几何专题突破
专题4.11 几何图形初步章末重难点突破(学生版)2022年七年级数学上册举一反三系列(人教版)
专题4.11 几何图形初步章末重难点突破【人教版】【考点1 正方体的展开与折叠】【例1】(2021秋•东港市期中)如图是一个正方体的平面展开图,标注了字母m的是正方体的前面,如果正方体的左面与右面标注的式子相等,前面与后面标注的数字互为相反数,则m的值为()A.3B.﹣3C.2D.﹣2【变式1-1】(2021秋•潍坊期中)如图是一个立方体纸盒的表面展开图,若A表示纸盒的上盖,B表示纸盒的侧面,则纸盒底面在表面展开图中的位置是()A.①B.②C.③D.④【变式1-2】(2021秋•皇姑区校级期中)如图,下列图形属于正方体的表面展开图的有()A.2个B.3个C.4个D.5个【变式1-3】(2021秋•尤溪县期中)小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是()A.B.C.D.【考点2 线段、射线、直线】【例2】(2021秋•东城区期末)根据下列语句,画出图形.(1)如图1,已知四点A,B,C,D.①画直线AB;②连接线段AC、BD,相交于点O;③画射线AD,BC,交于点P.(2)如图2,已知线段a,b,作一条线段,使它等于2a﹣b(不写作法,保留作图痕迹).【变式2-1】(2021秋•滦州市期末)下列语句中准确规范的是()A.直线a,b相交于一点mB.反向延长直线ABC.反向延长射线AO(O是端点)D.延长线段AB到C,使BC=AB【变式2-2】(2021秋•乐清市期末)如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.2条B.3条C.4条D.5条【变式2-3】(2021秋•南浔区期末)如图,平面上有四个点A、B、C、D,根据下列语句画图:(1)画线段AB;(2)连接CD,并将其反向延长至E,使得DE=2CD;(3)在平面内找到一点F,使F到A、B、C、D四点距离最短.【考点3 直线、线段的性质】【例3】(2021秋•濉溪县校级月考)用一根钉子钉木条时,木条会来回晃动,用数学知识说明理由:.用两根钉子钉木条时,木条会被固定不动,用数学知识说明理由:.【变式3-1】(2021秋•天心区期末)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是..【变式3-2】(2021秋•南沙区期末)如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB =1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处【变式3-3】(2021秋•青山区期末)如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间【考点4 线段的中点及和差】【例4】(2021秋•崇左期末)已知线段MN=3cm,在线段MN上取一点P,使PM=PN;延长线段MN到点A,使AN=12MN;延长线段NM到点B,使BN=3BM.(1)根据题意,画出图形;(2)求线段AB的长;(3)试说明点P是哪些线段的中点.【变式4-1】(2021秋•丹徒区期末)如图,线段AC=20cm,BC=3AB,N是线段BC的中点,M是线段BN上的一点,且BM:MN=2:3.求线段MN的长度.【变式4-2】(2021秋•万州区期末)如图,延长线段AB到点F,延长线BA到点E,点M、N分别是线段AE、BF的中点,若AE:AB:BF=1:2:3,且EF=18cm,求线段MN 的长.【变式4-3】(2021秋•河东区期末)如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?并说明理由;【考点5 线段与角中的规律问题】【例5】(2021秋•曲沃县期末)小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有条.(2)总结规律:一条直线上有n个点,线段共有条.(3)拓展探究:具有公共端点的两条射线OA、OB形成1个角∠AOB(∠AOB<180°);在∠AOB内部再加一条射线OC,此时具有公共端点的三条射线OA、OB、OC共形成3个角;以此类推,具有公共端点的n条射线OA、OB、OC…共形成个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?【变式5-1】(2021秋•苏州期末)在平面内有若干条直线,在下列情形下,可将平面最多分成几部分?(1)有一条直线时,最多分成部分;(2)有两条直线时,最多分成部分;(3)有三条直线时,最多分成部分;…(n)有n条直线时,最多分成部分.【变式5-2】(2021秋•许昌期末)①如图1直线l上有2个点,则图中有2条可用图中字母表示的射线,有1条线段;②如图2直线l上有3个点,则图中有条可用图中字母表示的射线,有条线段;③如图3直线上有n个点,则图中有条可用图中字母表示的射线条线段;④应用③中发现的规律解决问题:某校七年级共有6个班进行足球比赛,准备进行循环赛(即每两队之间赛一场),预计全部赛完共需场比赛.【变式5-3】(2021秋•隆化县期末)你会数线段吗?如图①线段AB,即图中共有1条线段,1=1×2 2如图②线段AB上有1个点C,则图中共有3条线段,3=1+2=2×3 2如图③线段AB上有2个点C、D,则图中共有6条线段,6=1+2+3=3×4 2思考问题:(1)如果线段AB上有3个点,则图中共有条线段;(2)如果线段AB上有9个点,则图中共有条线段;(3)如果线段AB上有n个点,则图中共有条线段(用含n的代数式来表示).【考点6 线段中的动点问题】【例6】(2021秋•和平区校级月考)如图,已知点C 是线段AB 上一点,且AC =2CB ,点D 是AB 的中点,且AD =6. (1)求DC 的长;(2)若点F 是线段AB 上一点,且CF =12CD ,则AF = ;(3)点P 、点Q 是直线上的两个动点,点P 的速度为1个单位长度/秒,点Q 的速度为2个单位长度/秒.点P 、Q 分别从点C 、点B 同时出发在直线AB 上运动,则经过 s 线段PQ 的长为5.【变式6-1】(2021秋•罗湖区校级期末)如图,射线OM 上有三点A 、B 、C ,满足OA =20cm ,AB =60cm ,BC =10cm ,点P 从点O 出发,沿OM 方向以1cm /秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2cm /秒,经过多长时间P 、Q 两点相遇?(2)当P 在线段AB 上且P A =3PB 时,点Q 运动到的位置恰好是线段AB 的三等分点,求点Q 的运动速度;【变式6-2】(2021秋•奉化区校级期末)已知:如图1,点M 是线段AB 上一定点,AB =12cm ,C 、D 两点分别从M 、B 同时出发以1cm /s 、2cm /s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若AM =4cm ,当点C 、D 运动了2s ,此时AC = ,DM = ;(直接填空) (2)当点C 、D 运动了2s ,求AC +MD 的值.(3)若点C 、D 运动时,总有MD =2AC ,则AM = (填空) (4)在(3)的条件下,N 是直线AB 上一点,且AN ﹣BN =MN ,求MN AB的值.【变式6-3】(2021秋•奉化区校级期末)如图,已知直线l有两条可以左右移动的线段:AB=m,CD=n,且m,n满足|m﹣4|+(n﹣8)2=0.(1)求线段AB,CD的长;(2)线段AB的中点为M,线段CD中点为N,线段AB以每秒4个单位长度向右运动,线段CD以每秒1个单位长度也向右运动,若运动6秒后,MN=4,求线段BC的长;(3)将线段CD固定不动,线段AB以每秒4个单位速度向右运动,M、N分别为AB、CD中点,BC=24,在线段AB向右运动的某一个时间段t内,始终有MN+AD为定值.求出这个定值,并直接写出t在那一个时间段内.【考点7 线段的实际应用】【例7】(2021秋•封开县期末)如图,AB是一段高铁行驶路线图,图中字母表示的5个点表示5个车站在这段路线上往返行车,需印制()种车票.A.10B.11C.20D.22【变式7-1】(2021秋•宜昌期末)如图所示,A,B,C三棵树在同一直线上,量得树A与树B的距离为4m,树B与树C的距离为3m,小亮正好在A,C两树的正中间O处,请你计算一下小亮距离树B多远?【变式7-2】(2021秋•宁津县期末)(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【变式7-3】(2021•烟台)先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1)有n台机床时,P应设在何处?(2)根据(1)的结论,求|x ﹣1|+|x ﹣2|+|x ﹣3|+…|x ﹣617|的最小值.【考点8 钟面角、方向角】【例8】(2021•龙门县模拟)某同学从A 地出发沿北偏东30°的方向步行5分钟到达B 地,再由B 地沿南偏西40°的方向步行到达C 地,则∠ABC 的大小为( ) A .10°B .20°C .35°D .70°【变式8-1】(2021秋•海州区校级期中)某同学晚上7点钟开始做数学作业,他做完作业后是7点20分,此时时针和分针的夹角是( ) A .90°B .100°C .110°D .120°【变式8-2】(2021春•海盐县校级期末)如果从甲船看乙船,乙船在甲船的南偏东30°方向,那么从乙船看甲船,甲船在乙船的( ) A .北偏东30°B .北偏西30°C .北偏东60°D .北偏西60°【变式8-3】(2021春•静安区期末)早晨8:00以后,时钟的分针和时针第一次垂直的准确时间是( ) A .8点23113分 B .8点25分 C .8点27311分 D .9点整【考点9 角的平分线及和差】【例9】(2021春•威海期中)如图所示,∠AOB =30°,∠BOC =40°,∠COD =26°,OE 平分∠AOD ,求∠BOE 的度数.【变式9-1】(2021秋•中江县期末)如图,∠AOC :∠BOC =1:4,OD 平分∠AOB ,且∠COD=36°,求∠AOB度数.【变式9-2】(2021秋•本溪期末)如图所示,OC是∠AOD的平分线,OE是∠BOD的平分线.(1)如果∠AOB=130°,那么∠COE是多少度?(2)如果∠BOC=3∠AOD,∠EOD﹣∠COD=30°,那么∠BOE是多少度?【变式9-3】(2021秋•新宾县期末)已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C、E、F在直线AB的同侧(如图1所示)①若∠COF=25°,则∠BOE=.②猜想∠COF与∠BOE的数量关系是.(2)当点C与点E、F在直线AB的两旁(如图2所示)时,(1)中第②式的结论是否仍然成立?请给出你的结论并说明理由.【考点10 角中的动点问题】【例10】(2021秋•武冈市期末)已知∠AOB是一个直角,作射线OC,再分别作∠AOC 和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化.若变化,说明理由;若不变,求∠DOE的度数;(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,判断∠DOE的大小是否发生变化.若变化,说明理由;若不变,求∠DOE的度数.【变式10-1】(2021秋•崇川区期末)点O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)①如图1,若∠DOE=25°,求∠AOC的度数;②如图2,若∠DOE=α,直接写出∠AOC的度数(用含α的式子表示);(2)将图1中的∠COD绕点O按顺时针方向旋转至图 2 所示位置.探究∠DOE与∠AOC的度数之间的关系,写出你的结论,并说明理由.【变式10-2】(2021秋•蚌埠期末)已知:∠AOD=160°,OB、OC、OM、ON是∠AOD 内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.则∠MON的大小为;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.【变式10-3】(2021秋•渭滨区期末)如图,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图,经过t 秒后,OM恰好平分∠BOC.求t的值;并判断此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图,那么经过多长时间OC平分∠MON?请说明理由.。
三角形全等几何模型(一线三等角)(人教版)(学生版) 2024-2025学年八年级数学上册专项突破
专题12.11三角形全等几何模型(一线三等角)第一部分【知识点归纳】【知识点一】一线三直角模型1.基本图形题型特征:如图1,在直线BC上出现三个直角,如图中∠B=∠ACE=∠D=90°图1图2图3解题方法:只要题目再出现一组等边(AB=CD或BC=DE或CA=CE),可证△ABE≌△ECD(AAS 或ASA)结论延伸1:如图2,两个直角三角形在直线两侧时,同样成立结论延伸2:图1中连接AE,得到如图3,可得以下结论:(1)四边形ABDE为直角梯形;AB+DE=BC(上底+下底=高)【知识点二】一线三等角模型图4图5题型特征:如图4,图形的某条线段上出现三个相等的角,如图中∠B=∠ACE=∠D解题方法:只要题目再出现一组等边(BA=CD或BC=DA或CA=DC),必证△ABC≌△CDE(AAS或ASA)结论延伸:如图5,两个三角形在直线两侧时,同样成立第二部分【题型展示与方法点拨】【题型1】直接用“一线三直角”模型求值或证明【例1】(23-24八年级上·安徽合肥·期末)如图,在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥,BE MN ⊥,垂足分别为D E 、.(1)求证:ADC CEB ≌;(2)若3cm =AD ,5cm BE =,求四边形ABED 的面积.【变式1】(23-24八年级上·湖北武汉·阶段练习)如图,小虎用10块高度都是3cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB ∠=︒),点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离DE 的长度为()A .30cmB .27cmC .21cmD .10cm【变式2】(23-24九年级下·重庆开州·阶段练习)如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若5BE =,2CF =,则EF 的长度为.【题型2】直接用“一线三等角”模型求值或证明【例2】(23-24八年级上·新疆昌吉·期中)已知ABC 是直角三角形,90BAC AB AC ∠=︒=,,直线l 经过点A ,分别过点B 、C 向直线l 作垂线,垂足分别为D 、E(1)如图a ,当点B 、C 位于直线l 的同侧时,证明:ABD CAE≌(2)如图b ,锐角ABC 中,AB AC =,直线l 经过点A ,点D 、E 分别在直线l 上,点B ,C 位于l 的同一侧,如果CEA ADB BAC ∠=∠=∠,请找到图中的全等三角形,并写出线段ED EC 、和DB 之间的数量关系【变式1】(21-22八年级上·浙江温州·期中)如图,在△ABC 中,AB =AC =9,点E 在边AC 上,AE 的中垂线交BC 于点D ,若∠ADE =∠B ,CD =3BD ,则CE 等于()A .3B .2C .94D .92【变式2】(23-24七年级下·吉林长春·期中)如图,在ABC 中,AB AC =,AB BC >,点D 在边BC 上,且2CD BD =,点E 、F 在线段AD 上.CFD BED BAC ∠=∠=∠,ABC 的面积为18,则ABE 与CDF 的面积之和.【题型3】构造“一线三直角”模型求值或证明【例3】(23-24八年级上·山西吕梁·期末)数学课上,老师让同学们利用三角形纸片进行操作活动,探究有关线段之间的关系问题情境:如图1,三角形纸片ABC 中,90ACB ∠=︒,AC BC =.将点C 放在直线l 上,点A ,B 位于直线l 的同侧,过点A 作AD l ⊥于点D初步探究:(1)在图1的直线l 上取点E ,使BE BC =,得到图2,猜想线段CE 与AD 的数量关系,并说明理由;(2)小颖又拿了一张三角形纸片MPN 继续进行拼图操作,其中90MPN ∠=︒,MP NP =.小颖在图1的基础上,将三角形纸片MPN 的顶点P 放在直线l 上,点M 与点B 重合,过点N 作NH l ⊥于点H .如图3,探究线段CP ,AD ,NH 之间的数量关系,并说明理由【变式1】(23-24八年级上·新疆喀什·期中)如图,906AC AB BD ABD BC ==∠=︒=,,,则BCD △的面积为()A .9B .6C .10D .12【变式2】(20-21七年级下·黑龙江哈尔滨·期末)如图,在ABC 中,90ABC ∠=︒,过点C 作CD AC ⊥,且CD AC =,连接BD ,若92BCD S = ,则BC 的长为.【题型4】“一线三直(等)角”模型的延伸与拓展【例4】如图,A 点的坐标为(0,3),B 点的坐标为(-3.0),D 为x 轴上的一个动点,AE ⊥AD ,且AE=AD ,连接BE 交y 轴于点M(1)若D点的坐标为(-5.0),求E点的坐标:(2)求证:M为BE的中点(3)当D点在x轴上运动时,探索:OMBD为定值【变式1】(23-24八年级上·陕西西安·阶段练习)勾股定理被誉为“几何明珠”.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图所示,把一个边长分别为3,4,5的三角形和三个正方形放置在大长方形ABCD中,则该长方形中空白部分的面积为()A.54B.60C.100D.110【变式2】已知:四边形ABCD中,AB=AD=CD,∠BAD=90°,三角形ABC的面积为1,则线段AC的长度是.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2021·四川南充·中考真题)如图,90BAC ∠=︒,AD 是BAC ∠内部一条射线,若AB AC =,BE AD ⊥于点E ,CF AD ⊥于点F .求证:AF BE =.【例2】(2023·重庆·中考真题)如图,在Rt ABC △中,90BAC ∠= ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为.2、拓展延伸【例1】(22-23八年级下·河南洛阳·期中)综合与实践数学活动课上,老师让同学们以“过等腰三角形顶点的直线”为主题开展数学探究.(1)操作发现:如图甲,在Rt ABC △中,90BAC ∠=︒,且AB AC =,直线l 经过点A .小华分别过B 、C 两点作直线l 的垂线,垂足分别为点D 、E .易证ABD CAE △△≌,此时,线段DE 、BD 、CE 的数量关系为:;(2)拓展应用:如图乙,ABC 为等腰直角三角形,90ACB ∠=︒,已知点C 的坐标为(2,0)-,点B 的坐标为(1,2).请利用小华的发现直接写出点A 的坐标:;(3)迁移探究:①如图丙,小华又作了一个等腰ABC ,AB AC =,且90BAC ∠≠︒,她在直线l 上取两点D 、E ,使得BAC BDA AEC ∠=∠=∠,请你帮助小华判断(1)中线段DE 、BD 、CE 的数量关系是否变化,若不变,请证明;若变化,写出它们的关系式并说明理由;②如图丁,ABC 中,2AB AC =,90BAC ∠≠︒,点D 、E 在直线l 上,且BAC BDA AEC ∠=∠=∠,请直接写出线段DE 、BD 、CE 的数量关系.【例2】(22-23八年级上·广东惠州·期中)如图1,90ACB AC BC AD CE BE CE ∠==⊥⊥,,,,垂足分别为D ,E .(1)若 2.5cm 1.7cm AD DE ==,,求BE 的长.(2)在其它条件不变的前提下,将CE 所在直线变换到ABC 的外部(如图2),请你猜想AD DE BE ,,三者之间的数量关系,并证明你的结论;(3)如图3,将(1)中的条件改为:在ABC 中,AC BC =,D ,C ,E 三点在同一条直线上,并且有BEC ADC BCA α∠=∠=∠=,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.。
【全国通用】初中几何正方形解答题专题突破练习(1)
