=(a-1)(a+3)(3)原式=x 2+6x+9-(x 2+x-2)=x 2+6x+9-x 2-x+2=5x+11.【点睛】本题考查了负指数幂,零指数幂及乘方法则,提取公因式法分解因式及整式的混合运算,熟练运用运算性质是解题的关键.22.(1)()212m +,1;(2)6cm【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将已知方程变形后代入计算即可求出值(2) 先求得CD =DE ,然后由Rt △DEF 中30°所对的边等于斜边的一半进行求解即可.【详解】(1)解:原式()2(2)28(2)(2)(2)m m m m m m m m +-⎛⎫+=+÷⎪--+⎝⎭ ()()()()()()()()()()()2222822222222212m m m m m m m m m m m m m m m m +-=⨯-++--=⨯+-+-=+ 2430m m ++=∴22(2)44341m m m +=++=-+=∴原式1=;(2)∵ABC 是等边三角形,∴60B A ︒∠=∠=,∵//DE AB ,∴60EDC B ︒∠=∠=,60DEC A ︒∠=∠=,∴EDC △是等边三角形.∵EF DE ⊥,∴90DEF ︒∠=,∴9030F EDC ︒︒∠=-∠=;∴26cm DF DE ==.【点睛】本题有两个问题第(1)题考查了分式的化简求值,以及分式的乘除法,熟练掌握运算法则是解本题的关键. 第(2)题主要考查的是等边三角形的性质和30°所对的边等于斜边的一半,熟练掌握相关知识是解题的关键.23.(1)2;(2)﹣2x 11y 2【分析】(1)先根据绝对值、算术平方根、立方根、乘方的意义化简,再根据实数运算法则计算即可;(2)先算乘方,再算乘除即可.【详解】解:(1)21|3|(2)2-- =134(2)42-+⨯-+=3﹣4﹣1+4=2;(2)xy2•(﹣2x3x2)3÷4x5=xy2•(﹣2x5)3÷4x5=xy2•(﹣8x15)÷4x5=(﹣8÷4)x1+15﹣5y2=﹣2x11y2.【点睛】考查了整式的混合运算,有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.同时考查了实数的运算.24.(1)1207x=;(2)无解【分析】(1)先去分母,解整式方程,求解后检验是否为原分式方程的解即可;(2)先去分母,解整式方程,求解后检验是否为原分式方程的解即可.【详解】(1)解:1171.572x x+=方程两边都乘72x,得:72+48=7x,解得:1207x=,经检验:1207x=是原方程的解;(2)21533xx x-+=--方程两边都乘(3x-),得:x-2-1=5(x-3),解得:3x=,检验:当3x=时,x-3=3-3=0,是增根,故原方程无解.【点睛】此题考查解分式方程,掌握解分式方程的步骤:去分母化为整式方程,解整式方程,检验解的情况.25.原计划每天铺地75平方米.【分析】设原计划每天铺x平方米,根据题意即可列出方程进行求解.【详解】解:设原计划每天铺地平方米,根据题意锝:112511253341.5xx x-⎛⎫-+=⎪⎝⎭解得:75x=经检验,75x =是原方程的解.答:原计划每天铺地75平方米.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意列出方程.26.(1)120元;(2)六折【分析】(1)设第一批雪梨每件进价是x 元,则第二批每件进价是(x +5)元,再根据等量关系:第二批仙桃所购件数是第一批的32倍,列方程解答; (2)设剩余的雪梨每件售价打y 折,由利润=售价﹣进价,根据第二批的销售利润为2460元,可列方程求解.【详解】解:(1)设第一批雪梨每件进价为x 元, 依题意列方程,得24003375025x x +⋅=,解方程,得120x =.经检验,120x =是原分式方程的解,且符合实际题意.答:第一批雪梨每件进价为120元;(2)设剩余的雪梨每件售价打y 折, 依题意列方程,得()22580%225180%0.137502460y ++⨯⨯+⨯⨯-⨯-=3750375012051205. 解得y =6.答:剩余的雪梨每件售价应该打六折.【点睛】本题考查分式方程、一元一次方程的应用,关键是根据数量作为等量关系列出分式方程,根据利润作为等量关系列出一元一次方程求解.。
(常考题)人教版初中数学八年级数学上册第五单元《分式》测试(包含答案解析)(2)
一、选择题1.化简221x x x ++÷(1-11x +)的结果是( ) A .11x + B .11x - C .x+1 D .x-12.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等3.如果分式2121x x -+的值为0,则x 的值是( ) A .1 B .0 C .1- D .±14.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600 5.计算233222()m n m n -⋅-的结果等于( ) A .2m n B .2n m C .2mn D .72mn6.要使分式()()221x x x ++-有意义,x 的取值应满足( )A .1x ≠B .2x ≠-C .1x ≠或2x ≠-D .1x ≠且2x ≠-7.计算2m m 1m m-1+-的结果是( ) A .mB .-mC .m +1D .m -1 8.计算23211x x x x +-++的结果为( ) A .1 B .3 C .31x + D .31x x ++ 9.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯= B .6608400147660840010x x ⨯=++ C .660840014147660840010x x ⨯=⨯++ D .7840066010146608400x x ++⨯= 10.下列各式中错误的是( ) A .2c d c d c d c d d a a a a -+-----== B .5212525a a a +=++ C .1x y x y y x-=--- D .2211(1)(1)1x x x x -=--- 11.若分式2-3x x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >32 B .x <32 C .x =32 D .x ≠3212.若分式2132x x x --+的值为0,则x 的值为( ) A .1- B .0C .1D .±1 二、填空题13.已知13x x -=,则21x x ⎛⎫+= ⎪⎝⎭________. 14.已知2510m m -+=,则22125m m m -+=____. 15.符号“a bc d ”称为二阶行列式,规定它的运算法则为:a bc d =ad ﹣bc ,请你根据上述规定求出下列等式中x 的值.若2111111xx =--,那么x =__.16.101()()2π-+-=______,011(3.14)2--++=______.17.已知0534x y z ==≠,则2222x y z xy xz yz -+=+-______. 18.已知114y x-=,则分式2322x xy y x xy y +---的值为______. 19.计算3224423y x x y⎛⎫-⋅ ⎪⎝⎭的结果是________.20.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5400元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数多100盒,且每盒花的进价比第一批的进价少3元.设第一批盒装花的进价是x 元,则根据题意可列方程为________.三、解答题21.已知M =222111x x x x x ++---, (1)化简M ;(2)请从-2,1,2这三个整数中选一个合适的数代入,求M 的值.22.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为30元,用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共50件,其中甲种玩具不低于22件,商场决定此次进货的总资金不超过750元,求商场共有几种进货方案?23.解分式方程:(1)1171.572x x += (2)21533x x x-+=-- 24.解分式方程:63122x x x -=--. 25.某工程队用甲、乙两台隧道挖掘机从两个方向挖掘同一条隧道,因为地质条件不同,甲、乙的挖掘速度不同,已知甲、乙同时挖掘3天,可以挖216米,若甲挖2天,乙挖5天可以挖掘270米.(1)请问甲、乙挖掘机每天可以挖掘多少米?(2)若隧道的总长为2400米,甲、乙挖掘机工作20天后,因为甲挖掘机进行设备更新,乙挖掘机设备老化,甲比原来每天多挖m 米,同时乙比原来少挖m 米,最终,甲、乙两台挖掘机完成的时间相同,且各完成隧道总长的一半,请求出m .26.计算(1)2152224-⨯+÷;(2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭; (3)()2222322xy x y x y xy ⎡⎤---⎣⎦; (4)()()()3323231333x x x x ⎛⎫-+--⋅ ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ , 故选A.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键. 2.C解析:C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】解:A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意;C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.解析:D【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案.【详解】解:∵分式2121x x -+值为0, ∴2x+1≠0,210x -=,解得:x=±1.故选:D .【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零分母不为零是解题关键. 4.A解析:A【分析】先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 5.A解析:A【分析】根据整数指数幂的运算法则进行运算即可.【详解】解:原式=43431222m m m n n m nn---=⋅=⋅= 故选:A .【点睛】本题考查了整数指数幂的运算,掌握运算法则是解题的关键解析:D【分析】根据分式有意义的条件得出x +2≠0且x ﹣1≠0,计算即可.【详解】解:要使分式()()221x x x ++-有意义,必须满足x +2≠0且x ﹣1≠0,解得:x ≠﹣2且x ≠1,故选:D .【点睛】本题考查了分式有意义的条件,能根据分式有意义的条件得出x +2≠0且x ﹣1≠0是解此题的关键.7.A解析:A【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】 原式=211m m m m ---=21m m m--=(1)1m m m --=m , 故选:A .【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.C解析:C【分析】直接进行同分母的加减运算即可.【详解】 解:23211x x x x +-++=2321x x x +-+=31x +, 故选C .【点睛】本题考查了同分母的分式的运算,解题的关键是熟练掌握分式的运算法则.9.B解析:B【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可.【详解】5月份厨余垃圾分出率=660660x +,12月份厨余垃圾分出率=84007840010x + , ∴由题意得6608400147660840010x x ⨯=++, 故选:B .【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.10.C解析:C【分析】按同分母分式加减法则计算即可.【详解】 A.2c d c d c d c d d a a a a -+-----==,正确; B.52521252525a a a a a ++==+++,正确; C.x y x y x y x y y x x y x y x y+-=+=-----,错误; D.222111(1)(1)(1)1x x x x x x --==----,正确. 故选:C【点睛】此题考查同分母分式的加减法的法则:同分母分式相加减,分母不变,分子相加减. 11.D解析:D【分析】根据分式有意义的条件是分母不等于零列出不等式,解不等式得到答案.【详解】解:由题意得,2x-3≠0,解得,x ≠32, 故答案为:D .【点睛】本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键. 12.A解析:A【分析】根据分式值为零的条件列出方程和不等式,解方程和不等式得到答案.【详解】由题意得:|x|−1=0,x 2−3x+2≠0,解得,x =-1,故选:A .【点睛】本题考查的是分式为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.二、填空题13.13【分析】把已知等式两边分别平方适当变形后再将所求代数式展开整体代入求解【详解】解:∵∴即∴故答案为:13【点睛】此题主要考查了分式的求值以及完全平方公式正确运用公式是解题关键解析:13【分析】把已知等式两边分别平方适当变形后,再将所求代数式展开整体代入求解.【详解】解:∵13x x-=, ∴2211()29x x x x -=+-=,即22111x x +=, ∴22211211213x x x x ⎛⎫+=++=+= ⎪⎝⎭, 故答案为:13.【点睛】此题主要考查了分式的求值以及完全平方公式,正确运用公式是解题关键.14.22【分析】根据m2﹣5m+1=0可得m+=55m=m2+1然后将原分式适当变形后整体代入计算即可【详解】解:∵m2﹣5m+1=0∴m ﹣5+=05m=m2+1∴m+=5∴2m2﹣5m+=2m2﹣m2解析:22【分析】根据m 2﹣5m+1=0可得m +1m =5,5m=m 2+1,然后将原分式适当变形后整体代入计算即可.【详解】解:∵m 2﹣5m+1=0,∴m ﹣5+1m=0,5m=m 2+1,∴m +1m=5, ∴2m 2﹣5m+21m =2m 2﹣m 2﹣1+21m =m 2+21m ﹣1 =(m +1m)2﹣3 =52﹣3=25﹣3=22.故答案为:22.【点睛】 本题考查分式的求值.掌握整体代入思想是解题关键.在本题中还需理解22211()2m m m m+=++. 15.4【分析】首先根据题意由二阶行列式得到一个分式方程解分式方程即得问题答案【详解】解:∵=1∴方程两边都乘以x ﹣1得:2+1=x ﹣1解得:x =4检验:当x =4时x ﹣1≠01﹣x≠0即x =4是分式方程的解析:4【分析】首先根据题意由二阶行列式得到一个分式方程,解分式方程即得问题答案 .【详解】解:∵211111xx --=1, ∴21111x x-=--, 方程两边都乘以x ﹣1得:2+1=x ﹣1,解得:x =4,检验:当x =4时,x ﹣1≠0,1﹣x≠0,即x =4是分式方程的解,故答案为:4.【点睛】本题考查分式方程与新定义实数运算的综合运用,通过观察所给运算式子归纳出运算规律并得到分式方程再求解是解题关键.16.【分析】根据零指数幂和负整数指数幂等知识点进行解答幂的负指数运算先把底数化成其倒数然后将负整指数幂当成正的进行计算任何非0数的0次幂等于1【详解】2+1=3;【点睛】本题是考查含有零指数幂和负整数指 解析:12【分析】根据零指数幂和负整数指数幂等知识点进行解答,幂的负指数运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算.任何非0数的0次幂等于1.【详解】101()()2π-+-=2+1=3; 011(3.14)2--++1112=-++12= 【点睛】本题是考查含有零指数幂和负整数指数幂的运算.