华东师大初中七年级上册数学角(基础)知识讲解[精选]

合集下载

华东师大初中七年级上册数学角(基础)知识讲解

华东师大初中七年级上册数学角(基础)知识讲解

角(基础)知识讲解【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2. 借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4. 掌握角的和、差、倍、分关系,并会进行有关计算;5. 掌握互为余角和互为补角的概念及性质,会用余角、补角及性质进行有关计算;6.了解方位角的概念,并会用方位角解决简单的实际问题.【要点梳理】【高清课堂:角 397364 角的概念】要点一、角的概念1. 角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O ,边是射线OA 、OB .(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA 绕它的端点O 旋转到OB 的位置时,形成的图形叫做角,起始位置OA 是角的始边,终止位置OB 是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA 绕点O 旋转,当终止位置OB 和起始位置OA 成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB 和OA 重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:图1 图2要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角的比较与运算1.角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于等于60时要向高一位进位.2.角的比较:角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB=∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.3.角的和、差关系如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.4.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点三、余角和补角1.定义:一般地,如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角.类似地,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.2.性质:(1)同角(等角)的余角相等.(2)同角(等角)的补角相等.要点诠释:(1)互余互补指的是两个角的数量关系,互余、互补的两个角只与它们的和有关,而与它们的位置无关.(2)一般地,锐角α的余角可以表示为(90°-α),一个角α的补角可以表示为(180°-α) .显然一个锐角的补角比它的余角大90°。

华师大版七年级数学上册第四章角复习.doc

华师大版七年级数学上册第四章角复习.doc

华师大版七年级数学上册《图形的初步认识》综合复习一一角(-)知识点11、角的定义和表示方法(1) 角的概念:角是由 ________ 具有公共端点的 _____ 组成, _____________ 是角的顶点,两条_是角的两边。

(2) 角的第二定义:角也可以看做由一条射线绕端点旋转所形成的图形.如下图中的 角,可以看做射线0A 绕端点0按逆时针方向旋转到0B 所形成的,我们把0A 叫做角的始 边,0B 叫做角的终边.(3) 用角度表示方向。

用“南、北”偏“东、西”加角度表示方向。

(4) 角的表示方法方法_: ___________ 方法二: _____________ 方法三: ______________ 方法四: _________________例1、八点三十分,这一时刻,时针与分针夹角是( ) (A) 70° ・(B) 75° .(C) 80° .(D) 85° ・例2、从8点10分到8点40分,吋钟的吋针转过 ______ 度,吋钟的分针转过 ______ 度. 例3、如图,ZA0C 与ZB0D 都是直角,且ZA0B:ZA0D=2:ll.求ZA0B 与ZB0C 的度数.例4、如图,A,B,C 分别代表学校、图书馆、小红家,学校和图书馆分别在小红家的北偏 西方向,学校又在图书馆的北偏东方向,那么图中点A 表示 _______ ,点B 表示 ______ ,点 C 表示 ______(二) 、知识点21、角度之间的进率关系和计算(1) 两种特殊的角:第一种情况是绕着端点旋转到角的终边和始边成一直线,这时所 成的角叫做平角(straight angle);第二种情况是绕着端点旋转到终边和始边重合,这时所成 的角叫做周角(perigon).(2) 把周角分成360等份,每一份就是一度,记作1。

.当一个角并不正好是整数度数, 与氏度单位一样,考虑用更小一些的单位.把一度分成60等份,每一份就是1分,记作1’ ; 而把一分再分成60等份,每一份就是1秒,记作1”.这样,角的度量单位度、分、秒有如下 关系:东31° =60' , 1' =60” 。

华东师大版七年级上册数学第四章第6节《角》精品课件

华东师大版七年级上册数学第四章第6节《角》精品课件
终边
顶点
始边
探究2 角的表示方法
(角的符号:∠ )
A
(1)用三个大写字母表示,三个字母应
分别写在顶点及两边上的点,顶点的字 母必须写在中间。
O B
∠AOB 或∠BOA 表示的是同一个角
A
(2)角也可用一个大写字母表示,这个 字母写在顶点处,它只适用于顶点处只
用一个角如上∠O
C

O1
(3)用一个数字(1, 2……)
4.6 角

1、角的定义 (静态) 由两条具有公共端点的射线组成的图形。 (公共端点O叫做该角的顶点,
射线OA、OB叫做该角的两条边)
角的外部 O
B 角的内部
A
判断:下面的图形那些是角?






动态角的概念
角也可以看成是一条射线绕着它的端点旋转而成的图形。
起始位置的射线叫做这个角 的始边。 终止位置的射线叫做这个角的终边。
A
O
B
平角
O
A(B)
周角
AB直线源自OA射线3、写出图中(1)能用一个字母表示的角
A
(
∠A 和∠C
)
E (2)以B为顶点的角
( ∠ABE、∠EBC、 ∠ABC

B
C
(3)图中共有几个角
(小于平角的角)

7个角

(∠A 、∠C 、∠ABE 、∠EBC、 ∠ABC、 ∠AEB 、∠CEB)
角的度量工具:量角器
角的度量
角的度量单位:度,分,秒
1°的60分之一为1分,记作“1′”,即1°=60′ 1′的60分之一为1秒,记作“1″”,即1′=60″

第9讲 角-华东师大版七年级数学上册讲义(机构专用)

第9讲 角-华东师大版七年级数学上册讲义(机构专用)

第9讲角知识点整合1.认识角定义:角是由两条有公共端点的射线组成的图形;角是由一条射线绕着它的端点旋转而形成的图形;射线的端点叫做角的顶点,起始位置的射线叫做角的始边,终止位置的射线叫做角的终边。

角度:1周角=360° 1平角=180° 1°=60′ 1′=60″2.角的比较和运算角的大小比较方法:1,直接根据角度大小比较; 2,使两个角一条边重合,根据另一条边的位置比较;角平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