【全国通用】初中几何正方形解答题专题突破练习(1)1.如图,四边形ABCD 是正方形,点O 为对角线AC 的中点.(1)问题解决:如图①,连接BO ,分别取CB ,BO 的中点P ,Q ,连接PQ ,则PQ 与BO 的数量关系是 ,位置关系是 ;(2)问题探究:如图①,①AO 'E 是将图①中的①AOB 绕点A 按顺时针方向旋转45°得到的三角形,连接CE ,点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .判断①PQB 的形状,并证明你的结论;(3)拓展延伸:如图①,①AO 'E 是将图①中的①AOB 绕点A 按逆时针方向旋转45°得到的三角形,连接BO ',点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .若正方形ABCD 的边长为1,求①PQB 的面积.2.如图,正方形OABC 的边OA ,OC 在坐标轴上,点B 的坐标为()6,6-.点P 从点A 个单位长度的速度沿x 轴向点O 运动;点Q 从点O 同时出发,以相同的速度沿x 轴的正方向运动,规定点P 到达点O 时,点Q 也停止运动.连接BP ,过P 点作BP 的垂线,与过点Q 平行于y 轴的直线相交于点D ,BD 与y 轴交于点E ,连接PE .设点P 运动的时间为t (s ).(1)写出PBD ∠的度数和点D 的坐标(点D 的坐标用t 表示).(2)探索POE △周长是否随时间t 的变化而变化,若变化,说明理由;若不变,试求这个定值.(3)当何值时,PBE △为等腰三角形?3.如图1,正方形ABCD ,E 为平面内一点,且90BEC ∠=︒,把BCE 绕点B 逆时针旋转90︒得BAG ,直线AG 和直线CE 交于点F .(1)证明:四边形BEFG 是正方形;(2)若135AGD ∠=︒,猜测CE 和CF 的数量关系,并说明理由; (3)如图2,连接DF ,若13AB =,17CF =,求DF 的长.4.如图,已知正方形ABCD 的边长为3,E 、F 分别是边BC 、CD 上的点,①EAF=45° (1)求证:BE+DF=EF (2)当BE=1时,求EF 的长5.已知边长为2的正方形ABCD 中,P 是对角线AC 上的一个动点(与点A 、C 不重合),过点P 作PE①PB ,PE 交DC 于点E ,过点E 作EF①AC ,垂足为点F .(1)求证:PB=PE ;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,试求出这个不变的值,写出解答过程;若变化,试说明理由;6.如图,已知正方形ABCD..(1)如图1,E是AD上一点,过BE上一点O作BE的垂线交AB于点G,交CD于点H,求证:BE GH (2)如图2,过正方形ABCD内任意一点作两条互相垂直的直线,分别交AD,BC于点E,F,交AB,CD于点G,H,EF与GH相等吗?请写出你的结论.(3)当点O在正方形ABCD的边上或外部时,过点O作两条互相垂直的直线,被正方形相对的两边(或它们的延长线)截得的两条线段还相等吗?其中一种情形如图3所示,过正方形ABCD外一点O作互相垂直的两条直线m,n,m与AD,BC的延长线分别交于点E,F,n与AB,DC的延长线分别交于点G,H,试就该图形对你的结论加以证明.7.如图,点E是正方形ABCD的边DC上一点,把①ADE绕点A顺时针旋转到①ABF的位置,接EF.(1)求证:①AEF是等腰直角三角形;(2)若四边形AECF的面积为25,DE=2,求AE的长.AC BD相交于点O,连接AP,分别交8.如图,点P是正方形ABCD中BC延长线上一点,对角线,,于点,E F,过点B作AP的垂线,垂足为点G,交线段AC于H.BD CD(1)若20P ∠=,求GBE ∠的大小.(2)求证:2AE EF EP =.(3)若正方形ABCD 的边长为1,1CP =,求HG 的长.9.已知,如图,在Rt①ABC 中,①BAC =90°,①ABC =45°,点D 为直线BC 上一动点(点D 不与点B ,C 重合).以AD 为边作正方形ADEF ,连接CF ,当点D 在线段BC 的反向延长线上,且点A ,F 分别在直线BC 的两侧时.(1)求证:①ABD ①①ACF ;(2)若正方形ADEF 的边长为AE ,DF 相交于点O ,连接OC ,求OC 的长度.10.四边形ABCD 是正方形,BEF ∆是等腰直角三角形,90,BEF BE EF ∠=︒=,连接DF ,G 为DF 的中点,连接,,EG CG EC .(1)如图1,若点E 在CB 边的延长线上,直接写出EG 与GC 的位置关系及ECGC的值.(2)将图1中的BEF ∆绕点B 顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)将图1中的BEF ∆绕点B 顺时针旋转3(060)a a ︒<<︒,若2,BE AB ==当,,E F D 三点共线时,请直接写出GC 的长.11.已知:正方形ABCD ,等腰直角三角板的直角顶点落在正方形的顶点D 处,使三角板绕点D 旋转.(1)当三角板旋转到图1的位置时,猜想CE 与AF 的数量关系,并加以证明;(2)在(1)的条件下,若::1:DE AE CE =,求AED ∠的度数;(3)若4BC =,点M 是边AB 的中点,连结DM ,DM 与AC 交于点O ,当三角板的边DF 与边DM重合时(如图2),若3OF =,求DN 的长. 12.(1)如图1,正方形ABCD 中,E 为边CD 上一点,连接AE ,过点A 作AF①AE 交CB 的延长线于F ,猜想AE 与AF 的数量关系,并说明理由;(2)如图2,在(1)的条件下,连接AC,过点A作AM①AC交CB的延长线于M,观察并猜想CE与MF的数量关系,并说明理由;(3)解决问题:王师傅有一块如图所示的板材余料,其中①A=①C=90°,AB=AD.王师傅想切一刀后把它拼成正方形.请你帮王师傅在图3中画出剪拼的示意图.13.已知正方形ABCD,点E在AB上,点G在AD,点F在射线BC上,点H在CD上.(1)如图1,DE①FG,求证:BF=AE+AG;(2)如图2,DE①DF,P为EF中点,求证:BE;(3)如图3,EH交FG于O,①GOH=45°,若CD=4,BF=DG=1,则线段EH的长为.14.已知正方形ABCD中AC与BD交于点O,点M在线段BD上,作直线AM交直线DC于点E,过D作DH①AE于H,设直线DH交AC于点N.(1)如图1,当M在线段BO上时,求证:OM=ON;(2)如图2,当M在线段OD上,连接NE和MN,当EN//BD时,求证:四边形DENM是菱形;(3)在(2)的条件下,若正方形边长为4,求EC的长.15.如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.(1)求证AE=MN;(2)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求①AEF的度数;(3)如图3,若该正方形ABCD边长为10,将正方形沿着直线MN翻折,使得BC的对应边B′C′恰好经过点A,过点A作AG①MN,垂足分别为G,若AG=6,请直接写出AC′的长________.16.(1)如图1,正方形ABCD中,点P为线段BC上一个动点,若线段MN垂直AP于点E,交线段AB 于点M,交线段CD于点N,证明:AP=MN;(2)如图2,正方形ABCD中,点P为线段BC上一动点,若线段MN垂直平分线段AP,分别交AB,AP,BD,DC于点M,E,F,N.求证:EF=ME+FN;(3)若正方形ABCD的边长为2,求线段EF的最大值与最小值.17.如图,在正方形ABCD中,E、F是对角线BD上两点,且①EAF=45°,将①ADF绕点A顺时针旋转90°后,得到①ABQ,连接EQ.(1)求证:EA是①QED的平分线;(2)已知BE=1,DF=3,求EF的长.18.如图1,已知正方形ABCD 和正方形CEGF ,点,,F C B 在同一直线上,连接BE ,DF ,DF 与EG 相交于点M .(1)求证:BE FD =.(2)如图2,N 是BC 边上的一点,连接AN 交BE 于点H ,且BN GMBC GE=. ①求证:BN EC =; ①若2CE DE =,直接写出BNAB的值. 19.如图,在平面直角坐标系中,边长为4的正方形OABC 的顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕点O 按顺时针方向旋转,旋转角为θ,当点A 第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N .(1)若30θ=︒时,求点A 的坐标;(2)设MBN △的周长为P ,在旋转正方形OABC 的过程中,P 值是否有变化?请证明你的结论; 20.如图,在正方形ABCD 中,点E 、F 分别在边AB 、BC 上,AF 与DE 相交于点M ,且BAF ADE ∠=∠.(1)如图1,求证:AF DE ⊥.图1(2)如图2,AC 与BD 相交于点O ,AC 交DE 于点G ,BD 交AF 于点H ,连接GH ,试探究直线GH 与AB 的位置关系,并说明理由.图2(3)在(1)(2)的基础上,若AF 平分BAC ∠,且BDE ∆的面积为4+ABCD 的面积. 21.在ABC 中,①BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 的右侧作正方形ADEF ,连接CF .(1)观察猜想如图1,当点D 在线段BC 上时, ①BC 与CF 的位置关系为: ;①BC ,CD ,CF 之间的数量关系为: .(将结论直接写在横线上) (2)数学思考如图2,当点D 在线段CB 的延长线上时,结论①①是否仍然成立?若成立,请给予证明:若不成立,请你写出正确结论再给予证明, (3)拓展延伸如图3,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE .若AB =,CD =1,请求出GE 的长.22.如图1,E 是正方形ABCD 中CD 边上的一点,以点A 为中心,把ADE 顺时针旋转α后,得到ABG . (1)求α的值;(2)当点F 在BC 上,且①EAF=45°,连接EF (如图2),求证:BF+DE=EF ;(3)在(2)的前提下,连接BD ,分别交AE ,AF 于M ,N 两点(如图3),试判断线段BN ,MN ,DM 三者的关系式,请给出证明.23.探究证明:(1)如图1,正方形ABCD 中,点M 、N 分别在边BC 、CD 上,AM①BN .求证:BN=AM ;(2)如图2,矩形ABCD 中,点M 在BC 上,EF①AM ,EF 分别交AB 、CD 于点E 、F .求证:EF BCAM AB=; (3)如图3,四边形ABCD 中,①ABC=90°,AB=AD=10,BC=CD=5,AM①DN ,点M 、N 分别在边BC 、AB 上,求DNAM的值. 24.已知:四边形ABCD 为正方形,AMN ∆是等腰Rt ∆,90AMN ∠=︒.(1)如图:当Rt AMN ∆绕点A 旋转时,若边AM 、AN 分别与BC 、CD 相交于点E 、F ,连接EF ,试证明:EF DF BE =+.(2)如图,当Rt AMN ∆绕点A 旋转时,若边AM 、AN 分别与BC 、CD 的延长线相交于点E 、F ,连接EF .①试写出此时三线段EF 、DF 、BE 的数量关系并加以证明.①若6CE =,2DF =,求:正方形ABCD 的边长以及AEF ∆中AE 边上的高.25.如图1,已知点G 在正方形ABCD 的对角线AC 上,GE BC ⊥,垂足为点E ,GF CD ⊥,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形;①推断:AG BE的值为:_______(直接写出答案).图1(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角()045α︒<<︒,如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由.图2(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若6AG=,GH=,求BC的长.图3。
【高中数学名师精华荟萃总结】《解析几何大题》专题突破
专题突破解析几何(学生版)•一、轨迹问题•二、求值•三、最值(范围)问题•四、定点、定位、定值问题•五、存在性问题恒成立与有解问题一、轨迹问题问题一: 利用直接法求轨迹方程直接法是将动点满足的几何条件或者等量关系直接坐标化, 列出等式化简即得动点轨迹方程.具体步骤为通过建立适当的坐标系, 设点、列式、化简从而得出轨迹方程.线段与互相垂直平分于点, , , 动点满足, 求动点的轨迹方程.问题二: 利用定义法求轨迹方程当动点的轨迹满足某种曲线的定义时, 就可由曲线的定义直接写出轨迹方程.2. , 为动点, 、为定点, , , 且满足条件,求动点A的轨迹方程.3.已知动圆与两定圆和都外切, 求动圆圆心的轨迹方程.问题三: 利用转移法求轨迹方程动点是随着另一动点(称之为相关点)而运动的, 这时我们可以用动点坐标来表示相关点坐标, 根据相关点所满足的方程即可求得动点的轨迹方程, 这种求轨迹的方法叫相关点法。
转移法(也称代入法,相关点法): 转移法求轨迹方程的步骤:(1)设两个动点坐标为, 其中动点在已知曲线上, 动点为所求轨迹上的点;(2)寻找两个动点之间的关系, 把用表示;将用表示的代入已知曲线方程, 整理即得所求.4.已知点为圆上的一个动点, 点的坐标为, 试求线段中点的轨迹方程.问题四: 利用待定系数法求轨迹方程待定系数法求轨迹方程的步骤: (1)设出所求的曲线方程;(2)求出字母参数;(3)代入所设. 5.在面积为 的 中, .建立适当坐标系, 求以 为焦点且过 的椭圆方程.问题五: 参数法求轨迹方程6.设椭圆方程为 ,过点 的直线 交椭圆于 两点, 是坐标原点,点 满足 .当 绕点 旋转时, 求: 动点 的轨迹方程.7、(2011安徽理)设 , 点 的坐标为 , 点 在抛物线 上运动, 点 满足 , 经过点 与 轴垂直的直线交抛物线于点 , 点 满足 , 求点 的轨迹方程.8. (2013四川) 已知椭圆 : 的两个焦点分别为 , 且椭圆 经过点 . (Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点 的直线 与椭圆 交于 、 两点, 点 是线段 上的点, 且 , 求点 的轨迹方程. 9、如图, 动点 到两定点 、 构成 , 且 , 设动点 的轨迹为 。
专题四 几何测量——2023届中考数学热点题型突破(含答案)
专题四几何测量——2023届中考数学热点题型突破1.重庆轨道5号线正在如火如荼地建设中.如图工程队在由南向北的方向上将轨道线路铺设到A处时,测得档案馆C在A北偏西方向的600米处,再铺设一段距离到达B 处,测得档案馆C在B北偏西方向.(1)请求出A,B间铺设了多远的距离;(结果保留整数,参考数据:,)(2)档案馆C周围米内要建设文化广场,不能铺设轨道,若工程队将轨道线路铺设到B处时,沿北偏东的BE方向继续铺设,请问这是否符合建设文化广场的要求,通过计算说明理由.2.随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:如图,无人机在AB,CD两楼之间上方的点O处,点O 距地面AC的高度为,此时观测到楼AB底部点A处的俯角为,楼CD上点E 处的俯角为,沿水平方向由点O飞行到达点F,测得点E处俯角为,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到.参考数据:,,,).3.周末,小刚和爸爸一起到某湿地公园进行数学实践活动.如图,在爸爸的协助下,小刚在河的南岸点A处观测到北岸的一棵大树P在北偏东方向上,他沿北偏东方向走了到达点B处,此时他发现这棵大树在自己的正北方向上.请你帮小刚求出点B和大树P之间的距离.(结果精确到.参考数据:,,,)4.某数学小组的同学利用两个高度相同的测角仪和一把卷尺测量路杆AB顶端巨型广告牌的高度AN,如图,他们在路杆AB两侧的点C和点D处分别放置测角仪CE和DF(点C,B,D在同一直线上,点A,N与点C,B,D在同一平面内),测角仪CE测得点N处的仰角为,测角仪DF测得点A处的仰角为.已知两个测角仪相距,测角仪CE与AB之间的距离为.(1)求广告牌的高度AN.(结果精确到.参考数据:,,,)(2)利用测角仪测角度时,有哪些注意事项?(写出两条即可)5.如图是某地铁出站口扶梯侧面设计示意图,起初工程师计划修建一段坡度为,高度为32米的扶梯AB,但这样坡度太陡容易引发安全事故.现工程师对设计图进行了修改:修建AC,DE两段扶梯,并在这两段扶梯之间修建5米的水平平台CD,其中,,扶梯AC长米,点B,E在同一水平线上.求修改后扶梯底部E与原来扶梯底部B之间的距离.(结果精确到0.1米.参考数据:,,,)6.为测量某机场东西两栋建筑物A,B之间的距离.如图,勘测无人机在点C处,测得建筑物A的俯角为,CA的距离为千米,然后沿着平行于AB的方向飞行6.4千米到点D处,测得建筑物B的俯角为.(参考数据:,,, ,,).(1)无人机距离地面的飞行高度是多少千米?(2)求该机场东西两栋建筑物A,B之间的距离.(结果精确到0.01千米)7.“一去紫台连朔漠,独留青冢向黄昏.”美丽的昭君博物院作为著名景区,现已成为外地游客到呼和浩特市旅游的打卡地.如图,为测量景区中一座雕像AB的高度,某数学兴趣小组在D处用测角仪测得雕像顶部A的仰角为,测得底部B的俯角为.已知测角仪CD与水平地面垂直且高度为1米,求雕像AB的高.(用非特殊角的三角函数及根式表示即可)8.中国廊桥是桥梁与房屋的珠联璧合之作.如图,某桥面建造古典楼阁和廊道,主跨顶部建造双层楼阁.数学兴趣小组的同学为测量桥面上楼阁AB的高度,从D处观测到楼阁顶部点A的仰角为,观测到A点的正下方楼阁底部点B的仰角为,已知桥面高BC为50米,则楼阁AB的高度约为多少米(参考数据:,,)9.如图,由飞行高度为2000米的飞机上的P点测得到大楼顶部A处的俯角为,到大楼底部B处的俯角为,问大楼AB的高度约为多少米?(结果保留整数.参考数据:,)答案以及解析1.答案:(1)220(2)见解析解析:(1)解:如图,过点C作,交AB的延长线于点F,根据题意可知,,,,(2)符合建设文化广场的要求,理由如下,如图,过点C作根据题意可得符合建设文化广场的要求.2.答案:AC的长约为解析:分别延长AB,CD与直线OF交于点G,点H,如图,则.又,四边形ACHG是矩形,.由题意,得,,,,.在中,,,.是的外角,,,.在中,,,,.答:楼AB与CD之间的距离AC的长约为.3.答案:解析:如图,过点B作于点F,过点P作于点E,则四边形EFBP 是矩形,,.在中,,,,.在中,,,.故点B和大树P之间的距离约为.4.答案:(1)(2)见解析解析:(1)如图,连接EF交AB于点G,则,,,.在中,,.在中,,,.答:广告牌的高度AN大约为.(2)①测量时,测角仪要与地面垂直;②需测量多次,取平均值.(答案不唯一,合理即可)5.答案:修改后扶梯底部E与原来扶梯底部B之间的距离约为20.7米解析:如图,分别过点A,D作EB的垂线,垂足分别为点F,H,延长DC交AF于点M,则四边形DMFH是矩形,,,.,.在中,,,.,的坡度为,,,.在中,,,.答:修改后扶梯底部E与原来扶梯底部B之间的距离约为20.7米.6.答案:(1)无人机距离地面的飞行高度约是1.54千米(2)该机场东西两建筑物AB的距离约为7.2千米解析:(1)过点A作于点E,过点B作于点F.,在中,,,(千米)答:无人机距离地面的飞行高度约是1.54千米;(2)在中,(千米),四边形AEFB是矩形,千米,,在中,,,解得(千米),(千米)(千米)答:该机场东西两建筑物AB的距离约为7.2千米.7.答案:雕像AB的高为米解析:如图,过点C作于H,则.在中,.在中,,则.答:雕像AB的高为米.8.答案:楼阁AB的高度约为9.5米解析:由题意得:,在中,米,,(米),在中,,(米),(米),楼阁AB的高度约为9.5米.9.答案:大楼AB的高度约为541米解析:解:根据题意构建数学模型,如图,过点P作AB的垂线,交BA的延长线于点D.飞机的飞行高度为2000米,米.在中,,.在中,,(米),(米).答:大楼AB的高度约为541米.。
中考数学 精讲篇 专题突破十二 几何综合题 一、方法技巧突破
证明:过点 D 作 DH⊥CF 于点 H, ∵∠ACD=∠AEC=∠DHC=90°, ∴∠ACE+∠CAE=90°,∠ACE+∠DCH=90°, ∴∠CAE=∠DCH,
∴△ACE≌△CDH(AAS), ∴AE=CH,而 HF=DF·cos 30°= 23DF, ∴CF=CH+HF=AE+ 23DF.
解:∵AD⊥BC,DE⊥AC, ∴∠ADC=∠AED=90°, ∵∠DAE=∠DAC, ∴△DAE∽△CAD, ∴AD∶AC=AE∶AD.∴AD2=AC·AE. ∵AC=AB=4,∴AD2=AB·AE=4×3=12.
∴AD=2 3. 连接 DF. ∵AB=4,∠ADB=90°,BF=AF, ∴DF=12AB=2.
类型三:构造与 2, 3,12倍的线段 数量关系的方法
[重庆:A 卷 2021T26(2)、2020T26、2019T25;B 卷 2021T26(2)]
方法 1:构造 45°角的等腰直角三角形( 2倍的数量关系)
【方法归纳】
基本图形 辅助线作法
结论
作∠ADB=90°
AB= 2AD= 2BD
已知
∵AF 平分∠BAC, ∴∠FAC=45°. ∵CF⊥AF,∴∠AFC=90°, ∴△AFC 是等腰直角三角形,∴AF=CF. ∵∠BAC=90°,点 E 是 BC 的中点,∴AE=CE. 又∵FE=FE,∴△AFE≌△CFE(SSS). ∴∠AFE=∠CFE.