根据零指数幂和负整数指数幂等知识点进行解答即可. 17.1【分析】设从而可得再代入所求的分式化简求值即可得【详解】由题意设则因此故答案为:1【点睛】本题考查了分式的求值根据已知等式将字母用同一个字母表示出来是解题关键解析:1【分析】 设0534x y z k ===≠,从而可得5,3,4x k y k z k ===,再代入所求的分式化简求值即可得.【详解】 由题意,设0534x y z k ===≠,则5,3,4x k y k z k ===, 因此22222222(3)(4(5))535434x y z k k xy x k z yz k k k k k k-+-⋅+=+-⋅+⋅-⋅, 222222181615201252k k k k k k-+=+-, 222323k k=, 1=,故答案为:1.【点睛】本题考查了分式的求值,根据已知等式,将字母,,x y z 用同一个字母表示出来是解题关键.18.【分析】先根据题意得出x-y=4xy 然后代入所求的式子进行约分就可求出结果【详解】∵∴x-y=4xy ∴原式=故答案为:【点睛】此题考查分式的基本性质正确对已知式子进行化简约分正确进行变形是关键 解析:112【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果.【详解】 ∵114y x-=, ∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点睛】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键. 19.【分析】先算乘方再算乘除即可得到答案【详解】解:故答案为:【点睛】本题考查分式的化简求值属于基础题 解析:26y x- 【分析】先算乘方,再算乘除即可得到答案.【详解】 解:3224423y x x y⎛⎫-⋅ ⎪⎝⎭ 6234483y x x y=-⋅ 26y x=-. 故答案为:26y x-. 【点睛】本题考查分式的化简求值,属于基础题.20.【分析】设第一批盒装花的进价是x 元/盒则第一批进的数量是:第二批进的数量是:再根据等量关系:第二批进的数量=第一批进的数量+100可得方程【详解】解:设第一批盒装花的进价是元/盒则故答案是:【点睛】解析:54003000100x 3x=+- 【分析】设第一批盒装花的进价是x 元/盒,则第一批进的数量是:3000x ,第二批进的数量是:5400x 3-,再根据等量关系:第二批进的数量=第一批进的数量+100可得方程. 【详解】解:设第一批盒装花的进价是x 元/盒,则54003000100x 3x=+-, 故答案是:54003000100x 3x=+-. 【点睛】本题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键. 三、解答题21.(1)M =11x -;(2)当x=-2时,A =13-;当x=2时,A =1. 【分析】(1)根据异分母分式的加减法法则进行计算即可;(2)根据分式成立的条件选取合适的x 的值代入化简结果进行计算即可.【详解】 解:(1)M =222111x x x x x ++--- =22221(1)11x x x x x x +++--- =222211x x x x x ++--- =(1)(1)1x x x ++- =11x - (2)∵M =11x - ∴x≠1,∴x可以取-2或2.当x=-2时,A=11x-=-13.或者当x=2时,A=11x-=1.【点睛】本题考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.22.(1)甲,乙两种玩具分别是16元/件,14元/件;(2)4种【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(30﹣x)元/件,然后根据用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同列分式方程求解,注意结果要检验;(2)设购进甲种玩具y件,则购进乙种玩具(50﹣y)件,然后利用甲种玩具不低于22件,商场决定此次进货的总资金不超过750元列不等式求解,从而确定y的取值【详解】解:(1)设甲种玩具进价x元/件,则乙种玩具进价为(30﹣x)元/件依题意得:80x=7030x-解得:x=16,经检验x=16是原方程的解.∴30﹣x=14.甲,乙两种玩具分别是16元/件,14元/件;(2)设购进甲种玩具y件,则购进乙种玩具(50﹣y)件,依题意得: 16y+14(50-y)≤750,解得:y≤25,又∵y≥22∴22≤y≤25因为y为非负整数,∴y取22,23,24, 25共有4种方案.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式组.23.(1)1207x=;(2)无解【分析】(1)先去分母,解整式方程,求解后检验是否为原分式方程的解即可;(2)先去分母,解整式方程,求解后检验是否为原分式方程的解即可.【详解】(1)解:1171.572x x +=方程两边都乘72x , 得:72+48=7x , 解得:1207x =, 经检验:1207x =是原方程的解; (2)21533x x x-+=--方程两边都乘(3x -), 得:x-2-1=5(x-3),解得:3x =,检验:当3x =时,x-3=3-3=0,是增根,故原方程无解.【点睛】此题考查解分式方程,掌握解分式方程的步骤:去分母化为整式方程,解整式方程,检验解的情况.24.1x =-【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【详解】解:方程两边乘()2x -,得632x x +=-.1x =-.检验:当1x =-时,20x -≠.所以,原方程的解为1x =-.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.25.(1)甲每天挖30米,乙每天挖42米;(2)m=15【分析】(1)设甲、乙每天分别挖x 、y 米.等量关系:3(甲+乙)216=米、2⨯甲5+⨯乙270=;(2)由题意可知20天后甲完成(30×20)米,剩余1(24003020)2⨯-⨯米,乙完成(4220⨯)米,剩余1(24004220)2⨯-⨯米,根据关键描述语:甲、乙两台挖掘机在相同时间里各完成隧道总长的一半列出方程,解之即可.【详解】解:(1)设甲、乙每天分别挖x 、y 米.依题意得:3()21625270x y x y +=⎧⎨+=⎩. 解得3042x y =⎧⎨=⎩. 答:甲每天挖30米,乙每天挖42米;(2)由题意可知:20天后甲完成(30×20)米,剩余1(24003020)2⨯-⨯米,乙完成(4220⨯)米,剩余1(24004220)2⨯-⨯米, 依题意得:112400302024004220223042m m⨯-⨯⨯-⨯=+-, 解得:m=15,经检验:m=15是原方程的解.【点睛】本题考查了二元一次方程组的应用,分式方程的应用,找到等量关系是解题的关键,切记,分式方程一定要验根.26.(1)5;(2)-42;(3)222xy x y +;(4)67x .【分析】(1)根据有理数混合运算法则计算即可;(2)根据负指数整数幂、零指数幂、绝对值的意义及乘方,计算即可;(3)去括号,然后合并同类项即可;(4)根据积的乘方、幂的乘方运算法则计算即可.【详解】解:(1)2152224-⨯+÷ =115522-+=; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭=271161-⨯-+=2716142--+=-;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦ =22223242xy x y x y xy +--=222xy x y +;(4)()()()3323231333x x x x ⎛⎫-+--⋅ ⎪⎝⎭=6633192727x x x x -+-⋅ =67x .【点睛】 本题主要考查有理数的混合运算、整式的混合运算,解题的关键是熟练运用运算法则.。
新人教版初中数学八年级数学上册第五单元《分式》检测题(包含答案解析)(3)
一、选择题1.下列命题中,属于真命题的是( ) A .如果0ab =,那么0a = B .253xx x-是最简分式 C .直角三角形的两个锐角互余 D .不是对顶角的两个角不相等2.关于代数式221a a +的值,以下结论不正确的是( ) A .当a 取互为相反数的值时,221a a +的值相等 B .当a 取互为倒数的值时,221a a +的值相等 C .当1a >时,a 越大,221a a +的值就越大 D .当01a <<时,a 越大,221a a+的值就越大 3.已知分式34x x -+的值为0,则x 的值是( ) A .3B .0C .-3D .-44.下列各式中,正确的是( )A .22a a b b =B .11a ab b +=+ C .2233a b a ab b= D .232131a ab b ++=-- 5.为推进垃圾分类,推动绿色发展,宜宾天原化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台,两种型号机器人的单价和为140万元.若设乙型机器人每台x 万元,根据题意,所列方程正确的是( ) A .4605801x 140x -=- B .4605801140x x =-- C .4605801x 140x =+- D .4605801140x x -=- 6.将0.50.0110.20.03x x+-=的分母化为整数,得( ) A .0.50.01123x x +-= B .5051003xx +-= C .0.50.01100203x x +-= D .50513xx +-= 7.计算221(1)(1)x x x +++的结果是( )A .1B .1+1x C .x +1 D .21(+1)x8.若分式()22222x y x y a x a y ax ay+-÷-+的值等于5,则a 的值是( ) A .5 B .-5C .15D .15-9.化简232a b c a b c c ba b c a c b c a b-+-+--++--+--的结果是( )A .0B .1C .-1D .2(2)b c c a b---10.下列各式计算正确的是( )A .33x x y y=B .632m m m=C .22a b a b a b+=++D .32()()a b a b b a -=-- 11.020122012(31)(0.125)8-+⨯的结果是( ) A .3B .32-C .2D .012.使分式2221x x x ---的值为0的所有x 的值为( )A .2或1-B .2-或1C .2D .1二、填空题13.计算2216816a a a -++÷428a a -+=__________.14.计算:22x x xy x y x -⋅=-____________________. 15.当x _______时,分式22x x-的值为负. 16.如图是一个数值转换器,每次输入3个不为零的数,经转换器转换后输出3个新数,规律如下:当输入数分别为x ,y ,z 时,对应输出的新数依次为11x y z ++,11y z x++,11z x y ++.例如,输入1,2,3,则输出65,34,23.那么当输出的新数为13,14,15时,输入的3个数依次为____.17.计算211()(1)11m m m -⨯--+的结果是______. 18.已知215a a+=,那么2421a a a =++________. 19.若关于x 的分式方程232x mx +=-的解是正数,则实数m 的取值范围是_________20.方程11212x x =+-的解是x =_____. 三、解答题21.已知M =222111x x xx x ++---, (1)化简M ;(2)请从-2,1,2这三个整数中选一个合适的数代入,求M 的值.22.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为30元,用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共50件,其中甲种玩具不低于22件,商场决定此次进货的总资金不超过750元,求商场共有几种进货方案? 23.计算:(1)|﹣3|12(﹣2)2; (2)xy 2•(﹣2x 3x 2)3÷4x 5. 24.解答下面两题:(1)解方程:35322x x x-+=-- (2)化简:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭ 25.计算:21311211a a a a a a --+÷-+++. 26.先化简,再求值:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中a 与2,3构成ABC 的三边长,且a 为整数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可. 【详解】解:A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意;B.()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意;C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意; 故选:C . 【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.2.D解析:D 【分析】根据相反数的性质,倒数的性质以及不等式的性质来解决代数式的值即可; 【详解】当a 取互为相反数的值时,即取m 和-m ,则-m+m=0, 当a 取m 时,①222211=m a a m ++ ,当a 取-m 时,②()()222222111a m m a m m +=-+=+- , ①=②,故A 正确;B 、当a 取互为倒数的值时,即取m 和1m ,则11m m⨯= , 当a 取m 时,①222211=m a a m ++,当a 取1m时,②2222221111m 1m a m a m ⎛⎫+=+=+ ⎪⎝⎭⎛⎫⎪⎝⎭①=②,故B 正确;C 、可举例判断,由a >1得,取a=2,3(2<3)则22112=424++< 22113=939++ , 故C 正确;D 、可举例判断,由01a <<得,取a=12,13(12>13) 2222111111=4+=924391123⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭< , 故D 错误;故选:D.【点睛】本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键.3.A解析:A【分析】根据分式的值为0的条件可以求出x的值;分式为0时,分子为0分母不为0;【详解】由分式的值为0的条件得x-3=0,x+4≠0,由x-3=0,得x=3,由x+4≠0,得x≠-4,综上,得x=3时,分式34xx-+的值为0;故选:A.【点睛】本题考查了分式的值为0的情况,若分式的值为0,需要同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可.4.C解析:C【分析】利用分式的基本性质变形化简得出答案.【详解】A.22a ab b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B.11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误;C.2233a b aab b=,从左边到右边分子和分母同时除以ab,分式的值不变,故正确;D.232131a ab b++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误.故选:C.【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.5.B解析:B【分析】设乙型机器人每台x万元,由两种型号机器人的单价和为140万元得甲型机器人每台()140x -万元,根据用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台列得方程. 