完整统计与概率高考题文科.docx

合集下载

高中数学文科概率与统计

高中数学文科概率与统计

概率与统计主要考点:(1)等可能事件、互斥事件(对立事件)、相互独立事件及独立重复实验的基本知识及四 种概率计算公式的应用,考查基础知识和基本计算能力.(2)求简单随机变量的分布列、数学期望及方差,特别是二项分布,常以现实生活、社 会热点为载体.(3)抽样方法的确定与计算、总体分布的估计.题型一 几类基本概型之间的综合【例1】 (08·安徽高考)在某次普通话测试中,为测试汉字发音水平,设置了10张 卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g”.(Ⅰ) 现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测 试后放回,余下2位的测试,也按同样的方法进行。

求这三位被测试者抽取的卡片上, 拼音都带有后鼻音“g”的概率。

(Ⅱ)若某位被测试者从10张卡片中一次随机抽取3张, 求这三张卡片上,拼音带有后鼻音“g”的卡片不少于2张的概率.【分析】 第(Ⅰ)小题首先确定每位测试者抽到一张带“g”卡片的概率,再利用相互独 立事件的概率公式计算;第(Ⅱ)利用等可能事件与互斥事件的概论公式计算. 【解】 (Ⅰ)每次测试中,被测试者从10张卡片中随机抽取1张卡片上,拼音带有 后鼻音“g”的概率为310,因为三位被测试者分别随机抽取一张卡片的事件是相互独立的,因而所求的概率为310×310×310=271000.(Ⅱ)设A i (i =1,2,3)表示所抽取的三张卡片中,恰有i 张卡片带有后鼻音“g”的事件,且其相应的概率为P(A i ),则P(A 2)=C 17C 23C 310=740,P(A 3)=C 33C 310=1120,因而所求概率为P(A 2+A 3)=P(A 2)+P(A 3)=740+1120=1160.【点评】 本题主要考查等可能事件、互斥事件、相互独立事件的概率.解答题注意不要 混淆了互斥事件与相互独立事件,第(Ⅱ)的解答根据是“不少于”将事件分成了两个等 可能事件,同时也可以利用事件的对立事件进行计算. 【例2】(08·福建高考)三人独立破译同一份密码,已知三人各自破译出密码的概率分 别为15,14,13,且他们是否破译出密码互不影响。

高考数学文科概率与统计问题的热点题型练习含答案 精校打印版

高考数学文科概率与统计问题的热点题型练习含答案 精校打印版

专题探究课六高考中概率与统计问题的热点题型1.(2017·佛山质检)某网络广告A公司计划从甲、乙两个网站选择一个网站拓展广告业务,为此A公司随机抽取了甲、乙两个网站某月中10天的日访问量n(单位:万次),整理后得到如下茎叶图,已知A公司要从网站日访问量的平均值和稳定性两方面进行考察选择.(1)请说明A公司应选择哪个网站;(2)现将抽取的样本分布近似看作总体分布,A公司根据所选网站的日访问量n进行付费,其付费标准如下:选定网站的日访问量n(单位:万次)A公司的付费标准(单位:元/日)n<2550025≤n≤35700n>35 1 000解(1)由茎叶图可知x甲=(15+24+28+25+30+36+30+32+35+45)÷10=30,s2甲=110×[(15-30)2+(24-30)2+(28-30)2+(25-30)2+(30-30)2+(36-30)2+(30-30)2+(32-30)2+(35-30)2+(45-30)2]=58,x乙=(18+25+22+24+32+38+30+36+35+40)÷10=30,s2乙=110×[(18-30)2+(25-30)2+(22-30)2+(24-30)2+(32-30)2+(38-30)2+(30-30)2+(36-30)2+(35-30)2+(40-30)2]=49.8,∵x甲=x乙,s2甲>s2乙,∴A公司应选择乙网站.(2)由(1)得A公司应选择乙网站,由题意可得乙网站日访问量n <25的概率为0.3,日访问量25≤n ≤35的概率为0.4,日访问量n >35的概率为0.3, ∴A 公司每月应付给乙网站的费用S =30×(500×0.3+700×0.4+1 000×0.3)=21 900(元).2.柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x 与雾霾天数y 进行统计分析,得出下表数据.x 4 5 7 8 y2356(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y =bx +a ;(3)试根据(2)求出的线性回归方程,预测燃放烟花爆竹的天数为9的雾霾天数.(相关公式:b =∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a =y -b x )解 (1)散点图如图所示.(2)∑i =14x i y i =4×2+5×3+7×5+8×6=106,x =4+5+7+84=6,y =2+3+5+64=4, ∑i =14x 2i =42+52+72+82=154,则b=∑i=14x i y i-4x y∑i=14x2i-4x2=106-4×6×4154-4×62=1,a=y-b x=4-6=-2,故线性回归方程为y=x-2.(3)由回归直线方程可以预测,燃放烟花爆竹的天数为9的雾霾天数为7. 3.全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(1)现从融合指数在2家进行调研,求至少有1家的融合指数在[7,8]内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.解(1)融合指数在[7,8]内的“省级卫视新闻台”记为A1,A2,A3;融合指数在[4,5)内的“省级卫视新闻台”记为B1,B2,从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家的所有的基本事件是:{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},共10个.其中,没有1家融合指数在[7,8]内的基本事件是:{B1,B2},共1个.所以所求的概率P=1-110=910.(2)这20家“省级卫视新闻台”的融合指数平均数等于4.5×220+5.5×820+6.5×720+7.5×320=6.05.4.(2015·全国Ⅱ卷)某公司为了了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图图①B地区用户满意度评分的频数分布表满意度评分[50,60)[60,70)[70,80)[80,90)[90,100] 分组频数281410 6较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).B地区用户满意度评分的频率分布直方图图②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意解(1)B地区用户满意度评分的频率分布直方图如图:通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由频率分布直方图,A地区用户不满意的频率f A=(0.010+0.020+0.030)×10=0.6,B地区用户不满意的频率f B=(0.005+0.02)×10=0.25,因此估计概率P(C A)=0.6,P(C B)=0.25.所以A地区用户的满意度等级为不满意的概率大.5.(2017·郑州模拟)某小学为迎接校运动会的到来,在三年级招募了16名男志愿者和14名女志愿者.调查发现,男、女志愿者中分别各有10人和6人喜欢运动,其余人员不喜欢运动.(1)根据以上数据完成2×2列联表;喜欢运动不喜欢运动总计男女总计(2)是否有95%(3)如果喜欢运动的女志愿者中恰有4人懂得医疗救护,现从喜欢运动的女志愿者中抽取2名负责处理应急事件,求抽出的2名志愿者都懂得医疗救护的概率.解(1)依题意,2×2的列联表如下:喜欢运动不喜欢运动总计(2)χ2=30×(10×8-6×6)216×14×14×16≈1.157 5<3.841,因此,没有95%的把握认为是否喜欢运动与性别有关. (3)喜欢运动的女志愿者有6人,设分别为A ,B ,C ,D ,E ,F ,其中A ,B ,C ,D 懂得医疗救护, 则从这6人中任取2人的情况有(A ,B ,),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种,其中两人都懂得医疗救护的情况有(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D ),共6种,设“抽出的2名志愿者都懂得医疗救护”为事件A , 则P (A )=615=25.6.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36(个);由a ·b =-1, 得-2x +y =-1,∴a ·b =-1包含的基本事件为(1,1),(2,3),(3,5),共3种情形.故P (a ·b =-1)=336=112. (2)若x,y在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x,y)|1≤x≤6,1≤y≤6};满足a·b<0的基本事件的结果为A={(x,y)|1≤x≤6,1≤y≤6且-2x+y<0};画出图形如图,正方形的面积为S正方形=25,阴影部分的面积为S阴影=25-12×2×4=21,故满足a·b<0的概率为21 25.。