(2)连接 EH, ∵∠BAG=90°,AH⊥BG 且 AH 平分∠BAC, ∴点 H 为 BG 的中点,∠HAG=45°. 又∵点 E 为 BC 的中点,∴HE=12CG,HE∥CG. ∴∠FHE=∠HAG=45°. ∵∠HFE=∠CFE,∠AFC=90°,
类型二:与角平分线有关的辅助线作法
专题32 几何变换之旋转模型--2024年中考数学核心几何模型重点突破(学生版)
专题32几何变换之旋转模型【理论基础】1.旋转的概念:将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转,定点称为旋转中心,旋转的角度称为旋转角.2.旋转三要素:旋转中心、旋转方形和旋转角度.3.旋转的性质(1)对应点到旋转中心的距离相等;(2)两组对应点分别与旋转中心连线所成的角度相等.注:图形在绕着某一个点进行旋转的时候,既可以顺时针旋转,也可以逆时针旋转.4.旋转作图:在画旋转图形时,首先要确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.具体步骤如下:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺/逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的对应点.5.旋转中的全等变换.(1)等腰直角三角形中的半角模型(2)正方形中的半角模型6.自旋转模型:有一组相邻的线段相等,可以通过构造旋转全等.(1)60º自旋转模型(2)90º自旋转模型(3)等腰旋转模型(4)中点旋转模型(倍长中线模型)7.共旋转模型(1)等边三角形共顶点旋转模型(2)正方形共顶点旋转模型8.旋转相似【例1】如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ADC 绕点A顺时针旋转90°后,得到△AFB,连接EF.下列结论:①△AED≌△AEF;②∠FAD =90°,③BE+DC=DE;④∠ADC+∠AFE=180°.其中结论正确的序号为()A.①②③B.②③④C.①②④D.①③④【例2】如图,点E 为正方形ABCD 外一点,∠AEB =90°,将Rt △ABE 绕A 点逆时针方向旋转90°得到△ADF ,DF 的延长线交BE 于H 点,若BH =7,BC =13,则DH =_____.【例3】如图,ADE △由ABC △绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且DF PF =.①判断CDF ∠和DAC ∠的数量关系,并证明;②求证:EP PC PF CF=.一、单选题1.如图,P 是等边三角形ABC 内一点,将△ACP 绕点A 顺时针旋转60°得到△ABQ ,若PA=2,PB =4,PC =,则四边形APBQ 的面积为()A .B .C .D .2.如图,在ABC 中,AB AC =,若M 是BC 边上任意一点,将ABM 绕点A 逆时针旋转得到ACN △,点M 的对应点为点N ,连接MN ,则下列结论不一定成立的是()A .AM AN=B .AMN ANM ∠=∠C .CA 平分BCN ∠D .MN AC⊥3.如图,在平面直角坐标系中,△ABC 中点A 的坐标是(3,4),把△ABC 绕原点O 逆时针旋转90︒得到A B C ''' ,则点A ′的坐标为()A .(4,-3)B .(-4,3)C .(-3,4)D .(-3,-4)4.如图,O 是边长为1的等边ABC 的中心,将AB 、BC 、CA 分别绕点A 、点B 、点C 顺时针旋转()0180αα︒<<︒,得到AB '、BC '、CA ',连接A B ''、B C ''、A C ''、OA '、OB '.当A B C '''V 的周长取得最大值时,此时旋转角α的度数为()A .60°B .90°C .120°D .150°5.如图,正方形ABCD 的边长为4,30BCM ∠=︒,点E 是直线CM 上一个动点,连接BE ,线段BE 绕点B 顺时针旋转45°得到BF ,连接DF ,则线段DF 长度的最小值等于()A .424B .222C .2623D .2636.如图,在ABC 中,90C ∠<︒,30B ∠=︒,10AB =,7AC =,O 为AC 的中点,M 为BC 边上一动点,将ABC 绕点A 逆时针旋转角()0360αα︒<≤︒得到AB C ''△,点M 的对应点为M ',连接OM ',在旋转过程中,线段OM '的长度的最小值是()A .1B .1.5C .2D .37.如图,矩形ABCD 中,3AB =,BC =3,P 为矩形内一点,连接PA ,PB ,PC ,则PA +PB +PC 的最小值是()A .233+B .25C .233+D 218.如图,在平面直角坐标系中,等腰直角△OAB 位置如图,∠OBA =90°,点B 的坐标为(1,0),每一次将△OAB 绕点O 逆时针旋转90°,同时每边扩大为原来的2倍,第一次旋转得到△OA 1B 1,第二次旋转得到△OA 2B 2,…,以此类推,则点A 2022的坐标是()A .(22022,22022)B .(-22021,22021)C .(22021,-22021)D .(-22022,-22022)二、填空题9.如图,在正方形ABCD 中,点M 是AB 上一动点,点E 是CM 的中点,AE 绕点E 顺时针旋转90°得到EF ,连接DE ,DF .给出结论:①DE =EF ;②∠CDF =45°;③若正方形的边长为2,则点M 在射线AB 上运动时,CF .其中结论正确的是____.10.如图,四边形ABCD ,AB =3,AC =2,把△ABD 绕点D 按顺时针方向旋转60°后得到△ECD ,此时发现点A 、C 、E 恰好在一条直线上,则AD 的长为__________.11.在△ABC 中,∠C =90°,AB =5,把△ABC 绕点C 旋转,使点B 落在射线BA 上的点E 处(点E 不与点A ,B 重合),此时点A 落在点F ,联结FA ,若△AEF 是直角三角形,且AF =4,则BC =_____.12.如图,在四边形ABCD 中,60ADC ∠=︒,30ABC ∠=︒,且AD CD =,连接BD ,若2AB =,BD =BC 的长为______.13.已知,⊙O 的直径BC =,点A 为⊙O 上一动点,AD 、BD 分别平分△ABC 的外角,AD 与⊙O 交于点E .若将AO 绕O 点逆时针旋转270°,则点D 所经历的路径长为_____.(提示:在半径为R 的圆中,n °圆心角所对弧长为180R n π)14.如图,在正方形ABCD 中,M ,N 分别是AB ,CD 的中点,P 是线段MN 上的一点,BP 的延长线交4D 于点E ,连接PD ,PC ,将DEP 绕点P 顺时针旋转90︒得GFP ,则下列结论:CP GP =①,tan 1CGF ∠=②;BC ③垂直平分FG ;④若4AB =,点E 在AD 边上运动,则D ,F ______.15.已知⊙O 的半径为4,A 为圆内一定点,AO =2.M 为圆上一动点,以AM 为边作等腰△AMN ,AM =MN ,∠AMN =108°,ON 的最大值为_____________.16.如图,在矩形ABCD 中,AB =3,BC =4,将矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A ′B ′CD ′,B ′C 与AD 交于点E ,AD 的延长线与A ′D ′交于点F .当矩形A 'B 'CD '的顶点A '落在CD 的延长线上时,则EF =_____.三、解答题17.如图,在平面直角坐标系中△ABC 的三个顶点都在格点上,点A 的坐标为(2,2),请解答下列问题:(1)画出△ABC 绕点B 逆时针旋转90°后得到△A 1B 1C 1,并写出点A 1的坐标;(2)画出和△A 1B 1C 1关于原点O 成中心对称的△A 2B 2C 2,并写出点A 2的坐标;(3)在(1)的条件下,求BC 在旋转过程中扫过的面积.18.如图,在△ABC 中,点E 在BC 边上,AE =AB ,将线段AC 绕A 点旋转到AF 的位置,使得∠CAF =∠BAE ,连接EF ,EF 与AC 交于点G .(1)求证:EF =BC ;(2)若63ABC ∠︒=,25ACB ∠︒=,求∠FGC 的度数.19.如图,正方形ABCD 中,=45°MAN ∠,MAN ∠绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)如图1,求证:MN BM DN =+;(2)当=6AB ,5MN =时,求CMN 的面积;(3)当MAN ∠绕点A 旋转到如图2位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明.20.阅读下面材料:小岩遇到这样一个问题:如图1,在正三角形ABC 内有一点P ,且PA =1,PB PC =2,求∠APB 的度数;小岩是这样思考的:如图2,利用旋转和全等的知识构造AP C '△,连接PP ',得到两个特殊的三角形,从而将问题解决.(1)请你回答:图1中∠APB 的度数等于____;(直接写答案)参考小岩同学思考问题的方法,解决下列问题:(2)如图3,在正方形ABCD 内有一点P ,且PA =1PB =,PD =APB 的度数;(3)如图4,在正六边形ABCDEF 内有一点P ,若∠APB =120︒,直接写出PA ,PB 和PF 的数量关系.21.在ABC 中,90C ∠=︒,30BAC ∠=︒,点D 是CB 延长线上一点(30ADC ∠>︒),连接AD ,将线段AD 绕点D 顺时针旋转60°,得到线段DE ,连接EC .(1)依题意,补全图形;(2)若2BD BC ==,求CE 的长.(3)延长EC 交AB 于F ,用等式表示线段CE CF ,之间的数量关系,并证明.22.在△ABC 中,∠ACB =90°,BC =AC =2,将△ABC 绕点A 顺时针方向旋转60°至AB C ''△的位置.(1)如图1,连接C C '与AB 交于点M ,则CC '=_____,BC '=_____;(2)如图2,连接BB ',延长CC '交BB '于点D ,求CD 的长.23.如图,在等腰Rt △ABC 中,将线段AC 绕点A 顺时针旋转()090αα︒<<︒,得到线段AD ,连接CD ,作∠BAD 的平分线AE ,交BC 于E .(1)①根据题意,补全图形;②请用等式写出∠BAD 与∠BCD 的数量关系.(2)分别延长CD 和AE 交于点F ,①直接写出∠AFC 的度数;②用等式表示线段AF ,CF ,DF 的数量关系,并证明.24.如图,已知抛物线经过点()1,0A -,()3,0B ,()0,3C 三点,点D 是直线BC 绕点B 逆时针旋转90︒后与y 轴的交点,点M 是线段AB 上的一个动点,设点M 的坐标为()0m ,,过点M作x 轴的垂线交抛物线于点E ,交直线BD 于点F .(1)求该抛物线所表示的二次函数的解析式;(2)在点M运动过程中,若存在以EF为直径的圆恰好与y轴相切,求m的值;ΔA O C,点A、O、C的对应点(3)连接AC,将AOC∆绕平面内某点G旋转180︒后,得到111ΔA O C的两个顶点恰好落在分别是点1A、1O、1C,是否存在点G使得AOC∆旋转后得到的111抛物线上,若存在,求出G点的坐标;若不存在,请说明理由.。
初中几何截长补短专题突破
截长补短针对题型:证明三条线段长度的“和”或“差"及其比例关系。
要求:从动态图形中寻找线段间的和差关系,熟练掌握转化思想。
常见类型及常规解题思路:① a b c ±= 可采取直接截长或补短,绕后进行证明。
或者化为类型②证明。
② a b kc ±= 可以将a b ±与c 构建在一个三角形中,然后证明这个三角形为特殊三角形,如等边三角形,等腰直角三角形,或一个角为30的直角三角形等. 截长法常规辅助线:(1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等.…… 补短法常规辅助线: (1)延长短边。
(2)通过旋转等方式使两短边拼合到一起.……例题演练:1.如图,AD BC ∥,点E 在线段AB 上,ADE CDE ∠=∠,DCE BCE ∠=∠。
求证:CD AD BC =+。
ADBCE2.如图示,在ABC ∆中,AD 平分BAC ∠,且2C B ∠=∠.求证:AB AC CD =+.3.如图所示.已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且2BAE DAM ∠=∠.求证:AE BC CE =+。
M ED CBA4.如图示,点M ,N 在等边三角形ABC 的AB 边上运动,BD DC =,120BAD ∠=,60MDN ∠=,求证:MN MB NC =+.DCB A 125。
如图,在正方形ABCD 中,F 是CD 的中点,E 是BC 边上的一点,且AF 平分DAE ∠,求证:AE EC CD =+FEDC BA。
立体几何平行判定与性质定理专题突破训练含详解
立体几何平行判定与性质定理专题突破训练一、单选题1.如图所示,P 为矩形ABCD 所在平面外一点,矩形对角线交点为O ,M 为PB 的中点,下列结论正确的个数为( )①//OM 平面PBC ②//OM 平面PCD ③//OM 平面PDA ④//OM 平面PBA A .1个B .2个C .3个D .4个2.a 、b 、l 是直线,α是平面,则下列说法正确的是( ) A .l 平行于α内的无数条直线,则//l α B .a 不在面α,则//a α C .若//a b ,b α⊂,则//a αD .若//a b ,b α⊂,则a 平行于α内的无数条直线3.若l ,m 是平面α外的两条不同直线,且//m α,则“//l m ”是“//l α”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.在以下四个命题中:①直线与平面没有公共点,则直线与平面平行;②直线与平面内的任意一条直线都不相交,则直线与平面平行;③直线与平面内的无数条直线不相交,则直线与平面平行;④平面外的一条直线与平面内的一条直线平行,则直线与平面不相交.正确的命题是( ) A .①②B .①②③C .①③④D .①②④5.已知两条不同直线,m n 和平面α,下列判断正确的是( ) A .若//,//,m n αα则//m n B .若,,m n αα⊥⊥则m n ⊥ C .若//,//,m m n α则//n α D .若,//,m m n α⊥则n α⊥6.下列命题正确的是( )A .一个平面内两条直线都平行于另一个平面,那么这两个平面平行B .如果一个平面内任何一条直线都平行于另一个平面,那么这两个平面平行C .平行于同一直线的两个平面一定相互平行D .如果一个平面内的无数条直线都平行于另一个平面,那么这两个平面平行 7.已知α,β是不同的平面,m ,n 是不同的直线,则下列命题不正确的是( ) A .若m ⊥α,m ∥n ,n ⊂β,则α⊥β B .若m ∥n ,α∩β=m ,则n ∥α,n ∥β C .若m ∥n ,m ⊥α,则n ⊥α D .若m ⊥α,m ⊥β,则α∥β8.下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确的个数有( ) A .1B .2C .3D .49.如图,在四棱锥P-ABCD 中,M ,N 分别为AC ,PC 上的点,且MN ∥平面P AD ,则( )A .MN ∥PDB .MN ∥P AC .MN ∥AD D .以上均有可能10.如图,在三棱锥P —ABC 中,点D ,E 分别为棱PB ,BC 的中点.若点F 在线段AC 上,且满足AD //平面PEF ,则AFFC的值为( )A .1B .2C .12D .2311.在正方体1111ABCD A B C D -中,M 是1AA 的中点,过M 在平面11ACC A 内作直线MN 交11A C 于N ,若//MN 平面1BC D ,则111A NA C =( ) A .14B .13C .12D.2二、多选题12.如图所示,P 为矩形ABCD 所在平面外一点,矩形对角线的交点为O ,M 为PB 的中点,给出以下结论,其中正确的是( )A .OM ∥PDB .OM ∥平面P AC C .OM ∥平面PDAD .OM ∥平面PBA13.设a ,b 为两条直线,α,β为两个平面,下列四个命题中,错误的命题是 A .若a ,b 与α所成的角相等,则//a b B .若//a α,b β//,//αβ,则//a b C .若a α⊂,b β⊂,//b α,则//αβ D .若a α⊥,b β⊥,αβ⊥,是a b ⊥14.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1//B F 平面1BC M ,则( )A .若P 为正方体表面上一点,则满足OPA 的面积为2的点有12个 B .动点F 的轨迹是一条线段C .三棱锥1F BC M -的体积是随点F 的运动而变化的D .若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1A Q 长度的取值范围为⎣ 15.如图,在四棱锥P ABCD -中,M 、N 分别为AC 、PC 上的点,且//MN 平面PAD ,则( )A .//MN PDB .//MN 平面PABC .//MN AD D .//MN PA三、双空题16.如图,在棱长为1的正方体1111ABCD A B C D -,点E ,F 分别是棱BC ,1CC 的中点,P 是侧面11BCC B 内一点(含边界),若1//A P 平面AEF ,点P 的轨迹长度为________,三棱锥P AEF -的体积为________.17.已知正方体1111ABCD A B C D -的棱长为2,点,M N 分别是棱1,BC CC 的中点,则异面直线AN 与BC 所成角的余弦值为___________;若动点P 在正方形11BCC B (包括边界)内运动,且1PA //平面AMN ,则线段1PA 的长度范围是___________.18.如图,直三棱柱111ABC A B C -的所有棱长都为4,P Q R 、、分别在棱111AA AB B C 、、上,123AP AQ B R ===,,过P Q R 、、三点的平面截三棱柱所得的截面是________边形,该截面的面积是___________.19.如图,已知斜三棱柱111ABC A B C -中,点D ,1D 分别为11,AC A C 上的点.若1//BC 平面11AB D ,则1111A D D C =________;若平面1//BC D 平面11AB D ,则AD DC=_______.20.已知四棱锥P ABCD -的底面ABCD 是边长为3的正方形,PD ⊥平面ABCD ,6PD =,E 为PD 中点,过EB 作平面α分别与线段P A 、PC 交于点M ,N ,且//AC α,则PMPA=________;四边形EMBN 的面积为________.四、解答题21.已知四棱锥P ABCD -中,//CD AB ,取PA 的中点M ,BC 的中点N ,求证://MN 平面PDC .22.如图,四棱锥P ABCD -中,点M 、N 分别为直线,PB PD 上的点,且满足PM PNPB PD=,求证://MN 平面ABCD.23.如图,在三棱柱111ABC A B C -中,1AA AC ⊥且1AA AC =,点E ,F 分别为11B C 和BC 的中点,1B A 与1A B 相交于点G .(1)证明:平面//EFG 平面11A ACC ; (2)求异面直线GE 和AC 所成角的大小.24.如图,在正方体1111ABCD A B C D -中,S 是B 1D 1的中点,E ,F ,G 分别是BC ,CD ,SC 的中点,求证:(1)EG ∥平面BDD 1B 1; (2)平面EFG ∥平面BDD 1B 1.25.如图,长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,点P 为DD 1的中点.(1)求证:直线BD 1∥平面P AC ; (2)求异面直线BD 1与AP 所成角的大小.26.如图,AB 是圆O 的直径.C 是圆O 上的点,P 为平面ABC 外一点.设Q 为P A 的中点,G 为AOC △的重心,求证://QG 平面PBC .27.如图,已知//αβ,点P 是平面,αβ外的一点,直线PA 和PC 分别与β相交于B 和D .(1)求证://AC BD ;(2)已知4cm,5cm,3cm PA AB PC ===,求PD 的长.28.如图所示,已知α,β,γ都是平面,且////αβγ,两条直线l ,m 分别与平面α,β,γ相交于点A ,B ,C 和点D ,E ,F . 求证:AB DEBC EF=.29.如图所示,两条异面直线,AB CD 与三个平行平面,,αβγ分别相交于,,A E B 及 ,,C F D 又AD BC 、与平面β的交点为,H G .求证:四边形EHFG 为平行四边形.30.如图,在四棱锥O ABCD -中,底面ABCD 是矩形.(1)设M 为OA 上靠近A 的三等分点,N 为BC 上靠近B 的三等分点.求证://MN 平面OCD .(2)设E 是OD 上靠近点D 的一个三等分点,试问:在OD 上是否存在一点F ,使//BF 平面ACE 成立?若存在,请予以证明;若不存在,说明理由.31.如图,已知在直三棱柱111ABC A B C -中,,,,M N P Q 分别是1111,,,AA BB AB B C 的中点.(1)在图中画出过,,M N Q 三点的截面,并说出截面图形的形状(不必说明画法与理由); (2)求证:1PC //平面MNQ .32.如图,在三棱柱111ABC A B C -中,点D ,1D 分别为AC ,11A C 上的动点,若平面1//BC D 平面11AB D ,请问ADDC是否为定值.若为定值求出该值,若不是定值,说明理由.33.(如图1)在直角梯形ABCD 中,//AB DC ,90BAD ∠=︒,4AB =,2AD =,3DC =,点E 在CD 上,且2DE =.将ADE 沿AE 折起,使得平面ADE ⊥平面ABCE (如图2).(1)求证:BE AD ;(2)在线段BD 上是否存在点P ,使得//CP 平面ADE ?若存在,求:PD BP 的值;若不存在,请说明理由.参考答案1.B【分析】证明//OM PD ,即可证明②③正确;M ∈平面PBC ,故①错误,M ∈平面PAB ,故④错误.