二次函数与一元二次方程PPT精品课件
合集下载
二次函数与一元二次方程(第1课时)PPT课件
(1) h和t的关系式是什么?
解 :1 .h 5 t24t.0
(2) 小球经过多少秒后落地?你 有几种求解方法?与同伴进行交
流. ①图象法
②解方程 -5t2+40t=0
议一议 二次函数与一元二次方程
画出二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(1).每个图象与x轴有几个交点?
(1)2.个,1个,0个程
二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(2) 一元二次方程x2+2x=0,x2-2x+1=0有几个根?验 证一下一元二次方程x2-2x+2=0有根吗?
2.抛物线y=ax2+bx+c(a≠0)的图象全部在x
轴下方的条件是( D )
(A)a<0 b2-4ac≤0(B)a<0 b2-4ac>0 (C)a>0 b2-4ac>0 (D)a<0 b2-4ac<0
小结 拓展 我思考,我进步
一个关系:二次函数图象与一元二次
我 方程根的关系:
们
函数
方程
的 收
y=ax2+bx+c(a≠0)
9
想一想 二次函数与一元二次方程
思考在本节一开始的小球上抛问题中,
何时小球离地面的高度是60m?你是如 何知道的? 能否达到80米?100米呢?
结论3 当y取定值时,二次函数可转
化为一元二次方程。
解 :1 .h 5 t24t.0
(2) 小球经过多少秒后落地?你 有几种求解方法?与同伴进行交
流. ①图象法
②解方程 -5t2+40t=0
议一议 二次函数与一元二次方程
画出二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(1).每个图象与x轴有几个交点?
(1)2.个,1个,0个程
二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(2) 一元二次方程x2+2x=0,x2-2x+1=0有几个根?验 证一下一元二次方程x2-2x+2=0有根吗?
2.抛物线y=ax2+bx+c(a≠0)的图象全部在x
轴下方的条件是( D )
(A)a<0 b2-4ac≤0(B)a<0 b2-4ac>0 (C)a>0 b2-4ac>0 (D)a<0 b2-4ac<0
小结 拓展 我思考,我进步
一个关系:二次函数图象与一元二次
我 方程根的关系:
们
函数
方程
的 收
y=ax2+bx+c(a≠0)
9
想一想 二次函数与一元二次方程
思考在本节一开始的小球上抛问题中,
何时小球离地面的高度是60m?你是如 何知道的? 能否达到80米?100米呢?
结论3 当y取定值时,二次函数可转
化为一元二次方程。
《二次函数与一元二次方程》(上课)课件PPT1
有两个交点:
有两个不相等的 实数根
b2-4ac > 0
有一个交点
b2-4ac = 0
没有交点
没有实数根
b2-4ac < 0
学习目标(1分钟)
1.能够利用二次函数的图象求一元二次方程的 近似根.
2.能利用图象确定方程的根和不等式的解集。
还可以解一元二自次学方指导一(3分钟) 思程考求:近由似图值象如何估计一元二次方程x2 +2x-10=0的根? 由图象知方程有两个根,一个在-5和-4之间,另一个在2 和3之间. (1)先求-5和-4之间的根.
(2)经过_1_0_s ,炮弹落在地上爆炸.
3.一元二次方程ax2+bx+c=h的根就是二次函数 y=ax2+bx+c与直线__y_=_h___交点的__横__坐标.
变式:(2019春•天心区校级期中)函数y=ax²+bx+c 的图象 如图所示,那么关于一元二次方程ax²+bx+c-2=0的根的情况
对应值:
x
1
1.1 1.2 1.3 1.4
y
-1 -0.49 0.04 0.59 1.16
那么方程x²+3x-5=0的一个近似根是( C )
A.1
B.1.1
C.1.2
D.1.3
2.在平原上,一门迫击炮发射的一发炮弹飞行的高度y(m)
与飞行时间x(s)的关系满足:y=-x2+10x. (1)经过_5___s,炮弹达到最高点,最高点的高度是_2_5_m.
x -4.1 -4.2 -4.3 -4.4
y -1.39 -0.76 -0.11 0.56 因此x=-4.3是方程的一用个图近象似法根求一元二次 (2)另一个根可以类似的方求程出的:近似根时,结 x 2.1 2.2 2.3 果只2.取4到十分位
《二次函数与一元二次方程》二次函数PPT教学课件
情境引入
下列二次函数的图象与x轴有公共点吗?如果有,公共的
横坐标是多少?当x轴取公共点的横坐标,函数值是多少?