概率与统计高考真题文科-含解析

概率与统计高考真题文科-含解析
.
概率与统计高考真题练习
1. [2016]下图是我国 2008 年至 2014 年生活垃圾无害化处理量(单位:亿吨)的折线图
(I)由折线图看出,可用线性回归模型拟合 y 与 t 的关系,请用相关系数加以说明; (II)建立 y 关于 t 的回归方程(系数精确到 0.01),预测 2016 年我国生活垃圾无害化处理量.
(1) 记 A 表示事件“旧养殖法的箱产量低于 50kg”,估计 A 的概率;
(2) 填写下面列联表,并根据列联表判断是否有 99%的把握认为箱产量与养殖方法有关:
箱产量<50kg
箱产量≥50kg
旧养殖法
新养殖法
(3) 根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。
'.
.
3.【2018】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新生产方式.为 比较两种生产方式效率,选取 40 名工人,将他们随机分成两组,每组 20 人,第一组工人用第一种生产 方式,第二组工人用第二种生产方式.根据工人完成生产任务工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2)求 40 名工人完成生产任务所需时间的中位数 ,并将完成生产任务所需时间超过 和不超过 的工人
数填入下面的列联表:
超过
不超过
第一种生产方式
第二种生产方式 (3)根据(2)中的列联表,能否有 99%的把握认为两种生产方式的效率有差异?
4. 【2019】某行业主管部门为了解本行业中小企业的生产情况,随机调查了 100 个企业,得到这些企业
7
7
7
附参考: yi 9.32 , ti yi 40.17 , ( Байду номын сангаасi y)2 0.55 , 7≈2.646.

统计概率文科高考题精选

统计概率文科高考题精选

2012年统计概率文科高考题精选(重庆15)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为____________(用数字作答)(重庆18)(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分。

)甲、乙两人轮流投篮,每人每次投一球。

约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球三次时投篮结束。

设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响。

(Ⅰ)求乙获胜的概率;(Ⅱ)求投篮结束时乙只投了2个球的概率。

(陕西3).对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则改样本的中位数、众数、极差分别是( A )A.46,45,56 B.46,45,53C.47,45,56 D.45,47,53(陕西19)(本小题满分12分)假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解他们的使用寿命,现从两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:(Ⅰ)估计甲品牌产品寿命小于200小时的概率;(Ⅱ)这两种品牌产品中,,某个产品已使用了200小时,试估计该产品是甲品牌的概率。

(湖南5).设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为$y=0.85x-85.71,则下列结论中不正确...的是 A.y 与x 具有正的线性相关关系 B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重必为58.79kg(湖南13).图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_________.08910352图(注:方差2222121()()()n s x x x x x x n⎡⎤=-+-++-⎣⎦L ,其中x 为x 1,x 2,…,x n 的平均数)(湖南17).(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值; (Ⅱ)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率) (广东13). 由正整数组成的一组数据1234,,,x x x x ,其平均数和中位数都是2,且标准差等于1,则这组数据为_________。

(完整word版)统计与概率高考题(文科)

(完整word版)统计与概率高考题(文科)

统计与概率【小题训练】1.(2018全国卷Ⅰ,T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.(2018全国卷Ⅱ,T5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6 B .0.5C .0.4D .0.33.(2018全国卷Ⅲ,T5)某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A .0.3B .0.4C .0.6D .0.74.(2017新课标Ⅰ,T2)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别为1x ,2x ,…,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .1x ,2x ,…,n x 的平均数B .1x ,2x ,…,n x 的标准差C .1x ,2x ,…,n x 的最大值D .1x ,2x ,…,n x 的中位数5.(2017新课标Ⅰ,T4)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.8πC.12D.4π6.(2017新课标Ⅱ,T11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.257.(2017新课标Ⅲ,T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳8.(2016全国I卷,T3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是A.13B.12C.23D.569.(2016全国II卷,T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为A.710B.58C.38D.31010.(2016年全国III 卷,T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是A .各月的平均最低气温都在0℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20℃的月份有5个11.(2016全国III 卷,T5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是 A .815 B .18 C .115 D .130 12.(2016年北京,T6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为A .15 B .25 C .825 D .92513.(2016年北京,T8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则A .2号学生进入30秒跳绳决赛B .5号学生进入30秒跳绳决赛C .8号学生进入30秒跳绳决赛D .9号学生进入30秒跳绳决赛 14.(2015新课标1,T4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为 A .310 B .15 C .110 D .12015.(2015新课标2,T3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关16.(2015北京,T4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为A.90 B.100 C.180 D.300类别人数老年教师900中年教师1800青年教师1600合计430017.(2018全国卷Ⅲ,T14)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.18、为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区户家庭,得到如下统计数据表:收入(万元)支出(万元)根据上表可得回归直线方程,据此估计,该社区一户收入为万元家庭年支出为()A.万元B.万元C.万元D.万元大题题型题型一:回归分析1、社会在对全日制高中的教学水平进行评价时,常常将被清华北大录取的学生人数作为衡量的标准之一.重庆市教委调研了某中学近五年(年-年)高考被清华北大录取的学生人数,制作了如下所示的表格(设年为第一年).年份(第年)人数(人)(1)试求人数关于年份的回归直线方程;(2)在满足(1)的前提之下,估计年该中学被清华北大录取的人数(精确到个位);(3)教委准备在这五年的数据中任意选取两年作进一步研究,求被选取的两年恰好不相邻的概率.参考公式:.题型二统计图1、某服装店对过去天其实体店和网店的销售量(单位:件)进行了统计,制成频率分布直方图如下:(1)若将上述频率视为概率,已知该服装店过去天的销售中,实体店和网店销售量都不低于件的概率为,求过去天的销售中,实体店和网店至少有一边销售量不低于件的天数;(2)若将上述频率视为概率,已知该服装店实体店每天的人工成本为元,门市成本为元,每售出一件利润为元,求该门市一天获利不低于元的概率;(3)根据销售量的频率分布直方图,求该服装店网店销售量中位数的估计值(精确到).2、某工厂有工人名,记岁以上(含岁)的为类工人,不足岁的为类工人,为调查该厂工人的个人文化素质状况,现用分层抽样的方法从两类工人中分别抽取了人、人进行测试.(1)求该工厂两类工人各有多少人?(2)经过测试,得到以下三个数据图表:图一:分以上两类工人成绩的茎叶图(茎、叶分别是十位和个位上的数字)①先填写频率分布表(表一)中的六个空格,然后将频率分布直方图(图二)补充完整;②该厂拟定从参加考试的分以上(含分)的类工人中随机抽取人参加高级技工培训班,求抽到的人分数都在分以上的概率.题型三独立性分析年全国两会,即中华人民共和国第十二届全国人民代表大会第四次会议和中国人民政治协商会议第十二届全国委员会第四次会议,分别于年月日和月日在北京开幕。