【详解】解:设乙型机器人每台x 万元,则甲型机器人每台()140x -万元,根据题意,可得4605801140x x=--.故选:B. 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键.6.D解析:D 【分析】根据分式的基本性质求解. 【详解】解:将0.50.0110.20.03x x +-=的分母化为整数,可得50513xx +-=. 故选:D . 【点睛】本题考查一元一次方程的化简,熟练掌握分式的基本性质解题关键.7.B解析:B 【分析】根据同分母分式加法法则计算. 【详解】221(1)(1)x x x +++=211(1)1x x x +=++,故选:B . 【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.8.C解析:C 【分析】先进行分式除法,化简后得到关于a 的式子,列方程即可求解. 【详解】解:()22222x y x y a x a y ax ay+-÷-+ ()22()(()=))(a x y a x x y y y x x y ++-⨯-+, 1=a, 根据题意,15a=, 解得,15a =, 经检验,15a =是原方程的解, 故选C 【点睛】本题考查了分式的除法和分式方程的解法,正确化简分式,列出分式方程,是解决问题的关键.9.A解析:A 【分析】通过变号,把分母变成同分母,相加即可. 【详解】 原式=232a b c a b c c ba b c a b c a b c-+-+---+-+-+-,=23()(2)a b c a b c c b a b c-+--+--+-,=232a b c a b c c ba b c-+-+--++-,=0. 故选:A 【点睛】本题考查了分式的加减,先把分母通过变号变为同分母是解题关键.10.D解析:D 【分析】根据分式的基本性质进行判断即可得到结论. 【详解】解:A 、33x y 是最简分式,所以33x xy y≠,故选项A 不符合题意;B 、624m m m=,故选项B 不符合题意;C 、22a b a b++是最简分式,所以22a b a b a b +≠++,故选项C 不符合题意; D 、3322()()()()a b a b a b b a a b --==---,正确, 故选:D . 【点睛】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.11.C解析:C 【分析】根据零次幂定义,积的乘方的逆运算进行计算. 【详解】020122012201211)(0.125)81(8)1128+⨯=+⨯=+=.故选:C 【点睛】此题考查实数的混合运算,掌握零次幂定义,积的乘方的逆运算是解题的关键.12.C解析:C 【分析】先根据分式为零的条件列出不等式组,然后再求解即可. 【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C . 【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题13.-2【分析】原式利用除法法则变形约分即可得到结果【详解】解:原式==-2故答案为:-2【点睛】本题考查了分式的除法熟练掌握运算法则是解本题的关键解析:-2 【分析】原式利用除法法则变形,约分即可得到结果 【详解】 解:原式=2(4)(4)2(4)(4)4a a a a a-++-⋅+-=-2,故答案为:-2. 【点睛】本题考查了分式的除法,熟练掌握运算法则是解本题的关键.14.1【分析】先将第二项的分子分解因式再约分化简即可【详解】故答案为:1【点睛】此题考查分式的乘法掌握乘法的计算法则是解题的关键解析:1 【分析】先将第二项的分子分解因式,再约分化简即可. 【详解】22x x xyx y x-⋅=-2()1x x x y x y x -⋅=-, 故答案为:1. 【点睛】此题考查分式的乘法,掌握乘法的计算法则是解题的关键.15.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠ 【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围. 【详解】解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0,故答案为:x <2且x≠0. 【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.16.11【分析】根据转换器转换后输出3个新数得到关于xyz 的方程组解之即可【详解】解:根据题意得:则3(x+y+z )=xy+zx①4(x+y+z )=xy+yz②5(x+y+z )=yz+zx③①+②+③得解析:113,112,11 【分析】根据转换器转换后输出3个新数得到关于x 、y 、z 的方程组,解之即可 【详解】 解:根据题意得:111=3++x y z ,111=4++y z x ,111=5++z x y , 则3(x+y+z )=xy+zx①,4(x+y+z )=xy+yz②,5(x+y+z )=yz+zx③, ①+②+③,得6(x+y+z )=xy+yz+zx ,④ ④﹣①,得3(x+y+z )=yz⑤, ④﹣②,得2(x+y+z )=zx⑥, ④﹣③,得x+y+z=xy⑦, ∴23x y =,z=2y , 把23x y =,z=2y 代入⑦,得y (2y ﹣11)=0, ∴y=112(由题意知y≠0), ∴x=113,z=11, ∴x=113,y=112,z=11 【点睛】本题考查了分式的混合运算、方程组的计算.解题关键是求出6(x+y+z )=xy+yz+zx ,进而用y 分别表示x 、z .17.2【分析】利用乘法分配律展开括号再计算加减法【详解】故答案为:2【点睛】此题考查分式的混合运算掌握乘法分配律计算法则是解题的关键解析:2 【分析】利用乘法分配律展开括号,再计算加减法. 【详解】()211()(1)11211m m m m m -⨯-=+--=-+. 故答案为:2. 【点睛】 此题考查分式的混合运算,掌握乘法分配律计算法则是解题的关键.18.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a , ∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 19.且m-4【分析】先解方程求出x=m+6根据该方程的解是正数且x-20列得计算即可【详解】2x+m=3(x-2)x=m+6∵该方程的解是正数且x-20∴解得且x-4故答案为:且m-4【点睛】此题考查分解析:6m >-且m ≠-4【分析】先解方程求出x=m+6,根据该方程的解是正数,且x-2≠0列得60620m m +>⎧⎨+-≠⎩,计算即可. 【详解】232x m x +=- 2x+m=3(x-2)x=m+6,∵该方程的解是正数,且x-2≠0,∴60620m m +>⎧⎨+-≠⎩, 解得6m >-且x ≠-4,故答案为:6m >-且m ≠-4.【点睛】此题考查分式的解的情况求字母的取值范围,解题中注意不要忽略分式的分母不等于零的情况.20.【分析】先将分式方程化成整式方程求解然后再检验即可【详解】解:方程的两边同乘得:解这个方程得:经检验是原方程的解∴原方程的解是故答案为:【点睛】本题主要考查了解分式方程将分式方程化成整式方程求解是解 解析:3-【分析】先将分式方程化成整式方程求解,然后再检验即可.【详解】解:方程的两边同乘()()212x x +⨯-,得:221x x -=+,解这个方程,得:3x =-,经检验,3x =-是原方程的解,∴原方程的解是3x =-.故答案为:3-.【点睛】本题主要考查了解分式方程,将分式方程化成整式方程求解是解答本题的关键,对方程的解进行检验是解答本类题的易错点.三、解答题21.(1)M =11x -;(2)当x=-2时,A =13-;当x=2时,A =1. 【分析】(1)根据异分母分式的加减法法则进行计算即可;(2)根据分式成立的条件选取合适的x 的值代入化简结果进行计算即可.【详解】 解:(1)M =222111x x x x x ++--- =22221(1)11x x x x x x +++--- =222211x x x x x ++--- =(1)(1)1x x x ++- =11x - (2)∵M =11x - ∴x≠1,∴x 可以取-2或2.当x=-2时,A=11x-=-13.或者当x=2时,A=11x-=1.【点睛】本题考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.22.(1)甲,乙两种玩具分别是16元/件,14元/件;(2)4种【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(30﹣x)元/件,然后根据用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同列分式方程求解,注意结果要检验;(2)设购进甲种玩具y件,则购进乙种玩具(50﹣y)件,然后利用甲种玩具不低于22件,商场决定此次进货的总资金不超过750元列不等式求解,从而确定y的取值【详解】解:(1)设甲种玩具进价x元/件,则乙种玩具进价为(30﹣x)元/件依题意得:80x=7030x-解得:x=16,经检验x=16是原方程的解.∴30﹣x=14.甲,乙两种玩具分别是16元/件,14元/件;(2)设购进甲种玩具y件,则购进乙种玩具(50﹣y)件,依题意得: 16y+14(50-y)≤750,解得:y≤25,又∵y≥22∴22≤y≤25因为y为非负整数,∴y取22,23,24, 25共有4种方案.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式组.23.(1)2;(2)﹣2x11y2【分析】(1)先根据绝对值、算术平方根、立方根、乘方的意义化简,再根据实数运算法则计算即可;(2)先算乘方,再算乘除即可.【详解】解:(1)21|3|(2)2-- =134(2)42-+⨯-+ =3﹣4﹣1+4=2; (2)xy 2•(﹣2x 3x 2)3÷4x 5=xy 2•(﹣2x 5)3÷4x 5=xy 2•(﹣8x 15)÷4x 5=(﹣8÷4)x 1+15﹣5y 2=﹣2x 11y 2.【点睛】考查了整式的混合运算,有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.同时考查了实数的运算.24.(1)1x =-是该方程的解;(2)(1)x x +.【分析】(1)去分母将分式方程化为整式方程,解整式方程,最后验证根即可;(2)先计算括号内的,再将除法化为乘法分别因式分解后,约分即可.【详解】解:(1)去分母得:353(2)x x --=-,去括号得3536x x --=-,移项后合并得:1x =-,经检验,1x =-是该方程的解;(2)原式=22321121x x x x x x x x ⎛⎫+--÷ ⎪++++⎝⎭ =2232121x x x x x x x +--÷+++ =2222112x x x x x x -+++- =2(2)(1)12x x x x x -++- =(1)x x +.【点睛】本题考查解分式方程和分式的混合运算.(1)中注意分式方程一定要验根;(2)注意运算顺序,其次除法化为乘法后才能约分.25.21a + 【分析】根据分式混合运算的运算顺序,先算分式的除法,再算加法,即可求出结果.【详解】 解:21311211a a a a a a --+÷-+++ 21311(1)1a a a a a -+=+-+- 13=1(1)1a a a a -+-+-() 13(1)1(1)1a a a a a a +-=++-+-()() 22(1)1a a a -=+-() 2(1)(1)1a a a -=+-() 21a =+. 【点睛】此题考查了分式的混合运算,掌握分式的除法法则及异分母分式加减法法则是解题的关键.26.224a a -,6【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出a 的值,代入计算即可求出值.【详解】解:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭ ()22244422a a a a a a ---=÷-- ()()224224a a a a a --=⋅-- 224a a =-.∵a 与2,3构成ABC 的三边长,∴ 3232a -<<+,即15a <<.∵ a 为整数,∴ a 为2或3或4.当2a =时,分母20a -=(舍去);当4a =时,分母40a -=(舍去).故a 的值只能为3. ∴当3a =时,222423436a a -=⨯-⨯=.【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键.。
人教版初中数学八年级数学上册第五单元《分式》检测题(包含答案解析)(2)
一、选择题1.化简221x x x ++÷(1-11x +)的结果是( )A .11x + B .11x - C .x+1 D .x-12.分式293x x --等于0的条件是( )A .3x =B .3x =-C .3x =±D .以上均不对3.关于分式2634m nm n--,下列说法正确的是( )A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变4.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6-5.关于代数式221a a+的值,以下结论不正确的是( ) A .当a 取互为相反数的值时,221a a+的值相等B .当a 取互为倒数的值时,221a a +的值相等 C .当1a >时,a 越大,221a a +的值就越大 D .当01a <<时,a 越大,221a a +的值就越大 6.已知分式34x x -+的值为0,则x 的值是( ) A .3B .0C .-3D .-47.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( ) A .1B .2C .3D .48.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .149.下列式子的变形正确的是( )A .22b b a a=B .22+++a b a b a b=C .2422x y x yx x --=D .22m nn m-=- 10.下列分式中,最简分式是( )A .211x x +-B .2211x x -+ C .2222x xy y x xy -+- D .21628x x -+11.下列各式中,无论x 取何值,分式都有意义的是( ).A .132x - B .213x + C .231x x + D .21xx + 12.计算a ba b a÷⨯的结果是() A .aB .2aC .2b aD .21a二、填空题13.某校要建立两个计算机教室,为此要购买相同数量的A 型计算机和B 型计算机.已知一台A 型计算机的售价比一台B 型计算机的售价便宜400元,如果购买A 型计算机需要224 000元,购买B 型计算机需要240 000元.求一台A 型计算机和一台B 型计算机的售价分别是多少元. 设一台B 型计算机的售价是x 元,依题意列方程为__.14.计算:1 2+123⨯+134⨯+145⨯+…+()1n 1n -+()1n n 1+=______. 15.对于两个不相等的实数a ,b ,我们规定符号Min{,}a b 表示a ,b 中的较小的值,如Min{3,4}3=,按照这个规定,方程135Min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_____________. 16.计算:()222333a b a b --⋅=_______________.17.计算35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=__. 18.方程111x x x x -+=-的解是______. 19.