3.余角和补角余角:两个角的和等于90°(直角),就说这两个角互为余角,简称互余。

补角:两个角的和等于180°(平角),就说这两个角互为补角,简称互补。

重点讲解重点1:认识角下列关于角的说法正确的个数是( )①角是由两条射线组成的图形;②角的边越长,角越大;③在角一边延长线上取一点D ;④角可以看作由一条射线绕着它的端点旋转而形成的图形. A .1个 B .2个 C .3个 D .4个解析:①角是由有公共端点的两条射线组成的图形,错误;②角的大小与开口大小有关,角的边是射线,没有长短之分,错误;③角的边是射线,不能延长,错误;④角可以看作由一条射线绕着它的端点旋转而形成的图形,说法正确.所以只有④正确.故选A.方法总结:本题主要是对角的定义的考查,正确理解角的定义是解题的关键:有公共端点的两条射线组成的图形叫做角,需要熟练掌握.下列四个图形中,能用∠1、∠AOB 、∠O 三种方法表示同一个角的图形是( )A BC D解析:在角的顶点处有多个角时,用一个字母表示这个角,这种方法是错误的.所以A 、C 、D 错误,故选B.方法总结:角的两个基本元素中,边是两条射线,顶点是这两条射线的公共端点.解题时要善于排除一些似是而非的说法的干扰,选出能准确描述“角”的说法.用三个大写字母表示角,表示角顶点的字母在中间.重点2:角的比较和运算如图,射线OC ,OD 分别在∠AOB 的内部,外部,下列各式错误的是( )A .∠AOB <∠AOD B .∠BOC <∠AOBC .∠COD <∠AOD D .∠AOB <∠AOC解析:A.∠AOB 与∠AOD 的边OA 重合,OB 在∠AOD 内,所以∠AOB <∠AOD ,A 正确;同理B 、C 正确;D.∠AOB 和∠AOC 的边AO 重合,OC 在∠AOB 内,所以∠AOB >∠AOC .D 错误,故选D.方法总结:此题主要考查了角的比较大小,解题的关键是掌握角比较大小的方法. 探究点二:角度的有关计算如图,∠AOB =120°,OD 平分∠BOC ,OE 平分∠AOC . (1)求∠EOD 的度数;(2)若∠BOC =90°,求∠AOE 的度数.解析:(1)根据OD 平分∠BOC ,OE 平分∠AOC 可知∠DOE =∠DOC +∠EOC =12(∠BOC +∠AOC )=12∠AOB ,由此即可得出结论;(2)先根据∠BOC =90°求出∠AOC 的度数,再根据角平分线的定义即可得出结论. 解:(1)∵∠AOB =120°,OD 平分∠BOC ,OE 平分∠AOC ,∴∠EOD =∠DOC +∠EOC =12(∠BOC +∠AOC )=12∠AOB =12×120°=60°;(2)∵∠AOB =120°,∠BOC =90°,∴∠AOC =120°-90°=30°,∵OE 平分∠AOC ,∴∠AOE =12∠AOC =12×30°=15°.方法总结:能够根据图形正确找到角之间的和差关系,理解角平分线的概念是解题的关键.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O ,则∠AOC +∠DOB=()A.120° B.180° C.150° D.135°解析:由图可得∠AOC+∠DOB=∠AOB+∠COD=90°+90°=180°.故选B.方法总结:此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.重点3:余角和补角如果α与β互为余角,则( )A.α+β=180° B.α-β=180°C.α-β=90° D.α+β=90°解析:如果α与β互为余角,则α+β=90°.故选D.方法总结:正确记忆互为余角的定义是解决问题的关键.已知∠A与∠B互余,且∠A的度数比∠B度数的3倍还多30°,求∠B的度数.解析:根据∠A与∠B互余,得出∠A+∠B=90°,再由∠A的度数比∠B度数的3倍还多30°,从而得到∠A=3∠B+30°,再把两个算式联立即可求出∠2的值.解:∵∠A与∠B互余,∴∠A+∠B=90°,又∵∠A的度数比∠B度数的3倍还多30°,∴∠A=3∠B+30°,∴3∠B+30°+∠B=90°,解得∠B=15°.故∠B的度数为15°.方法总结:此题把角的关系结合方程问题一起解决,即把相等关系的问题转化为方程问题,利用方程组来解决.如图,已知∠AOB在∠AOC内部,∠BOC=90°,OM、ON分别是∠AOB,∠AOC的平分线,∠AOB与∠COM互补,求∠BON的度数.解析:根据补角的性质,可得∠AOB +∠COM =180°,根据角的和差,可得∠AOB +∠BOM =90°,根据角平分线的性质,可得∠BOM =12∠AOB ,根据解方程,可得∠AOB 的度数,根据角的和差,可得答案.解:由∠AOB 与∠COM 互补,得∠AOB +∠COM =180°.由角的和差,得∠AOB +∠BOM +∠COB =180°,∠AOB +∠BOM =90°. 由OM 是∠AOB 的平分线,得∠BOM =12∠AOB ,即∠AOB +12∠AOB =90°.解得∠AOB =60°.由角的和差,得∠AOC =∠BOC +∠AOB =90°+60°=150°.由ON 平分∠AOC 得∠AON =12∠AOC =错误!×150°=75°.由角的和差,得∠BON =∠AON-∠AOB =75°-60°=15°.方法总结:本题考查了余角与补角及角平分线的相关知识,利用了补角的性质,角的和差,角平分线的性质进行计算,解决问题一定要结合图形认真分析,做到数形结合.探究点二:方位角巩固练习1, 如图所示,在∠AOB 的内部有3条射线,则图中角的个数为( )A .10B .15C .5D .20解析:可以根据图形依次数出组成角的个数;或者根据公式求图中角的个数是:12×5×(5-1)=10.故选A.方法总结:若从一点发出n 条射线,则构成12n (n -1)个角.2, (1)用度、分、秒表示48.26°; (2)用度表示37°24′36″.解析:(1)度、分、秒是常用的角的度量单位.根据1度=60分,即1°=60′,1分=60秒,即1′=60″把大单位化成小单位乘以60即可;(2)根据度分秒之间60进制的关系计算.解:(1)48.26°=48°+0.26×60′=48°15′+0.6×60″=48°15′36″; (2)根据1°=60′,1′=60″得36″÷60=0.6′,24.6′÷60=0.41°,所以37°24′36″用度来表示为37.41°.3, 如图,将矩形ABCD 沿EF 折叠,C 点落在C ′,D 点落在D ′处.若∠EFC =119°,则∠BFC ′为( )A .58°B .45°C .60°D .42°解析:∵将矩形ABCD 沿EF 折叠,C 点落在C ′,D 点落在D ′处,∠EFC =119°,∴∠EFC ′=∠EFC =119°,∠EFB =180°-∠EFC =61°,∴∠BFC ′=∠EFC ′-∠EFB =119°-61°=58°,故选A.方法总结:掌握折叠的性质,要善于发现题中的隐含条件:折叠前后两图形是完全重合的,其角不变.4, 计算:(1)153°29′42″+26°40′32″; (2)110°36′-90°37′28″; (3)62°24′17″×4; (4)102°43′21″÷3.解析:(1)相同单位相加,超过60向上一位进1即可;(2)先借1°化为分和秒,然后同一单位分别相减即可得解;(3)每一个单位分别乘以4,分、秒超出60的部分向上一个单位进1即可;(4)从度开始计算,余数乘以60继续除以3进行计算即可得解.解:(1)153°29′42″+26°40′32″=179°69′74″=180°10′14″; (2)110°36′-90°37′28″=109°95′60″-90°37′28″=19°58′32″; (3)62°24′17″×4=248°96′68″=249°37′8″; (4)102°43′21″÷3=102°42′81″÷3=34°14′27″.方法总结:角度的运算规律为:(1)加减法时将同一单位进行加减,加法够60进1,减法不够减要借1当60;(2)乘法时将数与度、分、秒分别相乘,然后从小到大逢60进1;(3)除法时用度先除,把余数化为分,再加上原来的分,用这个数除以除数,把余数化成秒,再加上原来的秒,再用这个数除以除数,如果除不尽,就按题意要求,进行四舍五入.5, M 地是海上观测站,从M 地发现两艘船A 、B 的方位如图所示,下列说法中正确的是( )A .船A 在M 的南偏东30°方向B .船A 在M 的南偏西30°方向C .船B 在M 的北偏东40°方向D .船B 在M 的北偏东50°方向解析:船A 在M 的南偏西90°-30°=60°方向,故A 、B 选项错误;船B 在M的北偏东90°-50°=40°方向,故C正确,D错误.故选C.方法总结:用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.6,如图所示,甲、乙、丙三艘轮船从港口O出发,当分别行驶到A、B、C处时,经测量得甲船位于港口的北偏东44°方向,乙船位于港口的北偏东76°方向,丙船位于港口的北偏西45°方向.(1)求∠BOC的度数;(2)求∠AOB的度数.解析:(1)根据方向角的表示方法,可得∠EOB,∠EOC的度数,根据角的和差,可得答案;(2)根据方向角的表示方法,可得∠EOB,∠EOA的度数,根据角的和差,可得答案.解:如图,(1)由乙船位于港口的北偏东76°方向,丙船位于港口的北偏西45°方向,得∠EOB=76°,∠EOC=45°.由角的和差,得∠BOC=∠EOB+∠EOC=76°+45°=121°;(2)由甲船位于港口的北偏东44°方向,乙船位于港口的北偏东76°方向,得∠EOB=76°,∠EOA=44°.由角的和差,得∠AOB=∠EOB-∠EOA=76°-44°=32°.方法总结:解决本题主要是理解方向角的表示方法,结合图形找到相应的角,然后进行计算.提升练习1.下列说法正确的是( )A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看成是由一条射线绕着它的端点旋转而成的图形D.角可以看成是由一条线段绕着它的端点旋转而成的图形答案:选c本题考查角2.下列说法正确的是( )A.平角就是一条直线B.周角就是一条射线C.平角的两条边在同一条直线上D.周角的终边与始边重合,所以周角的度数是0°。