高考真题解答题概率与统计文科学生版

高考真题解答题概率与统计文科学生版

2017—2018年高考真题解答题:概率与统计(文科)学生版1.(2017.北京卷)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)[)80,90,并整理得到如下频率分布直方图:L[]20,30,30,40,,(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.2.(2017.山东卷)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.3.(2017.天津1卷)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,学&科网y表示每周计划播出的甲、乙两套连续剧的次数.(I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域,(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多?4.(2017.新课标2卷)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg,, 其频率分布直方图如下:,1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;,2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:,3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。

概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

专题16 概率与统计(解答题)(文科专用)1.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k 2.7063.8416.6352.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =i n i=1i √∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.3.【2021年甲卷文科】甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++4.【2021年乙卷文科】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x-≥认为有显著提高).5.【2020年新课标1卷文科】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务6.【2019年新课标1卷文科】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.7.【2019年新课标2卷文科】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.8.【2018年新课标1卷文科】某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)。

高中数学:概率统计专题

高中数学:概率统计专题

高三文科数学:概率与统计专题一、选择题:1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量单位:kg分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.343、在一组样本数据x1,y1,x2,y2,…,x n,y n n≥2,x1,x2,…,x n不全相等的散点图中,若所有样本点x i,y i i=1,2,…,n都在直线y=错误!x+1上,则这组样本数据的样本相关系数为A-1 B0 C错误! D14.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为A103 B15C110D1205.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π46.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是二、填空题:7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______;8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.9.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 由表中数据得回归直线方程错误!=错误!x +错误!中的错误!=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售;如果当天卖不完,剩下的玫瑰花做垃圾处理;Ⅰ若花店一天购进17枝玫瑰花,求当天的利润y 单位:元关于当天需求量n 单位:枝,n ∈N 的函数解析式;Ⅱ花店记录了100天玫瑰花的日需求量单位:枝,整理得下表: 日需求量n 14 15 16 17 18 19 20 频数102016161513101假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润单位:元的平均数;气温℃ 18 13 10 -1 用电量度243438642若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率;11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值75,85 85,95 95,105 105,115 115,125 分组频数 6 26 38 22 8 I在答题卡上作出这些数据的频率分布直方图:II估计这种产品质量指标值的平均数及方差同一组中的数据用该组区间的中点值作代表;III根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定12. 某地区2009年至2015年农村居民家庭人均纯收入y单位:千元的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y1求y关于t的线性回归方程;2利用1中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:错误!=错误!,错误!=错误!-错误!错误!.13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:1若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少结果保留2位小数;2由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=错误!14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸单位:cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.1求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小.2一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.ⅰ从这一天抽检的结果看,是否需对当天的生产过程进行检查ⅱ在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.精确到附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.。

高考文科统计概率习题(含答案)汇编

高考文科统计概率习题(含答案)汇编

160/3120/3100/360/340/380/320/3频率/组距pm2.5(毫克/立方米)0.1050.1000.0950.0900.0850.0800.0750.0700.0650概率统计习题(文)概率统计习题(文) 1.某中学为了了解学生的课外阅读情况,某中学为了了解学生的课外阅读情况,随机调查了随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用图1的条形图表示。

根据条形图可得这50名学生这一天平均每人的课外阅读时间为均每人的课外阅读时间为A.0.67(小时)(小时) B.0.97(小时)(小时) C.1.07(小时)(小时) D.1.57(小时) 2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .31 B .21 C .32D .43 3.近年来,随着以煤炭为主的能源.近年来,随着以煤炭为主的能源消耗大幅攀升、机动车保有量急消耗大幅攀升、机动车保有量急 剧增加,我国许多大城市灰霾现剧增加,我国许多大城市灰霾现 象频发,造成灰霾天气的“元凶” 之一是空气中的pm2.5(直径小(直径小于等于2.5微米的颗粒物)微米的颗粒物)..右图是某市某月(按30天计)根据对“pm2.5” 24小时平均浓度值测试的结果画成的频率分布直方图,若规定空气中“pm2.5”24小时平均浓度值不超过0.075毫克/立方米为达标,那么该市当月有立方米为达标,那么该市当月有 天“pm2.5”含量不达标.”含量不达标.4.对某校400名学生的体重(单位:kg )进行统计,得到如图所示的频率分布直方图,则学生体重在60kg 以上的人数为( )A . 300B . 100C . 60D . 205.高三某班学生每周用于数学学习的时间x (单位:小时)与数学成绩y (单位:分)之间有如下数据:之间有如下数据:x 24 15 23 19 16 11 20 16 17 13y 92 79 97 89 64 47 83 68 71 59根据统计资料,该班学生每周用于数学学习的时间的中位数是该班学生每周用于数学学习的时间的中位数是▲ ; 根据上表可得回归方程的斜率为3.53,截距为13.5,若某同学每周用于数学学习的时间为18 小时,则可预测该生数学成绩生数学成绩是 ▲ 分(结果保留整数). 6.记集合{}22(,)|16A x y x y =+£和集合{}(,)|40,0,0B x y x y x y =+-£³³表示的平面区域分别为12,W W ,若在区域1W 内任取一点(,)M x y ,则点M 落在区域2W 内的第12题图题图24小时平均浓度小时平均浓度 (毫克/立方米)0.060 0.0560.0400.034 0组距频率体重(kg )45 50 55 60 65 70 0.010(第4题图)概率为概率为( )A .12pB .1pC .14D .24p p- 7.已知回归直线的斜率的估计值为 1.23,样本点的中心为(4,5),则回归直线方程为( )A .ˆ 1.234y x =+B .ˆ 1.235y x =+C .ˆ 1.230.08y x =+D .ˆ0.08 1.23y x =+8.(本小题满分13分)分) 2012年春节前,有超过20万名广西、四川等省籍的外来务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让过往返乡过年的摩托车驾驶人有一个停车休息的场所。

高三数学《概率统计(文科)》练习

高三数学《概率统计(文科)》练习

文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率()()1,0∈AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表. A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表 满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:()()()()()d b c a d c b a bc d a n K ++++-=22满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意()02k K P ≥ 0.10 0.05 0.01 0.005 0k 2.706 3.841 6.635 7.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ .18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分区间 [25,30) [30,35) [35,40) [40,45) [45,50]人数 25 a b(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.31B.21C.32D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.107 B.85 C.83 D.103 22.在区间[-2,3]上随机选取一个数x ,则1≤x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A .1ˆ-=x yB .1ˆ+=x yC .x y 2188ˆ+= D .176ˆ=y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程a x b yˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年 份 2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程a t b yˆˆˆ+=; (Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程a t b yˆˆˆ+=中,t b y atn tyt n y t b ni ini ii ˆˆ,ˆ1221-=--=∑∑==.28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算y x ,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算()()()()()d b c a d c b a bc ad n K ++++-=22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:a x b y ˆˆˆ+=,其中()()()x b y ax x y y x x b ni ini iiˆˆ,ˆ121-=---=∑∑==; 90,93==y x ,()()()30,4051251=--=-∑∑==y y x x x x ii ii i .30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁) 频数 频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350[35,40) 30 b[40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。

概率和统计新课标地区历届高考题(文科)

概率和统计新课标地区历届高考题(文科)