若关于x 的分式方程11222mx x x-=---无解,则m =______. 20.方程22020(1)1x x x ++-=的整数解的个数是_____.三、解答题21.(1)填空:①32(2)(5)x xy ⋅-=____________; ②3252()(2)a b a b -÷-=_________.(2) 先化简,再求值:2(1)(1)(1)(31)(21)x x x x x x --+----,其中2x =. 22.(1)解方程.22510111x x x -+=+--. (2)先化简分式(2241442a a a a ---+-)÷212a a a +-,然后在0,1,2中选一个你认为合适的a 值,代入求值. 23.解答下列各题:(1)计算:()()()2233221x x x x x -⋅++--+ (2)计算:()()()33323452232183a b c ac a b a c -⋅÷-÷(3)解分式方程:11222x x x++=-- 24.先化简,再求值:22121124x x x x -+⎛⎫+÷ ⎪--⎝⎭,其中3x =. 25.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明. (分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升. ②两次加油,每次只加40升的平均油价为:_______________元/升. (解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.26.先化简,再求值:21123369a a a a a ⎛⎫+÷ ⎪-+-+⎝⎭,其中2a =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简. 【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ , 故选A. 【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键.2.B解析:B 【分析】根据分式等于0的条件:分子为0,分母不为0解答. 【详解】由题意得:290,30x x -=-≠, 解得x=-3, 故选:B . 【点睛】此题考查分式的值等于0的条件,熟记计算方法是解题的关键.3.D解析:D 【分析】根据分式的基本性质即可求出答案. 【详解】解:A 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m nm n m n ⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意;C 、226212=32438m n m nm n m n -⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意;D 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意; 故选:D . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4.D解析:D 【分析】先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可. 【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-; ∵不等式组102x x m +≥⎧⎨+≤⎩有解,∴12x m -≤≤-, ∴21m -≥-, 得3m ≤, ∴53m -≤≤, ∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3, 其和为:-6, 故选:D . 【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键.5.D解析:D 【分析】根据相反数的性质,倒数的性质以及不等式的性质来解决代数式的值即可; 【详解】当a 取互为相反数的值时,即取m 和-m ,则-m+m=0,当a 取m 时,①222211=m a a m ++ ,当a 取-m 时,②()()222222111a m m a m m +=-+=+- , ①=②,故A 正确;B 、当a 取互为倒数的值时,即取m 和1m ,则11m m⨯= , 当a 取m 时,①222211=m a a m ++,当a 取1m时,②2222221111m 1m a m a m ⎛⎫+=+=+ ⎪⎝⎭⎛⎫⎪⎝⎭①=②,故B 正确;C 、可举例判断,由a >1得,取a=2,3(2<3)则22112=424++< 22113=939++ , 故C 正确;D 、可举例判断,由01a <<得,取a=12,13(12>13) 2222111111=4+=924391123⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭< , 故D 错误; 故选:D . 【点睛】本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键.6.A解析:A 【分析】根据分式的值为0的条件可以求出x 的值;分式为0时,分子为0分母不为0; 【详解】由分式的值为0的条件得x-3=0,x+4≠0, 由x-3=0,得x=3, 由x+4≠0,得x≠-4, 综上,得x=3时,分式34x x -+ 的值为0; 故选:A .【点睛】本题考查了分式的值为0的情况,若分式的值为0,需要同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可.7.B解析:B 【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答. 【详解】解:分式方程不一定会产生增根,故①错误; 方程4102x -=+的根为x=2,故②正确; 方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x +=+-是分式方程,故④正确; 故选:B . 【点睛】 此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.8.B解析:B 【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可. 【详解】去分母得:()()22421x k x --+=,整理得:22290x kx k ---=, ∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义, ∴14k =- 故选:B 【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.9.C解析:C 【分析】根据分式的性质逐一判断即可. 【详解】解:A. 22b b a a=不一定正确;B. 22+++a b a b a b=不正确;C. 2422x y x yx x --=分子分母同时除以2,变形正确; D.22m nn m-=-不正确; 故选:C . 【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.10.B解析:B 【分析】最简分式的标准是分子、分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分; 【详解】 A 、()()21111111x x x x x x ++==-+-- ; B 、2211x x -+ 的分子分母不能再进行约分,是最简分式;C 、()()22222x y x xy y x y x xy x x y x--+-==-- ; D 、()()()24416428242x x x x x x +---==++ ; 故选:B . 【点睛】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意;.11.B解析:B 【分析】根据分式有意义的条件:分母不等于0确定答案. 【详解】A 、若3x-2≠0,即23x ≠时分式有意义,故该选项不符合题意; B 、∵230x +>,∴无论x 取何值,分式都有意义,故该项符合题意;C 、∵20x ≥,∴x ≠0时分式有意义,故该选项不符合题意;D 、若210x +≠即12x ≠-时分式有意义,故该选项不符合题意; 故选:B . 【点睛】此题考查分式有意义的的条件:分母不等于0.12.C解析:C 【分析】先把除法变成乘法,然后约分即可. 【详解】解:2a b b b b a a b a a a a÷⨯=⋅⋅=,故选:C . 【点睛】本题考查了分式的乘除混合运算,解题的关键是熟练掌握乘除混合运算法则.二、填空题13.【分析】本题的等量关系是:224000元购买A 型计算机的数量=240000元购买B 型计算机数量依此列出方程即可【详解】解:设B 型计算机每台需x 元则A 型计算机每台需(x-400)元依题意有故填【点睛】解析:240000224000400x x =- 【分析】 本题的等量关系是:224 000元购买A 型计算机的数量=240 000元购买B 型计算机数量,依此列出方程即可. 【详解】解:设B 型计算机每台需x 元,则A 型计算机每台需(x-400)元,依题意有240000224000400x x =- 故填,240000224000400x x =-. 【点睛】考查了分式方程的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系,本题重点是熟悉单价,总价,数量之间的关系.14.【分析】通过观察可发现规律:则原式=即可计算出结果【详解】故答案为:【点睛】本题考查分式的运算解题的关键是发现已知式子的规律 解析:1n n + 【分析】通过观察可发现规律:()11111n n n n =-++,则原式=11111111112233411n n n n -+-+-+⋯+-+--+,即可计算出结果. 【详解】()()111111111111111111223344511223341111n n n n n n n n n n n ++++⋯++=-+-+-+⋯+-+-=-=⨯⨯⨯-+-+++故答案为:1nn +. 【点睛】本题考查分式的运算,解题的关键是发现已知式子的规律.15.【分析】根据题中的新定义化简求出分式方程的解检验即可【详解】当<时>2方程变形得:=−2去分母得:1=解得:(不符合题意舍去);当>即<2方程变形得:=−2去分母得:3=解得:经检验是分式方程的解综 解析:4x =-【分析】根据题中的新定义化简,求出分式方程的解,检验即可. 【详解】 当12x -<32x -时,x >2,方程变形得:12x -=52x x --−2, 去分母得:1=()522x x ---, 解得:=2x -(不符合题意,舍去); 当12x ->32x -,即x <2,方程变形得:32x -=52x x --−2, 去分母得:3=()522x x ---, 解得:4x =-,经检验4x =-是分式方程的解, 综上,所求方程的解为4x =-. 故填:4x =-. 【点睛】此题考查了解分式方程,以及实数的运算,弄清题中的新定义是解本题的关键. 16.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b ----+-===故答案为:3a b . 【点睛】本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.17.【分析】首先计算积的乘方再计算中括号内的同底数幂的乘法最后计算单项式除以单项式即可得出答案【详解】解:===故答案为:【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式熟练掌握运算法则是解答此 解析:7a .【分析】首先计算积的乘方,再计算中括号内的同底数幂的乘法,最后计算单项式除以单项式即可得出答案.【详解】解:35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=1526()a a a -÷-=158()a a -÷-=7a .故答案为:7a .【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式,熟练掌握运算法则是解答此题的关键. 18.【分析】先通过去分母将分式方程化为整式方程求出的值然后再检验即可即可【详解】解:方程两边都乘以得:解得:检验:时所以分式方程的解为故答案为【点睛】本题主要考查解分式方程解分式方程的步骤如下:①去分母 解析:13x =先通过去分母将分式方程化为整式方程求出x 的值,然后再检验即可即可.【详解】解:方程两边都乘以(1)x x -,得:2(1)(1)x x x -=+, 解得:13x =, 检验:13x =时,2(1)09x x -=-≠, 所以分式方程的解为13x =. 故答案为13x =. 【点睛】 本题主要考查解分式方程,解分式方程的步骤如下:①去分母;②求出整式方程的解;③检验;④得出结论.19.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键. 20.4【分析】方程的右边是1有三种可能需要分类讨论第1种可能:指数为0底数不为0;第2种可能:底数为1;第3种可能:底数为-1指数为偶数【详解】解:(1)当x+2020=0x2+x -1≠0时解得x=﹣2【分析】方程的右边是1,有三种可能,需要分类讨论.第1种可能:指数为0,底数不为0;第2种可能:底数为1;第3种可能:底数为-1,指数为偶数.【详解】解:(1)当x+2020=0,x 2+x -1≠0时,解得x=﹣2020;(2)当x 2+x -1=1时,解得x=﹣2或1.(3)当x 2+x -1=﹣1,x+2020为偶数时,解得x=0因而原方程所有整数解是﹣2020,-2,1,0共4个.故答案为:4.【点睛】本题考查了:a 0=1(a 是不为0的任意数)以及1的任何次方都等于1.容易遗漏第3种可能情况,需特别注意.三、解答题21.(1)①4240-x y ;②12a -;(2)253x x -+;-14 【分析】(1)①先计算积的乘方,然后计算单项式乘单项式;②先计算积的乘方,然后计算单项式除以单项式;(2)整式的混合运算,先算乘法,然后再算加减合并同类项化简,最后代入求值.【详解】解:(1)①32(2)(5)x xy ⋅- =328(5)x xy ⋅-4240x y =-;②3252()(2)a b a b -÷-=6252(2)a b a b ÷- =12a -; (2)2(1)(1)(1)(31)(21)x x x x x x --+---- 22222(1)(651)x x x x x =-----+222221651x x x x x =--+-+-253x x =-+当2x =时,原式2523220614=-⨯+⨯=-+=-.【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.22.(1)无解;(2)a ,1.(1)根据解分式方程的一般步骤解分式方程即可;(2)先根据分式的化简步骤将分式化为最简分式,再代入恰当的数值即可.【详解】解:(1)方程的两边都乘以(x +1)(x ﹣1)得,2(1)5(1)10x x --+=-∴2x-2-5x-5=-10解得1x =检验,当x =1时,(x +1)(x ﹣1)=0∴x =1是原方程的增根.∴原分式方程无解.(2)原式=2(2)(2)1(2)(2)21a a a a a a a ⎡⎤-+--⋅⎢⎥--+⎣⎦=1(2)21a a a a a +-⋅-+ =a ,当a =0,2分式无意义,故当a =1时,原式=1.【点睛】本题主要考察了解分式方程及分式的化简求值,解题的关键是熟练掌握解分式方程的一般步骤及分式化简的一般步骤,注意分式有意义的条件.23.