七年级数学上册4.6角角的学习六注意素材华东师大版(new)

七年级数学上册4.6角角的学习六注意素材华东师大版(new)

角的学习六注意角是我们熟悉的、经常遇到的简单的几何图形.学习时应注意把握以下几个问题:一、注意正确理解角的概念角的概念可以用以下两种方式来描述:一种是从一些实际问题中抽象地概括出来。

即有公共端点的两条射线组成的图形,叫做角。

另一种是用旋转的观点来定义。

即一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角.上述角的两种定义都告诉我们这样一些事实:(1)角有两个特征:一是角有两条射线,二是角的两条射线必须有公共端点,两者缺一不可;(2)由于射线是向一方无限延伸的,所以角的两边无所谓长短,即角的大小与它的边的长短无关。

(3)当角的大小一旦确定,它的大小就不因图形的位置、图形的放大或缩小而改变.二、注意熟练掌握角的表示方法一个角可以用下列四种不同的方法来表示:即(1)用三个大写字母来表示。

在这种表示法中,顶点的字母必须写在中间,在角的两边上各取一点,将表示这两个点的字母分别写在顶点字母的两旁,两旁的字母不分前后。

如图1中的角可记为∠ABC或∠CBA。

(2)用一个大写字母来表示。

如果某个角的顶点处只有一个角,此时就可以用顶点的大写字母来表示,如图1中的角就可以表示为∠B.(3)用一个小写希腊字母来表示,如α、β、γ等。

其方法是在靠近角的顶点处加上弧线,并在弧线旁注上小写希腊字母,如图2中的∠ABC也可以表示为∠α.(4)用一个阿拉伯数字来表示.其方法与用一个小写希腊字母来表示的方法一样.AB C图1 BCAα图2上述四种表示方法中都不能漏掉角的符号,另外要切记用三个大写字母表示一个角时,顶点字母一定要写在中间,同一顶点有多个角时,切不可用顶点的一个大写字母来表示,三、注意分清平角与直线、周角与射线的关系用旋转的观点来描述一个角就是当一条射线绕着它的端点旋转到两条射线成一条直线时就构成了一个平角,继续旋转当有公共端点的两条射线重合时,就构成了周角,也就是说把直线上的一点看成是角的顶点,其两旁的射线看成是角的两边时,才能说它是平角,同样也只有把射线端点看成角的顶点,射线端点周围的平面看作角的内部,射线看成这个角的两边时,才能说它是周角.切不可以把平角与直线、周角与射线混为一谈,更不能说成“平角就是直线、周角就是射线”.四、注意会对角进行分类我们还是用旋转的观点来研究角的分类问题.当一条射线绕着它的端点旋转,角逐渐由小变大,形成锐角、直角、钝角、平角、周角,请看下表:从表中我们可以看出,从0°到180°之间的所有角,由此大小均可分为或锐角或直角或钝角或平角。

4最新华东师大版初中数学七年级上册精品课件.6 角

4最新华东师大版初中数学七年级上册精品课件.6  角

4.6.2 角的比较和运算
A
读数为45
45
o
°
B
D
读数为60
60°
E
F
所以:∠AOB<∠DEF
比较∠ABC 和 ∠DEF的大小
把∠DEF移动,使它的顶点E和∠ABC的顶点B重合, 一边EF和BC重合,另一边ED和BA落在BC的同旁。
A( )
D
B( ) C( )
E
F
ED与BA重合,则∠DEF =∠ABC。
COD COE 1 AOC 1 BOC
2
2
1 (AOC BOC) 90 2
所以∠COD和∠COE互为余角,
同理,∠AOD和∠BOE,∠AOD和∠COE,
∠COD和∠BOE也互为余角。
E
西 C
F
北 D 45° 45° O
B南
(1)正东,正南,正西,正北 H
射线OA OB OC OD
75°
角的平分线:
A C


从一个角的顶点出发,把这个角分成相等的两 个角的射线,叫做这个角的平分线。
问题:已知射线OC是∠AOB的角平分线,你能写出
图中各角的关系吗?
∠AOC =∠BOC=1/2 ∠AOB

OC是∠AOB的二等分线



类似地:还有角的三等分线 ,如图
D
C
B
3 ⌒
2
1
A
O
OB、OC是∠AOD的三等分线
角的定义(2)
角也可以看做一条射线绕 端点旋转所形成的图形。
平角
B
B
O
A
如果一个角的终边继续旋转,旋转到与始边成一 条直线时,所成的角叫做 平角 .

角华东师大版七年级数学上册的精品课件PPT

角华东师大版七年级数学上册的精品课件PPT

西 北

东 北
西

西 南

东 南
4.6.1角-华东师大版七年级数学上册 的课件
4.6.1角-华东师大版七年级数学上册 的课件
123
2.看图说出下列射线表示的方向角 (1)射线OA表示的方向是 北偏东7;0° (2)射线OB表示的方向是 南偏东2;8°
(3)射线OC表示的方向是 南偏西45;° (4)射线OD表示的方向是 北偏西70。°

3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。

4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。
12
角的概念
B
静 态
由两条有公共端点的射线组成的图形。
定 两条射线的公共端点叫做角的顶点
O
义 这两条射线叫做角的边
A
动 态 定
可以看成由一条射线绕着 它的端点旋转而成的图形。

4.6.1角-华东师大版七年级数学上册 的课件
B 终边
O 顶点
始边
A
4.6.1角-华东师大版七年级数学上册 的课件
12
角的表示

5、人们都期望自我的生活中能够多 一些快 乐和顺 利,少 一些痛 苦和挫 折。可 是命运 却似乎 总给人 以更多 的失落 、痛苦 和挫折 。我就 经历过 许多大 大小小 的挫折 。

6、我就经历过许多大大小小的挫折。 大海因 为有了 狂风的 袭击, 才显示 出了它 顽强的 生命力 ,它把 狂风化 成了朵 朵浪花 ,给人 们带来 美丽;