由此,你能得出相应的一元二次方程的根吗?
(1)y=x2+x-2
(2)y=x2-6x+9
(3)y=x2-x+1
两
(1)抛物线y=x2+x-2与x轴有___个公共点,
-2,1
它们的横坐标是_____。当x取公共点的横坐
第二十二章 二次函数
二次函数与一元二次方程
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?
关系h=20t-5t2.考虑以下问题:
(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?
解:(2)解方程20=20t-5t2。t2-4t+4=0。
t1=t2=2。当球飞行2s时,它的高度为20m。
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(4)球从飞出到落地要用多少时间?
解:(1)解方程0=20t-5t2。t2-4t=0。t1=0,
t2=4。当球飞行0s和4s时,它的高度为0m,
人教版九年级数学上册《二次函数与一元二次方程》二次函数PPT优秀课件
函数
与一元二次方程
人教版九年级上册数学
回顾旧知
二次函数的一般式:
y ax2 bx c (a≠0)
___x___是自变量,__y__是__x__的函数。
当 y = 0 时, ax²+ bx + c = 0
ax²+ bx + c = 0
这是什么方程? 一元二次方程与二次函数 有什么关系?
上一章中我们学习了“一元二次方程”
当球飞行 0s 和 4s 时,它的高度为 0m ,即 0s时,球从地面飞出,4s 时球落回地面。
探究
下列二次函数的图象与 x 轴有交点吗? 若有,求出交点坐标.
(1) y = 2x2+x-3
y
(2) y = 4x2 -4x +1
(3) y = x2 – x+ 1
o
x
令 y= 0,解一元二次方程的根
实际问题
以 40 m /s的速度将小球沿与地面成 30°角的方向击出时,球的 飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度 h (单位:m)与飞行时间 t (单位:s)之间具有关系:h= 20 t – 5 t 2
考虑下列问题: (1)球的飞行高度能否达到 15 m? 若能,需要多少时间? (2)球的飞行高度能否达到 20 m? 若能,需要多少时间? (3)球的飞行高度能否达到 20.5 m?为什么? (4)球从飞出到落地要用多少时间?
探究
(1) y = 2x2+x-3 y
解:当 y = 0 时, 2x2+x-3 = 0
(2x+3)(x-1) = 0
3
o
x 1 =- ,x 2 = 1
x
2
所以与 x 轴有交点,有两个交点。
人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)
当已知二次函数 y 值,求自变量 x值时,可以看作是解对应的一 元二次方程.相反地,由解一元二次方程,又可看作是二次函数值 为0时,求自变量x的值
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
人教版《二次函数与一元二次方程》PPT课件初中数学ppt
20.5 m
0m
0s
4s
(4)当 h = 0 时, 20 t – 5 t 2 = 0 t2-4t =0 t 1 = 0,t 2 = 4
当球飞行 0s 和 4s 时,它的高度为 0m ,即 0s时,球从地面飞出,4s 时球落回地面。
二次函数与一元二次方程的关系(1)
已知二次函数,求自变量的值
解一元二次方程的根
,4),(,)。
习题答案
1. (1)略. (2)1,3.
2. (1)x1 = 1,x2 = 2;(2)x1 = x2 = -3 ;
(3)没有实数根; (4)x1 = -1,x2 = 1 .
3. (1)略. (2)10m.
2
4. x = 1
例:利用函数图象求方 经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
实际问题
以 40 m /s的速度将小球沿与地面成 30°角的方 向击出时,球的飞行路线是一条抛物线,如果不考 虑空气阻力,球的飞行高度 h (单位:m)与飞行时间 t (单位:s)之间具有关系:h= 20 t – 5 t 2
考虑下列问题: (1)球的飞行高度能否达到 15 m? 若能,需要 多少时间? (2)球的飞行高度能否达到 20 m? 若能,需要 多少时间? (3)球的飞行高度能否达到 20.5 m?为什么? (4)球从飞出到落地要用多少时间?