(1)5x -;(2)19b ;(3)23x =【分析】(1)首先利用同底数幂的乘法法则、平方差公式、完全平方公式计算,然后合并同类项求出答案;(2)先算积的乘方、幂的乘方,再从左到右计算同底数幂的乘法除法求出答案;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()()2233221x x x x x -⋅++--+=223421x x x x +----=5x -;(2)()()()33323452232183a b cac a b a c -⋅÷-÷ =()()963345662721827a b c ac a ba c -⋅÷-÷ =()()10664566541827a b c a b a c -÷-÷=()6666327a bc a c÷ =19b ; (3)解分式方程:11222x x x++=-- 去分母得:1+2(x-2)=-(1+x ),去括号合并得,2x-3=-1-x ,移项合并得,3x=2, 解得:23x =, 经检验23x =是分式方程的解. 【点睛】此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.也考查了解分式方程,去分母转化为整式方程是关键. 24.21x x +-;52【分析】 先计算括号内的运算,然后计算除法,把分式进行化简得到最简分式,再把3x =代入计算,即可得到答案.【详解】解:原式=()()()22212211x x x x x x x +--+⨯=---; 当3x =时,原式=522331=-+. 【点睛】 本题考查了分式的混合运算,分式的化简求值,解题的关键是掌握运算法则进行计算. 25.【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+x y ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格;解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.26.33a a -+,-5 【分析】 把括号内通分,并把除法转化为乘法,约分化简后,再把2a =-代入计算即可.【详解】解:原式=()()()()2336933332a a a a a a a a a ⎡⎤+--++⨯⎢⎥+-+-⎣⎦=()()()232332a a a a a -⨯+- =33a a -+, 当2a =-时, 原式=23523--=--+. 【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解答本题的关键.分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先算乘除,再算加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.。
新人教版初中数学八年级数学上册第五单元《分式》检测题(答案解析)
一、选择题1.化简221x x x ++÷(1-11x +)的结果是( )A .11x +B.11x - C .x+1 D .x-12.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =± D .0m =3.下列变形不正确的是( )A .1122x x x x +-=---B .b a a bc c--+=- C .a b a bm m-+-=- D .22112323x x x x--=--- 4.若x 2y 5=,则x yy+的值为( ) A .25 B .72C .57D .755.小红用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小红和小丽买到相同数量的笔记本.设硬面笔记本每本售价为x 元,根据题意可列出的方程为( ) A .1524x x 3=+ B .1524x x 3=- C .1524x 3x=+ D .1524x 3x=- 6.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④7.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5 B .6C .7D .88.计算23211x xx x +-++的结果为( )A .1B .3C .31x + D .31x x ++ 9.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++ B .222()x y x y +- C .222()x y x y -+ D .222()x y x y ++10.2a ab b a ++-的结果是( ).A .2a-B .4aC .2b a b--D .b a- 11.若分式 2132x x x --+的值为0,则x 的值为( )A .1-B .0C .1D .±112.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1-B .2-或1C .2D .1二、填空题13.化简23x x+=____. 14.符号“a b c d”称为二阶行列式,规定它的运算法则为:a b c d=ad ﹣bc ,请你根据上述规定求出下列等式中x 的值.若2111111xx =--,那么x =__. 15.计算22111m m m ---,的正确结果为_____________. 16.如图,将形状大小完全相同的“□”按照一定规律摆成下列图形,第1幅图中“□”的个数为1a ,第2幅图中“□”的个数为2a ,第3幅图中“□”的个数为3a ,……,以此类推,若123201922222020n a a a a +++⋅⋅⋅+=(n 为正整数),则(1)5a =________;(2)n 的值为________.17.计算35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=__. 18.已知关于x 的方程321x mx -=-的解是正数,则m 的取值范围为____________. 19.某工人现在平均每天比原计划多做20个零件,现在做4000个零件和原来做3000个零件的时间相同,问现在平均每天做______个零件.20.计算:22a 1a 1a 2a a--÷+=____. 三、解答题21.先化简:2214(1)221x x x x •-+--+,再选一个合适的数作为x 的值代入求值. 22.某社区为了落实“惠民工程”,计划将社区的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?23.已知:M =12x +,N =21xx +. (1)当x 等于几时M =N ?(2)当x >0时,判断M 与N 的大小关系.24.①先化简,再求值:12(1)y x y x y ⋅--+÷221y x -,其中x=y+2020. ②解方程:239x --112626x x =-+.25.(1)解分式方程:23193xx x +=-- (2)先化简代数式+⎛⎫+÷⎪---+⎝⎭2a 11a a 1a 1a 2a 1,然后选取一个使原式有意义的a 值代入求值.26.先化简231124a a a +⎛⎫+÷⎪--⎝⎭,然后请你从2,2,1--和0中选取一个合适的值代入a ,求此时原式的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简. 【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ , 故选A. 【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键.2.B解析:B 【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可. 【详解】 解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1. 故选B . 【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.3.A解析:A 【分析】答题首先清楚分式的基本性质,然后对各选项进行判断. 【详解】 解:A 、1122x xx x+--=---,故A 不正确;B 、b a a bc c --+=-,故B 正确; C 、a b a bm m-+-=-,故C 正确; D 、22112323x x x x --=---,故D 正确. 故答案为:A . 【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.4.D解析:D 【分析】根据同分母分式的加法逆运算得到x y x y y y y +=+,将x 2y 5=代入计算即可. 【详解】 解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D . 【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.5.D解析:D 【分析】由设硬面笔记本每本售价为x 元,可得软面笔记本每本售价为()x 3-元,根据小红和小丽买到相同数量的笔记本列得方程. 【详解】解:设硬面笔记本每本售价为x 元,则软面笔记本每本售价为()x 3-元, 根据题意可列出的方程为:1524x 3x=-. 故选:D . 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程是解题的关键.6.C解析:C 【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案. 【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()aa 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa1a 1a a 1÷+-+ =()()aa 11a 1a a+⋅+- =11a-; ∵a 为负整数,且a 1≠-, ∴1a -是大于1的正整数, 则1101a 2<<-. 故选C . 【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.7.C解析:C 【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值. 【详解】 解分式方程2311a x x+=--,得53a x -=,∵分式方程2311ax x+=--的解为非负数, ∴503a-≥, 解得a ≤5,∵关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩,∵不等式组的解集为2y <-, ∴2a ≥-, ∵x-1≠0, ∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个, 故选:C . 【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.8.C解析:C 【分析】直接进行同分母的加减运算即可. 【详解】 解:23211x x x x +-++=2321x x x +-+=31x +, 故选C . 【点睛】本题考查了同分母的分式的运算,解题的关键是熟练掌握分式的运算法则.9.C解析:C 【分析】根据分式的除法法则计算即可. 【详解】2222x y x y x y x y -+÷+-()()22x y x y x y x y x y +--=⨯++222()x y x y -=+ 【点睛】此题考查分式的除法法则:先把除式的分子分母颠倒位置,再化为最简分式即可.10.C解析:C 【分析】根据分式的加减运算的法则计算即可. 【详解】222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.11.A解析:A 【分析】根据分式值为零的条件列出方程和不等式,解方程和不等式得到答案. 【详解】由题意得:|x|−1=0,x 2−3x+2≠0,解得,x =-1, 故选:A . 【点睛】本题考查的是分式为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.12.C解析:C 【分析】先根据分式为零的条件列出不等式组,然后再求解即可. 【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C . 【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题13.【分析】原式利用同分母分式的加法法则计算即可得到结果【详解】故答案为:【点睛】此题考查了分式的加减法熟练掌握运算法则是解本题的关键解析:5x . 【分析】原式利用同分母分式的加法法则计算即可得到结果. 【详解】232+3x x x+=5x =.故答案为:5x【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.4【分析】首先根据题意由二阶行列式得到一个分式方程解分式方程即得问题答案【详解】解:∵=1∴方程两边都乘以x ﹣1得:2+1=x ﹣1解得:x =4检验:当x =4时x ﹣1≠01﹣x≠0即x =4是分式方程的解析:4 【分析】首先根据题意由二阶行列式得到一个分式方程,解分式方程即得问题答案 . 【详解】解:∵211111xx --=1, ∴21111x x-=--, 方程两边都乘以x ﹣1得: 2+1=x ﹣1, 解得:x =4,检验:当x =4时,x ﹣1≠0,1﹣x≠0, 即x =4是分式方程的解, 故答案为:4. 【点睛】本题考查分式方程与新定义实数运算的综合运用,通过观察所给运算式子归纳出运算规律并得到分式方程再求解是解题关键.15.【分析】根据分式的加减法运算法则平方差公式因式分解计算即可解答【详解】解:===故答案为:【点睛】本题考查分式的加减运算平方差公式因式分解熟记公式掌握分式的加减运算法则是解答的关键 解析:11m - 【分析】根据分式的加减法运算法则、平方差公式因式分解计算即可解答. 【详解】 解:22111m m m --- =22111m m m +--=1(1)(1)m m m ++-=11m -, 故答案为:11m -. 【点睛】本题考查分式的加减运算、平方差公式因式分解,熟记公式,掌握分式的加减运算法则是解答的关键.16.4038【分析】先根据已知图形得出代入方程中再将左边利用裂项化简解分式方程可得答案【详解】由图形知:∴∵∴故填:30;【点睛】本题考查图形的变化规律解题的关键是根据已知图形得到以及裂项的规律解析:4038 【分析】先根据已知图形得出()1n a n n =+,代入方程中,再将左边利用()11111n n n n =-++裂项化简,解分式方程可得答案. 【详解】由图形知:112a =⨯,223a =⨯,334a =⨯, ∴ ()1n a n n =+,556=30a =⨯, ∵ 123201922222020n a a a a +++⋅⋅⋅+=, ∴2222122334201920202020n+++⋅⋅⋅+=⨯⨯⨯⨯, 1111121223201920202020n ⎛⎫-+-+⋅⋅⋅+-= ⎪⎝⎭, 4038n =,故填:30;4038. 【点睛】本题考查图形的变化规律,解题的关键是根据已知图形得到()1n a n n =+,以及裂项的规律()11111n n n n =-++.17.【分析】首先计算积的乘方再计算中括号内的同底数幂的乘法最后计算单项式除以单项式即可得出答案【详解】解:===故答案为:【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式熟练掌握运算法则是解答此解析:7a .首先计算积的乘方,再计算中括号内的同底数幂的乘法,最后计算单项式除以单项式即可得出答案.【详解】解:35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=1526()a a a -÷-=158()a a -÷-=7a .故答案为:7a .【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式,熟练掌握运算法则是解答此题的关键. 18.m >2且m≠3【分析】先给分式方程去分母化为整式方程用m 表示出方程的解再由解为正数求出m 的取值范围即可【详解】解:去分母得:3x ﹣m=2(x ﹣1)解得:x=m ﹣2∵分式方程的解是正数且x≠1∴m ﹣2解析:m >2且m≠3【分析】先给分式方程去分母化为整式方程,用m 表示出方程的解,再由解为正数求出m 的取值范围即可.