初一上数学课件(华东师大)-角

初一上数学课件(华东师大)-角

B.50°
C.2°
D.都不对
4.下列各式中,正确的角度互化是( C )
A.18°18′18″=3.33°
B.46°48′=46.48°
C.22.25°=22°15′
D.28.5°=28°50′
5.(1)30.54°= 30 ° 32 ′ 24 ″;
(2)15°24′36″= 15.41 °;
(3)96′= 1.6 °.
16.如图,已知直线 AB、CD、EF 相交于 O. (1)若∠COF=120°,∠AOD=100°,求∠AOF 的度数; (2)∠1∶∠2∶∠3=2∶3∶4,求∠2 的度数; (3)若∠BOC-∠BOD=20°,求∠AOC 的度数.
解:(1)∠AOF=40°; (2)∠2=60°; (3)∠AOC=80°.
6.如图,射线 OA 表示 北偏东25° ,射线 OB 表示 南偏东20° 偏西 65°表示的射线是 OC ,南偏西 25°表示的射线是 OD .
,北
7.如图,画出表示下列方向的射线. (1)西南方向 OA; (2)北偏东 38°方向 OB; (3)北偏西 50°方向 OC; (4)南偏东 60°方向 OD.
2.下列说法:①一条直线就是一个平角;②周角就是一条射线;③角的两
边可以一样长,也可以一长一短;④平角的两条边在一条直线上;⑤角的大
小只与角的两边张开的大小有关.其中,正确的有( B )
A.1 个
B.2 个
C.3 个
D.4 个
3.用放大 5 倍的放大镜看 10°的角,观察到角的度数为( A )
A.10°
14.如图所示,回答下列问题: (1)写出能用一个字母表示的角; (2)写出以 B 为顶点的角; (3)图中共有几个小于平角的角? 解:(1)∠A,∠C; (2)∠ABE;∠EBC;∠ABC; (3)7 个.

华师大版数学七年级上册-4.6-角

华师大版数学七年级上册-4.6-角

反过来,如果两个角互余, 那么把这两个角像这样拼一起,就构成一个直角.
1
2
α
β
同样,如果两个角的和等于180°(平角), 就说这两个角互为补角,简称互补.
3
4
∠3+∠4=180°,那么∠3、∠4的互为补角。
想想看,如果∠1与∠2互余,∠3与∠4互余,∠2 =∠4, 那么∠1和∠3有什么关系?相等角的补角又有什么关系?
【选自教材P153 习题4.6 第4题】
4.任意画一个∠AOB,在∠AOB的内部引射线OC、OD,
这时图中共有几个角?分别把它们表示出来.
6个;分别是∠AOB、∠AOC、
∠COD、∠DOB、∠AOD、
A C D
∠COB.
O
B
5.两个相等的钝角有同一个顶点和一条公共边,并且
两个角的另一条边所成的角为90°,画出图形,并
45°
90°
60°
用量角器量一量两组图中各角的大小,看看你发现了什么?
1
20°
2
70°
∠1+∠2=90°
α
40°
β
50°
∠α+∠β=90°
两个角的和等于90°(直角),就说这两个角互为余角。
1
2
α
β
简称互余.
两个角的和等于90°(直角),就说这两个角互为余角。
1
2
α
β
如果∠1+∠2=90°,那么∠1是∠2的余角, ∠2也是∠1的余角。
角的表示方法: 用三个大写英文字母表示,如∠AOB或∠BOA.
(在用此方法表示角时,表示角的顶点的字母必须写在中间)
用一个大写英文字母表示,如∠O.
(以这一点为顶点的角只有一个时才适用)

华东师大版初一上册数学《角》

华东师大版初一上册数学《角》

华东师大版初一上册数学《角》本节是在学生原有角的概念的基础上,议决丰裕的实例,进一步明白角,明白和角有关的各种基本概念与干系。

课本根据“角的表示和器量,角的比较和谋略以及特殊角干系的角”的顺序呈现相关内容,在领导学生探索概念和性质的历程中,进一步成长学生的空间看法,所以,本节内容无论是在知识、数学要领还是对学生能力的培育方面都是特殊重要的。

【知识与能力目标】以运动的看法理解角、平角、周角的定义,掌握角的表示要领;能举行度、分、秒之间的换算,正确地理解方位角。

【历程与要领目标】议决在图片、实例中找角,培育学生的查看、探究、抽象、概括的能力以及把实际标题转化为数学标题的能力。

【情绪态度代价观目标】领会用数学知识办理实际标题的优点,培育学生积极到场数学学习活动的热情。

【传授重点】角的定义及表示要领。

【传授难点】方位角的理解。

西席准备:课件,多媒体;学生准备:三角板,练习本,量角器。

设计意图:挖掘和利用现实生活中与角相关的背景资料,让学生在现实背景中明白角,培育学生的动手能力,引导学生查看并概括角的互助点。

师:展示实物,播放多媒体课件。

1.查看实物与图片,你发觉此中有什么相同图形吗?2.你能把查看得到的图形画在本子上或黑板上吗?这是一些什么图形?3.从黑板上这些不同的图形中,你能概括出它们的互助特点吗?二、探究新知设计意图:在识别角的历程中加深对角的概念理解,培育学生主动到场合作交流的意识,进步查看、剖析、概括和抽象的能力。

(一)角的定义1.在学生充分公布自己对角的明白的基础上,师生互助概括得出:由两条有大众端点的射线组成的图形叫做角,这个端点是角的极点,这两条射线是角的两条边。

2.明白角的极点、边;3.下面的三个图形是角吗?4.小组交流:说说生活中的角分组活动,先独立思考,然后小组内互相交流并做记载,最后选派各组代表发言。

(二)角的表示在刚才的讨论中,我们发觉了生活中有许多角的形象,那么,我们怎样给这些角取名呢?1.角通常用三个大写字母及标记“∠”表示,三个大写字母应分别写在极点和双方上的恣意点,极点的字母必须写在中间,如∠AOB,“O”表示极点,“A、B”表示双方上的恣意点。

3.61 角 华东师大版(2024)数学七年级上册课件

3.61 角 华东师大版(2024)数学七年级上册课件

角的两边有公共端点,即顶点.
(2)角的大小与边的长短无关,只与构成角的两边张开的
幅度有关.
新知探究
知识点2 角的表示
角的表示:
B
1
α
C
A
∠BAC
A 或∠A
∠α
∠1
注意:必须把顶
注意:用数字或希腊字母表示角
点字母放在中间
时,一定要在图形中用角弧标出.
新知探究
知识点2 角的表示
例1 (1)用适当的方式分别表示图中的每个角.
知识点1 角的概念
角由两条具有公共端点的射线组成,两条射线的
公共端点是这个角的顶点.
两条射线 ——角的边
公共端点 ——角的顶点
新知探究
知识点1 角的概念
角也可以看成是由一条射线绕着它的端点旋转而成的.
终边
O
B
始边
A
如果射线OB继续旋转,还会形成什么角呢?
新知探究
知识点1 角的概念
一条射线绕它的端点旋转,当终边和始边成一条直线时,

4×30- ×30=115°

随堂练习
1.下列说法正确的是( D )
A.两条射线组成的图形叫作角
B.一条射线表示一个周角
C.直线是一个平角
D.角的大小与角的两边画出部分的长短无关
随堂练习
2.如图,从∠AOB的顶点引出两条射线OC,OD,图中
的角共有( C )
A.3个
B.4个
C.6个
D.7个

哈尔滨
借助量角器来量一下吧!
北京
上海
西安
福州
新知探究
知识点4 方向角
思考: 如图,是中国地图的简图.