解:当 y = 0 时, x2 – x+ 1 = 0
因为(-1)2-4×1×1 = -3 < 0
o
x 所以与 x 轴没有交点。
二次函数与一元二次方程的关系(2)
确定二次函数图象与 x 轴的位置关系
解一元二次方程的根
二次函数 y=ax2+bx+c 的图象和x轴交点
0m
0s
4s
(4)当 h = 0 时, 20 t – 5 t 2 = 0 t2-4t =0 t 1 = 0,t 2 = 4
当球飞行 0s 和 4s 时,它的高度为 0m ,即 0s时,球从地面飞出,4s 时球落回地面。
二次函数与一元二次方程的关系(1)
已知二次函数,求自变量的值
解一元二次方程的根
,4),(,)。
习题答案
1. (1)略. (2)1,3.
2. (1)x1 = 1,x2 = 2;(2)x1 = x2 = -3 ;
(3)没有实数根; (4)x1 = -1,x2 = 1 .
3. (1)略. (2)10m.
2
4. x = 1
例:利用函数图象求方 经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
实际问题
以 40 m /s的速度将小球沿与地面成 30°角的方 向击出时,球的飞行路线是一条抛物线,如果不考 虑空气阻力,球的飞行高度 h (单位:m)与飞行时间 t (单位:s)之间具有关系:h= 20 t – 5 t 2
考虑下列问题: (1)球的飞行高度能否达到 15 m? 若能,需要 多少时间? (2)球的飞行高度能否达到 20 m? 若能,需要 多少时间? (3)球的飞行高度能否达到 20.5 m?为什么? (4)球从飞出到落地要用多少时间?
解:当 y = 0 时, x2 – x+ 1 = 0
因为(-1)2-4×1×1 = -3 < 0
o
x 所以与 x 轴没有交点。
二次函数与一元二次方程的关系(2)
确定二次函数图象与 x 轴的位置关系
解一元二次方程的根
二次函数 y=ax2+bx+c 的图象和x轴交点
《二次函数与一元二次方程、不等式》一元二次函数、方程和不等式PPT【精品课件】
(2)形式:
①ax2+bx+c>0(a≠0);
②ax2+bx+c≥0(a≠0);
③ax2+bx+c<0(a≠0);
④ax2+bx+c≤0(a≠0).
(3)解集:一般地,使某个一元二次不等式成立的x的值叫做这个不
等式的解,一元二次不等式的所有解组成的集合叫做这个一元二次
不等式的解集.
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
零点不是点,是一个实数.零点就是函数对应方程的根.
(2)二次函数y=x2-5x的图象如图所示.
当x为何值时,y=0?当x为何值时,y<0?当x为何值时,y>0.
上述各种情况下函数图象与x轴有什么关系?
提示:当x=0或x=5时,y=0.此时图象与x轴交于两个点(0,0)和(5,0);
当0<x<5时,y<0,函数图象位于x轴下方,此时x2-5x<0;
3.借助一元二次函
数的图象,了解一
元二次不等式与相
等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
当x<0或x>5时,y>0.此时函数图象位于x轴上方,此时x2-5x>0.
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
①ax2+bx+c>0(a≠0);
②ax2+bx+c≥0(a≠0);
③ax2+bx+c<0(a≠0);
④ax2+bx+c≤0(a≠0).
(3)解集:一般地,使某个一元二次不等式成立的x的值叫做这个不
等式的解,一元二次不等式的所有解组成的集合叫做这个一元二次
不等式的解集.
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
零点不是点,是一个实数.零点就是函数对应方程的根.
(2)二次函数y=x2-5x的图象如图所示.
当x为何值时,y=0?当x为何值时,y<0?当x为何值时,y>0.
上述各种情况下函数图象与x轴有什么关系?
提示:当x=0或x=5时,y=0.此时图象与x轴交于两个点(0,0)和(5,0);
当0<x<5时,y<0,函数图象位于x轴下方,此时x2-5x<0;
3.借助一元二次函
数的图象,了解一
元二次不等式与相
等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
当x<0或x>5时,y>0.此时函数图象位于x轴上方,此时x2-5x>0.
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
人教版九年级数学上册22.2二次函数与一元二次方程课件(共40张用WPS打开)
平距离是多少?
(3)铅球离地面的高度能否达
到3m?为什么?
(1)当铅球离地面的高度为2.1m时,它离初始
位置的水平距离是多少?
解: 由抛物线的表达式得
即
解得
x2 6
8
2.1 - x
10 10
5
x2 6 x 5 0
x1 =1,x2 =5.
即当铅球离地面的高度为2.1m时,它离初始位置的
h
15
O
1
3
t
解:15=20t-5t2,
t2-4t+3=0,
t1=1,t2=3.
∴当球飞行1s或3s时,它的高度为15m.