【详解】解:去分母,得:3x ﹣m=2(x ﹣1),解得:x=m ﹣2,∵分式方程的解是正数,且x≠1,∴m ﹣2>0,且m ﹣2≠1,解得:m >2且m≠3,故答案为:m >2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.19.80【分析】设现在每天做x 个零件则原计划每天做个零件根据工作时间=工作总量÷工作效率结合现在做4000个零件和原来做3000个零件的时间相同即可得出关于x 的方程求解即可【详解】设现在每天做x 个零件则解析:80【分析】设现在每天做x 个零件,则原计划每天做()20x -个零件,根据工作时间=工作总量÷工作效率,结合现在做4000个零件和原来做3000个零件的时间相同,即可得出关于x 的方程,求解即可.设现在每天做x 个零件,则原计划每天做()20x -个零件, 依题意得:4000300020x x =-, 解得:80x =;经检验x=80是原方程的解∴现在平均每天做80个零件故答案为:80.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解答本题的关键. 20.【分析】根据分式除法法则先将除法转化为乘法再运用分式的乘法法则进行计算即可得出结果【详解】解:故答案为:【点睛】本题考查了分式的除法运算掌握分式的乘除法的关系及运算法则是解题的关键 解析:12a a ++ 【分析】根据分式除法法则先将除法转化为乘法,再运用分式的乘法法则进行计算,即可得出结果.【详解】 解:22a 1a 1a 2a a--÷+ ()()()a 1a 1a a a 2a 1+-=⋅+- 12a a +=+ 故答案为:12a a ++ 【点睛】本题考查了分式的除法运算,掌握分式的乘、除法的关系及运算法则是解题的关键.三、解答题21.21x x +-,-2 【分析】 先把括号内通分,再把分子与分母因式分解和除法运算化为乘法运算,约分后得到原式=21x x +-,由于x 不能取1,2,所以把可把x =0代入计算. 【详解】解:原式=221(2)(2)2(1)x x x x x -++-⋅-- =21(2)(2)2(1)x x x x x -+-⋅-- =21x x +-, 当x=0时,原式=-2.【点睛】本题考查了分式的化简求值:先把分式的分子或分母因式分解(有括号,先算括号),然后约分得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值. 22.(1)这项工程的规定时间是30天;(2)该工程的费用为225000元【分析】(1)设这项工程的规定时间是x 天,根据甲、乙队先合做15天,余下的工程由甲队单独需要10天完成,可得出方程解答即可;(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】(1)设这项工程的规定时间是x 天,根据题意得:1110()1513x x x+⨯+=, 解得:x =30.经检验x =30是原分式方程的解.答:这项工程的规定时间是30天;(2)该工程由甲、乙队合做完成,所需时间为:111()22.530303÷+=⨯(天), 则该工程施工费用是:()22.565003500225000⨯+=(元).答:该工程的费用为225000元.【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.23.(1)x =1时,M =N ;(2)M ≥N【分析】(1)由题意,令1221x x x +=+,然后解分式方程,即可得到答案; (2)利用作差法进行计算,即可得到答案.【详解】 解:(1)1221x x x +=+, ∴(x +1)2=4x ,∴(x -1)2=0,∴x =1 ;当x =1时,x +1≠0,方程的解是x =1即当x =1时,M =N ;(2)M ﹣N =12x +﹣21x x +=2(1)2(1)x x -+ ∵x >0,∴(x ﹣1)2≥0,2(x +1)>0, ∴2(1)2(1)x x -+≥0, ∴当x >0时,M ≥N .【点睛】本题考查了解分式方程,分式的混合运算,解题的关键是熟练掌握解分式方程的方法进行解题.24.①x -y ;2020;②原方程无解.【分析】(1)根据分式的运算法则,先化简分式,再代入求值.(2)先变形,再把分式方程转化为整式方程,求出方程的解,再进行检验即可.【详解】解:①12(1)y x y x y ⋅--+÷221y x - =1()()1y x y x y x x y x y -+-⋅⋅-+ =x-y由x=y+2020得x-y=2020;②原方程可化为:3(3)(3)x x +-—112(3)2(3)x x =-+ 方程两边同乘以2(x+3)(x-3)得:6-(x+3)=x-3解得,x=3检验:把x=3代入2(x+3)(x-3)=0所以x=3不是原方程的解,即原方程无解【点睛】本题考查了分式的化简和解分式方程,,掌握运算法则是解决本题的关键.25.(1)x=-4(2)化简为:1a a -,当a=2时,原式=2 【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)先算括号内的加减,把除法变成乘法,再根据分式的乘法法则求出答案即可.【详解】解:(1)两边都乘最简公分母(x 2-9)得:3+x (x+3)=x 2-9,解这个整式方程得:x=-4,经检验x=-4时,x 2-9≠0,所以,x=-4是分式方程的解.(2)原式=()()()()22a 1a 11a a 1a 1a 1⎛⎫+- ⎪+÷ ⎪---⎝⎭ ()()=222a 11a a 1a 1a 1⎛⎫- ⎪+÷ ⎪---⎝⎭()=22a a 1a a 1-⋅- =a a 1- 当a=2时,原式=2.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.26.2a +,2【分析】把括号内通分,并把除法转化为乘法,约分化简后从所给数中选一个使分式有意义的数代入计算即可.【详解】 解:原式=2234221a a a a a --⎛⎫+⨯ ⎪--+⎝⎭=()()22121a a a a a +-+⨯-+ =2a +,∵a 取2,-2,-1时分式无意义,∴a 只能取0,∴原式=0+2=2.【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解答本题的关键.分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先算乘除,再算加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.。
新人教版初中数学八年级数学上册第五单元《分式》检测卷(答案解析)(1)
一、选择题1.若整数a 使得关于x 的方程3222ax x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .282.如果分式2121x x -+的值为0,则x 的值是( )A .1B .0C .1-D .±13.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9- B .8-C .7-D .6-4.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m =5.计算()3222()m m m -÷⋅的结果是( )A .2m -B .22mC .28m -D .8m -6.大爱无疆,在爆发新冠病毒疫情后,甲,乙两家单位分别组织了员工捐款.已知甲单位捐款7500元,乙单位捐款9800元,甲单位捐款人数比乙单位少10人,且甲单位人均捐款额比乙单位多20元,若设甲单位的捐款人数为x ,则可列方程为( ) A .7500980020x x 10-=- B .9800750020x 10x-=- C .7500980020x x 10-=+D .9800750020x 10x-=+ 7.下列计算正确的个数为( )①555•2a a a =;②5510b b b +=;③1644n n ÷=;④247••y y y y =;⑤()()23•x x x --=-;⑥()7214a a --=;⑦()()234214•a a a -=;⑧()242a a a ÷-=-;⑨()03.141π-=. A .2B .3C .4D .58.下列各式中错误的是( )A .2c d c d c d c d da a a a -+-----== B .5212525aa a +=++ C .1x y x y y x-=--- D .2211(1)(1)1x x x x -=---9.已知227x ,y ==-,则221639yx y x y ---的值为( ) A .-1B .1C .-3D .310.2a ab b a ++-的结果是( ).A .2a -B .4aC .2b a b--D .b a- 11.下列各式计算正确的是( )A .33x x y y=B .632m m m=C .22a b a b a b+=++D .32()()a b a b b a -=-- 12.22()-n b a (n为正整数)的值是( )A .222+n n b aB .42n n b aC .212+-n n b aD .42-nn b a二、填空题13.计算:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=_____.14.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++.参考上面的方法,解决下列问题:(1)将1a a +变形为满足以上结果要求的形式:1aa =+_________; (2)①将321a a +-变形为满足以上结果要求的形式:321a a +=-_________;②若321a a +-为正整数,且a 也为正整数,则a 的值为__________.15.计算:111x x---的结果是________. 16.若32a b =,则22a ba+=____. 17.101()()2π-+-=______,011(3.14)2--++=______.18.当2x =,3y =-时,代数式22222-⋅++x y xx x xy y 的值为________.19.PM2.5是指大气中直径小于或等于2.5微米(0.0000000025千米)的颗粒物,也称为可入肺颗粒物.2.5微米用科学记数法表示为________千米. 20.已知关于x 的方程321x mx -=-的解是正数,则m 的取值范围为____________. 三、解答题21.列方程解应用题:为了响应绿色环保的倡议,我县教体局提出了每个人都践行“双面打印,节约用纸”的口号.已知打印一份资料,如果用A4厚型纸单面打印,总质量为800克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为320克,已知每页A4薄型纸比A4厚型纸轻0.8克,求A4薄型纸每页的质量(墨的质量忽略不计).22.某人承包1125平方米的铺地砖任务,计划在一定的时间内完成,按计划工作3天后,提高了工作效率,使每天铺地砖的面积为原计划的1.5倍,结果提前4天完成了任务,则原计划每天铺地多少平方米? 23.计算与求值(1)计算:)1π;(2)求)(2316x +=中x 的值. 24.先化简,再求值:22131x x x x x ---+-,其中2x =. 25.(提示:我们知道,如果0a b ->,那么a b >.) 已知0m n >>.如果将分式nm的分子、分母都加上同一个不为0的数后,所得分式的值比nm是增大了还是减小了?请按照以下要求尝试做探究. (1)当所加的这个数为1时,请通过计算说明; (2)当所加的这个数为2时,直接说出结果;(3)当所加的这个数为0a >时,直接说出结果. 26.计算 (1)2152224-⨯+÷; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦; (4)()()()3323231333xx x x ⎛⎫-+--⋅ ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和. 【详解】解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩,不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a , 解得:a≥1,即整数a=1,2,3,4,5,6,…,3222ax x-=--, 去分母得:2(x-2)-3=-a , 解得:x=72a-, ∵72a -≥0,且72a-≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25. 故选:B . 【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.2.D解析:D 【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案. 【详解】解:∵分式2121x x -+值为0,∴2x+1≠0,210x -=,解得:x=±1. 故选:D . 【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零分母不为零是解题关键.3.D解析:D 【分析】 先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可. 【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解,∴12x m -≤≤-,∴21m -≥-, 得3m ≤, ∴53m -≤≤, ∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3, 其和为:-6, 故选:D . 【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键.4.B解析:B 【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可. 【详解】 解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1. 故选B . 【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.5.C解析:C 【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可. 【详解】 解:()3222()m m m -÷⋅=()468mm -÷ =()468m m -÷=28m -, 故选:C . 【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.6.C解析:C 【分析】由设甲单位的捐款人数为x ,甲单位捐款人数比乙单位少10人,得到乙单位人数为(x+10),根据甲单位人均捐款额比乙单位多20元列得方程. 【详解】 解:由题意得:7500980020x x 10-=+, 故选:C . 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键.7.C解析:C根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,零指数幂及积的乘方可得答案. 【详解】解:①5510•a a a =,故①错误; ②5552b b b +=,故②错误;③2164444n n n n n ÷=÷=,故③错误; ④247••y y y y =,故④正确; ⑤()()23•x x x --=-,故⑤正确; ⑥()7214a a --=,故⑥正确;⑦()()23428614•a a a a a -=-⋅=-,故⑦错误;⑧()242a a a ÷-=,故⑧错误;⑨()03.141π-=,故⑨正确,正确的有4个. 故选:C . 【点睛】本题考查了同底数幂的乘法,同底数幂的除法,零指数幂及积的乘方,解题的关键是灵活运用运算法则.8.C解析:C 【分析】按同分母分式加减法则计算即可. 【详解】 A.2c d c d c d c d da a a a -+-----==,正确; B.52521252525a aa a a ++==+++,正确; C.x y x y x y x y y x x y x y x y+-=+=-----,错误; D.222111(1)(1)(1)1x x x x x x --==----,正确.