【详解】对于①,M ∈平面PBC ,故①错误;对于②,由于O 为BD 的中点,M 为PB 的中点,则//OM PD , OM ⊂平面PCD ,PD ⊂平面PCD ,则//OM 平面PCD ,故②正确;对于③,由于//OM PD ,OM ⊂平面PAD ,PD ⊂平面PAD ,则//OM 平面PAD ,故③正确;对于④,由于M ∈平面PAB ,故④错误.故选:B2.D【分析】利用线面平行的判定定理和性质定理逐个分析判断即可【详解】对于A ,当l 平行于α内的无数条直线,若l α⊂,则l 与α不平行,所以A 错误, 对于B ,当a 不在面α时,a 与α有可能相交,所以B 错误,对于C ,当//a b ,b α⊂时,若a α⊂,则a 与α不平行,所以C 错误,对于D ,当//a b ,b α⊂时,由线面平行的性质可知a 平行于α内的无数条直线,所以D 正确,故选:D3.A【分析】根据线线、线面的平行关系,结合条件间的推出关系,判断“//l m ”、“//l α”之间的充分、必要关系.【详解】∵l ,m 是平面α外的两条不同的直线,//m α,∴若//l m ,则推出“//l α”;若//l α,则//l m 或l 与m 相交;∴若l ,m 是平面α外的两条不同直线,且//m α,则“//l m ”是“//l α”的充分不必要条件. 故选:A.4.D【分析】根据线面平行的定义及判定定理可判断.【详解】定义:一条直线与一个平面无公共点(不相交),称为直线与平面平行.可知①②正确;线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与此平面平行. 可知④正确;当线在面内时,直线与平面内的无数条直线不相交(平行时),所以③不正确.故选:D.5.D【分析】根据线线、线面、面面的平行与垂直的位置关系即可判断.【详解】解:对于选项A :若//,//m n αα,则m 与n 可能平行,可能相交,可能异面,故选项A 错误;对于选项B :若,m n αα⊥⊥,则//m n ,故选项B 错误;对于选项C :当n ⊂α时不满足//n α,故选项C 错误;综上,可知选项D 正确.故选:D.6.B【分析】根据面面平行的知识对选项逐一分析,由此确定正确选项.【详解】对于A 选项,这两个平面可能相交,故A 选项错误.对于B 选项,如果一个平面内任何一条直线都平行于另一个平面,那么这两个平面平行,正确,故B 选项正确.对于C 选项,这两个平面可能相交,故C 选项错误.对于D 选项,这两个平面可能相交,故D 选项错误.故选:B7.B【分析】根据空间垂直、平行逐项讨论,即可得出结论.【详解】选项A:m ⊥α,m ∥n ,可得n ⊥α,n ⊂β,则α⊥β,该选项正确;选项B:m ∥n ,α∩β=m ,直线n 可能在α或β内,该选项不正确;选项C:是线面垂直的判定,故正确;选项D:是面面平行的判定,故正确.故选:B【点睛】本题考查有关空间线面平行、垂直性质和判定定理,属于基础题.8.B【分析】举特例说明可判断命题(1),(3);利用面面平行的传递性可判断(2);利用线面垂直的性质可判断(4)即可得解.【详解】对于命题(1),长方体1111ABCD A B C D -中,平面ABCD 与平面11ABB A 都与直线11C D 平行,而这两个平面却相交,(1)不正确;对于命题(2),由平面与平面平行的传递性知,平行于同一平面的两个平面平行是正确的,(2)正确;对于命题(3),长方体1111ABCD A B C D -中,棱AB ,AD 都垂直于棱AA 1,而AB 与AD 相交,(3)不正确;对于(4),由直线与平面垂直的性质知,垂直于同一平面的两直线平行是正确的,(4)正确, 所以命题(2),(4)都正确,有2个.故选:B9.B【分析】直接利用线面平行的性质分析解答.【详解】∵MN ∥平面P AD ,MN ⊂平面P AC ,平面P AD ∩平面P AC=P A ,∴MN ∥P A.故选:B10.C【分析】连接CD ,交PE 于G ,连接FG ,由//AD 平面PEF ,得到//AD FG ,由点D ,E 分别为棱PB ,BC 的中点,得到G 是PBC 的重心,由此能求出结果.【详解】解:连接CD ,交PE 于G ,连接FG ,如图,//AD 平面PEF ,平面ADC平面PEF FG =,//AD FG ∴, 点D ,E 分别为棱PB ,BC 的中点.G ∴是PBC 的重心, ∴12AF DG FC GC ==. 故选:C .11.A【分析】连接AC 、BD ,AC BD E =,连接1C E ,取11A C 的中点F ,连接AF ,根据正方体的性质可得1//AF EC ,再由线面平行的性质得到1//MN C E ,从而得到//MN AF ,即可得解;解:连接AC 、BD ,AC BD E =,连接1C E ,取11A C 的中点F ,连接AF ,在正方体1111ABCD A B C D -中1AE C F =,1//AE C F ,所以四边形1AEC F 为平行四边形,所以1//AF EC ,又//MN 平面1BC D ,MN ⊂平面11ACC A ,平面11ACC A 平面11BC D C E =,所以1//MN C E ,所以//MN AF ,因为M 是1AA 的中点,所以N 为1A F 的中点,所以11114A N AC =,即11114A N A C = 故选:A12.AC【分析】根据已知条件,利用三角形中位线定理判定A 正确;利用线面平行的判定定理判定C 正确;根据线面平行的定义——没有公共点,判定BD 错误.【详解】因为矩形对角线的交点为O ,所以O 是BD 的中点, 又M 为PB 的中点,OM ∴为△PBD 的中位线,//OM PD ∴,又OM ⊄平面PAD ,PD ⊂平面PAD ,所以OM ∥平面PDA ,故AC 正确;OM 与平面PAC 有公共点O ,与平面PBA 有公共点M ,故BD 错误.故选:AC .13.ABC根据题意,依次分析选项,A 、用直线的位置关系判断.B 、用长方体中的线线,线面,面面关系验证.C 、用长方体中的线线,线面,面面关系验证.D 、由a α⊥,αβ⊥,可得到a β⊂或//a β,再由b β⊥得到结论.【详解】解:A 、直线a ,b 的方向相同时才平行,不正确;B 、用长方体验证.如图,设11A B 为a ,平面AC 为α,BC 为b ,平面11A C 为β,显然有//a α,b β//,//αβ,但得不到//a b ,不正确;C 、可设11A B 为a ,平面1AB 为α,CD 为b ,平面AC 为β,满足选项C 的条件却得不到//αβ,不正确;D 、a α⊥,αβ⊥,a β∴⊂或//a β又b β⊥,a b ∴⊥,D 正确故选:ABC【点睛】本题考查线线平行与垂直、线面平行的判定.把线面关系放到长方体中有助于问题解决,是解题中是常用的方法;本题是基础题.14.BD【分析】选项A :设O '为底面正方形ABCD 的中心,根据OO A '的面积为12AO OO ''⋅=,由此可判断选项A ;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH .选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为定值,再结合1BC M 的面积也为定值,从而可得到三棱锥1F BC M -的体积为定值.选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1A Q 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :设O '为底面正方形ABCD 的中心,连接AO ,AO ',OO ',则12AO AC '=1112OO AA '==,所以OO A '的面积为11122AO OO ''⋅== 所以在底面ABCD 上点P 与点O '必重合,同理正方形11ABB A 的中心,正方形11ADD A 的中心都满足题意.又当点P 为正方体各条棱的中点时也满足OPA A 不正确; 对于B :如图①,分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD . 因为11B H C M ∥,1GH BC ∥,1B H ⊂平面BHG ,1C M ⊂平面1BC M ,GH ⊂平面BHG ,1C B ⊂面1BC M ,111BC C M C ⋂=,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,故B 正确; 对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为定值,同时1BC M 的面积也为定值,则三棱锥1F BC M -的体积为定值,故C 不正确; 对于D :如图②,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上.因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥.同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点.在四棱锥11A AMC N -中,侧棱11A C 最长,且11AC =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC 1AC =则112AMC S =⨯△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以111111433A AMC AMC C AA M V S h V --=⋅===△,解得h =.综上,可知1A Q 长度的取值范围是⎣,故D 正确.故选:BD .15.BD【分析】利用线面平行的性质结合线面平行的判定可得出结论.【详解】因为//MN 平面PAD ,MN ⊂平面PAC ,平面PAC 平面PAD PA =,//MN PA ∴, PA ⊂平面PAB ,MN ⊄平面PAB ,因此,//MN 平面PAB .故选:BD.16 112 【分析】分别取棱1BB ,11B C 的中点M ,N ,连接1A M ,1A N ,MN ,1BC ,NE ,推导出//MN 平面AEF ,1//A N 平面AEF ,得到平面1//A MN 平面AEF ,由此得以点P 的轨迹是线段MN , 借助等积变换可得三棱锥P AEF -的体积.【详解】解:如图,分别取棱1BB ,11B C 的中点M ,N ,连接1A M ,1A N ,MN ,1BC ,NE , M ,N ,E ,F 分别是其所在棱的中点,1//MN BC ∴,1//EF BC ,//MN EF ∴,MN ⊂/平面AEF ,EF ⊂平面AEF ,//MN ∴平面AEF ,1//AA NE ,1AA NE =,∴四边形1AENA 为平行四边形,1//A N AE ∴,1A N ⊂/平面AEF ,AE ⊂平面AEF ,1//A N ∴平面AEF ,1A N M N N =,∴平面1//A MN 平面AEF , P 是侧面11BCC B 内一点,且1//A P 平面AEF ,∴点P 必在线段MN 上,∴点P 的轨迹长度为112MN BC =∵//MN 平面AEF , ∴1111133412P AEF N AEF A NE NE F F V V V S AB ---===⋅=⨯⨯= .112.17.23 【分析】异面直线AN 与BC 所成的角就是∠DAN ,计算得3AN =,所以2cos 3DAN ∠=;由面面平行的性质得点P 在1BB 与11B C 中点的连线EF 上,设EF 中点为H ,则1A H 最短,1A E 或1A F同时最大,所以所求范围是. 【详解】 因为BC ∥AD, 异面直线AN 与BC 所成的角就是直线AN 与AD 所成的角,即∠DAN 为异面直线AN 与BC 所成的角,3AC AN == 所以2cos 3AD DAN AN ∠==; 取11B C 的中点E ,1BB 的中点F ,连接1A E ,1A F ,EF ,取EF 中点O ,连接1A O ,点M ,N 分别是棱长为2的正方体1111ABCD A B C D -中棱BC ,1CC 的中点,1//AM A E ∴,//MN EF , AM M N M =,1A E EF E =,∴平面//AMN 平面1A EF ,动点P 在正方形11BCC B (包括边界)内运动,且1//PA 面AMN ,∴点P 的轨迹是线段EF ,11A E A F ====EF1AO EF ∴⊥,∴当P 与O 重合时,1PA 的长度取最小值1A O =,当P 与E (或)F 重合时,1PA 的长度取最大值为11A E A F ==1PA ∴的长度范围为. 故答案为:23;. 【点睛】求异面直线的夹角一般要通过平行转换成平面角,第二个问题中动点的轨迹要点是求出直线的轨迹,是通过面面平行的思想转换的,做题时可以通过单独画截面图求解.18.五【分析】延长PQ 和1B B 交于M ,连RM 交BC 于E ,连QE ,延长QP 和11B A 交于N ,连RN 交11A C 于F ,连FP ,则过P Q R 、、三点的平面截三棱柱所得的截面是五边形PQERF ,通过计算可得ME EQ ⊥,RF MR ⊥,利用大直角三角形的面积减去两个小三角形的面积可得结果.【详解】如图:延长PQ 和1B B 交于M ,连RM 交BC 于E ,连QE ,延长QP 和11B A 交于N ,连RN 交11A C 于F ,连FP ,则过P Q R 、、三点的平面截三棱柱所得的截面是五边形PQERF , 依题意可知,P Q 为1,AA AB 的中点,所以PAQ △与MBQ 全等,所以2MB PA ==, 因为1//BE B R ,所以11BE MB B R MB =,所以2316BE ⨯==,所以ME因为QE ==MQ所以222ME EQ MQ +=,所以ME EQ ⊥,因为平面MRN 与两平行平面ABC 和111A B C 的交线为EQ 和RF ,所以//EQ RF ,所以RF MR ⊥,MR =MN =所以RN因为22211RN B R B N +=,所以1NR B R ⊥,又13FC R π∠=,所以1122FC RC ==,所以FR ==NF RN FR =-==cos RN FNP MN ∠===sin FNP ∠==所以12NPF S =⨯=△12MEQ S ==△又1122MRN S MR RN =⨯=⨯=△,所以截面面积为MNR NPF MEQ S S S --==△△△故答案为:五;.【点睛】关键点点睛:利用平面的基本性质作出截面是解题关键.19.1 1【分析】连接1A B 交1AB 于点O ,连接1OD ,由1//BC 平面11AB D 得性质定理得到11//BC OD ,又在11A BC 中,O 为1A B 的中点,可知1D 为11A C 的中点,即可求得结果;根据平面1//BC D 平面11AB D 的性质定理可知11//BC OD ,同理11//AD DC ,再根据比例关系即可求得结果.【详解】如图,连接1A B 交1AB 于点O ,由三棱柱性质知,O 为1A B 的中点,连接1OD1//BC 平面11AB D ,1BC ⊂平面11A BC ,平面11A BC ⋂平面111AB D OD =,11//BC OD ∴,又在11A BC 中,O 为1A B 的中点,故1D 为11A C 的中点,所以11111A D D C = 若平面1//BC D 平面11AB D , 又平面11A BC ⋂平面11BDC BC =,平面11A BC ⋂平面111AB D OD =,11//BC OD ∴,同理11//AD DC ,11111A D A O D C OB ∴=,1111A D D C DC AD= 又11AO OB =,1DC AD=,则1AD DC =【点睛】关键点睛:本题考查线面平行,及面面平行的性质定理,解题的关键是熟记线面平行证线线平行的性质定理,及面面平行证线线平行的性质定理,考查学生的逻辑推理能力与空间想象能力,属于中档题.20.23【分析】延伸平面α,交AC 所在的平面ABCD 于RS ,即平面α平面ABCD RS =,可得//AC RS ,在三角形PAD △和RED 中,利用平面几何三角形全等和平行线中的比例关系可得PM PA;至于四边形EMBN 的面积,连接MN ,BD ,可证明MN BE ⊥,求出,MN BE 的长度,通过面积公式12MN EB ⋅可得答案. 【详解】延伸平面α,交AC 所在的平面ABCD 于RS ,即平面α平面ABCD RS =,又B ∈平面α平面ABCD , B RS ∴∈,即,,R S B 三点共线,又//AC α,由线面平行的性质定理可得//AC RS ,则4ARB ABR π∠=∠=,即AR AB =,∴点A 为RD 的中点,又E 为PD 中点, 则6,3,2PD RD DA DE PDA ADP π====∠=∠=,PAD RED ∴≅,MPE MRA ∴∠=∠,又,PME RMA PE RA ∠=∠=,PME RMA ∴≅,则ME MA =,过M 作MK PD ⊥交PD 于点K ,222PM MK MK ME MA PA AD DR RE PA∴==⋅=⋅=⋅, 则2PM MA =,2233PM MA PA MA ∴==; 连接MN ,BD 由23PM PA =同理可得23PN PC =, //MN AC ∴,又PD ⊥平面ABCD ,AC ⊂平面ABCD ,PD AC ∴⊥,又,BD AC BD PD D ⊥=,AC ∴⊥面PBD ,又BE ⊂面PBD ,AC BE ∴⊥,MN BE ∴⊥,23MN PM AC PA ==, 2233MN AC ∴==⨯又EB ==所以四边形EMBN 的面积为1122MN EB ⋅=⨯=故答案为:23;【点睛】本题考查空间线面平行的判定和性质,考查空间线面垂直的判定和性质,关键是利用线面平行的性质合理作出图像,考查学生的作图能力和计算能力,是中档题.21.证明见解析【分析】如图,连接AN并延长,交DC的延长线于点E,连接PE,可得N为AE的中点,再由三角形中位线定理可得MN∥PE,然后由线面平行的判定定理可证得结论【详解】证明:如图,连接AN并延长,交DC的延长线于点E,连接PE.因为CD∥AB,N为BC的中点,所以N为AE的中点.因为M为PA的中点,所以MN∥PE.因为MN⊄平面PDC,PE⊂平面PDC,所以MN∥平面PDC.22.证明见解析【分析】MN平面ABCD.通过线线平行来证得//【详解】连接BD , ∵PM PN PB PD=,∴//MN BD , ∵MN ⊄平面ABCD ,BD ⊂平面ABCD ,∴//MN 平面ABCD .23.(1)证明见解析;(2)45︒【分析】(1)连接11,A C AC ,通过证明//FG 平面11A ACC 与//EG 平面11A ACC ,可得平面//EFG 平面11A ACC ;(2)找到1C AC ∠为异面直线GE 和AC 所成角,求1C AC ∠即可.【详解】证明:(1)由题意可得,点,F G 分别是BC 和1BA 的中点,连接11,A C AC ,1//FG A C ∴,又FG ⊄平面111,A ACC A C ⊂平面11A ACC ,//FG ∴平面11A ACC ,同理:1//EF C C ,则 //EF 平面11A ACC ,又,FG EF F FG =⊂平面,EFG EF ⊂平面EFG ,∴平面//EFG 平面11A ACC ;(2)点,G E 分别是1B A 和11B C 的中点,1//GE AC ∴,1C AC ∴∠为异面直线GE 和AC 所成角,由题意知,四边形11ACC A 为正方形,所以145C AC ︒∠=,即GE 和AC 所成角为45︒.【点睛】本题考查通过线面平行证明面面平行,考查异面直线所成的角,是基础题.24.(1)证明见解析;(2)证明见解析.【分析】(1)连接SB ,得到EG ∥SB ,结合线面平行的判定定理,即可证得EG ∥平面BDD 1B 1. (2)连接SD ,得到FG ∥SD ,证得FG ∥平面BDD 1B 1,再由EG ∥平面BDD 1B 1,面面平行的判定定理,即可证得平面EFG ∥平面BDD 1B 1.【详解】(1)如图所示,连接SB ,因为E ,G 分别是BC ,SC 的中点,所以EG ∥SB ,又因为SB ⊂平面BDD 1B 1,且EG ⊄平面BDD 1B 1,所以直线EG ∥平面BDD 1B 1.(2)如图所示,连接SD ,因为F ,G 分别是CD ,SC 的中点,所以FG ∥SD , 又因为SD ⊂平面BDD 1B 1,且FG ⊄平面BDD 1B 1,所以FG ∥平面BDD 1B 1,又由EG ∥平面BDD 1B 1,EG ⊂平面EFG ,FG ⊂平面EFG ,EG ∩FG =G ,所以平面EFG ∥平面BDD 1B 1.25.(1)证明见解析(2)30︒【分析】(1)连结PO ,先证线线平行,再证线面平行即可;(2)由(1)知,1PO BD ∥,所以APO ∠即为异面直线1BD 与AP 所成的角,然后再解三角形即可.(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点.连结PO ,又因为P 是1DD 的中点,所以1PO BD ∥.又因为PO ⊂平面1,PAC BD ⊄平面PAC所以直线1BD ∥平面PAC .(2)由(1)知,1PO BD ∥,所以APO ∠即为异面直线1BD 与AP 所成的角.在ADP △中可得PA =因为12PA PC AO AC ===且PO AO ⊥,所以1sin2AO APO AP ∠===. 又090APO ︒︒<∠≤,所以30APO ︒∠=故异面直线1BD 与AP 所成角的大小为30︒.26.证明见解析【分析】连接OG 并延长,交AC 于点M ,连接QM ,QO ,由已知可得M 为AC 的中点,//QM PC ,//OM BC ,可证//QM 平面PBC ,//OM 平面PBC ,从而平面//QMO 平面PBC , 即可证明结论.【详解】证明:如图,连接OG 并延长,交AC 于点M ,连接QM ,QO .由G 为AOC △的重心,得M 为AC 的中点.由Q 为M 的中点,得//QM PC ,PC ⊂平面PBC ,QM ⊄平面PBC ,所以//QM 平面PBC ,又O 为AB 的中点,所以//OM BC .同理可证//OM 平面PBC ,因为QM MO M ⋂=,QM ⊂平面QMO ,MO ⊂平面QMO ,所以平面//QMO 平面PBC .因为QG ⊂平面QMO ,所以//QG 平面PBC .【点睛】本题考查利用面面平行的性质定理证明线面平行,属于基础题.27.(1)证明见解析;(2)274 【分析】(1)由面面平行的性质定理得证线线平行;(2)由平行线的性质可求得线段长.