华师大初中数学七年级上册角课件

华师大初中数学七年级上册角课件

自学目标1
理解角的定义及相关概念,用运 动的观点理解角、平角、周角等 概念,掌握角的表示方法。
1.自学内容:课本145--146页图4.6.4 上面的内容.
2.自学时间: 5分钟
3.自学方法:自主学习,合作交流。
4.自学要求:自学后能独立完成自学 检测练问题。
自学检测练
角的定义(1) 静态角的定义
α 要点归纳:表示角时,要先 写角符号
角用“∠”表示,读做“角”。角的表示方 法有下面四种:
表示方法
注意事项
1、用三个大写的字母表示
表示顶点的字母要在中间
2、用一个顶点的字母来表示 一个字母只表示一个角
3、用一个数字 4、希腊字母表示
在靠近顶点的处画上弧线, 并写上数字 在靠近顶点的处画上弧线, 并写上希腊字母
角是由两条具有 公共端点的 射线 组成的图形。

顶点
射边线
角的定义(2): 动态角的定义
角可以看作是一条射线绕着它的端点旋 转而成的.
平角及周角的定义:
一条射线绕它的端点旋转,当终边与始 边成 一条直线 时,所成的角叫做平角.终 边继续旋转,当它又和始边 重合时,所成 的角叫周角.
角也可以看做一条射线 绕它的端点旋转 所组成的图形。
(3)112.270= 112 0 16/ 12 //
归纳:
1度=60分
1分=60秒
1秒= 1 分
60
1秒=
1 3600

要点归纳: 度、分、秒是60进制的,要把 剩余的度数化成分,剩余的分 数化成秒。
方位角:
1、方位角是以正南、正北方向 为基准,描述物体的运动方向。
2、北偏东45 °通常叫做东北方 西

七年级数学上册 4.6 角 4.6.1 角教学 (新版)华东师大版

七年级数学上册 4.6 角 4.6.1 角教学 (新版)华东师大版
2.从蜂巢的入口处看,蜂巢由许多正六边形(六条边 相等,六个角也相等)构成,按图示的方法,利用三 角尺和圆规画出一个正六边形.
说说你的收获!
你知道角的度量工具吗?
再显身手
如图,已知∠AOB,用量角 器量出它的度数. A
O
B
再显身手
用量角器度量角的方法: 1.对中——角的顶点对量角器的中心; 2.重合——角的一边与量角器的零线重合; 3.读数——读出角的另一边所对的度数.
你知道吗?
把一个周角角36的0等度分、分,、每秒一是份60就是 1度的角,记进做制1的°,.除这和了计“量度时”间之的外,





很好
努力
图中有几个小于平角的角?请分别表
示出来.
∠DAC, ∠ BAD,
你能分别说出它们 B 的顶点、边吗?
∠BAC,
D A
C
我思我想我进步
图中有几个小于平角的角?请分别表 示出来.
(∠ BAD,∠BAC, ∠BAE, ∠DAC, ∠DAE,∠CAE )
B D
A
C
我思我想我进步
E
练习
你真棒
努力
判断正误: (1)两条射线组成的图形叫做角; (2)角是由一条射线旋转而成的;
好样的
努力
下列对角的表示方法理解错误的是( B )
(A)角可用三个大写字母表示,顶点字母写 在中间,每边上的点写在两旁 (B)任何角都可用一个顶点字母来表示 (C)表示角时有时可靠近顶点加上弧线,注 上数字来表示 (D)表示角时有时可靠近顶点加上弧线,注 上希腊字母来表示
把图中的角表示成下列形式,哪些正确,
哪些不正确?
C
A
P