概率和统计1、(2007年理11文12)甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表,123s s s ,,分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )A.312s s s >> B.213s s s >> C.123s s s >>D.231s s s >>2、(2007年文20)设有关于x 的一元二次方程2220x ax b ++=.(Ⅰ)若a 是从0123,,,四个数中任取的一个数,b 是从012,,三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若a 是从区间[03],任取的一个数,b 是从区间[02],任取的一个数,求上述方程有实根的概率.3、(2008年理15文16)从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下: 甲品种: 271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352 乙品种: 284 292 295 304 306 307 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图:甲 乙 3 1 277 5 5 0 28 4 5 4 2 29 2 5 8 7 3 3 1 30 4 6 7 9 4 0 31 2 3 5 5 6 8 8 8 5 5 3 32 0 2 2 4 7 9 7 4 1 33 1 3 6 7 34 3 2 35 6根据以上茎叶图,对甲乙两品种棉花的纤维长度作比较,写出两个统计结论:①__________________________________________________________________________ ②__________________________________________________________________________乙的成绩 环数 7 8 9 10 频数 6 4 46丙的成绩 环数 7 8 9 10 频数 4 6 6 4甲的成绩 环数 7 8 9 10 频数 5 5 554、(2009年文19)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10。

高考文科数学概率及统计题型归纳及训练.docx

高考文科数学概率及统计题型归纳及训练.docx

2020 年高考文科数学《概率与统计》题型归纳与训练【题型归纳】题型一古典概型例 1从甲、乙等5名学生中随机选出2人,则甲被选中的概率为().A. 1B.2C.8D. 5525925【答案】 B【解析】可设这 5 名学生分别是甲、乙、丙、丁、戊,从中随机选出 2 人的方法有:(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有种选法,其中只有前 4 种是甲被选中,所以所求概率为 . 故选 B.例 2将2本不同的数学书和1 本语文书在书架上随机排成一行,则 2 本数学书相邻的概率为 ________.【答案】23【解析】根据题意显然这是一个古典概型,其基本事件有:数1,数2,语;数1,语,数 2; 数 2,数 1,语 ;数2,语,数1;语,数2,数1;语,数1,数2共有6 种,其中 2 本数学书相邻的有 4 种,则其概率为:p 4 2.6 3【易错点】列举不全面或重复, 就是不准确【思维点拨】直接列举, 找出符合要求的事件个数.题型二几何概型例 1 如图所示,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称. 在正方形内随机取一点,则此点取自黑色部分的概率是().A. 1B.πC.1D.π4824【答案】 B【解析】不妨设正方形边长为 a ,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半. 由几何概型概率的计算公式得,所求概率为21a22a28.故选B.例 2在区间[0,5]上随机地选择一个数p ,则方程 x2 + 2 px + 3 p - 2 = 0 有两个负根的概率为 ________.【答案】234 p24(3 p2)0【解析】方程 x2 + 2 px + 3p -2 = 0 有两个负根的充要条件是x1 x22p0即x1x2 3 p202p 1, 或 p 2 ,又因为 p[0,5] ,所以使方程x2+ 2 px + 3 p - 2 = 0 有两个负根的p3(1 2) (5 2) 2,故填:2 .的取值范围为 ( 2,1] U [2,5] ,故所求的概率33533【易错点】“有两个负根”这个条件不会转化 .【思维点拨】“有两个负根”转化为函数图像与x 轴负半轴有两个交点.从而得到参数 p 的范围.在利用几何概型的计算公式计算即可.题型三抽样与样本数据特征例 1某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200, 400,300 ,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.【答案】 18【解析】按照分层抽样的概念应从丙种型号的产品中抽取6018(件).3001000例 2已知样本数据 x1, x2,, x n的均值x 5 ,则样本数据2x11, 2x21,,2x n1的均值为.【答案】 11【解析】因为样本数据,,,的均值,又样本数据,,,的和为 2 x1x2 L x n n ,所以样本数据的均值为= 11.例 3 某电子商务公司对10000名网络购物者 2018 年度的消费情况进行统计,发现消费金额(单位:万元)都在区间 [0.3,0.9] 内,其频率分布直方图如图所示.(1)直方图中的a =.(2)在这些购物者中,消费金额在区间[0.5,0.9] 内的购物者的人数为.【答案】 a 3人数为 0.6 10000 6000【解析】由频率分布直方图及频率和等于1,可得0.2 0.1 0.8 0.1 1.5 0.1 2 0.1 2.5 0.1 a 0.1 1 ,解之得 a 3 .于是消费金额在区间0.5,0.9 内频率为 0.2 0.1 0.8 0.1 2 0.1 3 0.10.6 ,所以消费金额在区间0.5,0.9 内的购物者的人数为 0.6 10000 6000.例 4某城市100户居民的月平均用电量(单位:度),以160,180,180,200,200,220,220,240,240,260,260,280,280,300分组的频率分布直方图如图所示.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为220,240,240,260,260,280,280,300的四组用户中,用分层抽样的方法抽取 11户居民,则从月平均用电量在220,240的用户中应抽取多少户?【答案】见解析【解析】(1)由0.002 0.0095 0.011 0.0125x 0.005 0.0025 20 1,得 x0.0075 .220 240(2)由图可知,月平均用电量的众数是230 .2因为 0.002 0.0095 0.011 20 0.450.5 ,又 0.002 0.0095 0.011 0.0125 20 0.70.5 ,所以月平均用电量的中位数在220,240 内.设中位数为 a ,由0.002 0.0095 0.011 20 0.0125 a 2200.5,得 a 224 ,所以月平均用电量的中位数是224 .(3)月平均用电量为220,240的用户有0.0125 20 100 25(户);月平均用电量为 240,260 的用户有 0.0075 20 100 15(户);月平均用电量为 260,280 的用户有 0.005 20 100 10 (户);月平均用电量为280,300 的用户有 0.0025 20 100 5 (户).抽取比例为111051 ,25155所以从月平均用电量在220,240 的用户中应抽取2515 (户).5【易错点】没有读懂题意 , 计算错误 . 不会用函数思想处理问题【思维点拨】根据题意分情况写出函数解析式; 2 牵涉到策略问题 , 一般可以转化为比较两个指标的大小.题型四回归与分析例 1 下图是我国 2008 年至 2014 年生活垃圾无害化处理量(单位:亿吨)的折线图(1)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明(2)建立关于的回归方程(系数精确到),预测年我国生活垃圾无害化处理量 .参考数据:,,,.参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为:【答案】见解析【解析】(1)由折线图中数据和附注中参考数据得,,,,.因为与的相关系数近似为,说明与的线性相关程度相当高,从而可以用线性回归模型拟合与的关系 .(1)变量与的相关系数,又,,,,,所以,故可用线性回归模型拟合变量与的关系 .(2),,所以,,所以线性回归方程为.当时, . 因此,我们可以预测2016 年我国生活垃圾无害化处理亿吨.【易错点】没有读懂题意 , 计算错误 .【思维点拨】将题目的已知条件分析透彻 , 利用好题目中给的公式与数据 .题型五独立性检验例 1 甲、乙、丙、丁四位同学各自对 A、 B 两变量的线性相关性作试验,并用回归分析方法分别求得相关系数 r 与残差平方和 m如下表:甲乙丙丁rm 115 106 124103则哪位同学的试验结果体现A、B 两变量更强的线性相关性?() A.甲B.乙C.丙D.丁【答案】 D【解析】 D因为r>0且丁最接近1,残差平方和最小,所以丁相关性最高【易错点】不理解相关系数和残差平方和与相关性的关系【思维点拨】相关系数 r 的绝对值越趋向于 1, 相关性越强 . 残差平方和 m越小相关性越强【巩固训练】题型一古典概型1.将一颗质地均匀的骰子(一种各个面上分别标有个点的正方体玩具)先后抛掷次,则出现向上的点数之和小于的概率是.【答案】【解析】将先后两次点数记为,则基本事件共有(个),其中点数之和大于等于有,共种,则点数之和小于共有种,所以概率为.2. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30 723 .在不超过 30 的素数中,随机选取两个不同的数,其和等于30 的概率是().A.1B.1C.1D.1 12141518【答案】 C【解析】不超过 30 的素数有 2、3、5、7、11、13、17、19、23、29,共 10 个,随机选取两数有 45 (种)情况,其中两数相加和为30 的有 7 和 23,11 和 19,31P451513 和 17,共 3 种情况,根据古典概型得.