【详解】(1)PB PD P =,所以,PB PD 确定一个平面PBD ,由题意平面PBD AC α=,平面PBD BD β=,//αβ所以//AC BD ;(2)由(1)//AC BD ,所以PA PC AB CD =,所以351544PC AB CD PA ⋅⨯===, 所以1527344PD PC CD =+=+=. 28.证明见解析【分析】连接DC ,设DC 与平面β相交于点G ,连,BG GE ,根据面面平行的性质定理,可得//BG AD ,利用三角形相似关系,即可证明结论.【详解】证明:连接DC ,设DC 与平面β相交于点G ,则平面ACD 与平面α,β分别相交于直线AD ,BG ,平面DCF 与平面β,γ分别相交于直线GE ,CF .因为//αβ,所以//BG AD ,因此CBG CAD ,因此AB DG BC GC=.同理可得DG DE GC EF =.因此AB DE BC EF =. 【点睛】本题考查根据面面平行的性质定理,以及线线平行的性质,属于基础题.29.证明见解析.【分析】由αβ∥得到AC EG HF ,同理得到BD EH GF ,所以四边形EHFG 为平行四边形.【详解】证明:∵平面ABC平面AC α=, 平面ABC平面BC β=,且αβ∥AC EG ∴. 同理可证AC HF .EG HF ∴.同理可证∥EH FG .∴四边形EHFG 为平行四边形.【点睛】本题考查面面平行的性质,属于简单题.30.(1)证明见解析;(2)在OD 上是存在OE 中点F ,使//BF 平面ACE 成立,证明见解析.【分析】(1)取AD 上靠近A 的三等分点G ,连接MG NG ,,可得//MG OD ,进而证明//MG 平面OCD ,同理证明//NG 平面OCD ,得出面//MNG 平面OCD 即可证明;(2)存在OE 中点F ,连BF BD ,,使=BD AC P ⋂,连PE ,得出//PE BF 即可证明. 【详解】(1)如图,取AD 上靠近A 的三等分点G ,连接MG NG ,,AOD △中,:1:2:=1:2AM MO AG GD =,, 则//MG OD ,又MG ⊄平面OCD ,OD ⊂平面OCD ,//MG ∴平面OCD ,同理,//NG 平面OCD ,又=MG NG G ⋂,∴平面//MNG 平面OCD ,又MN ⊂平面MNG ,∴//MN 平面OCD .(2)存在OE 中点F ,使//BF 平面ACE 成立.取OE 中点F ,连BF BD ,,使=BD AC P ⋂,连PE .ABCD 是矩形,P ∴是BD 的中点,又E 是OD 上靠近点D 的一个三等分点,且F 是OE 中点,E ∴是FD 的中点,BDF ∴中,//PE BF ,又PE ⊂平面ACE ,BF ⊄平面ACE ,//BF ∴平面ACE ,故在OD 上是存在OE 中点F ,使//BF 平面ACE 成立.【点睛】关键点睛:本题考查线面平行的证明,解题的关键是正确理解线面平行的判定定理以及面面平行的性质.31.(1)MHQN 是过,,M N Q 三点的截面,梯形;(2)证明见解析.【分析】(1)取11A C 中点H ,连接 HQ QN ,, NM ,MH ,即可得出结果; (2)连接11,BC AC ,根据面面平行的判定定理,得到平面//MNQ 平面1ABC ,进而可得线面平行.【详解】(1)取11A C 中点H ,连接 HQ QN ,, NM ,MH ,则梯形MHQN 是过,,M N Q 三点的截面,如图所示.(2)连接11,BC AC .∵三棱柱111ABC A B C -是直三棱柱,∴四边形11ABB A 是矩形.∵,M N 分别是11,AA BB 的中点,∴//MN AB .在11B C B 中,,Q N 分别是111,B C BB 的中点,∴1//NQ BC .又∵1,AB BC B MN NQ N ⋂=⋂=,∴平面//MNQ 平面1ABC .又∵P 是AB 的中点,∴1PC ⊂平面1ABC ,∴1//PC 平面MNQ .【点睛】本题主要考查几何体过点的截面图形,以及证明线面平行,熟记面面平行的判定定理与性质定理即可,属于常考题型.32.是定值1,理由见解析.【分析】连接1A B 交1AB 于点O ,连接1OD ,由平面1BC D ∥平面11AB D ,得到1BC ∥1OD ,1AD ∥1DC ,则四边形11ADC D 是平行四边形,根据111112C D AC =,得到11111122AD C D AC AC ===,从而可得1AD DC = 【详解】解:如图,连接1A B 交1AB 于点O ,连接1OD ,由棱柱的性质,可知四边形11A ABB 为平行四边形,所以O 为1A B 的中点,因为平面1BC D ∥平面11AB D ,且平面11A BC ⋂平面111AB D D O =,平面11A BC ⋂平面11BC D BC =,所以1BC ∥1OD ,所以1D 为线段11A C 的中点,所以111112C D AC =, 因为平面1BC D ∥平面11AB D ,平面11AAC C平面11BDC DC =,平面11AAC C 平面111AB D AD =, 所以1AD ∥1DC ,因为AD ∥11C D ,所以四边形11ADC D 是平行四边形, 所以11111122AD C D AC AC ===, 所以1AD DC =,33.(1)证明见解析;(2)存在,13=PD BP . 【分析】 (1)首先根据题意易证AE EB ⊥,再根据面面垂直的性质得到EB ⊥平面AED ,从而得到EB AD ⊥.(2)首先在AB 上取一点的F ,满足14AF AB =,在BD 上取一点的P ,满足14DP DB =,连接,,PF PC FC ,易证//PF 平面ADE ,//PF 平面ADE ,从而得到平面//PFC 平面ADE ,再利用面面平行的性质得到//PC 平面ADE ,从而得到13=PD BP . 【详解】(1)在梯形ABCE 中,取AB 的中点H ,连接EH ,BE ,如图所示所以AE ==BE == 又因为4AB =,所以222AE BE AB +=,即AE EB ⊥. 在图2中,因为平面ADE ⊥平面ABCE AE =,AE EB ⊥,所以EB ⊥平面AED .又因为AD ⊂平面AED ,所以EB AD ⊥.(2)在AB 上取一点的F ,满足14AF AB =, 在BD 上取一点的P ,满足14DP DB =,连接,,PF PC FC ,如图所示:因为//AF EC ,AF EC =,所以四边形AFCE 为平行四边形, 所以//FC AE .又因为AE ⊂平面ADE ,⊄FC 平面ADE ,所以//FC 平面ADE , 因为34BF BP BA BD ==,所以//PF AD . 又因为AD ⊂平面ADE ,PF ⊄平面ADE ,所以//PF 平面ADE , 又因为PF ⊂平面PFC ,PC ⊂平面PFC ,FCPF F =, 所以平面//PFC 平面ADE .又因为PC ⊂平面PFC ,所以//PC 平面ADE . 所以13=PD BP .。
【全国通用】初中几何正方形解答题专题突破练习(3)
【全国通用】初中几何正方形解答题专题突破练习(3)1.如图,已知四边形ABCD 是正方形,E 是对角线BD 上的一点,连接,AE CE .()1求证:AE CE =;()2如图,点P 是边CD 上的一点,且PE BD ⊥于,E 连接,BP O 为BP 的中点,连接EO .若30PBC ∠=︒,求POE ∠的度数;()3在()2的条件下,若OE =CE 的长.2.如图,已知正方形ABCD 的边长为2,点F 是CD 的中点,E 是边BC 上的一点,连接AE ,EF ,若AEF EAD ∠=∠,求AB 与BE 的比值.3.如图,正方形ABCD 的边长为1,点E 是AD 边上的动点,从点A 沿AD 向点D 运动,以BE 为边,在BE 的上方作正方形BEFG ,连接CG . (1)求证:AEB CGB △≌△;(2)若设AE=x ,DH=y ,当x 取何值时,y 有最大值?并求出这个最大值; (3)连接BH ,当点E 运动到AD 的何位置时有BEH BAE ∽?4.如图,在正方形ABCD中,E是BC的中点,连接AE,过点B作射线BM交CD于点F,交AE于点O,且BF AE⊥.(1)求证:BF AE=;(2)连接OD,猜想OD与AB的数量关系,并证明.5.如图1,已知点A(-1,0),B(0,-2),C为双曲线kyx=上一点,连结AC与y轴交于点E,且E为AC的中点,其坐标为(0,2).(1)求k的值;(2)以线段AB为对角线作正方形AFBH(如图2),点T是AF边上一动点,M是HT的中点,MN丄HT 交AB于N,当T在AF上运动时,∠TNH的大小是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.6.同学们:八年级下册第9章我们学习了一种新的图形变换旋转,图形旋转过程中蕴含着众多数学规律,以图形旋转为依托构建的解题方法是解决各类几何问题的常用方法.(1)(问题提出)如图∠,在正方形ABCD中,∠MAN=45°,点M、N分别在边BC、CD上.求证:MN=BM+DN.证明思路如下:△绕点A按顺时针方向旋转90°得到∠ABE,再证明E、B、M三点在一条直线上.第一步:如图∠,将ADN△≌△.第二步:证明AEM ANM请你按照证明思路写出完整..的证明过程.(2)(初步思考)△和BCE.如图∠,四边形ABCD和CEFG为正方形,连接DG、BE,得到DCG下列关于这两个三角形的结论:∠周长相等;∠面积相等;∠∠CBE=∠CDG.其中所有正确结论的序号是.(3)(深入研究)如图∠,分别以□ABCD的四条边为边向外作正方形,连接EF,GH,IJ,KL.若□ABCD的面积为8,则图中阴影部分(四个三角形)的面积之和为.7.已知:如图,在正方形ABCD中,点E、F在对角线AC上,且AE=CF.(1)求证:DE ∠BF(2)若四边形DEBF 的面积为8,AE,则正方形边长为 .8.如图,在正方形ABCD 中,点G 在边BC 上(不与点B 、C 重合).连结AG ,作DE∠AG 于点E ,BF∠AG 于点F ,BGAD=K . ∠求证:Rt∠BFG∠Rt∠DEA ;∠连结BE 、DF ,设∠EDF =α,∠EBF =β,求证:tan α=Ktan β.∠设正方形ABCD 的边长为1,线段AG 与对角线BD 交于点H ,∠AHD 和四边形CDHG 的面积为S 1和S 2,求21S S 的最大值.9.如图 ,在边长为1的正方形ABCD 中,点E 是边AD 上的一动点(与点,A D 不重合),CE 交BD 于点F ,连结AF .(1)求证:DAF DCF ≅;(2)当AE 的长度是多少时,AEF 是等腰三角形?(3)当点E 运动到AD 的中点时,连BE 结交AF 于点M ,连结CM , 求证:∠BE AF ⊥;∠CB CM =.10.如图,在正方形ABCD 中,E 为CD 边上一点,以DE 为边向外作正方形DEFG ,将正方形DEFG 绕点D 顺时针旋转,连接AG .(1)如图1,若AD =DE =2,当150ADG ∠︒=时,求AG 的长;(2)如图2,正方形DEFG 绕点D 旋转的过程中,取AG 的中点M ,连接DM 、CE ,猜想:DM 和CE 之间有何等量关系?并利用图2加以证明.11.如图,P 是正方形ABCD 对角线BD 上一点,,PE DC PF BC ⊥⊥,点,E F 分别是垂足. (1)求证:AP PC =;(2)若60,BAP PD ∠=︒=,求PC 的长.12.如图1,点C 在线段AB 上,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 和正方形BCMN , 连结AM 、BD .(1)AM 与BD 的关系是:________.(2)如果将正方形BCMN 绕点C 顺时针旋转锐角α(如图2).(1) 中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB 、DM ,若AC=4,BC=2,求AB 2+DM 2的值. 13.已知如图1,四边形ABCD 是正方形,45EAF ︒∠= .()1如图1,若点,E F 分别在边BC CD 、上,延长线段CB 至G ,使得BG DF =,若3,2BE BG ==,求EF 的长;()2如图2,若点,E F 分别在边CB DC 、延长线上时,求证: .EF DF BE =-()3如图3,如果四边形ABCD 不是正方形,但满足,90,45,AB AD BAD BCD EAF ︒︒=∠=∠=∠=且7, 13,5BC DC CF ===,请你直接写出BE 的长.14.点C为线段AB上一点,分别以AC、BC为边在线段AB的同侧作正方形ACDE和BCFG,连接AF、BD.(1)如图∠,AF与BD的数量关系和位置关系分别为;(2)将正方形BCFG绕着点C顺时针旋转α角(0°<α<360°),∠如图∠,第(1)问的结论是否仍然成立?请说明理由.∠若AC=4,BC,当正方形BCFG绕着点C顺时针旋转到点A、B、F三点共线时,求DB的长度.15.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF∠DE,交线段BC于点F,以DE、EF为邻边作矩形DEFG,连接CG(1)如图,求证:矩形DEFG是正方形;(2)若AB=,CE=2,求CG的长;16.以Rt ABC ∆的两边AB 、AC 为边,向外作正方形ABDE 和正方形ACFG ,连接EG ,过点A 作AM BC ⊥于M ,延长MA 交EG 于点N .(1)如图1,若90BAC ∠=︒,AB AC =,易证:EN GN =;(2)如图2,90BAC ∠=︒;如图3,90BAC ∠≠︒,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由. 17.已知正方形ABCD ,点E 在射线BD 上.(1)如图1,若点E 在线段BD 上,F 在线段AD 上,且AE BF ⊥,垂足为H ,连接CE . ∠求证:HF AFAH AB=; ∠求证:tan DEECD BE∠=; (2)如图2,点E 在BD 的延长线上,以AE 为斜边,作Rt AFE ,90AFE ∠=︒,AF EF =,若4=AD ,直接写出DF 的最小值.18.如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且CE=CF . (1)求证:BE=DF ;(2)若点G 在AD 上,且∠GCE=45°,则GE=BE+GD 成立吗?为什么?19.如图,正方形ABCD 中,点E 是边BC 上一点,EF ∠AC 于点F ,点P 是AE 的中点.(1)求证:BP∠FP;(2)连接DF,求证:AE=DF.20.如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF与DE相交于点M,且∠BAF=∠ADE.(1)如图1,求证:AF∠DE;(2)如图2,AC与BD相交于点O,AC交DE于点G,BD交AF于点H,连接GH,试探究直线GH与AB的位置关系,并说明理由;(3)在(1)(2)的基础上,若AF平分∠BAC,且BDE的面积为,求正方形ABCD的面积.AC BD相交于点O,E是OC的中点,连接BE,过点21.如图,正方形ABCD的边长为,A作AM BE⊥于点M,交BD于点F.=;(1)求证:AF BE(2)求点E到BC边的距离.22.在正方形ABCD中,连接AC,点E在线段AD上,连接BE交AC于M,过点M作FM∠BE交CD于F.(1)如图∠,求证:∠ABE+∠CMF=∠ACD;(2)如图∠,求证:BM=MF;(3)如图∠,连接BF,若点E为AD的中点,AB=6,求BF的长.23.如图,正方形ABCD的边长为6.E,F分别是射线AB,AD上的点(不与点A重合),且EC CF⊥,M为EF的中点.P为线段AD上一点,1AP=,连结PM.=;(1)求证:CE CF△为直角三角形时,求AE的长;(2)当PMF△的面积为________.(在横线上直接写(3)记BC边的中点为N,连结MN,若MN=PMF出答案)=,24.如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE CF 连接AE、DF,AE的延长线交DF于点M.(1)求证:AE DF=;⊥.(2)求证:AM DF25.定义:有一组邻边垂直且对角线相等的四边形为垂等四边形.(1)写出一个已学的特殊平行四边形中是垂等四边形的是 .(2)如图1,在3×3方格纸中,A ,B ,C 在格点上,请画出两个符合条件的不全等的垂等四边形,使AC ,BD 是对角线,点D 在格点上.(3)如图2,在正方形ABCD 中,点E ,F ,G 分别在AD ,AB ,BC 上,AE =AF =CG 且∠DGC =∠DEG ,求证:四边形DEFG 是垂等四边形.(4)如图3,已知Rt∠ABC ,∠B =90°,∠C =30°,AB =2,以AC 为边在AC 的右上方作等腰三角形,使四边形ABCD 是垂等四边形,请直接写出四边形ABCD 的面积.26.如图1所示,边长为4的正方形ABCD 与边长为()14a a <<的正方形CFEG 的顶点C 重合,点E 在对角线AC 上.(问题发现)如图1所示,AE 与BF 的数量关系为________;(类比探究)如图2所示,将正方形CFEG 绕点C 旋转,旋转角为()030αα<<︒,请问此时上述结论是否还成立?如成立写出推理过程,如不成立,说明理由;(拓展延伸)若点F 为BC 的中点,且在正方形CFEG 的旋转过程中,有点A 、F 、G 在一条直线上,直接写出此时线段AG 的长度为________27.如图,P 为正方形ABCD 的边BC 上的一动点(P 不与B ,C 重合),连接AP ,过点B 作BQ AP ⊥交CD 于点Q ,将BCQ ∆沿着BQ 所在直线翻折得到∆BQE ,延长QE 交AB 的延长线于点M .(1)探求AP 与BQ 的数量关系(2)若3AB =,2BP PC =,求QM 的长28.如图,正方形 ABCD 的边长为 4,E 是 BC 的中点,点 P 在射线 AD 上,过点 P 作 PF∠AE ,垂足为 F .(1)求证:PFA ABE ∽△△;(2)当点 P 在射线 AD 上运动时,设 PA=x ,是否存在实数 x ,使以 P ,F ,E 为顶点的三角形也与ABE △相似?若存在,求出 x 的值;若不存在,说明理由.29.如图,在正方形ABCD 中,E 是边DC 上的一点(与,C 不重合)连接AE ,将ADE 沿AE 所在的直线折叠得到AFE △,延长EF 交BC 于G ,作GH AG ⊥,与AE 的延长线交于点H ,连接CH . (1)求证:AG GH =(2)求证:CH 平分DCM ∠.30.如图,在边长为a 的正方形ABCD 中,作∠ACD 的平分线交AD 于F ,过F 作直线AC 的垂线交AC 于P ,交CD 的延长线于Q ,又过P 作AD 的平行线与直线CF 交于点E ,连接DE ,AE ,PD ,PB .(1)求AC,DQ的长;(2)四边形DFPE是菱形吗?为什么?(3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;(4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.。
中考数冲刺几何题型专项突破:专题一截长补短证明线段和差倍分等问题
中考数冲刺几何题型专项突破专题一截长补短证明线段和差倍分问题【知识总结】1、补短法:通过添加辅助线构造”一条线段使其为求证中的两条线段之和,在证所构造的线段和求证中那一条线段相等;2、截长法:通过添加辅助线先在求证中长线段上截取与线段中的某一段相等的线段,在证明截剩部分与线段中的另一段相等。
3、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明,这种做法一般遇到证明三条线段之间关系是常用.如图1,若证明线段AB,CD,EF之间存在EF=AB+CD,可以考虑截长补短法截长法:如图2,在EF上截取EG=AB,在证明GF = CD即可;补短法:如图3,延长AB至H点,使BH=CD,再证明AH = EF即可.【类型】一、截长截长”是指在较长的线段上截取另外两条较短的线段,截取的作法不同,涉及四种方法。
方法一:如图2所示,在BF上截取BM=DF,易证△BM OA DFC ( SAS),则MC=FC=FG , △ BCM^ DCF ,可得△ MCF为等腰直角三角形,又可证△ CFE=45 , △ CFG=90 ,△ CFGS MCF, Fg CM,可得四边形CGFM为平行四边形,则CG=MF , 于是BF=BM+MF=DF+CG.图2方法二:如图2所示,在BF上截取FM=GC,可证四边形GCFM为平行四边形,可得CM=FG=CF ;可得△ BFC=\ BDC=45 ,得△ MCF=90 ;于是△ BM OA DFC (AAS ), BM=DF ,又得△ BMC^DFC=135于是BF=FM+BM=CG+DF.上述两种方法中都利用了两个共顶点的等腰Rt△ BCD和厶MCF。
方法三:如图3所示,在BF上截取FK=FD,得等腰Rt△ DFK,可证得△ DFC=\ KFG=135 ,所以△ DFCX A KFG(SAS),所以KG=DC=BC ,△FKG=A FDC=A CBF,KGA BC,得四边形BCGK 为平行四边形,BK=CG ,于是BF=BK+KF=CG+DF.方法四:如图3所示,在BF上截取BK=CG ,可得四边形BCGK为平行四边形,BC=GK=DC , BC A KG ,△GKF=A CBF=A CDF,根据四边形BCFD为圆的内接四边形,可证得△ BFC=45,△ DFC=\ KFG,于是△ DCFX A KGF (AAS),DF=KF,于是BF=BK+KF=CG+DF.上述两种方法中都利用了两个共顶点的等腰Rt△ BDC 和^ KDF。
解析几何——难点突破——离心率专题