(2)球的飞行高度能否到达20m?如果能,需
要多少飞行时间?
解: 20=20t-5t2,
t2-4t+4=0,
t1=t2=2.
当球飞行2秒时,它
的高度为20米.
h=20t-5t2
有两个重合的交点
有两个相等的
实数根
b2-4ac = 0
没有实数根
b2-4ac < 0
没有交点
考点探究2 利用二次函数与一元二次方程的根的关系确定字母的值(范围)
例2 已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).
(1)求证:此抛物线与x轴总有交点;
(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整
y
△<0
△ = b2 – 4ac
△=0
a>0
△>0
o
那么a<0时呢?
x
y = x2-6x+9
y = x2-x+1
视察图象,完成下表:
y = x2+x-2
1
抛物线与x轴公
(3)铅球离地面的高度能否达
到3m?为什么?
(1)当铅球离地面的高度为2.1m时,它离初始
位置的水平距离是多少?
解: 由抛物线的表达式得
即
解得
x2 6
8
2.1 - x
10 10
5
x2 6 x 5 0
x1 =1,x2 =5.
即当铅球离地面的高度为2.1m时,它离初始位置的
h
15
O
1
3
t
解:15=20t-5t2,
t2-4t+3=0,
t1=1,t2=3.
∴当球飞行1s或3s时,它的高度为15m.
(2)球的飞行高度能否到达20m?如果能,需
要多少飞行时间?
解: 20=20t-5t2,
t2-4t+4=0,
t1=t2=2.
当球飞行2秒时,它
的高度为20米.
h=20t-5t2
有两个重合的交点
有两个相等的
实数根
b2-4ac = 0
没有实数根
b2-4ac < 0
没有交点
考点探究2 利用二次函数与一元二次方程的根的关系确定字母的值(范围)
例2 已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).
(1)求证:此抛物线与x轴总有交点;
(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整
y
△<0
△ = b2 – 4ac
△=0
a>0
△>0
o
那么a<0时呢?
x
y = x2-6x+9
y = x2-x+1
视察图象,完成下表:
y = x2+x-2
1
抛物线与x轴公
《二次函数与一元二次方程的关系》PPT精品 课件
有两个不相等的实数 根
有两个相等的实数根
有两个交点 有一个交点
b2-4ac < 0
没有实数根
没有交点
自主学习二: 二次函数图象和x轴交点坐标与 一元二次方程的根有什么关系?
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
•
忙碌且艰难地活着,虽然辛苦,但如果 有来世 ,很多 人还是 会选择 那种滚 烫的人 生,只 有那样 才能实 现人生 的价值 。
朋友大学毕业后,凭着高学历进了 一家大 公司, 以为从 此一生 安稳, 本职工 作完成 后便悠 闲地追 剧。
身边有同事下班后忙着考证、进修时 ,她嗤 之以鼻 ,认为 别人学 历不如 自己, 再怎么 努力也 无济于 事。
虽然每天按时上下班,和同事做着相 似的工 作,但 只有潮 水退去 的时候 ,才能 知道谁 在裸泳 。
•
不老骑士说:“走,我们骑着欧兜迈( 摩托车 )环台 去! ”
•
他们便出发了,从南到北,从黑夜到白 天,环 岛十三 天。他 们当中 有2位曾 患癌症 ,4位 需要带 助听器 ,8位患 了心脏 病,每 个人都 有关节 退化的 毛病。
身体和心灵总要有一个在路上,这件事 与年龄 无关。 安静地 待在医 院里, 是一种 活法, 勇敢地 走出去 也是一 种活法 。
•
十一、不相信下辈子,只想善待你今生 。因为 我不知 道,下 一辈子 是否还 能遇见 你,所 以我今 生才会 那么努 力把最 好的给 你。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)你能从中得到什么启发?
从“形”的方面看,函数 yx2 x3 的图象与x轴交点的横坐标即
4
为方程
x2
x3 4
0的解;从“数”的方面看,当二次函数
yx2 x3 4
的函数值为0的解
;
-5-
二、信息交流,揭示规律
问题2:下列二次函数的图象与x轴有公共点吗?如
(1)1s和3s时 (3)达不到20.5m
(2)2s时 (4)4s时小球落回地面
-4-
二、信息交流,揭示规律
问题1:画出函数 yx2 x3 的图象,根据图 4
象回答下列问题.