故选C.3.袋中有形状、大小都相同的 4 只球,其中 1只白球, 1只红球, 2 只黄球,从中一次随机摸出 2 只球,则这 2 只球颜色不同的概率为.【答案】P56【解析】 1只白球设为a,1只红球设为b, 2 只黄球设为c,d,则摸球的所有情况为a,b , a, c , a,d , b, c , b,d , c,d ,共6件,足意的事件a,b , a,c , a,d , b,c , b,d ,共5件,故概率P 5 .6型二几何概型1.某公司的班在 7:00 ,8:00 ,8:30 ,学 . 小明在 7:50 至 8:30 之到达站乘坐班,且到达站的刻是随机的,他等不超10 分的概率是().B.D.【答案】 B【解析】如所示,画出.小明到达的会随机的落在中段中,而当他的到达落在段或,才能保他等的不超分 .根据几何概型,所求概率. 故B.2.从区随机抽取 2n个数,,⋯,,,,⋯,,构成n个数,,⋯,,其中两数的平方和小于 1 的数共有m个,用随机模的方法得到的周率的近似().A.B.C.D.【答案】 C【解析】由意得:在如所示方格中,而平方和小于 1 的点均在如所示的阴影中,由几何概型概率计算公式知,所以.故选C.3.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形 ABC 的斜边 BC ,直角边AB, AC ,△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为 p1, p2, p3,则A.p1p2B.p1p3C.p2p3D.p1p2p3【答案】 A【解析】概率为几何概型,总区域面积一定,只需比较Ⅰ,Ⅱ,Ⅲ区域面积即可 .设直角三角形ABC 的三个角A,B, C 所对的边长分别为 a ,b, c ,则区域Ⅰ的面积为 S11 ab,2区域Ⅱ的面积为区域Ⅲ的面积为222S21π1c1π1b1ab1π1a1ab ,2222222221 π 1 b21 πa21ab .S3 1 π 1 c1ab2222282显然 p1p2.故选A.题型三抽样与样本的数据特征1. 已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.【答案】 10【解析】平均数 x 1 4658766.62.某电子商务公司对 10000 名网络购物者 2014 年度的消费情况进行统计,发现消费金额(单位:万元)都在区间 [0.3, 0.9] 内,其频率分布直方图如图所示.(Ⅰ)直方图中的a_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5, 0.9] 内的购物者的人数为_________.【答案】 3;6000【解析】频率和等于 1 可得0.2 0.1 0.8 0.1 1.5 0.1 2 0.1 2.50.1a0.1 1 ,解之得 a 3 .于是消费金额在区间 [0.5, 0.9] 内频率为 0.20.10.80.120.1 3 0.1 0.6 ,所以消费金额在区间 [0.5, 0.9] 内的购物者的人数为: 0.6100006000 ,故应填3;6000.3.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费 . 为了了解居民用水情况,通过抽样,获得了某年位居民每人的月均用水量(单位:吨),将数据按照,,,分成组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有万居民,估计全市居民中月均用水量不低于吨的人数,请说明理由;(3)若该市政府希望使的居民每月的用水量不超过标准(吨),估计的值,并说明理由 .【答案】见解析【解析】(1)由频率分布直方图知,月均用水量在中的频率为,同理,在,,,,,中的频率分别为,,,,,.由,解得 .(2)由( 1),位居民每人月均用水量不低于吨的频率为.由以上样本的频率分布,可以估计全市万居民中月均用水量不低于吨的人数为.(3)因为前组的频率之和为,而前组的频率之和为,所以由,解得 .题型四回归与分析1.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区 5 户家庭,得到如下统计数据表:收入 x(万元)支出 y (万元)根据上表可得回归直线方程???,其中???y bx a b0.76,a y bx ,据此估计,该社区一户收入为 15 万元家庭年支出为()A.万元B.万元C.万元D.万元【答案】 B8.28.610.011.311.9(万元),【解析】由已知得x5106.27.58.0 8.59.88(万元),故 ?8 0.76 10 0.4,5所以回归直线方程为y? 0.76 x 0.4 .当社区一户收入为15 万元,家庭年支出为y? 0.76 150.411.8 (万元).故选B.2.为了研究某班学生的脚长x (单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10 名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为.已知,,.该班某学生的脚长为 24,据此估计其身高为().A.B.C.D.【答案】 C【解析】,,所以,时,.故选C.3.某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位: t )和年利润z(单位:千元)的影响,对近8 年的年宣传费 x i和年销售量y i i 1,2, ,8数据作了初步处理,得到下面的散点图及一些统计量的值.x y w82888x i x2w i w y i yw i w x i x y i y i 1i 1i 1i 1561469 3表中 w i18x i, w w i ,8 i 1(1)根据散点图判断,y a bx 与y c d x 哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由)?(2)根据( 1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系式为z 0.2 y x,根据( 2)的结果回答下列问题:(ⅰ)年宣传费x49时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据 u1, v1u2,v2,, u n ,v n,其回归直线v u 的斜率和n?u i u v i vi 1?截距的最小二乘估计分别为, ? v u .nu i2ui 1【答案】见解析【解析】(1)由散点图变化情况可知选择y c d x 较为适宜.8w i w y iy(2)由题意知di 182108.8 68 .又 y c d x 一定过点, y ,w i w1.6i 1所以 c y d563 68 6.8 100.6 ,所以 y 与 x 的回归方程为 y 100.6 68 x .(3)(ⅰ)由( 2)知,当 x 49 时, y 100.6 6849 576.6 t ,z 0.2 576.6 49 66.32(千元),所以当年宣传费为 x 49 时,年销售量为 576.6 t ,利润预估为 66.32千元.(ⅱ)由( 2)知, z0.2 y x0.2100.6 68 x x 13.6 x x 20.122x 6.8时,年利润的预估值最大,x 6.86.82 20.12 ,所以当即 x 6.8 2 46.24 (千元). 题型五 独立性检验1. 某医疗研究所为了检验某种血清预防感冒的作用, 把 500 名使用血清的人与另外 500 名未使用血清的人一年中的感冒记录作比较,提出假设 H :“这种血清不能起到预防感冒的作用”,利用 2×2列联表计算的 K 2≈,则下列表述中正确的是( )A .有 95℅的把握认为“这种血清能起到预防感冒的作用”B .若有人未使用该血清,那么他一年中有95℅的可能性得感冒C.这种血清预防感冒的有效率为95℅D.这种血清预防感冒的有效率为5℅【答案】 A【解析】由题可知,在假设 H 成立情况下,P( K23.841)的概率约为,即在犯错的概率不错过的前提下认为“血清起预防感冒的作用”,即有95℅的把握认为“这种血清能起到预防感冒的作用” . 这里的 95℅是我们判断H不成立的概率量度而非预测血清与感冒的几率的量度,故 B 错误. C,D也犯有 B 中的错误.故选 A2. 观察下面频率等高条形图,其中两个分类变量x,y 之间关系最强的是( )A.B.【答案】 D【解析】在频率等高条形图中,C.D.a与c相差很大时,我们认为两个分类变量a b c d有关系,四个选项中,即等高的条形图中x1, x2所占比例相差越大,则分类变量 x, y 关系越强,故选 D .3.淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了 100 个网箱,测量各箱水产品的产量(单位:kg )的频率分布直方图如图所示.(1)设两种养殖方法的箱产量相互独立,记 A 表示事件:旧养殖法的箱产量低于 50kg ,新养殖法的箱产量不低于50kg ,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量箱产量50kg⋯50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到 0.01).附:P K2⋯kkK 2n( ad bc)2.(a b)(c d )(a c)(b d )【答案】见解析【解析】(1)记:“旧养殖法的箱产量低于50kg ”为事件B,“新养殖法的箱产量不低于50kg”为事件 C,由题图并以频率作为概率得P B0.040 5 0.034 5 0.024 5 0.014 5 0.012 5 0.62,P C0.068 5 0.046 5 0.010 5 0.008 50.66,P A P B P C0.4092 .(2)箱产量50kg箱产量≥50kg 旧养殖法6238新养殖法3466k 220062 6638 342由计算可得 K2的观测值为15.705 ,因为15.705 6.635,所以10010096104P K2≥ 6.6350.001,从而有 99%以上的把握认为箱产量与养殖方法有关.(3)1 5 0.2,0.10.0040.0200.0440.032,0.0320.0688,85 2.35,171750 2.35 52.35,所以中位数为52.35.。