1.解析几何——难点突破——离心率专题(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--解析几何——难点突破——离心率专题离心率是圆锥曲线的重要几何性质,是描述圆锥曲线形状的重要参数.圆锥曲线的离心率的求法是一类常见题型,也是历年高考考查的热点.求解圆锥曲线的离心率的值或取值范围,其关键是建立恰当的等量或不等量关系,以过渡到含有离心率e 的等式或不等式使问题获解.[典例] (2016·全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )[思路点拨]本题以椭圆内点线的交错关系为条件,而结论是椭圆的离心率,思考目标自然是要得到a ,b ,c 满足的等量关系,那么方向不外乎两个:坐标关系或几何关系,抓住条件“直线BM 经过OE 的中点”作为突破口适当转化,获得所需等式.[方法演示] 法一:数形结合法如图,设直线BM 与y 轴的交点为N ,且点N 的坐标为(0,m ),根据题意,点N 是OE 的中点,则E (0,2m ),从而直线AE 的方程为x -a +y 2m =1,因此点M 的坐标为-c ,2m a -ca. 又△OBN ∽△FBM , 所以|FM ||ON |=|FB ||OB |,即2m a -ca m =a +c a ,解得c a =13,所以椭圆C 的离心率为13. 法二:交点法同法一得直线AE 的方程为x -a+y 2m =1,直线BN 的方程为x a +y m =1.又因为直线AE 与直线BN 交于点M ,且PF ⊥x 轴,可设M (-c ,n ).则⎩⎪⎨⎪⎧-c -a +n 2m =1,-c a +nm =1,消去n ,解得ca =13,所以椭圆C 的离心率为13.法三:三点共线法同法一得直线AE 的方程为x -a+y 2m =1,由题意可知M ⎝⎛⎭⎫-c ,2m ⎝⎛⎭⎫1-c a ,N (0,m ),B (a,0)三点共线,则2m ⎝⎛⎭⎫1-c a -m-c =m -a,解得c a =13,所以椭圆C 的离心率为13.法四:方程法设M (-c ,m ),则直线AM 的方程为y =m a -c (x +a ),所以E ⎝⎛⎭⎫0,ma a -c .直线BM 的方程为y =m -c -a (x -a ),与y 轴交于点⎝⎛⎭⎫0,ma a +c ,由题意知,2ma a +c =ma a -c ,即a +c =2(a -c ),解得c a =13,所以椭圆C 的离心率为13.法五:几何法在△AOE 中,MF ∥OE ,所以MF OE =a -ca .在△BFM 中,ON ∥MF ,所以OE 2MF =a a +c ,即OE MF =2aa +c.所以MF OE ·OE MF =a -c a ·2a a +c =1,即a +c =2(a -c ),解得c a =13,所以椭圆C 的离心率为13. [答案] A [解题师说]1.本题的五种方法,体现出三个重要的数学解题策略.想求得离心率.由于椭圆(双曲线)的元素a,b,c在图形、方程中具有一定的几何意义,所以通常可借助坐标关系或几何关系来解决离心率的问题.2.在求解圆锥曲线(椭圆和双曲线)的离心率问题时,要把握一个基本思想,就是充分利用已知条件和挖掘隐含条件建立起a与c的关系式.[注意]在求离心率的值时需建立等量关系式,在求离心率的范围时需建立不等量关系式.[应用体验]1.(2018·新疆模拟)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为()C.3 D.2解析:选A依题意,不妨设点P在双曲线的右支上,F1,F2分别为其左、右焦点,设椭圆与双曲线的离心率分别为e1,e2,则有e1=|F1F2||PF1|+|PF2|,e2=|F1F2||PF1|-|PF2|,则1e1+1e2=2|PF1||F1F2|.在△PF1F2中,易知∠F1F2P∈⎝⎛⎭⎫0,2π3,由正弦定理得|PF1||F1F2|=sin∠F1F2Psin∠F1PF2=23sin∠F1F2P,所以1e1+1e2=43sin∠F1F2P≤43=433,当且仅当sin∠F1F2P=1,即∠F1F2P=π2时取等号,因此1e1+1e2的最大值是433.2.已知双曲线x2a2-y2b2=1(a>1,b>0)的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(-1,0)到直线l的距离之和s≥45c,则双曲线离心率的取值范围为__________.解析:设直线l的方程为xa+yb=1.由已知,点(1,0)到直线l的距离d1与点(-1,0)到直线l的距离d2之和s=d1+d2=b a-1a2+b2+b a+1a2+b2=2abc≥45c,整理得5a c2-a2≥2c2,即5e2-1≥2e2,所以25e2-25≥4e4,即4e4-25e2+25≤0,解得54≤e2≤5,52≤e≤ 5.故双曲线离心率的取值范围为52, 5.答案:52,5一、选择题1.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )解析:选B 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +y b =1,即bx +cy -bc =0.由题意知|-bc |b 2+c2=14×2b ,解得c a =12,即e =12.2.(2016·全国卷Ⅱ)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )D .2解析:选A 法一:作出示意图如图所示,离心率e =c a =2c2a =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13= 2. 法二:因为MF 1与x 轴垂直,所以|MF 1|=b 2a .又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =ca = 2.3.(2018·宝鸡质检)已知双曲线C :mx 2+ny 2=1(mn <0)的一条渐近线与圆x 2+y 2-6x -2y +9=0相切,则C 的离心率等于( )或2516或54解析:选D 当m <0,n >0时,圆x 2+y 2-6x -2y +9=0的标准方程为(x -3)2+(y -1)2=1,则圆心为M (3,1),半径R =1,由mx 2+ny 2=1,得y 21n -x 2-1m=1,则双曲线的焦点在y 轴上,对应的一条渐近线方程为y =±a b x ,设双曲线的一条渐近线为y =ab x ,即ax -by =0.∵一条渐近线与圆x 2+y 2-6x -2y +9=0相切,∴圆心到直线的距离d =|3a -b |a 2+b 2=1,即|3a -b |=c ,平方得9a 2-6ab +b 2=c 2=a 2+b 2,所以8a 2-6ab =0,即4a -3b =0,b =43a ,平方得b 2=169a 2=c 2-a 2,所以c 2=259a 2,c =53a ,故离心率e =c a =53;当m >0,n <0时,双曲线的渐近线为y =±ba x ,设双曲线的一条渐近线方程为y =ba x ,即bx -ay =0, ∴|3b -a |a 2+b 2=1, 即9b 2-6ab +a 2=c 2=a 2+b 2,∴8b 2-6ab =0,即4b =3a ,平方得16b 2=9a 2,即16(c 2-a 2)=9a 2, 可得e =54. 综上,e =53或54.4.(2018·广西三市第一次联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),P 是双曲线C 右支上一点,且|PF 2|=|F 1F 2|,若直线PF 1与圆x 2+y 2=a 2相切,则双曲线的离心率为( )C .2D .3解析:选B 取线段PF 1的中点为A ,连接AF 2,又|PF 2|=|F 1F 2|,则AF 2⊥PF 1.∵直线PF 1与圆x 2+y 2=a 2相切,∴|AF 2|=2a .∵|PA |=12|PF 1|=a +c ,∴4c 2=(a +c )2+4a 2,化简得(3c -5a )(a +c )=0,则双曲线的离心率为53.5.已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆上一点(异于左、右顶点),过点P 作∠F 1PF 2的角平分线交x 轴于点M ,若2|PM |2=|PF 1|·|PF 2|,则该椭圆的离心率为( )解析:选B 记∠PF 1F 2=2α,∠PF 2F 1=2β,则有∠F 1MP =2β+π-2α+2β2=π2+(β-α),sin ∠F 1MP =cos(α-β)=sin ∠F 2MP ,则椭圆的离心率e =2c 2a =sin 2α+2βsin 2α+sin 2β=2sin α+βcos α+β2sin α+βcos α-β=cos α+βcos α-β.由已知得2|PM ||PF 1|=|PF 2||PM |,即2sin 2αcos α-β=cos α-βsin 2β,2sin 2αsin 2β=cos 2(α-β),cos(2α-2β)-cos(2α+2β)=cos 2(α-β),即[2cos 2(α-β)-1]-[2cos 2(α+β)-1]=cos 2(α-β),cos 2(α-β)=2cos 2(α+β),cos α+βcos α-β=22=e ,所以该椭圆的离心率e =22.6.(2018·云南11校跨区调研)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,直线4x -3y +20=0过点F 且与C 在第二象限的交点为P ,O 为原点,若|OP |=|OF |,则C 的离心率为( )A .5解析:选A 依题意得F (-5,0),|OP |=|OF |=5,tan ∠PFO =43,cos ∠PFO =35,|PF |=2|OF |cos ∠PFO =6.记双曲线的右焦点为F 2,则有|FF 2|=10.在△PFF 2中,|PF 2|=|PF |2+|FF 2|2-2|PF |·|FF 2|·cos ∠PFF 2=8.由双曲线的定义得a =12(|PF 2|-|PF |)=1,则C 的离心率为e =ca =5.7.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,若双曲线右支上存在两点B ,C 使得△ABC 为等腰直角三角形,则该双曲线的离心率e 的取值范围为( )A .(1,2)B .(2,+∞)C .(1,2)D .(2,+∞)解析:选C如图,由△ABC 为等腰直角三角形,所以∠BAx =45°. 设其中一条渐近线与x 轴的夹角为θ,则θ<45°,即tan θ<1. 又其渐近线的方程为y =ba x , 则ba <1,又e = 1+b 2a 2,所以1<e <2,故双曲线的离心率e 的取值范围为(1,2).8.(2018·广东五校协作体诊断)已知点F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2且垂直于x 轴的直线与双曲线交于M ,N 两点,若MF 1―→·NF 1―→>0,则该双曲线的离心率e 的取值范围是( )A .(2,2+1)B .(1,2+1)C .(1,3)D .(3,+∞)解析:选B 设F 1(-c,0),F 2(c,0),依题意可得c 2a 2-y 2b 2=1,所以y =±b 2a ,不妨设M ⎝⎛⎭⎫c ,b 2a ,N ⎝⎛⎭⎫c ,-b 2a ,则MF 1―→·NF 1―→=-2c ,-b 2a ·⎝⎛⎭⎫-2c ,b 2a =4c 2-b 4a 2>0,得到4a 2c 2-(c 2-a 2)2>0,即a 4+c 4-6a 2c 2<0,故e 4-6e 2+1<0,解得3-22<e 2<3+22,又e >1,故1<e 2<3+22,得1<e <1+ 2.9.(2018·贵阳检测)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(2,1)在“右”区域内,则双曲线离心率e 的取值范围是( )解析:选B 依题意,注意到题中的双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±ba x ,且“右”区域是由不等式组⎩⎨⎧y <b a x ,y >-ba x所确定,又点(2,1)在“右”区域内,于是有1<2b a ,即b a >12,因此题中的双曲线的离心率e =1+⎝⎛⎭⎫b a 2∈⎝ ⎛⎭⎪⎫52,+∞.10.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F .若13<k <12,则椭圆C 的离心率的取值范围是( )解析:选C 由题意可知,|AF |=a +c ,|BF |=a 2-c 2a ,于是k =a 2-c 2a a +c .又13<k <12,所以13<a 2-c 2a a +c <12,化简可得13<1-e 21+e<12,从而可得12<e <23.11.已知F 1,F 2是双曲线y 2a 2-x 2b 2=1(a >0,b >0)的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆内,则双曲线的离心率的取值范围为( )A .(1,2)B .(2,+∞)C .(1,2)D .(2,+∞)解析:选A 如图,不妨设F 1(0,c ),F 2(0,-c ),则过点F 1与渐近线y =ab x 平行的直线为y =ab x +c .联立⎩⎨⎧y =ab x +c ,y =-ab x ,解得⎩⎨⎧x =-bc2a ,y =c2,即M ⎝⎛⎭⎫-bc 2a ,c 2.因为点M 在以线段F 1F 2为直径的圆x 2+y 2=c 2内,故⎝⎛⎭⎫-bc 2a 2+⎝⎛⎭⎫c 22<c 2,化简得b 2<3a 2,即c 2-a 2<3a 2,解得ca <2,所以双曲线的离心率的取值范围为(1,2).12.(2018·湘中名校联考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点,与双曲线的渐近线交于C ,D 两点,若|AB |≥35|CD |,则双曲线离心率的取值范围为( ),+∞ ,+∞ C .1,53D .1,54解析:选B 将x =c 代入x 2a 2-y 2b 2=1得y =±b 2a ,不妨取A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b 2a ,所以|AB |=2b 2a .将x =c 代入双曲线的渐近线方程y =±b a x ,得y =±bc a ,不妨取C ⎝⎛⎭⎫c ,bc a ,D ⎝⎛⎭⎫c ,-bc a ,所以|CD |=2bc a .因为|AB |≥35|CD |,所以2b 2a ≥35×2bc a ,即b ≥35c ,则b 2≥925c 2,即c 2-a 2≥925c 2,即1625c 2≥a 2,所以e 2≥2516,所以e ≥54.二、填空题13.(2018·洛阳第一次统考)设椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点为,C 是椭圆E 上关于原点对称的两点(B ,C 均不在x 轴上),若直线BF 平分线段AC ,则E 的离心率为________.解析:法一:设AC 的中点为M (x 0,y 0),依题意得点A (a,0),C (2x 0-a,2y 0),B (a -2x 0,-2y 0),F (c,0),其中y 0≠0.由B ,F ,M 三点共线得k BF =k BM ,2y 0c -a +2x 0=3y 03x 0-a ≠0,化简得a =3c ,因此椭圆E 的离心率为13.法二:连接AB ,记AC 的中点为M ,B (x 0,y 0),C (-x 0,-y 0),则在△ABC 中,AO ,BM 为中线,其交点F 是△ABC 的重心.又F (c,0),由重心坐标公式得c =x 0-x 0+a3,化简得a =3c ,因此椭圆E 的离心率为13.答案:1314.(2018·湖北部分重点高中联考)已知双曲线C 2与椭圆C 1:x 24+y 23=1具有相同的焦点,则两条曲线相交的四个交点形成的四边形面积最大时双曲线C 2的离心率为__________.解析:设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意知a 2+b 2=4-3=1,由⎩⎨⎧ x 24+y 23=1,x 2a 2-y 2b 2=1,解得交点的坐标满足⎩⎪⎨⎪⎧ x 2=4a 2,y 2=31-a 2,由椭圆和双曲线关于坐标轴对称知,以它们的交点为顶点的四边形是长方形,其面积S =4|xy |=44a 2·31-a 2=83·a 2·1-a 2≤83·a 2+1-a 22=43,当且仅当a 2=1-a 2,即a 2=12时,取等号,此时双曲线的方程为x 212-y 212=1,离心率e = 2. 答案:215.已知点A (3,4)在椭圆x 2a 2+y 2b 2=1(a >b >0)上,则当椭圆的中心到直线x =a 2a 2-b 2的距离最小时,椭圆的离心率为__________.解析:因为点A (3,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的点,所以9a 2+16b 2=1,所以b 2=16a 2a 2-9.因为a >b >0,所以1=9a 2+16b 2>9a 2+16a 2=25a 2,从而a 2>25.设椭圆的中心到直线x =a 2a 2-b 2的距离为d ,则 d =a 2a 2-b 2=a 4a 2-16a 2a 2-9=a 21-16a 2-9=a 2a 2-9a 2-25=a 2-25+400a 2-25+41≥2400+41=9, 当且仅当a 2-25=400a 2-25,即a 2=45时,等号成立,此时b 2=20,c 2=25,于是离心率e =c a =2545=535=53. 答案:5316.已知抛物线y =14x 2的准线过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的虚轴的一个端点,且双曲线C 与直线l :x +y =1相交于两点A ,B .则双曲线C 的离心率e 的取值范围为________.解析:抛物线y =14x 2化为x 2=4y ,所以准线为y =-1,所以双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的虚轴的一个端点为(0,-1),即b =1,所以双曲线C :x 2a 2-y 2=1(a >0).联立⎩⎪⎨⎪⎧x 2-a 2y 2-a 2=0,x +y =1, 消去y ,得(1-a 2)x 2+2a 2x -2a 2=0. ∵与双曲线交于两点A ,B ,∴⎩⎪⎨⎪⎧ 1-a 2≠0,4a 4+8a 21-a 2>0⇒0<a 2<2且a 2≠1. 而b =1,则c =a 2+b 2=a 2+1,∴离心率e =c a =a 2+1a =1+1a 2>1+12=62,且e =1+1a 2≠2, ∴e 的取值范围为⎝⎛⎭⎪⎫62,2∪(2,+∞). 答案:⎝ ⎛⎭⎪⎫62,2∪(2,+∞)。
2024中考数学核心几何模型重点突破专题02 角平分线模型(含解析)
2024中考数学核心几何模型重点突破专题02角平分线模型模型分析【理论基础】角平分线的概念:如图,已知OC 是AOB ∠的角平分线⇒AOB COB AOC ∠=∠=∠21【模型变式1】双中点求和型如图已知OC 是AOB ∠内任意一条射线,射线OE 是AOC ∠的角平分线,射线OF 是COB ∠的角平分线⇒AOB EOF ∠=∠21【证明】射线OE 是AOC ∠的角平分线,射线OF 是COB ∠的角平分线;21AOC EOC AOE ∠=∠=∠∴COB FOB COF ∠=∠=∠21COFEOC EOF ∠+∠=∠AOB COB AOC COB AOC EOF ∠=∠+∠=∠+∠=∠∴21)(212121AOB EOF ∠=∠21【模型总结】某个角内的一条射线,把这个角分成两个角,这两个角的平分线形成的角等于原来角的一半。
【模型变式2】双中点求差型如图已知OB 是AOC ∠外任意一条射线,射线OE 是AOB ∠的角平分线,射线OF 是COB ∠的角平分线⇒AOC EOF ∠=∠21【证明】射线OE 是AOB ∠的角平分线,射线OF 是COB ∠的角平分线;21AOB EOB AOE ∠=∠=∠∴COB FOB COF ∠=∠=∠21FOB EOB EOF ∠-∠=∠AOC COB AOB COB AOB EOF ∠=∠-∠=∠-∠=∠∴21)(212121AOC EOF ∠=∠21【模型总结】某个角外的一条射线,以该射线为邻边的两个角的平分线形成的角等于原来角的一半。