(1)图象与x轴交点的坐标是什么?(-0.5,0) (1.5,0)
(2)当x取何值时,y=0?这里x的取值与方程
x2 x30有什么关系? 当=-0.5或=1.5时,y=0 4
22.2 二次函数与一元二次方程
宁江初中 :马继科
2021年3月4日
-2-
一:设计问题,创设情境
1、一元二次方程ax2+bx+c=0(a≠0)的根的情况
可由 _b_2_-4_a__c确定。
2、在式子h=50-20t2中,如果h=15,那么50-
20t2= _1_5__ ; 如果h=20,那么50-20t2= _2_0_ ;如果h=0,那 么50-20t2= _0__。
求证:该抛物线与x轴有两个不同的交点。 3、两人合作,一人画出二次函数的图象,
另一个同学说出相应一元二次方程的解;
-10-
四:变练演编,深化提高
4、在下列情形中,如果a>0,抛物线 y=ax2+bx+c的顶点在什么位置? (1)方程ax2+bx+c=0有两个不相等的实数根; (2)方程ax2+bx+c=0有两个相等的实数根; (3)方程ax2+bx+c=0无实数根。
果有,公共点的横坐标是多少?
当x取公共点的横坐标时,函数值是多少?
由此,你得出相应的一元二次方程的解吗?
(1) yx2x2 (2) yx26x9 (3) yx2x1
(1)抛物线 y=x2+x-2 与x轴有两个公共点,它们的横坐标分别是-2, 1. 当x取公共点的横坐标时,函数的值是0.由此得出方程 x2+x-2=0 的根是-2,1 (2)抛物线 y=x2-6x+9 与x轴有一个公共点,这个点的横坐标是3. 当x=3时,函数的值是0.由此得出方程x2-6x+9=0有两个相等的实数根3. (3)抛物线y=x2-x+1与轴没有公共点,由此可知方程x2-x+1=0没有实数根
-11-
五:知识拓展
1、抛物线y=x2+x+2与直线y=-x+5的交点坐标 是什么? 2、试求不等式x2+3x-4<0的解集? 3、已知抛物线y1 =x2-x-2,直线y2 =3x-5,若y1<y2, 试求 x的取值范围。
-12-
六:反思小结,观点提炼
学生从知识、思想方法方面谈收获
弄清一种关系------函数与一元二次方程的关系。 体会两种思想------数形结合思想和转化的思想。
3、利用函数图象求一元一次方程y=3x-4的解。
x=
4 3
-3-
一:设计问题,创设情境
4、如图,以 40 m /s的速度将小球沿与地面成 30度角的方向 击出时,小球的飞行路线是一条抛物线,如果不考虑空气阻力, 小球的飞行高度 h (单位:m)与飞行时间 t (单位:s)之间具有函 数关系:h=20t-5t2 (1)小球的飞行高度能否达到15m ? 若能,需要多长飞行时间? (2)小球的飞行高度能否达到20m? 若能,需要多长飞行时间? (3)小球的飞行高度能否达到20.5m ? 若能,需要多长飞行时间? (4)小球从飞出到落地要用多长时间 ?
-13-
THANKS FOR WATCHING
谢谢大家观看
为了方便教学与学习使用,本文档内容可以在下载后随意修改,调整。欢迎下载!
汇报人:XXX
时间:20XX.XX.XX
二、信息交流,揭示规律
-6-
你发现了什么?
(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的 横坐标是x0,那么当x=x0时,函数值是0,因此x=x0是 方程ax2+bx+c=0的一个根。结论反映了二次函数与 一元二次方程的关系. (2)二次函数y=ax2+bx+c的图象与x轴的位置关系有三种: 没有公共点,有一个公共点,有两个公共点. 这对应着一元二次方程ax2+bx+c=0的根的三种情况: 没有实数根,有两个相等的实数根,有两个不相等的实数根。
-7-
三:运用规律,解决问题
已知函数y=x2-4x+3. (1)画出这个函数的图象; (2)观察图象,当x取哪些值时,函数值为0?
-8-
三:运用规律,解决问题
已知函数y=x2-4x+3. (1)画出这个函数的图象; (2)观察图象,当x取哪些值时,函数值为3?
-9-
四:变练演编,深化提高
1、如果关于x的一元二次方程 x2-2x+m=0有两个相 等的实数根,则m=__,此时抛物线 y=x2-2x+m与x 轴有_个交点. 2、已知抛物线y=x2+mx-2m2(m≠0)