高考复习文科数学之统计与概率

高考复习文科数学之统计与概率

各地解析分类汇编:统计与概率1.【山东省济南外国语学校2013届高三上学期期中考试 文科】某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。

现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( ) A. 6 B. 7 C. 8 D.9 【答案】C【解析】设从高二应抽取x 人,则有30:406:x =,解得8x =,选C.2.【山东省济南外国语学校2013届高三上学期期中考试 文科】(本小题满分12分)某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X=70时,Y=460;X 每增加10,Y 增加5;已知近20年X 的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160. (I )完成如下的频率分布表:近20年六月份降雨量频率分布表(II )假定今年六月份的降雨量与近20年六月份的降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.【答案】解:(I )在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为…………………………………………………………………………………….…..….5分.(II )("132320202010P ++=发电量低于490万千瓦时或超过530万千瓦时")=P(Y<490或Y>530)=P(X<130或X>210)=故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.…………………………………………………………………………………12分3.【云南师大附中2013届高三高考适应性月考卷(三)文】记集合{}22(,)|16A x y x y =+≤和集合{}(,)|40,0,0B x y x y x y =+-≤≥≥表示的平面区域分别为12,ΩΩ若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω的概率为A .12πB .1πC .14D .24ππ- 【答案】A【解析】区域1Ω为圆心在原点,半径为4的圆,区域2Ω为等腰直角三角形,两腰长为4,所以218116π2πS P S ΩΩ===,故选A . 4.【云南省昆明一中2013届高三新课程第一次摸底测试文】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病倒数计算,下列各选项中,一定符合上述指标的是 ①平均数3x ≤;②标准差2S ≤;③平均数3x ≤且标准差2S ≤;④平均数3x ≤且极差小于或等于2;⑤众数等于1且极差小于或等于4。

高考文科数学概率与统计题型归纳与训练

高考文科数学概率与统计题型归纳与训练

高考文科数学概率与统计题型归纳与训练2020年高考文科数学《概率与统计》题型归纳与训练题型归纳古典概型例1:从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()。

A。

55.B。

25.C。

9.D。

128解析:可设这5名学生分别是甲、乙、丙、丁、戊,从中随机选出2人的方法有:甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有10种选法,其中只有前4种是甲被选中,所以所求概率为4/10=2/5.故选B。

例2:将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________。

解析:根据题意显然这是一个古典概型,其基本事件有:数1,数2,语;数1,语,数2;数2,数1,语;数2,语,数1;语,数2,数1;语,数1,数2共有6种,其中2本数学书相邻的有4种,则其概率为:p=4/6=2/3.易错点:列举不全面或重复,就是不准确。

思维点拨:直接列举,找出符合要求的事件个数。

几何概型例1:如图所示,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。

在正方形内随机取一点,则此点取自黑色部分的概率是()。

解析:不妨设正方形边长为a,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半。

由几何概型概率的计算公式得,所求概率为1/2πa^2=π/4a^2.故选B。

例2:在区间[0,5]上随机地选择一个数p,则方程x^2+2px-3p^2=0有两个负根的概率为________。

解析:方程x^2+2px-3p^2=0有两个负根的充要条件是Δ=4p^2-4(3p-2)x<0,即3p^2-x^2<2.因为x^2<p,所以3p^2-p^2<2,即p∈(0,1]∪[2,5],又因为p∈[0,5],所以使方程x^2+2px-3p^2=0有两个负根的p的取值范围为(√3,1]∪[2,5],故所求的概率为(5-√3)/5.220度,中位数是235度。

概率与统计(选择、填空题)(文科专用)(解析版)-五年(18-22)高考数学真题分项汇编(全国通用)

概率与统计(选择、填空题)(文科专用)(解析版)-五年(18-22)高考数学真题分项汇编(全国通用)