七年级数学上册 4.6 角基础知识素材 (新版)华东师大版

七年级数学上册 4.6 角基础知识素材 (新版)华东师大版

4.6角1.角观察下面的图形,你发现有什么共同的特点吗?这些图形都给了我们角的形象.角是最简单的平面图形之一,正确理解和认识角,对学好今后的平面几何知识具有非常重要的意义.(1)角的概念①具有公共端点的两条射线所组成的图形叫做角,公共端点叫做角的顶点,两条射线叫做角的边.②“角也可以看成是一条射线绕着端点,从一个位置旋转到另一个位置所成的图形”,这是从运动观点来定义角,它不仅包括前面所定义的角,而且角的大小不受任何限制,更能揭示角的概念的本质.(2)角的表示方法①用三个大写英文字母表示:用角的两边上的两个大写字母和顶点的字母表示角,如图(1)中的角,可记为∠AOB,注意顶点的字母写在中间,各条边上的点A,B写在两旁;②用一个大写英文字母表示:在角的顶点处只有一个角时,也可以只用顶点的字母表示角,如图(1)中的∠AOB也可以记作∠O,一个顶点处有两个以上的角时,不能只用顶点的一个字母来表示,如图(2)中以O为顶点的角有∠AOB,∠BOC,∠AOC,就不能用∠O来表示;③用一个阿拉伯数字表示:在角的顶点处加上弧线注上数字,就可以用这个数字来表示角,如图(2)中∠AOB可记为∠1;④用一个小写希腊字母来表示:在角的顶点处加上弧线注上小写希腊字母,就可以用这个小写希腊字母来表示角,如图(2)中∠BOC可记为∠α.注意:以上四种表示方法的前面还必须加上角的符号“∠”.(3)角的度量和换算①度量的单位是“度”、“分”、“秒”,把周角分成360°等份,每1份叫做1度的角.记作1°的角.度、分、秒是六十进制,计算时要防止与十进制混淆,换算关系如下:1°=60′,1′=60″,1′=⎝ ⎛⎭⎪⎫160°,1″=⎝ ⎛⎭⎪⎫160′. ②角度单位的换算法则:a .把度换算成度、分、秒,从左往右依次进行.整数度保持不变,先把不满1度的小数度化为分;再把不满1分的小数分化为秒,最后度、分、秒和写在一起.b .把度、分、秒换算成度,从右往左进行.先把秒化为分(此时用除法),再把分化为度,最后把原来的度与由分和秒化来的度相加.(4)角的分类(按角的大小划分)①周角:射线OA 绕点O 旋转,当终止位置与起始位置重合时所成的角叫周角,如图(1)中∠AOB 就是一个周角;1周角=360°;②平角:射线OA 绕点O 旋转,当终止位置OB 与起始位置OA 成一条直线时,所成的角叫平角,如图(2)中,∠AOB 就是一个平角;1平角=180°;③直角:度数等于90°的角是直角,如图(3)中,∠AOC 与∠BOC 就是一个直角; ④锐角:度数大于0°,且小于90°的角是锐角;⑤钝角:度数大于90°,且小于180°的角是钝角.图(1) 图(2)图(3)(5)方向角如图中的射线OA ,OB ,OC ,OD 分别称为:北偏东40°、北偏西65°、南偏西45°、南偏东20°.这里要注意OD 不要说成是东偏南70°,同样,OC 也不要说成是西偏南45°.对于偏向45°的方位角,有时也可以说成东南(北)方向或西南(北)方向.如图中的OC ,除了说成南偏西45°外,还可以说是西南方向,但不要说成南西方向.【例1-1】 图中有几个角?是哪几个角?分析:先以射线OA 为角的一边,因为在射线OA 的左侧有3条射线OB ,OC ,OD ,所以可数出3个角∠AOB ,∠AOC ,∠AOD ;再以射线OB 为角的一边,因为在射线OB 的左侧有两条射线OC ,OD ,所以可数出两个角∠BOC 、∠BOD ;再以射线OC 为角的一边,因为在射线OC 的左侧只有一条射线OD ,所以只可数出一个角∠COD .因此,图中有3+2+1=6个角.解:图中有6个角;它们分别是∠AOB ,∠AOC ,∠AOD ,∠BOC ,∠BOD ,∠COD .析规律 角的计数公式 有公共端点的m 条射线组成的角(小于平角的角)的个数为12m (m -1)个.【例1-2】 计算16°5′24″=________°;47.28°=______°________′_______″.解析:要把16°5′24″化成单位为“度”的数,只要逐步把“秒”化成“分”,再把 “分”化成“度”;反之,要把47.28°化成几度几分几秒,只要先把0.28°化成“分”,再把其中的小数化成“秒”.具体解答如下:16°5′24″=16°+5′+⎝ ⎛⎭⎪⎫2460′=16°+5.4′=16°+⎝ ⎛⎭⎪⎫5.460°=16.09°;47.28°=47°+0.28°=47°+0. 28×60′=47°+16.8′=47°+16′+0.8×60″=47°+16′+48″=47°16′48″.答案:16.09 47 16 48解技巧 角度单位的换算方法 角的换算单位是60进制,几分几秒化成度,要从秒开始,除以进率60;度化成几分几秒,要从分开始,乘以进率60.2.角的比较和运算(1)角的大小的比较方法类比线段的大小比较,我们可以得到角的大小比较的三种方法:①估测法:用此方法比较角的大小较为直观,但不够准确,适用于角度差别明显不同或者对角度要求不高时的角的大小比较;②度量法:此方法主要是指用量角器分别量出每个角的度数,再根据度数比较大小.其具体做法是:a.对中(顶点对中心);b.重合(一边与量角器上的零线重合);c.读数(读出另一边所在线的度数).度量法主要用于较为精细的角的大小比较;③叠合法:此方法的具体做法是把两个角的顶点及一边分别重合,另一边都在重合边的同一侧,通过另一边所在的位置进行判断.叠合法具有较强的实践操作性,是比较角的大小的基本方法,上面所说的度量法其本质也是叠合,即把量角器上的相应角度与被测角进行叠合比较.谈重点角的大小关系的表示①角的大小关系有三种:小于、等于、大于,可用符号“<”“=”“>”连接.②角的大小与边的长短、粗细无关.(2)角的画法①用三角板画.我们所用的一副三角尺中,其中一个三角尺各角的度数为30°,60°,90°;另一个三角尺各角的度数为45°,45°,90°.用这样的三角尺可以测量这些特殊的角,也可以画出这些特殊的角。

华东师大初中七年级上册数学同位角、内错角、同旁内角(不分层)知识讲解

华东师大初中七年级上册数学同位角、内错角、同旁内角(不分层)知识讲解

同位角、内错角、同旁内角知识讲解【学习目标】1.了解“三线八角”模型特征;2.掌握同位角、内错角、同旁内角的概念,并能从图形中识别它们.【要点梳理】要点一、同位角、内错角、同旁内角的概念1. “三线八角”模型如图,直线AB、CD与直线EF相交(或者说两条直线AB、CD被第三条直线EF所截),构成八个角,简称为“三线八角”,如图1.图1要点诠释:⑴两条直线AB,CD与同一条直线EF相交.⑵“三线八角”中的每个角是由截线与一条被截线相交而成.2. 同位角、内错角、同旁内角的定义在“三线八角”中,如上图1,(1)同位角:像∠1与∠5,这两个角分别在直线AB、CD的同一方,并且都在直线EF的同侧,具有这种位置关系的一对角叫做同位角.(2)内错角:像∠3与∠5,这两个角都在直线AB、CD之间,并且在直线EF的两侧,像这样的一对角叫做内错角.(3)同旁内角:像∠3和∠6都在直线AB、CD之间,并且在直线EF的同一旁,像这样的一对角叫做同旁内角.要点诠释:(1)“三线八角”是指上面四个角中的一个角与下面四个角中的一个角之间的关系,显然是没有公共顶点的两个角.(2)“三线八角”中共有4对同位角,2对内错角,2对同旁内角.【高清课堂:平行线及其判定403102三线八角】要点二、同位角、内错角、同旁内角位置特征及形状特征要点诠释:巧妙识别三线八角的两种方法:(1)巧记口诀来识别:一看三线,二找截线,三查位置来分辨.(2)借助方位来识别根据这三种角的位置关系,我们可以在图形中标出方位,判断时依方位来识别,如图2.【典型例题】类型一、“三线八角”模型1.(1)图3中,∠1、∠2由直线被直线所截而成.(2)图4中,AB为截线,∠D是否属于以AB为截线的三线八角图形中的角?【答案】(1) EF,CD; AB.(2)不是.【解析】(1)∠1、∠2两角共同的边所在的直线为截线,而另一边所在的直线为被截线.(2)因为∠D的两边都不在直线AB上,所以∠D不属于以AB为截线的三线八角图形中的角.【总结升华】判断“三线八角”的关键是找出哪两条直线是被截线,哪条直线是截线.类型二、同位角、内错角、同旁内角的辨别2.如图,(1)DE为截线,∠E与哪个角是同位角?(2)∠B与∠4是同旁内角,则截出这两个角的截线与被截线是哪些直线?(3)∠B和∠E是同位角吗?为什么?【答案与解析】解:(1)DE为截线,∠E与∠3是同位角;(2)截出这两个角的截线是直线BC,被截线是直线BF、DE;(3)不是,因为∠B与∠E的两边中任一边没有落在同一直线上,所以∠B和∠E不是同位角. 【总结升华】确定角的关系的方法:(1)先找出截线,由截线与其它线相交得到的角有哪几个;(2)将这几个角抽出来,观察分析它们的位置关系;(3)再取其它的线为截线,再抽取与该截线相关的角来分析.举一反三:【变式】(2016春•邹城市校级期中)如图所示,下列说法错误的是()A.∠1和∠3是同位角B.∠1和∠5是同位角C.∠1和∠2是同旁内角D.∠5和∠6是内错角【答案】B解:从图上可以看出∠1和∠5不存在直接联系,而其它三个选项都符合各自角的定义,正确.3. (2014秋•太康县期末)如图,用数字标出的八个角中,同位角、内错角、同旁内角分别有哪些?请把它们一一写出来.【答案与解析】解:内错角:∠1与∠4,∠3与∠5,∠2与∠6,∠4与∠8;同旁内角:∠3与∠6,∠2与∠5,∠2与∠4,∠4与∠5;同位角:∠3与∠7,∠2与∠8,∠4与∠6.【总结升华】要分析各对角是由哪两条直线被哪一条直线所截的,可以把复杂图形按题目要求分解成简单的图形后,结论便一目了然.举一反三:【变式】如图∠1、∠2、∠3、∠4、∠5中,哪些是同位角?哪些是内错角?哪些是同旁内角?【答案】解:同位角:∠5与∠1,∠4与∠3;内错角:∠2与∠3,∠4与∠1;同旁内角:∠4与∠2,∠5与∠3,∠5与∠4.【高清课堂:平行线及其判定403102三线八角练习(2)】4. 分别指出下列图中的同位角、内错角、同旁内角.【答案与解析】解:同位角:∠B与∠ACD,∠B与∠ECD;内错角:∠A与∠ACD,∠A与∠ACE;同旁内角:∠B与∠ACB,∠A与∠B,∠A与∠ACB,∠B与∠BCE.【总结升华】在复杂图形中,分析同位角、内错角、同旁内角,应把图形分解成几个“两条直线与同一条直线相交”的图形,并抽取交点处的角来分析.举一反三:【变式】请写出图中的同位角、内错角、同旁内角.【答案】解:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8是同位角;∠2与∠8,∠3与∠5是内错角;∠2与∠5,∠3与∠8是同旁内角.类型三、同位角、内错角、同旁内角大小之间的关系5. 如图直线DE、BC被直线AB所截,(1)∠1和∠2、∠1和∠3、∠1和∠4各是什么角?每组中两角的大小关系如何?(2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?【答案与解析】解:(1)∠1和∠2是内错角;∠1和∠3是同旁内角;∠1和∠4是同位角.每组中两角的大小均不确定.(2) ∠1与∠2相等,∠1和∠3互补. 理由如下:①∵∠1=∠4(已知)∠4=∠2(对顶角相等)∴∠1=∠2.②∵∠4+∠3=180°(邻补角定义)∠1=∠4(已知)∴∠1+∠3=180°即∠1和∠3互补.综上,如果∠1=∠4,那么∠1与∠2相等,∠1和∠3互补.【总结升华】在“三线八角”中,如果有一对同位角相等,则其他对同位角也分别相等,并且所有的内错角相等,所有同旁内角互补.举一反三:【变式1】若∠1与∠2是内错角,则它们之间的关系是 ( ) .A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.∠1=∠2或∠1>∠2或∠1<∠2 【答案】D【变式2】下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直,其中正确的个数为().A.4 B.3 C.2 D.1【答案】C (提示:②④正确).。