典例分析【例1】如图,已知AOB ∠和AOC ∠互余,OM 、ON 分别平分AOB ∠和AOC ∠,20MON ∠=︒,则AOB ∠=_______________°.【例2】如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=1∠EOC2C.∠AOD+∠BOE=60°D.∠BOE=2∠COD【例3】如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,求∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,尝试发现∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,①猜想:∠MON与α、β有数量关系吗?直接写出结论即可;②当∠CON=3∠BOM时,直接写出α、β之间的数量关系模型演练一、单选题1.如图,直线AB∥CD,直线EF分别交AB,CD于点G,H.GM平分∠BGH,且∠GHM=48°,那么∠GMD的度数为()A.96°B.104°C.114°D.124°2.如图,∠AOC与∠BOC互为余角,OD平分∠BOC,∠EOC=2∠AOE.若∠COD=18°,则∠AOE的大小是()A.12°B.15°C.18°D.24°3.如图,直线AB,CD,EO相交于点O,已知OA平分∠EOC,若∠EOC:∠EOD=2:3,则∠BOD的度数为()A.40°B.37°C.36°D.35°4.如图,直线AC和直线BD相交于点O,OE平分∠BOC.若∠1+∠2=80°,则∠3的度数为()A.40°B.50°C.60°D.70°5.(2022·山东东营·二模)如图,CD AB ∥,点O 在AB 上,OE 平分,110BOD OF OE D ∠⊥∠=︒,,则AOF ∠的度数是()A .20︒B .25︒C .30°D .35︒二、填空题6.(2022·湖南长沙·七年级期末)如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,OF 平分COE ∠.若76AOC ∠=︒,则BOF ∠的度数为______°.7.如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE .若∠BOF =30°,则∠DOE =_______°.8.如图,直线AB 、CD 交于点O ,CO OE ⊥,OF 是AOD ∠的平分线,OG 是EOB ∠的平分线,44AOC ∠=︒,则∠=FOG _____________.9.如图,已知射线OC 在AOB ∠内部,OD 平分AOC ∠,OE 平分BOC ∠,OF 平分AOB ∠,现给出以下4个结论:①DOE AOF ∠=∠;②2DOF AOF COF ∠=∠-∠;③AOD BOC ∠=∠;④()12EOF COF BOF ∠=∠+∠其中正确的结论有(填写所有正确结论的序号)______.10.如图,∠COD 在∠AOB 的内部,且12COD AOB Ð=Ð,若将∠COD 绕点O 顺时针旋转,使∠COD 在∠AOB 的外部,在运动过程中,OE 平分∠BOC ,则∠DOE 与∠AOC 之间满足的数量关系是_____.三、解答题11.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数.12.如图,O 为直线AB 上的一点,48AOC ∠=︒,OD 平分AOC ∠,90DOE ∠=︒.(1)求BOD ∠的度数;(2)OE 是BOC ∠的平分线吗?为什么?13.已知O 为直线AB 上一点,过点O 向直线AB 上方引两条射线OC ,OD ,且OC 平分AOD ∠.(Ⅰ)请在图①中BOD ∠的内部画一条射线OE ,使得OE 平分BOD ∠,并求此时COE ∠的度数;(Ⅱ)如图②,若在BOD ∠内部画的射线OE ,恰好使得3BOE DOE ∠=∠,且70COE ∠=︒,求此时∠BOE 的度数.14.已知:如图所示(1),AOB ∠和COD ∠共顶点,OB OD 、重合,OM 为AOD ∠的平分线,ON 为BOC ∠的平分线,=AOB α∠,=COD β∠.(1)如图所示(2),若=90α︒,=30β︒,则MON ∠=_______.(2)如图所示(3),若COD ∠绕O 点逆时针旋转,且=BOD γ∠,求MON ∠.(3)如图所示(4),若=2αβ,COD ∠绕O 点逆时针旋转,OE 平分BOD ∠,以下两个结论:①AOD COE∠∠为定值;②-AOD COE ∠∠为定值;请选择正确的结论,并说明理由.参考答案与详细解析典例分析【例1】如图,已知AOB ∠和AOC ∠互余,OM 、ON 分别平分AOB ∠和AOC ∠,20MON ∠=︒,则AOB ∠=_______________°.【答案】65【分析】根据余角的定义以及角平分线的定义解答即可.【解析】解:∵OM 、ON 分别平分AOB ∠和AOC ∠,20MON ∠=︒,∴12AOM AOB ∠=∠,12AON AOC ∠=∠,∴112022AOB AOC AOM AON MON ∠-∠=∠-∠=∠=︒,∴40AOB AOC ∠-∠=︒①,又∵AOB ∠和AOC ∠互余,∴90AOB AOC ∠+∠=︒②,①+②,得:24090AOB ∠=︒+︒,解得:65AOB ∠=︒.故答案为:65.【例2】如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD=12∠EOCC.∠AOD+∠BOE=60°D.∠BOE=2∠COD【答案】C【分析】依据OD、OE分别是∠AOC、∠BOC的平分线,即可得出∠AOD+∠BOE=∠EOC+∠COD=∠DOE=60°,结合选项得出正确结论.【解析】∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠AOD=∠COD,∠EOC=∠BOE.又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=120°,∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=60°.故选C.【例3】如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,求∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,尝试发现∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,①猜想:∠MON与α、β有数量关系吗?直接写出结论即可;②当∠CON=3∠BOM时,直接写出α、β之间的数量关系【答案】(1)45°(2)∠MON=12α(3)①∠MON=12α;②α=23β或=43β【分析】(1)求出∠AOC的度数,再根据角平分线的定义求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可;(2)求出∠AOC的度数,再根据角平分线的定义求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可;(3)①求出∠AOC的度数,再根据角平分线的定义求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可;②分OM、ON在OB的异侧和同侧两种情况求解.【解析】(1)∵∠AOB是直角,∴∠AOB=90°,∠BOC=60°,∴∠COA=∠AOB+∠BOC=90°+60°=150°.∵OM平分∠AOC,∴∠COM=12∠COA=75°,∵ON平分∠BOC,∴∠CON=12∠BOC=30°,∴∠MON=∠COM-∠CON=75°-30°=45°(2)∵∠AOB=α,∠BOC=60°,∴∠COA=α+60°,∵OM平分∠AOC,∴∠COM=12∠COA=12(α+60°),∵ON平分∠BOC,∴∠CON=12∠BOC=30°,∴∠MON=∠COM-∠CON=12(α+60°)-30°=12α.(3)①∵∠AOB=α,∠BOC=β,∴∠COA=∠AOB+∠BOC=α+β.∵OM平分∠AOC,∴∠COM=12∠COA=12(α+β),∵ON平分∠BOC,∴∠CON=12∠BOC=12β,∴∠MON=∠COM-∠CON=12(α+β)-12β=12α.②当OM、ON在OB的异侧时,如图3-1,∵∠COM=12(α+β),∠BOC=β,∴∠BOM=12(α+β)-β=12(α-β),∵∠CON=3∠BOM时,∠CON=12β,∴12β=3×12(α-β),∴α=43β;当OM、ON在OB的同侧时,如图3-2,∵∠COM=12(α+β),∠BOC=β,∴∠BOM=β-12(α+β)=12(β-α),∵∠CON=3∠BOM时,∠CON=12β,∴12β=3×12(β-α),∴α=23β.综上可知,α=23β或=43β.模型演练一、单选题1.如图,直线AB∥CD,直线EF分别交AB,CD于点G,H.GM平分∠BGH,且∠GHM=48°,那么∠GMD的度数为()A.96°B.104°C.114°D.124°【答案】C【分析】根据两直线平行,同旁内角互补求出∠BGH,再根据角平分线的定义可得∠BGM=12∠BGH,然后根据两直线平行,同旁内角互补列式计算即可得解.【解析】解:∵AB∥CD,∴∠BGH=180°-∠GHM=180°-48°=132°,∵GM平分∠BGH,∴∠BGM =12∠BGH =12×132°=66°,∵AB ∥CD ,∴∠GMD =180°-∠BGM =180°-66°=114°.故选:C .2.如图,∠AOC 与∠BOC 互为余角,OD 平分∠BOC ,∠EOC =2∠AOE .若∠COD =18°,则∠AOE 的大小是()A .12°B .15°C .18°D .24°【答案】C 【分析】利用角平分线求出∠BOC =36°,利用∠AOC 与∠BOC 互为余角,求出∠AOC =90-36°=54°,再根据∠EOC =2∠AOE ,即可求出∠AOE =18°.【解析】解:∵∠COD =18°,OD 平分∠BOC ,∴∠BOC =36°,∵∠AOC 与∠BOC 互为余角,∴∠AOC =90°-36°=54°∵∠EOC =2∠AOE ,∴3∠AOE =54°,∴∠AOE =18°.故选:C3.如图,直线AB ,CD ,EO 相交于点O ,已知OA 平分∠EOC ,若∠EOC:∠EOD =2:3,则∠BOD 的度数为()A .40°B .37°C .36°D .35°【答案】C 【分析】根据:2:3EOC EOD ∠∠=与180EOC EOD ∠+∠=︒得到EOC ∠,根据OA 平分EOC ∠得到AOC ∠,最后根据对顶角相等即可求出BOD ∠.【解析】解::2:3EOC EOD ∠∠=,180EOC EOD ∠+∠=︒,31802EOC EOC ∴∠+∠=︒,72EOC ∴∠=︒,OA 平分EOC ∠,11723622AOC EOC ∴∠=∠=⨯︒=︒,36BOD AOC ∴∠=∠=︒.故选:C .4.如图,直线AC 和直线BD 相交于点O ,OE 平分∠BOC .若∠1+∠2=80°,则∠3的度数为()A .40°B .50°C .60°D .70°【答案】D 【分析】根据对顶角和邻补角的定义即可得到BOC ∠的度数,再根据角平分线即可得出3∠的度数.【解析】解:12∠=∠,1280∠+∠=︒,1240∴∠=∠=︒,140BOC ∴∠=︒,又OE 平分BOC ∠,3140270∴∠=︒÷=︒.故选:D .5.(2022·山东东营·二模)如图,CD AB ∥,点O 在AB 上,OE 平分,110BOD OF OE D ∠⊥∠=︒,,则AOF ∠的度数是()A .20︒B .25︒C .30°D .35︒【答案】D 【分析】根据CD AB ∥,∠D =110°,求出∠AOD =70°,∠DOB =110°,利用OE 平分∠BOD ,得到∠DOE =55°,由∠FOE =90°求出∠DOF =90°﹣55°=35°,即可求出∠AOF 的度数.【解析】解:∵CD AB ∥,∴∠AOD +∠D =180°,∠DOB =∠D ,∵∠D =110°,∴∠AOD =70°,∠DOB =110°,∵OE 平分∠BOD ,∴∠DOE =12DOB ∠=55°,∵OF ⊥OE ,∴∠FOE =90°,∴∠DOF =90°﹣55°=35°,∴∠AOF =∠AOD ﹣∠DOF =70°﹣35°=35°,故D 正确.故选:D .二、填空题6.(2022·湖南长沙·七年级期末)如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,OF 平分COE ∠.若76AOC ∠=︒,则BOF ∠的度数为______°.【答案】33【分析】先根据对顶角相等求出76BOD ∠=︒,再由角平分线定义得38DOE BOE ∠=∠=︒,由邻补角得142COE ∠=︒,再根据角平分线定义得71EOF ∠=︒,从而可得结论.【解析】解:∵AOC BOD ∠∠、是对顶角,∴76,BOD AOC ∠=∠=︒∵OE 平分BOD ∠,∴1382DOE BOE BOD ∠=∠=∠=︒∴142COE ∠=︒,∵OF 平分COE ∠.∴1712EOF COE ∠=∠=︒又BOE BOF EOF ∠+∠=∠,∴=713833BOF EOF BOE ∠∠-∠=︒-︒=︒,故答案为:337.如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE .若∠BOF =30°,则∠DOE =_______°.【答案】40【分析】利用角平分线定义列式计算即可求出所求.【解析】解:∵OE 平分∠BOD ,∴∠BOE =∠DOE ,设∠BOE =∠DOE =x ,则有∠COE =180°-x ,∵OF 平分∠COE ,∴∠EOF =12(180°-x )=90°-12x ,由题意得:∠EOF -∠BOE =∠BOF =30°,即90°-12x -x =30°,解得:x =40°,则∠DOE =40°.故答案为:40.8.如图,直线AB 、CD 交于点O ,CO OE ⊥,OF 是AOD ∠的平分线,OG 是EOB ∠的平分线,44AOC ∠=︒,则∠=FOG _____________.【答案】135︒【分析】根据邻补角求得AOD ∠,COB ∠,根据CO OE ⊥,求得90COE ∠=︒,进而求得EOB ∠,根据对顶角求得BOD AOC ∠=∠,根据角平分线的定义求得12FOD AOD ∠=∠,12BOG BOE ∠=∠,根据FOG FOD BOD BOG ∠=∠+∠+∠即可求解.【解析】解:44AOC ∠=︒,180AOD AOC COB ∴∠=︒-∠=∠18044136=︒-︒=︒,CO OE ⊥,∴90COE ∠=︒,1369046BOE BOC COE ∴∠=∠-∠=︒-︒=︒,OF 是AOD ∠的平分线,OG 是EOB ∠的平分线,∴1682FOD AOD ∠=∠=︒,1232BOG BOE ∠=∠=︒,又BOD AOC ∠=∠44=︒,∴FOG FOD BOD BOG∠=∠+∠+∠1122AOD BOD BOE =∠+∠+∠684423=︒+︒+︒135=︒故答案为:135︒.9.如图,已知射线OC 在AOB ∠内部,OD 平分AOC ∠,OE 平分BOC ∠,OF 平分AOB ∠,现给出以下4个结论:①DOE AOF ∠=∠;②2DOF AOF COF ∠=∠-∠;③AOD BOC ∠=∠;④()12EOF COF BOF ∠=∠+∠其中正确的结论有(填写所有正确结论的序号)______.【答案】①②④【分析】①根据OD 平分AOC ∠,OE 平分BOC ∠,OF 平分AOB ∠,得出12AOD COD AOC ∠=∠=∠,12BOE COE BOC ∠=∠=∠,12AOF BOF AOB ∠=∠=∠,求出12∠=∠DOE AOB ,即可得出结论;②根据角度之间的关系得出12DOF BOC COE ∠=∠=∠,得出AOF COF BOF COF BOC ∠-∠=∠-∠=∠,即可得出结论;③无法证明AOD BOC ∠=∠;④根据12DOF BOC COE ∠=∠=∠,得出EOF COD ∠=∠,2COF BOF COD ∠+∠=∠,即可得出结论.【解析】解:①∵OD 平分AOC ∠,OE 平分BOC ∠,OF 平分AOB ∠,∴12AOD COD AOC ∠=∠=∠,12BOE COE BOC ∠=∠=∠,12AOF BOF AOB ∠=∠=∠,AOC BOC AOB ∠+∠=∠,12DOC COE AOD BOE AOB ∴∠+∠=∠+∠=∠,即12∠=∠DOE AOB ,∴DOE AOF ∠=∠,故①正确;②∵DOF DOE EOF∠=∠-∠1122AOB COF BOC ⎛⎫=∠-∠+∠ ⎪⎝⎭1122AOB COF BOC =∠-∠-∠()1122AOB BOF BOC BOC =∠-∠-∠-∠111222AOB AOB BOC BOC ⎛⎫=∠-∠-∠-∠ ⎪⎝⎭111222AOB AOB BOC BOC =∠-∠+∠-∠12BOC =∠AOF COF BOF COF BOC ∠-∠=∠-∠=∠,∴2DOF AOF COF ∠=∠-∠,故②正确;③AOD ∠与BOC ∠不一定相等,故③错误;④根据解析②可知,12DOF BOC COE ∠=∠=∠,∴EOF EOC COF COF DOF COD ∠=∠+∠=∠+∠=∠,∵2COF BOF COF AOF AOC COD ∠+∠=∠+∠=∠=∠,∴()12EOF COF BOF ∠=∠+∠,故④正确;综上分析可知,正确的有①②④.故答案为:①②④.10.如图,∠COD 在∠AOB 的内部,且12COD AOB Ð=Ð,若将∠COD 绕点O 顺时针旋转,使∠COD 在∠AOB 的外部,在运动过程中,OE 平分∠BOC ,则∠DOE 与∠AOC 之间满足的数量关系是_____.【答案】2AOC DOE ∠∠=或3602AOC DOE∠=︒-∠【分析】分情况讨论:当旋转的角度不超过180︒时,当旋转的角度超过180︒,不超过360︒时,画出旋转后的图,利用角之间的关系计算即可.【解析】解:当旋转的角度不超过180︒时,如图:∴AOC AOB BOC ∠=∠+∠,DOE COD COE ∠=∠+∠,∵12COD AOB Ð=Ð,OE 平分∠BOC ,∴BOE COE ∠=∠,()22=2∠=∠+∠∠+∠AOC COD COE COD COE ,∴2AOC DOE ∠∠=.当旋转的角度超过180︒,不超过360︒时,如图,∴()360∠=︒-∠+∠AOC AOB BOC ,DOE COD COE ∠=∠+∠,∵12COD AOB Ð=Ð,OE 平分∠BOC ,∴BOE COE ∠=∠,222=∠=∠+∠∠+∠DOE COD COE AOB BOC ,∴3602AOC DOE ∠=︒-∠.三、解答题11.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数.【答案】120°,30°【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数.【解析】∵OE 平分∠AOB ,∠AOB=90°∴∠BOE=∠AOB =45°又∵∠EOF=60°∴∠BOF=∠EOF -∠BOE=15°又∵OF 平分∠BOC∴∠BOC=2∠BOF=30°∴∠AOC=∠AOB +∠BOC=120°故∠AOC=120°,∠COB=30°.12.如图,O 为直线AB 上的一点,48AOC ∠=︒,OD 平分AOC ∠,90DOE ∠=︒.(1)求BOD ∠的度数;(2)OE 是BOC ∠的平分线吗?为什么?【答案】(1)156BOD ∠=︒(2)OE 是BOC ∠的平分线,理由见解析【分析】(1)由角平分线的性质可知∠1的度数,再利用互补即可算出∠BOD 的度数;(2)想要判断OE 是否为∠BOC 的平分线,只需分别计算出∠3和∠4的度数,看它们是否相等.【解析】(1)解:48AOC ∠=︒,OD 平分AOC ∠,1112482422AOC ∴∠=∠=∠=⨯︒=︒,1180BOD ∠+∠=︒,18024156BOD ∴∠=︒-︒=︒;(2)解:OE 是BOC ∠的平分线.理由如下:90DOE ∠=︒,224∠=︒,390266∴∠=︒-∠=︒,90DOE ∠=︒,156BOD ∠=︒,466BOD DOE ∴∠=∠-∠=︒,3466∴∠=∠=︒,OE ∴是BOC ∠的平分线.13.已知O 为直线AB 上一点,过点O 向直线AB 上方引两条射线OC ,OD ,且OC 平分AOD ∠.(Ⅰ)请在图①中BOD ∠的内部画一条射线OE ,使得OE 平分BOD ∠,并求此时COE ∠的度数;(Ⅱ)如图②,若在BOD ∠内部画的射线OE ,恰好使得3BOE DOE ∠=∠,且70COE ∠=︒,求此时∠BOE 的度数.【答案】(Ⅰ)90COE ∠=︒;(Ⅱ)∠BOE 的度数为60︒.【分析】由角平分线的定义得出12COD AOD ∠=∠,12EOD BOD ∠=∠,()1=902COE COD EOD AOD BOD ∠=∠+∠+=︒∠∠.(2)设1∠=α,则23α∠=,(4370)α∠=∠=︒-,根据平角的定义列等式求出结果即可.【解析】(Ⅰ)如图,∵OC 平分AOD ∠,OE 平分BOD ∠,∴12COD AOD ∠=∠,12EOD BOD ∠=∠,∴()1=902COE COD EOD AOD BOD ∠=∠+∠+=︒∠∠.(Ⅱ)如下图,设1∠=α,根据题意得2313α∠=∠=.∵1370COE ∠=∠+∠=︒,∴370()α∠=︒-.∵OC 平分AOD ∠,∴(4370)α∠=∠=︒-,∵1234180∠+∠+∠+∠=︒,∴()()37070180αααα++-+-=︒.解得:20α=︒.∴2360α∠==︒.∴∠BOE 的度数为60︒.14.已知:如图所示(1),AOB ∠和COD ∠共顶点,OB OD 、重合,OM 为AOD ∠的平分线,ON 为BOC ∠的平分线,=AOB α∠,=COD β∠.(1)如图所示(2),若=90α︒,=30β︒,则MON ∠=_______.(2)如图所示(3),若COD ∠绕O 点逆时针旋转,且=BOD γ∠,求MON ∠.(3)如图所示(4),若=2αβ,COD ∠绕O 点逆时针旋转,OE 平分BOD ∠,以下两个结论:①AOD COE∠∠为定值;②-AOD COE ∠∠为定值;请选择正确的结论,并说明理由.【答案】(1)60︒;(2)2MON αβ+∠=;(3)①2AOD COE∠=∠.【分析】(1)利用角平分线的性质即可得出∠MON =12∠AOD +12∠BOC ,进而求出即可;(2)∠BOD =γ,而122MOD AOD αγ+∠=∠=,122NOB COB βγ+∠=∠=,进而得出即可;(3)利用已知表示出∠COE 和∠AOD ,进而得出答案.【解析】解:(1)(1)∵OM 为∠AOD 的平分线,ON 为∠BOC 的平分线,∠AOB =α,∠COD =β,α=90゜,β=30゜,∴∠MON =12α+12β=60°;故答案为60°;(2)122MOD AOD αγ+∠=∠=,122NOB COB βγ+∠=∠=,222MON MOD NOB DOB αγβγαβγ+++∴∠=∠+∠-∠=+-=;(3)①2AOD COE∠=∠,设2BOD x ∠=,则222AOD a x x β∠=+=+,COE x β∠=+,∴2AOD COE ∠=∠.。
【全国通用】初中几何正方形解答题专题突破练习(1)
【全国通用】初中几何正方形解答题专题突破练习(1)I. 如图,四边形ABCD是正方形,点O为对伪线4C的中点.(1)问题解决:如图,连接B0,分别取CB.BO的中点P, Q,连接PQ, 9APQ与BO的数觉关系是________ ,位置关系是_______ :(2)问题探究:如图,AO'E是将图:中的XO8绕点[按顺时针方向旋转45。
得到的三角形,连接CE,点P,。
分别为<?£.的中点,连接P0 PB.判断PQB的形状,并证明你的结论:(3)拓展延伸:如图.是将图:中的绕点1按逆时针方向旋转45。
得到的三角形,连接点P,。
分别为CE 8。
的中点,连接P0 PB.若正方形ABCD的边长为1,求性弟的面积.D ______ C D C D _______________________ C2. 如图.正方形OABC的边OA, OC在坐标轴上•点B的坐标为(-6.6).点P从点A出发,以每秒” 个单位长度的速度沿x轴向点。
运动:点。
从点。
同时出发,以相同的速度沿x轴的正方向运动.规定点P 到达点。
时,点。
也停止运动.连接BP,过户点作的垂线,与过点。
平行于)'轴的直线相交于点。
,与〉'轴交于点E,连接PE.设点P运动的时间为,(S).(1)写出。
的度数和点D的坐标(点。