专题15概率与统计(选择题、填空题)(文科专用)1.【2022年全国甲卷】某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%+75%2>70%,所以A错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%−80%=20%,讲座前问卷答题的正确率的极差为95%−60%=35%>20%,所以D错.故选:B.2.【2022年全国甲卷】从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为615=25.故选:C.3.【2022年全国乙卷】分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52=7.4,A选项结论正确.对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.116=8.50625>8,B选项结论正确.对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616=0.375<0.4,C选项结论错误.对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316=0.8125>0.6,D选项结论正确.故选:C4.【2021年甲卷文科】为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【解析】【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+⨯==,故B 正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++⨯==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.02⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于⨯频率组距组距.5.【2021年甲卷文科】将3个1和2个0随机排成一行,则2个0不相邻的概率为()A .0.3B .0.5C .0.6D .0.8【答案】C 【解析】【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610,故选:C.6.【2021年乙卷文科】在区间10,2⎛⎤⎥⎝⎦随机取1个数,则取到的数小于13的概率为()A .34B .23C .13D .16【答案】B【分析】根据几何概型的概率公式即可求出.【详解】设Ω=“区间10,2⎛⎫ ⎪⎝⎭随机取1个数”,对应集合为:102x x ⎧⎫<<⎨⎬⎩⎭,区间长度为12,A =“取到的数小于13”,对应集合为:103x x ⎧⎫<<⎨⎬⎩⎭,区间长度为13,所以()()()10231302l A P A l -===Ω-.故选:B .【点睛】本题解题关键是明确事件“取到的数小于13”对应的范围,再根据几何概型的概率公式即可准确求出.7.【2020年新课标1卷文科】设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为()A .15B .25C .12D .45【答案】A 【解析】【分析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从O A B C D ,,,,5个点中任取3个有{,,},{,,},{,,},{,,}O A B O A C O A D O B C {,,},{,,},{,,},{,,}O B D O C D A B C A B D {,,},{,,}A C D B C D 共10种不同取法,3点共线只有{,,}A O C 与{,,}B O D 共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为21105=.【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.8.【2020年新课标3卷文科】设一组样本数据x 1,x 2,…,xn 的方差为0.01,则数据10x 1,10x 2,…,10xn 的方差为()A .0.01B .0.1C .1D .10【答案】C 【解析】【分析】根据新数据与原数据关系确定方差关系,即得结果.【详解】因为数据(1,2,,)i ax b i n +=L ,的方差是数据(1,2,,)i x i n =L ,的方差的2a 倍,所以所求数据方差为2100.01=1⨯故选:C 【点睛】本题考查方差,考查基本分析求解能力,属基础题.9.【2019年新课标1卷文科】某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生【答案】C 【解析】【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C .【点睛】本题主要考查系统抽样.10.【2019年新课标2卷文科】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35C .25D .15【答案】B 【解析】【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种,所以恰有2只做过测试的概率为63105=,选B .【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.11.【2019年新课标3卷文科】两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .12【答案】D 【解析】男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D .【点睛】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.12.【2018年新课标2卷文科】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A .0.6B .0.5C .0.4D .0.3【答案】D 【解析】【详解】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为12,A A ,3名女同学为123,,B B B ,从以上5名同学中任选2人总共有12111213212223121323,,,,,,,,,A A A B A B A B A B A B A B B B B B B B 共10种可能,选中的2人都是女同学的情况共有121323,,B B B B B B 共三种可能则选中的2人都是女同学的概率为30.310P ==,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件A ;第二步,分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ;第三步,利用公式()mP A n=求出事件A 的概率.13.【2018年新课标3卷文科】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A .0.3B .0.4C .0.6D .0.7【答案】B 【解析】【详解】分析:由公式()()()()P A B P A P B P AB ⋃=++计算可得详解:设事件A 为只用现金支付,事件B 为只用非现金支付,则()()()()P A B P A P B P AB 1⋃=++=因为()()P A 0.45,P AB 0.15==所以()P B 0.4=,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题.14.【2022年全国乙卷】从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为C 53=10甲、乙都入选的方法数为C 31=3,所以甲、乙都入选的概率=310故答案为:31015.【2018年新课标3卷文科】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样.【解析】【详解】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.。

高考真题文科数学分项汇编概率与统计(解析版)

高考真题文科数学分项汇编概率与统计(解析版)