3.6.1 角 考点梳理与突破(课件)华东师大版(2024)数学七年级上册

3.6.1 角 考点梳理与突破(课件)华东师大版(2024)数学七年级上册






返回目录
[解题思路]
( 周角的两边重合成一条射线,而不能说周角就是
1) 一条射线

平角的两条边成一条直线,但平角不是直线
2)
[答案] (1)× (2)×
×
×
3.6.1 角






■考点二
角的分类及单位换算
1. 角的分类
锐角 大于 0°且小于 90°的角是锐角
直角 等于 90°的角是直角
读 小明家 B 的方向.
3.6.1 角
返回目录
[解题思路]根据方向角定义,结合图形中角的度数得


清 出答案.

[答案]解:∠DBC=42°,基准点为点 B,所以超市 C


在小明家 B 的北偏西 42°的方向上.
3.6.1 角
重 ■题型一 探究角的个数

例 1 如图,图中角的个数为 (


A.4

3.6.1 角






[解题思路]
[答案] C
返回目录
3.6.1 角
返回目录
2. 角的表示


角的符号是“∠”,读作“角”,不能写成“<”,角

单 的表示方法有下面三种:


图示
表示方法
记法
说明
用三个大写
的字母表示
∠AOB 或∠BOA 表示顶点的
字母必须写
在中间
3.6.1 角





初中数学华东师大版七年级上册第四章图形的初步认识角角(q)

初中数学华东师大版七年级上册第四章图形的初步认识角角(q)

温馨提示:此材料是教师讲课的教案,学生学习的学案,上课时的笔记,课后的复习资料,请同学们装订保管。

发给同学们后请通过研读课本资料,并在同学和老师帮助下完成,并达到能讲的水平。

角教学案一、学习目标:、理解角的定义及有关概念,用运动的观点理解角、直角、平角、周角等概念,掌握角的表示方法,度、分、秒的转化和运算(学生课后体会)二、重难点:角的单位的换算及角的表示法;角的定义的理解。

(学生课后检测是否到达要求)三、课前预习:阅读课本145---148页(学生自行安排时间)四、教具准备:多媒体课件、教学案五、学习过程:(一)角的含义你会画出角的图形吗?角是有公共端点的两条射线组成的图形。

判断下列哪些图形是角角也可以看成是由一条射线绕着它的端点旋转而成的图形。

平角:如果一个角的终边继续旋转,旋转到与始边成一条直线时,所成的角叫做平角。

周角:当终边旋转到与始边重合时,所成的角叫做周角。

温馨提示:在不做特别说明的情况下,我们说的角都是不大于平角的角(二)角的表示方法:角用“∠”表示,读做“角”。

角的表示方法有下面四种:(1) 用三个大写字母表示,且把顶点字母放在中间,如:∠ABC 或∠CBA(2) 用角的顶点字母表示:如:∠B(只有一个角时) 这里能用∠ B 表示角吗?AB C DAB C(3) 用一个数字表示:如:∠1、∠2(4)也可用一个希腊字母表示:如:∠α、∠ β(三)例题讲解例1: 下面表示∠ABC 的图是 ( )例2:如下图中,共有几个角?请把它们都表示出来将图中的角用不同的方法表示出来,并填写下表:EDCBAABC DAB C D角的度量工具:角的度量单位:把一个周角360等分,每一份就是1度的角,记作1° 1°的60分之一为1分,记作“1′”,即1°=60′1′的60分之一为1秒,记作“1″”,即1′=60″1°=60 ′=3600 ″转化方法:由高级单位向低级单位转化时乘以进率;由低级单位向高级单位转化时除以进率,并逐级进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角(基础)知识讲解【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2. 借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4. 掌握角的和、差、倍、分关系,并会进行有关计算;5. 掌握互为余角和互为补角的概念及性质,会用余角、补角及性质进行有关计算;6.了解方位角的概念,并会用方位角解决简单的实际问题.【要点梳理】【高清课堂:角 397364 角的概念】要点一、角的概念1. 角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O ,边是射线OA 、OB .(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA 绕它的端点O 旋转到OB 的位置时,形成的图形叫做角,起始位置OA 是角的始边,终止位置OB 是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA 绕点O 旋转,当终止位置OB 和起始位置OA 成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB 和OA 重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:图1 图2要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角的比较与运算1.角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于等于60时要向高一位进位.2.角的比较:角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB=∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.3.角的和、差关系如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.4.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点三、余角和补角1.定义:一般地,如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角.类似地,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.2.性质:(1)同角(等角)的余角相等.(2)同角(等角)的补角相等.要点诠释:(1)互余互补指的是两个角的数量关系,互余、互补的两个角只与它们的和有关,而与它们的位置无关.(2)一般地,锐角α的余角可以表示为(90°-α),一个角α的补角可以表示为(180°-α) .显然一个锐角的补角比它的余角大90°。