故选:C 【点睛】此题考查同分母分式的加减法的法则:同分母分式相加减,分母不变,分子相加减.9.B解析:B先通分,再把分子相加减,把x 、y 的值代入进行计算即可. 【详解】 原式=()()16333yx y x y x y --+- =()()3633x y y x y x y +-+- =()()333x y x y x y -+-=13x y+, 当227x ,y ==-,原式=112221=-,故选B . 【点睛】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.10.C解析:C 【分析】根据分式的加减运算的法则计算即可. 【详解】222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.11.D解析:D 【分析】根据分式的基本性质进行判断即可得到结论. 【详解】解:A 、33x y 是最简分式,所以33x xy y ≠,故选项A 不符合题意;B 、624m m m=,故选项B 不符合题意;C 、22a b a b++是最简分式,所以22a b a b a b +≠++,故选项C 不符合题意; D 、3322()()()()a b a b a b b a a b --==---,正确, 故选:D . 【点睛】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.12.B解析:B 【分析】根据分式的乘方计算法则解答. 【详解】2422()-=nn n b b a a . 故选:B . 【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.二、填空题13.2a4b5【分析】直接利用积的乘方运算法则化简再利用整式的除法运算法则计算得出答案【详解】解:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=4a ﹣4b2÷2a ﹣8b ﹣3=2a-4-(-8)b2-(-3)=2a解析:2a 4b 5. 【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案. 【详解】解:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=4a ﹣4b 2÷2a ﹣8b ﹣3=2a -4-(-8)b 2-(-3), =2a 4b 5. 故答案为:2a 4b 5. 【点睛】本题考查了整数指数幂的运算,熟练应用法则是解题关键.14.2或6【分析】(1)根据材料中分式转化变形的方法即可把变形为满足要求的形式;(2)①根据材料中分式转化变形的方法即可把变形为满足要求的形式;②令可先求出a 与x 是整数时的对应值再从所得结果中找出符合条解析:111a -+ 531a +- 2或6 【分析】(1)根据材料中分式转化变形的方法,即可把1aa +变形为满足要求的形式; (2)①根据材料中分式转化变形的方法,即可把321a a +-变形为满足要求的形式;②令325311a x a a +==+--,可先求出a 与x 是整数时的对应值,再从所得结果中找出符合条件的a ,x 的值,即可得出结论. 【详解】 解:(1)1111111a a a a a +-==-+++; 故答案为:111a -+; (2)①323(1)553111a a a a a +-+==+---; 故答案为:531a +-; ②∵323(1)553111a a a a a +-+==+--- 令531x a =+-,当x , a 都为整数时,11a -=±或15a -=±, 解得a =2或a =0或a =6或a =-4, 当a =2时,x =8; 当a =0时,x =-2; 当a =6时,x =4; 当a =-4时,x =2; ∵x , a 都为正整数, ∴符合条件的a 的值为2或6. 故答案为:2或6. 【点睛】此题考查了分式的加减及求分式的值等知识,理解题意并熟练掌握分式的基本性质及运算法则是解本题的关键.15.【分析】先把分式化成同分母再根据同分母分式相加减分母不变分子相加减即可得出答案【详解】解:===故答案为【点睛】本题考查了分式的加减熟练掌握运算法则是解题的关键解析:21x x-. 【分析】先把分式化成同分母,再根据同分母分式相加减,分母不变,分子相加减,即可得出答案.【详解】 解:111x x --- =()111111x x x x x x------- =2111x x x x-+-+- =21x x- 故答案为21x x-. 【点睛】本题考查了分式的加减.熟练掌握运算法则是解题的关键.16.2【分析】将代入式子化简即可得到答案【详解】∴原式故答案为:2【点睛】此题考查分式的化简求值解题的关键是正确代入及掌握分式化简方法 解析:2【分析】将32a b =代入式子化简即可得到答案.【详解】23b a =,∴原式34222a a a a a+===. 故答案为:2.【点睛】 此题考查分式的化简求值,解题的关键是正确代入及掌握分式化简方法.17.【分析】根据零指数幂和负整数指数幂等知识点进行解答幂的负指数运算先把底数化成其倒数然后将负整指数幂当成正的进行计算任何非0数的0次幂等于1【详解】2+1=3;【点睛】本题是考查含有零指数幂和负整数指 解析:12【分析】根据零指数幂和负整数指数幂等知识点进行解答,幂的负指数运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算.任何非0数的0次幂等于1.【详解】101()()2π-+-=2+1=3; 011(3.14)2--++1112=-++12= 【点睛】本题是考查含有零指数幂和负整数指数幂的运算.根据零指数幂和负整数指数幂等知识点进行解答即可. 18.-5【分析】根据平方差公式完全平方公式和分式运算的性质先化简代数式;再将代入到代数式计算即可得到答案【详解】∵∴故答案为:-5【点睛】本题考查了乘法公式分式运算代数式的知识;解题的关键是熟练掌握分式 解析:-5【分析】根据平方差公式、完全平方公式和分式运算的性质,先化简代数式;再将2x =,3y =-代入到代数式计算,即可得到答案.【详解】22222-⋅++x y x x x xy y 2()()()x y x y x x x y +-=⋅+ x y x y-=+ ∵2x =,3y =- ∴22222-⋅++x y x x x xy y x y x y-=+ 2(3)23--=- 5=-故答案为:-5.【点睛】本题考查了乘法公式、分式运算、代数式的知识;解题的关键是熟练掌握分式运算、乘法公式的性质,从而完成求解.19.【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数的绝对值<解析:92.510-⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】2.5微米=92.510-⨯千米,故答案为:92.510-⨯.【点睛】此题考查科学记数法,注意n 的值的确定方法,当原数小于1时,n 等于原数左数第一个非零数字前零的个数,按此方法即可正确求解.20.m >2且m≠3【分析】先给分式方程去分母化为整式方程用m 表示出方程的解再由解为正数求出m 的取值范围即可【详解】解:去分母得:3x ﹣m=2(x ﹣1)解得:x=m ﹣2∵分式方程的解是正数且x≠1∴m ﹣2解析:m >2且m≠3【分析】先给分式方程去分母化为整式方程,用m 表示出方程的解,再由解为正数求出m 的取值范围即可.【详解】解:去分母,得:3x ﹣m=2(x ﹣1),解得:x=m ﹣2,∵分式方程的解是正数,且x≠1,∴m ﹣2>0,且m ﹣2≠1,解得:m >2且m≠3,故答案为:m >2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.三、解答题21.2克.【分析】设A4薄型纸每页的质量为x 克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.【详解】解:设A4薄型纸每页的质量为x 克,则A4厚型纸每页的质量为(x+0.8)克, 根据题意,得:80032020.8x x=⨯+,解得 3.2x =经检验 3.2x =是原分式方程的解,且符合题意.答:例子中的A4薄型纸每页的质量为3.2克.【点睛】本题考查分式方程的应用,掌握题目中等量关系是关键,注意分式方程结果要检验. 22.原计划每天铺地75平方米.【分析】设原计划每天铺x 平方米,根据题意即可列出方程进行求解.【详解】解:设原计划每天铺地平方米, 根据题意锝:112511253341.5x x x -⎛⎫-+= ⎪⎝⎭解得:75x =经检验,75x =是原方程的解.答:原计划每天铺地75平方米.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意列出方程.23.(15;(2)1x =或7x =-【分析】(1)先进行绝对值、开方、0指数运算,再相加即可;(1)先开方,再解一元一次方程即可.【详解】解:(1))01π+1515=++= (2))(2316x +=开方得,34x +=±, 343-4x x +=+=或,解得,1x =或7x =-.【点睛】本题考查了绝对值、平方根和0指数,掌握基本知识点,熟练运用绝对值法则、0指数的意义和开平方运算是解题关键.24.()11x x -,12【分析】此题需先根据分式的混合运算顺序和法则把22131x x x x x ---+-进行化简,然后把x 代入即可.【详解】解:原式=()13(1)(1)1x x x x x x ---++- =()(1)(1)(3)(1)(1)(1)1x x x x x x x x x x ----+-+- =22(1)(11)23x x x x x x x -+--++ ()11x x =- 当2x =时,原式12=【点睛】此题考查了分式的化简求值,分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.25.(1)所得分式的值比原来增大了,计算说明见解析;(2)增大;(3)增大.【分析】(1)先求出11n n m m +-+,通分化简,然后根据0m n ->,0m >判断即可; (2)先求出22n n m m +-+,通分化简,然后根据0m n ->,0m >判断即可; (3)先求出n a n m a m+-+,通分化简,然后根据0m n ->,0m >,0a >判断即可. 【详解】解:(1)由题意得: 11n n m m+-+, (1)(1)(1)(1)m n n m m m m m ++=-++, (1)mn m mn n m m +--=+, (1)m n m m -=+, ∵0m n >>,∴0m n ->,0m >,10m +>, ∴0(1)m n m m ->+, ∴101n n m m+->+,11n n m m+∴>+,即所得分式的值比原来增大了; (2)22n n m m+-+ (2)(2)(2)(2)m n n m m m m m ++=-++ 22(2)mn m mn n m m +--=+ ()2(2)m n m m -=+同理可得()20(2)m n m m ->+, ∴22n n m m+>+,即所得分式的值比原来增大了; (3)n a n m a m +-+ ()()()()m n a n m a m m a m m a ++=-++ ()mn ma mn na m m a +--=+ ()(2)a m n m m -=+∵0m n ->,0m >,0a >,∴()0(2)a m n m m ->+ ∴n a n m a m+>+,即所得分式的值比原来增大了. 【点睛】本题考查分式的运算,解题的关键是掌握分式运算的法则. 26.(1)5;(2)-42;(3)222xy x y +;(4)67x .【分析】(1)根据有理数混合运算法则计算即可;(2)根据负指数整数幂、零指数幂、绝对值的意义及乘方,计算即可; (3)去括号,然后合并同类项即可;(4)根据积的乘方、幂的乘方运算法则计算即可.【详解】解:(1)2152224-⨯+÷ =115522-+=; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭=271161-⨯-+ =2716142--+=-;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦ =22223242xy x y x y xy +-- =222xy x y +; (4)()()()3323231333xx x x ⎛⎫-+--⋅ ⎪⎝⎭ =6633192727x x x x -+-⋅ =67x .【点睛】 本题主要考查有理数的混合运算、整式的混合运算,解题的关键是熟练运用运算法则.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >- B .1m ≠ C .1m D .1m >-且1m ≠2.关于x 的分式方程5222m x x+=--有增根,则m 的值为( ) A .2m = B .2m =- C .5m = D .5m =-3.若关于x 的方程1044m x x x--=--无解,则m 的值是( ) A .2- B .2 C .3- D .3 4.如果a ,b ,c ,d 是正数,且满足a +b +c +d =2,11a b c b c d ++++++11a c d a b d+++++=4,那么d a a b c b c d ++++++b c a c d a b d+++++的值为( ) A .1 B .12 C .0 D .45.计算2m m 1m m-1+-的结果是( ) A .m B .-m C .m +1 D .m -1 6.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y -中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式 7.化简2111313x x x x +⎫⎛-÷ ⎪---⎝⎭的结果是( ) A .2 B .23x - C .41x x -- D .21x - 8.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5B .6C .7D .8 9.计算221(1)(1)x x x +++的结果是( ) A .1B .1+1xC .x +1D .21(+1)x 10.计算23211x x x x +-++的结果为( ) A .1 B .3 C .31x + D .31x x ++ 11.若实数a 使关于x 的不等式组313212x x a xx +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4 B .3 C .2 D .112.020*******)(0.125)8+⨯的结果是( )AB2 C .2 D .0二、填空题13.席卷全世界的新型冠状病毒是个肉眼看不见的小个子,它的身高(直径)约为0.0000012米,将数0.0000012用科学记数法表示为_________.14.当x _______时,分式22x x -的值为负. 15.若关于x 的方程1322m x x x -+=--的解是正数,则m =____________. 16.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品?根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________.(2)乙型机器人每小时搬运产品_______________kg .17.计算:222213699211-+-+⋅⋅=--++x x x x x x x x ___________.18.计算:()1211x x x x x ⎡⎤-⋅=⎢⎥+-⎣⎦______. 19.方程2111x x x =--的解是___________. 20.已知关于x 的方程321x m x -=-的解是正数,则m 的取值范围为____________. 三、解答题21.