的坐标用,表示〉.(2)探索APOE周长是否随时间,的变化而变化.若变化.说明理由:若不变•试求这个定值.<3)当何值时,ZBE为等腰三角形?3. 如图1,正方形ABCD, E为平面内一点,且ZB£C = 90°,把二BCE绕点/?逆时针旋转90。
得:BAG,直线4G和宜线CE交于点尸.(1) 证明:四边形8EFG是正方形:(2) 若ZAGD = 135。
,猜测C£和CP的数堂关系,并说明理由:(3) 如图2.连接DF.若A8 = 13, CF = 17 •求。
尸的长.4. 如图.己知正方形ABCD的边长为3, E、F分别是边BC、CD上的点.I EAF=45°(1) 求证:BE+DF-EF(2) 当BE-1时,求EF的长5. 己知边长为2的正方形ABCD中, P是对角线AC上的一个动点(与点A、C不重合),过点P作PE PB.PE交DC 丁点E,过点E作EF \C.垂足为点F.(I) 求证:PB=PE:<2)在点P的运动过程中,PF的长度足否发生变化?若不变,试求出这个不变的值,写出解答过程:若变化,试说明理由:6. 如图,已知正方形ABCD.(1) 如图1, E是AD t一点,过羽上一点0作8磐的垂线交A8于点G ,交CD于点H ,求证:BE = GH .(2) 如图2,过正方形ABCD内任意一点作两条互.相垂直的宜线,分别交A。
高考数学专题突破学生版-几何体的体积、面积和三视图与直观图(考点讲析)
专题7.1几何体的体积、面积和三视图与直观图(考点讲析)提纲挈领A.4B.8C.12D.16 【典例2】(2018年全国卷II 文)在正方体中,的中点,则异面直线所成角的正切值为( )A.C.【方法技巧】解决与空间几何体结构特征有关问题的技巧 (1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一反例即可.(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.(3)既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略. 热门考点02 空间几何体的直观图1.用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.2.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S 直观图=4S 原图形,S 原图形=直观图. 【典例3】如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+ B. 12 C. 22D .1+ 【典例4】在如图所示的直观图中,四边形O ′A ′B ′C ′为菱形且边长为2 cm ,则在xOy 坐标系中,四边形ABCO 为________,面积为________ cm 2.【特别提醒】解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.热门考点03 空间几何体的三视图三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.即“长对正,宽相等,高平齐”.【典例5】(2018·全国高考真题(文))中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.【典例6】(2018年理新课标I卷)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在左视图上的对应点为设A.D. 2【典例7】(2018年文北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A. 1B. 2C. 3D. 4【总结提升】1.三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形状,然后再找其剩下部分三视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.2.三视图中的数据与原几何体中的数据不一定一一对应,识图要注意甄别. 揭示空间几何体的结构特征,包括几何体的形状,平行垂直等结构特征,这些正是数据运算的依据.还原几何体的基本要素是“长对齐,高平直,宽相等”. 简单几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.3.命题的角度一般有:(1)已知几何体,识别三视图;(2)已知三视图,判断几何体;(3)已知几何体三视图中的某两个视图,确定另外一个视图热门考点04 空间几何体的表面积圆柱的侧面积 rl S π2=圆柱的表面积 )(2l r r S +=π圆锥的侧面积 rl S π=圆锥的表面积 )(l r r S +=π圆台的侧面积 l r r S )(+'=π圆台的表面积 )(22rl l r r r S +'++'=π球体的表面积 24R S π=柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.【典例8】(2018届湖北省华师一附中高三9月调研)已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A. 22R πB. 294R πC. 283R πD. 232R π 【典例9】(2018·全国高考真题(理))已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB ∆的面积为,则该圆锥的侧面积为__________.【总结提升】几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.热门考点05 空间几何体的体积圆柱的体积 h r V 2π=圆锥的体积 h r V 231π=圆台的体积 )(3122r r r r h V '++'=π 球体的体积 334R V π= 正方体的体积 3a V =正方体的体积 abc V =【典例10】(2019年高考全国Ⅲ卷理)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【典例11】(2018·全国高考真题(文))已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°,若SAB 的面积为8,则该圆锥的体积为__________.【总结提升】求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.热门考点06 三视图与几何体的面积、体积若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.【典例12】(2019·浙江高考真题)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh 柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是( )A .158B .162C .182D .32【典例13】(2019·浙江高三月考)已知某几何体的三视图(单位:cm )如图所示则该几何体的体积为____3cm ,表面积为_____2cm .【总结提升】求空间几何体体积的常见类型及思路规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.热门考点07 几何体的展开、折叠、切、截、接问题解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【典例14】(2018届河南省林州市第一中学高三8月调研)如图,已知矩形ABCD 中, 483AB BC ==,现沿AC 折起,使得平面ABC ⊥平面ADC ,连接BD ,得到三棱锥B ACD -,则其外接球的体积为( )A. 5009πB. 2503πC. 10003πD. 5003π【典例15】(2019年高考天津卷理)已知四棱锥的底面是边长的正方形,侧棱长均若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【典例16】(广东省深圳市高级中学2019届高三(6月)适应)在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC △是边长为6的等边三角形,PAB △是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______.【典例17】(2019·福建高三月考)已知四面体ABCD 内接于球O ,且2AB BC AC ===,若四面体ABCD 的体积为3,球心O 恰好在棱DA 上,则球O 的表面积是_____. 【总结提升】 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.巩固提升1.(2018·上海市七宝中学高二期中)一个棱柱是正四棱柱的一个充要条件是( )A.底面是正方形,有两个侧面是矩形B.底面是正方形的平行六面体C.底面是正方形且两个相邻侧面是矩形D.每个侧面都是全等的矩形2.(2019·江西省大余县新城中学高二月考)如图所示的直观图的平面图形ABCD 中,2AB =,24AD BC ==,则原四边形的面积( )A. B. C.12 D.103.(2019·浙江诸暨中学高二月考)若一个正方体截去一个三棱锥后所得的几何体如图所示.则该几何体的正视图是( )A. B. C. D.4.(2019·安徽高二月考)在四面体PABC 中,PC PA ⊥,PC PB ⊥,22AP BP AB PC ====,则四面体PABC 外接球的表面积是( ) A.193π B.1912π C.1712π D.173π 5.(2019·江西省大余县新城中学高二月考)已知某几何体的三视图如图所示,则该几何体最长的棱的长是( )A.4B.6C.D.6.(2019·上海高二期末)已知某圆柱是将边长为2的正方形(及其内部)绕其一条边所在的直线旋转一周形成的,则该圆柱的体积为_______.7.(2019·上海市复兴高级中学高二期末)某几何体由一个半圆锥和一个三棱锥组合而成,其三视图如图所示(单位:厘米),则该几何体的体积(单位:立方厘米)是________.8.(2019·上海市民办市北高级中学高二期中)在ABC ∆中,3cm AC =,4cm BC =,5cm AB =,现以BC 边所在的直线为轴把ABC ∆(及其内部)旋转一周后,所得几何体的全面积是________2cm .9.(2019·上海高二期末)底面是直角三角形的直棱柱的三视图如图格中的每个小正方形的边长为1,则该棱柱的表面积是________10.(2018·上海市行知实验中学高二期中)若三棱锥P ABC -中,PA x =,其余各棱长均为2,则三棱锥P ABC -体积的最大值为______.11.(2019·上海市向明中学高二月考)一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:①三角形;②菱形;③矩形;④正方形;⑤正六边形,11 则其中判断正确的个数是_________.12.(2018·上海市南洋模范中学高三开学考试)一个几何体的三视图如图所示,图中直角三角形的直角边长均为1,则该几何体体积为________.13.(2019·上海曹杨二中高二期末)如图,边长为a 的正方形纸片ABCD,沿对角线AC 对折,使点D 在平面ABC 外,若BD=,a 则三棱锥D ABC -的体积是________.14.(2019·上海曹杨二中高二期末)正ABC △的三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,点D 是线段BC 的中点,过D 作球O 的截面,则截面面积的最小值为_________.15.(2018·上海市七宝中学高二期中)如图,边长为2的正方形ABCD 中,点E 、F 分别是边AB 、BC 的中点,AED ∆、EBF ∆、FCD ∆分别沿DE 、EF 、FD 折起,使A 、B 、C 三点重合于点A ',若四面体A EFD '的四个顶点在同一个球面上,则该球的表面积为________.16.(2017·上海交大附中高二期中)如图所示,正方体1111ABCD A B C D -的棱长为1,延长1D D 至P ,使得1DD DP =.A C P作正方体的截面图形;(1)经过11(2)求出截面为底面D为顶点的多面体的表面积.12。
中考数学几何模型重点突破讲练:专题07 三角形中的中位线与中垂线模型(教师版)
性质得出
DG=
1 2
BE=
1 2
(AB-AC),从而得出 DG 的长.
【解析】解:延长 CG 交 AB 于点 E.
∵ AG 平分 BAC , CG AG 于 G , CG EG , AE AC 4 , BE AB AC 2 , ∵ CG = EG , D 为 BC 的中点, DG 1 BE 1.
专题 07 三角形中的中位线与中垂线模型
【模型 1】三角形中位线
如图,已知 D、E 分别为 AB、AC 的中点,根据三角形中位线的性质,可得 DE // BC, 且DE 1 BC , 2
根据相似三角形的面积之比等于相似比的平方,可得 SADE
1 4
SABC 。
【模型 2】梯形中位线
如 图 , 已 知 AB // CD , E 、 F 分 别 为 梯 形 两 腰 AD 、 BC 的 中 点 , 根 据 梯 形 中 位 线 的 性 质 , 可 得 AB // CD // EF ,且EF 1 ( AB CD) ,
所以 AB=2OE,
因为 OE=2,
所以 AB=4(cm).
故选 A.
3.如图,在△ABC 中,D、E 分别是 AB、AC 边上的中点,若 DE=4,则 BC 等于( )
A.2
B.4
C.8
【答案】C
【分析】根据三角形中位线定理计算即可.
【解析】解:∵D、E 分别是 AB、AC 边上的中点,DE=4,
线,利用中位线定理解题即可.
【解析】解:由平行四边形的性质可知 AO=OC,
Hale Waihona Puke 而 E 为 BC 的中点,即 BE=EC,
(考点精选)高二数学专题突破训练 (含答案解析)
的否定是“p且q”;“
p且q”的否定是“p或q”.
3、逻辑联结词:
⑴且(and):命题形式 pq; ⑵或(or):命题形式 pq;
⑶非(not):命题形式 p .
pq 真真
pq pq p
真真 假
真假 假 真
假
假真 假 真 真
假假 假 假 真
p或q”
“或命题”的真假特点是“一真即真,要假全假”; “且命题”的真假特点是“一假即假,要真全真”;
时,左侧 ,当
时,命题左端在 的基础上增加的部分是
所以选项 D正确,C不正确,选项 B不正确;
故选:D. 利用数学归纳法的证明步骤与方法,判断选项的正误即可. 此题主要考查数学归纳法的问题,解答的关键是明白等式左边项的特点,再把 时等式的左端.
时等式的左端减去
2. 设 ,则“
”成立的必要不充分条件是
⑷球体:①表面积:S= 4R;②体积:V=
2
4 3
R3
4、位置关系的证明(主要方法):注意立体几何证明的书写
(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:①线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线
词,并用符号表示,含有存在量词的命题,叫做存在性命题。
全称命题p:xM, p(x); 特称命题p:xM, p(x);
全称命题p的否定 p:xM,p(x)。
特称命题p的否定 p:xM,p(x);
考前寄语:①先易后难,先熟后生;②一慢一快:审题要慢,做题要快;③不能小题难做,小题大 做,而要小题小做,小题巧做;④我易人易我不大意,我难人难我不畏难;⑤考试不怕题不会,就怕 会题做不对;⑥基础题拿满分,中档题拿足分,难题力争多得分,似曾相识题力争不失分;⑦对数学 解题有困难的考生的建议:立足中下题目,力争高上水平,有时“放弃”是一种策略.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何专题突破
————————————————————————————————作者:————————————————————————————————日期:
(一)等腰等边专题
【例1】1.如图,在等边三角形ABC 中,AD=CE ,线段AE 上存在一点F ,连接CF 使得CF ⊥BD ,过点B 作BG ⊥AE ,垂足为G (1)求证:BF=2FG (2)点F 为AG 的中点
2.已知在△ABC 中,D 为BC 边上一点,CD=2BD, ∠ADC=60°,∠ABC=45°,AE ⊥BC 于点E ,CF ⊥AD 于点F ,AE 与CF 交与点G.
求证:(1)△AFG ≌△CFD
(2)若BC=3,AF=√3,求线段EG 的长
(二)一题多变探究题
【例2】1..操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作等边△DCF ,连接AF .你能发现线段AF 与BD 之间的数量关系吗?
(2)类比猜想:如图②,当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?并证明你发现的结论;
(3)深入探究:如图③,当动点D 在等边△边BA 的延长线上运动时,连接DC ,以DC 为边在BC 上方、下方分别作等边△DCF 和等边△DCF′,连接AF 、BF′,探究AF 、BF′与AB 有何数量关系?写出并证明你发现的结论
G
E
C
A
B
D
F
2.已知:如图,在△ABC中,∠ABC=2∠ACB,点H是BC中点,过点H作DH⊥BC于H且与BA延长线相交于点D.
(1)图中存在连接两点的线段等于DB,请画出此线段并说明理由;
(2)如图(1),当∠B=45°时,三条线段AB、AD、BC之间存在BC=AB+2AD,请给出证明;
(3)如图(2),∠B=36°时,三条线段AB、AD、BC之间又存在何种确定的等量关系?请写出结论并证明.
图(1)图(2)图(2)
3.如图,已知△ABC中,∠B=300,现将△ABC绕点A顺时针旋转角度α至△ADE,直线BC与直线DE 交于点F,连结AF
1)若α=600(如图1),则∠AFB= ;若α=900(如图2),则∠AFB=
2)若00<α<1200(如图3),猜想∠AFB的度数(用α表示),并证明你的结论
3)若1200<α<1800(如图4),(2)中的猜想结论还成立吗?若不成立,试探究∠AFB的度数,并写出你的结论(不必证明)
A
B C
D
E
F
图
A
B C
D
E
F
图
A
B C
D
E
F
图
A
B C
D
E
F
图
4.已知,如图ABCD 为正方形,E 点为对角线AC 上一动点,连接DE ,以DE 为边作等边△DEF ,连接BF ,交AC 于点P ,试判断EP 、FP 、BP 之间的数量关系。
(1)
(2)
(3)
5.在ABC △中,AB AC =,点D 是直线BC 上一点(不与
B C 、重合),以AD 为一边在AD 的右侧..
作ADE △,使AD AE DAE BAC =∠=∠,,连接CE .
(1)如图1,当点D 在线段BC 上,如果90BAC ∠=°,则BCE ∠= 度;
(2)设BAC α∠=,BCE β∠=.
①如图2,当点D 在线段BC 上移动,则αβ,之间有怎样的数量关系?请说明理由;
②当点D 在直线BC 上移动,则αβ,之间有怎样的数量关系?请直接写出你的结论.
F
C A
B D E
P F
C A
B D E
P
F C
A
B D E
A E E A C C
D D
B B 图图
A A 备用
B
C B
C
备用
图1
O
y x
P
D C B
A y 图2
E
A
B
C D P
x
O
(三) 代数几何综合题
【例3】1.如图,OA 为第一象限的角平分线,点E 在y 轴上,∠OEF=∠AOF ,FE ⊥OF 交OA 于点M ,求证:EM=2OF
2.如图1,在平面直角坐标系中,已知A (-5,0),C (0,-4),点B 在y 轴正半轴上,满足S
ABC =20,点
P (m,0),(-4<
m<0),线段PB 绕点P 顺时针旋转90°至PD. (1)求证:OB=OC ;
(2)求点D 的坐标;(用含m 的式子表示)
(3)如图2,连接CD 并延长交x 轴于点E ,求证:∠PDC=45°+∠PBO.
3.如图,在平面直角坐标系中,△AOB 为等腰三角形,顶角顶点为A (4,4) (1)求B 点坐标
(2)若C 为x 轴正半轴上一点,以AC 为直角边作等腰直角△ACD ,∠ACD=90°,连接OD 求∠AOD 的度数。
(3)过点A 作y 轴的垂线交y 轴于E 点,F 为x 轴上负半轴上一动点,G 在EF 延长线上,以EG 为直角边作等腰直角△EGH ,过A 作x 轴垂线交EH 于点M ,连FM ,当点F 在x 轴负半轴上移动,式子 (AM-FM )/OF 的值是否发生变化?不变,求其值。
4.如图,直线AB 交x 轴正半轴于点A (a ,0),交y 轴正半轴于点
B (0, b ),且a 、b 满足4 a + |4-b |=0
(1)求A 、B 两点的坐标;
(2)D 为OA 的中点,连接BD ,过点O 作OE ⊥BD 于F ,交AB 于E , 求证∠BDO =∠EDA ;
(3)如图,P 为x 轴上A 点右侧任意一点,以BP 为边作等腰Rt △PBM ,其中PB =PM ,直线MA 交y 轴于点
Q ,当点P 在x 轴上运动时,线段OQ 的长是否发生变化?若不变,求其值;若变化,求线段OQ 的
取值范围.
A
B
O
D
E
F y
x
A
B O M
P
x
y
5.如图,平面直角坐标系中,点A 、B 分别在x 、y 轴上,点B 的坐标为(0,1),∠BAO =30°. (1)求AB 的长度;
(2)以AB 为一边作等边△ABE ,作OA 的垂直平分线MN 交AB 的垂线AD 于点D .求证:BD =OE .
(3)在(2)的条件下,连结DE 交AB 于F .求证:F 为DE 的中点.
6.已知:在平面直角坐标系中,A 、B 、C 为坐标轴上的点,期中B 点为(2,0),C 点为(0,4),D 点是C 点关于x 轴的对称点, E 为BC 延长线上一点,F 为DB 延长线上一点,连接AE 、AF ,∠EAF=∠EBF (1)证明:AE=AF
(2)证明:2=-OB
BF
BE
D
E
N
M B O
x
y
A
D E
B O
x
y
F A
x
y A
O
B
C F
E。