要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示;(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”;(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向;(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关夹角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题】类型一、角的概念及表示1.下列语句正确的是 ( ) .A.两条直线相交,组成的图形叫做角.B.两条具有公共端点的线段组成的图形叫做角.C.两条具有公共端点的射线组成的图形叫做角.D.过同一点的两条射线组成的图形叫做角.【答案】C【解析】根据角的定义判断【总结升华】角不能仅仅看作是有公共端点的两条射线,角的两种描述中都隐含了组成角的一个重要元素,即两条射线间的相对位置关系,这是角与“有公共端点的两条射线”的重要区别.举一反三:【变式】判断下列说法是否正确(1)两条射线组成的图形叫做角 ( )(2)平角是一条直线 ( )(3)周角是一条射线 ( )【答案】(1)× (2)× (3)×2. 写出图中(1)能用一个字母表示的角;(2)以B为顶点的角; (3)图中共有几个角(小于180°).【答案与解析】解:(1)能用一个字母表示的角∠A、∠C.(2)以B为顶点的角∠ABE、∠ABC、∠CBE.(3)图中共有7个角.【总结升华】(1)顶点处只有一个角时,才可以用一个字母表示; (2)一般数角时不包括平角和大于平角的角.类型二、角度制的换算3. (1)把25.72°用度、分、秒表示; (2)把45°12′30″化成度(精确到百分位).【思路点拨】第(1)题中25.72°中含有两部分25°和0.72°,只要把0.72°化成分、秒即可.第(2)题中,45°12′30″含有三部分45°,12′和30″,其中45°已经是度,只要把12′和30″化成度即可.【答案与解析】解:(1)0.72°=0.72×60′=43.2′,0.2′=0.2×60″=12″,所以25.72°=25°43′12″. (2)130300.560'⎛⎫'''=⨯= ⎪⎝⎭,112.512.50.2160⎛⎫'=⨯ ⎪⎝⎭°≈° 所以45°12′30″≈45.21°.【总结升华】无论由高级单位向低级化还是由低级单位向高级化,都必须逐级进行,“越级”化单位容易出错.举一反三:【变式】 (1)把26.29°转化为度、分、秒表示的形式;(2)把33°24′36″转化成度表示的形式.【答案】解: (1)26.29°=26°+0.29°=26°+0.29×60′=26°+17.4′=26°+17′+0.4×60″=26°17′+24″=26°17′24″(2)33°24′36″=33°+24′+36×160'⎛⎫ ⎪⎝⎭=33°+24′+0.6′ =33°+24.6′=33°+24.6×160⎛⎫ ⎪⎝⎭°=33.41° 提示:在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后再进行计算。

类型三、角的比较与运算4.不用量角器,比较图1和图2中角的大小.(用“>”连接)【思路点拨】图1中两角∠α、∠β均为锐角,因此,在不能测量的情形下,我们可以将图中的∠α向∠β平移,让∠α与∠β始边重合,观察终边的位置来比较角的大小.图2中的三个角按角的分类,∠1为锐角,∠2为直角,∠3为钝角,因此按照各自的范围就可以将它们的大小比较出来.【答案与解析】解:(1)如图所示,将∠α平移使∠α的始边与∠β的始边重合,发现∠α落在∠β内部,因此∠β>∠α.(2)由图可知∠1是锐角,∠1<90°,∠2是直角,即∠2=90°,∠3是钝角,即90°<∠3<180°,因此∠3>∠2>∠1.【总结升华】本例给出的两题是在不用量角器测量角的情况下比较角的大小,一种方法是叠合比较法,另外一种方法则是根据角的分类,由图形观察角的不同分类,按照常见的锐角<直角<钝角<平角<周角来比较大小.举一反三:【变式】已知∠AOB(如图所示),画一个角等于这个角.【答案】作法:(1)以点O为圆心,适当长为半径画弧,分别交OA、OB于点C、D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧l,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,交弧l于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.5. 如图所示,已知OC平分∠BOD,且∠BOC=20°,OB是∠AOD的平分线,求∠AOD 的度数.【答案与解析】解:因为OC平分∠BOD,且∠BOC=20°,所以∠BOD=2∠BOC=2×20°=40°.又OB是∠AOD的平分线,所以∠AOD=2∠BOD=2×40°=80°.【总结升华】应用角的平分线的定义时根据两点:若OB是∠AOC的平分线,则①∠AOB=∠BOC=12∠AOC;②∠AOC=2∠AOB=2∠BOC,在解题时要学会灵活应用.【高清课堂:角 397364 角的有关计算例3】举一反三:【变式】已知:如图,OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOC=80 ,求:∠MON.【答案】解:∵OM平分∠AOB,ON平分∠COB,∴∠MOB=12∠AOB,∠BON=12∠BOC.(角平分线的定义)∴∠MON=∠MOB+∠BON=12∠AOB+12∠BOC=12(∠AOB+∠BOC)=12∠AOC=12×80︒=40︒ .即∠MON=40︒.类型四、余角和补角6.(2016春•曹县校级月考)一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.【思路点拨】这类题目要先设出这个角的度数.设这个角为x°,分别写出它的余角和补角,根据题意写出等量关系,解之即可得到这个角的度数.【答案与解析】解:设这个角为x°,则其余角为(90﹣x)°,补角为(180﹣x)°,依题意有180﹣x=2(90﹣x)+40,解得x=40.答:这个角的度数是40°.【总结升华】本题考查了余角和补角,是基础题,列出方程是解题的关键.举一反三:【变式】(2015•金华)已知∠α=35°,则∠α的补角的度数是()A.55°B.65°C.145°D.165°【答案】C.类型五、方位角7. A看B的方向是北偏东30°,那么B看A的方向是( ) .A.南偏东60° B.南偏西60°C.南偏东30° D.南偏西30°【答案】D【解析】依题意画出示意图.由图可知,图中∠1即表示从A看B的北偏东30°,∠2是从B看A的方位角.由此可确定从B看A是南偏西30°.【总结升华】从本例的分析与结果来看,从A看B与从B看A正好是一对对立的观察过程,其方向是一种“相反”的对应关系.方位角的确定首先以什么点为基点(即人站在此处观察)要弄清楚,再由正南或正北到视线夹角测量出来.举一反三:【变式】小王从家出发向南偏东30°的方向走了1000米到达小军家,此时小王家在小军家的________方向.【答案】北偏西30°类型六、钟表上有关夹角问题8.(2015•丹东模拟)如图是一个时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于.【答案】135°.【解析】解:30°×(4+)=30=135°.【总结升华】根据钟面平均分成12份,可得每份30°,根据每份的度数乘以时针与分针相距的份数,可得答案.本题考查了钟面角,每份的度数乘以时针与分针相距的份数是解题关键.举一反三:【变式】2时48分时针与分针的夹角.【答案】解法1:如图(2),设2时48分时针与分针的夹角为∠α,所以∠α=360°-(48×6°-2×30°-48×0.5°)=360°-204°=156°解法2:如图(2)∠BOD=30°×4=120°,∠COD=2×6°=12°,∠AOB=48×0.5°=24°,所以∠AOC=∠BOD+∠COD+∠AOB=156°.即2时48分时针与分针的夹角为156°.。

相关文档
最新文档