小强家距学校3000米,某天他步行去上学,走到路程的一半时发现忘记带课本,此时离上课时间还有23分钟,于是他立刻步行回家取课本,随后小强爸骑电瓶车送他去学校.已知小强爸骑电瓶车送小强到学校比小强步行到学校少用24分钟,且小强爸骑电瓶车的平均速度是小强步行的平均速度的5倍,小强到家取课本与小强爸启动电瓶车等共用4分钟.(1)求小强步行的平均速度与小强爸骑电瓶车的平均速度;(2)请你判断小强上学是否迟到,并说明理由.22.计算:(1)()()22x y x x y -++; (2)22362369m m m m m -⎛⎫-÷ ⎪--+⎝⎭. 23.先化简,再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中1a = 24.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 25.今年双11期间开州区紫水豆干凭借过硬的质量、优质的口碑大火,豆干店的王老板用2500元购进一批紫水豆干,很快售完;王老板又用4400元购进第二批紫水豆干,所购数量是第一批的2倍,由于进货量增加,进价比第一批每千克少了3元.(1)第一批紫水豆干每千克进价多少元?(2)该老板在销售第二批紫水豆干时,售价在第二批进价的基础上增加了%a ,售出80%后,为了尽快售完,决定将剩余紫水豆干在第二批进价的基础上每千克降价325a 元进行促销,结果第二批紫水豆干的销售利润为1520元,求a 的值.(利润=售价-进价)26.计算:)03-【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分式方程去分母转化为整式方程,表示出解,由解为正数确定出m 的范围即可.【详解】去分母得:m-1=2x-2,解得:x=12+m , 由方程的解为正数,得到12+m >0,且12+m ≠1, 解得:1m >-且1m ≠,故答案为:1m >-且1m ≠【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 2.D解析:D【分析】先把分式方程化为整式方程,再把增根代入整式方程,即可求解.【详解】5222m x x+=-- 去分母得:52(2)x m +-=-,∵关于x 的分式方程5222m x x+=--有增根,且增根x=2, ∴把x=2代入52(2)x m +-=-得,5m =-,即:m=-5, 故选D .【点睛】本题主要考查分式方程的增根,掌握分式方程增根的定义:使分式方程的分母为零的根,叫做分式方程的增根,是解题的关键.3.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.解:去分母得:m +1−x =0,∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 4.D解析:D【分析】根据a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++,将所求式子变形便可求出.【详解】∵a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++, ∴d a b c a b c b c d a c d a b d+++++++++++ =2()2()2()2()a b c b c d a c d a b d a b c b c d a c d a b d-++-++-++-+++++++++++++ =2a b c ++﹣1+2b c d ++﹣1+2a c d ++﹣1+2a b d++﹣1 =2×(1111a b c b c d a c d a b d+++++++++++)﹣4 =2×4﹣4=8﹣4=4,故选:D .【点睛】 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.5.A解析:A【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】 原式=211m m m m ---=21m m m--=(1)1m m m --=m ,【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误; B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y -中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.7.D解析:D【分析】利用乘法分配律计算即可【详解】解:原式=11(3)(3)3(1)(1)x x x x x x +⋅--⋅--+-=1-31x x --=21x -, 故选D .【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.8.C解析:C【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值.解分式方程2311a x x +=--,得53a x -=, ∵分式方程2311a x x +=--的解为非负数, ∴503a -≥, 解得a ≤5,∵关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩, ∵不等式组的解集为2y <-,∴2a ≥-,∵x-1≠0,∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个,故选:C .【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.9.B解析:B【分析】根据同分母分式加法法则计算.【详解】221(1)(1)x x x +++=211(1)1x x x +=++, 故选:B .【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.10.C解析:C【分析】直接进行同分母的加减运算即可.【详解】 解:23211x x x x +-++=2321x x x +-+=31x +,【点睛】本题考查了同分母的分式的运算,解题的关键是熟练掌握分式的运算法则.11.D解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】 解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.12.C【分析】根据零次幂定义,积的乘方的逆运算进行计算.【详解】020122012201211)(0.125)81(8)1128+⨯=+⨯=+=. 故选:C【点睛】此题考查实数的混合运算,掌握零次幂定义,积的乘方的逆运算是解题的关键.二、填空题13.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指整数数幂指数n 由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:000解析:61.210-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指整数数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000012=1.2×10-6.故答案为:1.2×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围.【详解】解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0,故答案为:x <2且x≠0.【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.15.m <5且m≠1【分析】将分式方程去分母转化为整式方程表示出x 根据x 为正数列出关于m 的不等式求出不等式的解集即可确定出m 的范围【详解】解:关于的方程的解是正数且解得m <5且m≠1故答案为:m <5且m≠ 解析:m <5且m≠1【分析】将分式方程去分母转化为整式方程,表示出x ,根据x 为正数列出关于m 的不等式,求出不等式的解集即可确定出m 的范围.【详解】 解:1322m x x x-+=-- ()m+32=-1-x x5-m x=2关于x 的方程1322m x x x -+=--的解是正数, 5-m 02>且5-m 22≠ 解得m <5且m≠1,故答案为:m <5且m≠1【点睛】此题考查了分式方程的解,得出关于m 的不等式是解题的关键,注意任何时候考虑分母不为0.16.【分析】(1)设乙型机器人每小时搬运产品根据甲型机器人搬运所用时间与乙型机器人搬运所用时间相等列方程;设甲型机器人搬运所用时间为小时根据甲型机器人比乙型机器人每小时多搬运列方程;(2)设乙型机器人每 解析:80060010x x =+80060010yy =+ 【分析】(1)设乙型机器人每小时搬运xkg 产品,根据甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等列方程;设甲型机器人搬运800kg 所用时间为y 小时,根据甲型机器人比乙型机器人每小时多搬运10kg 列方程;(2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得80060010x x=+,解方程即可. 【详解】(1)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x =+,设甲型机器人搬运800kg 所用时间为y 小时,由题意得80060010y y=+, 故答案为:80060010x x=+,80060010y y =+; (2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 解得x=30,经检验,x=30是方程的解,答:乙型机器人每小时搬运产品30kg .故答案为:30.【点睛】此题考查分式方程的实际应用,正确理解题意,利用直接设未知数的方法和间接设未知数的方法列方程解决问题,注意:解分式方程需检验.17.【分析】先将分子和分母分解因式再计算乘法并将结果化为最简分式【详解】【点睛】此题考查分式的乘法计算法则:分子相乘作积的分子分母相乘作积的分母 解析:31x x -- 【分析】先将分子和分母分解因式,再计算乘法,并将结果化为最简分式.【详解】2222221369(1)(1)3(3)39211(3)(3)(1)11-+-++-+--⋅=⋅⋅=--+++--+-x x x x x x x x x x x x x x x x x x . 【点睛】此题考查分式的乘法计算法则:分子相乘作积的分子,分母相乘作积的分母.18.【分析】先把括号里的分式通分再相减然后运用分式乘法进行计算即可【详解】解:===故答案为:【点睛】本题考查了分式的混合运算掌握正确的运算顺序和运算法则是解题关键 解析:11x + 【分析】先把括号里的分式通分,再相减,然后运用分式乘法进行计算即可.【详解】 解:()1211x x x x x ⎡⎤-⋅⎢⎥+-⎣⎦,=()12(1)11x x x x x x x ⎡⎤+-⋅⎢⎥++-⎣⎦, =1(1)1x x x x x -⋅+-, =11x +, 故答案为:11x +. 【点睛】本题考查了分式的混合运算,掌握正确的运算顺序和运算法则是解题关键.19.【分析】根据分式方程的性质求解即可得到答案【详解】∵∴∴∵时即分母为0故舍去∴故答案为:【点睛】本题考查了分式方程一元二次方程的知识;解题的关键是熟练掌握分式方程的性质从而完成求解解析:1x =-【分析】根据分式方程的性质求解,即可得到答案.【详解】 ∵2111x x x =-- ∴21x =∴1x =±∵1x =时,10x -=,即分母为0,故舍去∴1x =-故答案为:1x =-.【点睛】本题考查了分式方程、一元二次方程的知识;解题的关键是熟练掌握分式方程的性质,从而完成求解.20.m >2且m≠3【分析】先给分式方程去分母化为整式方程用m 表示出方程的解再由解为正数求出m 的取值范围即可【详解】解:去分母得:3x ﹣m=2(x ﹣1)解得:x=m ﹣2∵分式方程的解是正数且x≠1∴m ﹣2解析:m >2且m≠3【分析】先给分式方程去分母化为整式方程,用m 表示出方程的解,再由解为正数求出m 的取值范围即可.【详解】解:去分母,得:3x ﹣m=2(x ﹣1),解得:x=m ﹣2,∵分式方程的解是正数,且x≠1,∴m ﹣2>0,且m ﹣2≠1,解得:m >2且m≠3,故答案为:m >2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.三、解答题21.(1)小强步行的平均速度为100米/分钟,小强爸骑电瓶车的平均速度为500米/分钟;(2)小强不能按时到校,将会迟到,理由见解析【分析】(1)设小强步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,根据题意可得,小强爸骑电瓶车送小强到学校比小强步行到学校少用24分钟,据此列方程求解; (2)计算出小强从步行回家到骑车回到学校所用的总时间,然后和23进行比较即可.【详解】解:(1)设小强步行的平均速度为x 米/分钟,则小强爸骑电瓶车的平均速度为5x 米/分钟,根据题意得:30003000245x x-=, 解得100x =,经检验,100x =是分式方程的解,且符合题意,∴5500x =,即小强步行的平均速度为100米/分钟,小强爸骑电瓶车的平均速度为500米/分钟; (2)由(1)得,小强半途步行返家所需时间为3000210015÷÷=分钟,小强爸骑电瓶车送小强到学校所需时间为30005006÷=分钟,所以,从小强半途步行返家到小强爸骑电瓶车送他到学校共用时间为154625++=分钟23>分钟,故小强不能按时到校,将会迟到.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.(1)222x y +;(2)36m m -+ 【分析】(1)先根据完全平方公式、单项式与多项式的乘法法则计算,再合并同类项即可; (2)把括号内通分,并把除法转化为除法,然后约分化简即可.【详解】(1)原式22222x xy y x xy =-+++222x y =+;(2)原式=2226693336m m m m m m m --+⎛⎫-⨯ ⎪---⎝⎭ ()()()236366m m m m m --=⋅--+ 36m m -=+. 【点睛】 本题考查了整式的混合运算,以及分式的混合运算,熟练掌握运算法则是解答本题的关键.23.1a -【分析】先把括号里分式通分,后变除法为乘法,因式分解后进行约分即可,将a 的值代入.【详解】原式=11(1)(1)1a a a a a +-+-⎛⎫⨯⎪+⎝⎭ =(1)(1)(1)a a a a a+-⨯+ 1a =-,当1a =时,原式=【点睛】本题考查了分式的化简求值,按照运算顺序,通分,因式分解,约分是解题的关键. 24.(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.25.(1)第一批紫水豆干每千克进价是25元;(2)a 的值是50.【分析】(1)设第一批紫水豆干每千克进价是x 元,则第二批每件进价是(x-3)元,再根据等量关系:第二批所购数量是第一批的2倍列方程求解即可;(2)根据第一阶段的利润+第二阶段的利润=1520列方程求解即可.【详解】解:(1)设第一批紫水豆干每千克进价x 元, 根据题意,得:2500440023x x ⨯=-, 解得:x=25,经检验,x=25是原方程的解且符合题意;答:第一批紫水豆干每千克进价是25元.(2)第二次进价:25-3=22(元),第二次紫水豆干的实际进货量:4400÷22=200千克,第二次进货的第一阶段出售每千克的利润为:22×a %元, 第二次紫水豆干第二阶段销售利润为每千克325a -元, 由题意得:322%20080%200(180%)152025a a ⨯⨯⨯-⨯-=, 解得:a =50,即a 的值是50.【点睛】本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.26.0【分析】分别计算零指数幂、算术平方根、立方根,再进行加减运算即可.【详解】解:)03=1-3+2=0【点睛】本题考查了实数的运算,掌握零指数幂、算术平方根、立方根的性质是关键.。