专题 15 概率与统计(解答题)1. 【2020 年高考全国Ⅰ卷文数】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为 A ,B , C ,D 四个等级.加工业务约定:对于 A 级品、B 级品、C 级品,厂家每件分别收取加工费 90 元,50 元, 20 元;对于 D 级品,厂家每件要赔偿原料损失费 50 元.该厂有甲、乙两个分厂可承接加工业务.甲分厂 加工成本费为 25 元/件,乙分厂加工成本费为 20 元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了 100 件这种产品,并统计了这些产品的等级,整理如下: 甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1) 分别估计甲、乙两分厂加工出来的一件产品为 A 级品的概率;(2) 分别求甲、乙两分厂加工出来的 100 件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【解析】(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为 A 级品的概率的估计值为 40100 乙分厂加工出来的一件产品为 A 级品的概率的估计值为 28 100= 0.4 ;= 0.28 . (2)由数据知甲分厂加工出来的 100 件产品利润的频数分布表为因此甲分厂加工出来的 100 件产品的平均利润为65 ⨯ 40 + 25 ⨯ 20 - 5 ⨯ 20 - 75 ⨯ 20 = 15 .100由数据知乙分厂加工出来的 100 件产品利润的频数分布表为因此乙分厂加工出来的100 件产品的平均利润为∑ i =1n(x - x ) ( y - y )2∑ n2iii =1∑ i20 (x - x ) (y - y )2i =1∑ i202i =180 ⨯ 90002 2 ∑ ∑ ∑ - x ) = 80 ,∑(y - y ) = 9000 , ∑(x 20∑ 70 ⨯ 28 + 30 ⨯17 + 0 ⨯ 34 - 70 ⨯ 21 = 10 .100比较甲乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.【点睛】本题主要考查古典概型的概率公式的应用,以及平均数的求法,并根据平均值作出决策,属 于基础题.2. 【2020 年高考全国Ⅱ卷文数】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加. 为调查该地区某种野生动物的数量,将其分成面积相近的 200 个地块,从这些地块中用简单随机抽样的方法抽取 20 个作为样区,调查得到样本数据(x i ,y i )(i=1,2,…,20),其中 x i 和 y i 分别表示第 i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20xii =120 = 60 , y i i =120 = 1200 , (x i i =120 2i i =1202i i =1- x () y i - y ) = 800 .(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i=1,2,…,20)的相关系数(精确到 0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野 生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.∑(x i - x )( yi- y )附:相关系数 r =i =1,≈1.414.1 20【解析】(1)由己知得样本平均数 y = ∑ y i= 60 ,从而该地区这种野生动物数量的估计值为 60×i =1200=12000.(2)样本(x i , y i ) (i = 1, 2, , 20) 的相关系数20(x i- x () y i- y ) 80r =i =1== ≈ 0.94 .3 (3)分层抽样:根据植物覆盖面积的大小对地块分层,再对 200 个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物 覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了n 2样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能 力,是一道容易题.3. 【2020 年高考全国Ⅲ卷文数】某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1) 分别估计该市一天的空气质量等级为 1,2,3,4 的概率;(2) 求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3) 若某天的空气质量等级为 1 或 2,则称这天“空气质量好”;若某天的空气质量等级为 3 或 4,则称这天“空气质量不好”.根据所给数据,完成下面的 2×2 列联表,并根据列联表,判断是否有 95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附: K 2 n (ad - bc )2, (a + b )(c + d )(a + c )(b + d )【解析】(1)由所给数据,该市一天的空气质量等级为 1,2,3,4 的概率的估计值如下表:(2) 一天中到该公园锻炼的平均人次的估计值为1(100 ⨯ 20 + 300 ⨯ 35 + 500 ⨯ 45) = 350 . 100==2 (3) 根据所给数据,可得 2 ⨯ 2 列联表:根据列联表得2100 ⨯ (33 ⨯ 8 - 22 ⨯ 37) 2K 55 ⨯ 45 ⨯ 70 ⨯ 30 由于5.820 > 3.841 ,故有 95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关. 【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处 理能力,属于基础题.4. 【2020 年新高考全国Ⅰ卷】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100 天空气中的PM 2.5 和SO 浓度(单位:μg/m 3 ),得下表:(1) 估计事件“该市一天空气中PM 2.5 浓度不超过75 ,且SO 2 浓度不超过150 ”的概率;(2) 根据所给数据,完成下面的 2 ⨯ 2 列联表:(3) 根据(2)中的列联表,判断是否有99% 的把握认为该市一天空气中PM 2.5 浓度与SO 2 浓度有关?附: K 2 n (ad - bc )2,(a + b )(c + d )(a + c )(b + d )=2 = ≈【解析】(1)根据抽查数据,该市 100 天的空气中 PM2.5 浓度不超过 75,且SO 2 浓度不超过 150 的天数为32 + 18 + 6 + 8 = 64 ,因此,该市一天空气中 PM2.5 浓度不超过 75,且SO 2 浓度不超过 150 的概率的估64计值为 100= 0.64 .(2) 根据抽查数据,可得 2 ⨯ 2 列联表:(3) 根据(2)的列联表得 K 7.484 .80 ⨯ 20 ⨯ 74 ⨯ 26由于7.484 > 6.635 ,故有99% 的把握认为该市一天空气中PM 2.5 浓度与SO 2 浓度有关.5. 【2019 年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了 50 名男顾客和 50 名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1) 分别估计男、女顾客对该商场服务满意的概率;(2) 能否有 95%的把握认为男、女顾客对该商场服务的评价有差异?附: K 2 n (ad - bc )2.(a + b )(c + d )(a + c )(b + d )【答案】(1)男、女顾客对该商场服务满意的概率的估计值分别为0.8 ,0.6 ;(2)有 95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为 40= 0.8 ,50因此男顾客对该商场服务满意的概率的估计值为0.8 .P (K 2 ≥ k )0.050 0.010 0.001 k3.8416.63510.828=女顾客中对该商场服务满意的比率为30= 0.6 , 50因此女顾客对该商场服务满意的概率的估计值为0.6 .2100 ⨯(40 ⨯ 20 - 30 ⨯10) 2(2)由题可得 K =≈ 4.762 . 50 ⨯ 50 ⨯ 70 ⨯ 30由于 4.762 > 3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.6. 【2019 年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了 100 个企业,得到这些企业第一季度相对于前一年第一季度产值增长率 y 的频数分布表.(1) 分别估计这类企业中产值增长率不低于 40%的企业比例、产值负增长的企业比例;(2) 求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到 0.01) ≈ 8.602 .【答案】(1)产值增长率不低于 40%的企业比例为 21%,产值负增长的企业比例为 2%;(2)这类企业产值增长率的平均数与标准差的估计值分别为 30%,17%. 【解析】(1)根据产值增长率频数分布表得,所调查的 100 个企业中产值增长率不低于 40%的企业频率为14 + 7 = 0.21 .1002产值负增长的企业频率为100= 0.02 .用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2) y = 1(-0.10 ⨯ 2 + 0.10 ⨯ 24 + 0.30 ⨯ 53 + 0.50 ⨯14 + 0.70 ⨯ 7) = 0.30 ,100s 2= 1 ∑ n ( y - y )2=1 i ii =1⎡⎣(-0.40)2 ⨯ 2 + (-0.20)2 ⨯ 24 + 02 ⨯ 53 + 0.202 ⨯14 + 0.402 ⨯ 7⎤⎦100=0.0296 ,s == 0.02⨯ 0.17 ,5 100所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.7.【2019 年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B 两组,每组100 只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记 C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1)a = 0.35 ,b = 0.10 ;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05 ,6.00 .【解析】(1)由已知得0.70 =a + 0.20 + 0.15 ,故a = 0.35 .b = 1- 0.05 - 0.15 - 0.70 = 0.10 .(2)甲离子残留百分比的平均值的估计值为2⨯ 0.15 + 3⨯ 0.20 + 4⨯ 0.30 + 5⨯ 0.20 + 6⨯ 0.10 + 7 ⨯ 0.05 = 4.05 .乙离子残留百分比的平均值的估计值为3⨯ 0.05 + 4⨯ 0.10 + 5⨯ 0.15 + 6⨯ 0.35 + 7 ⨯ 0.20 + 8⨯ 0.15 = 6.00 .8.【2019 年高考天津卷文数】2019 年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120 人,现采用分层抽样的方法,从该单位上述员工中抽取25 人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25 人中,享受至少两项专项附加扣除的员工有6 人,分别记为A, B, C, D, E, F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6 人中随机抽取2 人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M 为事件“抽取的2 人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率.11【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i)见解析,(ii).15【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10 ,由于采用分层抽样的方法从中抽取25 位员工,因此应从老、中、青员工中分别抽取6 人,9 人,10 人.( 2 )(i )从已知的 6 人中随机抽取 2 人的所有可能结果为{A, B},{A, C},{A, D},{A, E},{A, F},{B, C}, {B, D},{B, E},{B, F},{C, D},{C, E}, {C, F}, {D, E},{D, F},{E, F} ,共15 种.(ii)由表格知,符合题意的所有可能结果为{A, B},{A, D},{A, E},{A, F},{B, D},{B,E },{B ,F},{C, E},{C, F},{D, F},{E, F} ,共11 种.所以,事件M 发生的概率P(M ) 11.159.【2019 年高考北京卷文数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B 两种移动支付方式的使用情况,从全校所有的1000 名学生中随机抽取了100 人,发现样本中A,B 两种支付方式都不使用的有5 人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)估计该校学生中上个月A,B 两种支付方式都使用的人数;(2)从样本仅使用B 的学生中随机抽取1 人,求该学生上个月支付金额大于2 000 元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1 人,发现他本月的支付金额大于2 000 元.结合(2)的结果,能否认为样本仅使用B 的学生中本月支付金额大于 2 000 元的人数有变化?说明理由.【答案】(1)该校学生中上个月A,B两种支付方式都使用的人数约为400 ;(2)0.04 ;(3)见解析.【解析】(1)由题知,样本中仅使用A 的学生有27+3=30 人,仅使用B 的学生有24+1=25 人,A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100–30–25–5=40人.估计该校学生中上个月A,B两种支付方式都使用的人数为40⨯1000 = 400 .100(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则P(C) = 1= 0.04 .25(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E) = 0.04 .答案示例1:可以认为有变化.理由如下:P(E) 比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E) 比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.10.【2018 年高考全国Ⅱ卷文数】下图是某地区2000 年至2016 年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018 年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000 年至2016 年的数据(时间变量t 的值依次为1, 2, , 17 )建立模型①:yˆ=-30.4 + 13.5t ;根据2010 年至2016 年的数据(时间变量t 的值依次为1, 2, , 7 )建立模型②:yˆ= 99 + 17.5t .(1)分别利用这两个模型,求该地区2018 年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)模型①:226.1亿元,模型②:256.5亿元;(2)模型②得到的预测值更可靠,理由见解析.【解析】(1)利用模型①,该地区2018 年的环境基础设施投资额的预测值为$y=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018 年的环境基础设施投资额的预测值为$y=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000 年至2016 年的数据对应的点没有随机散布在直线y=–30.4+13.5t 上下,这说明利用2000 年至2016 年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010 年相对2009 年的环境基础设施投资额有明显增加,2010 年至2016 年的数据对应的点位于一条直线的附近,这说明从2010 年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010 年至2016 年的数据建立的线性模型$y=99+17.5t 可以较好地描述2010 年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016 年的环境基础设施投资额220 亿元,由模型①得到的预测值226.1 亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2 种理由,考生答出其中任意一种或其他合理理由均可得分.1.【2018 年高考全国Ⅰ卷文数】某家庭记录了未使用节水龙头50 天的日用水量数据(单位:m3)和使用了节水龙头50 天的日用水量数据,得到频数分布表如下:未使用节水龙头50 天的日用水量频数分布表日用水量[0 ,0.1) [0.1,0.2) [0.2 ,0.3) [0.3,0.4) [0.4 ,0.5) [0.5,0.6) [0.6 ,0.7) 频数1324926 5使用了节水龙头50 天的日用水量频数分布表日用水量[0 ,0.1) [0.1,0.2) [0.2 ,0.3) [0.3,0.4) [0.4 ,0.5) [0.5,0.6) 频数1513 10 16 5(1)在答题卡上作出使用了节水龙头50 天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365 天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案】(1)见解析;(2)0.48;(3)47.45m3.【解析】(1)频率分布直方图如下:(2)根据以上数据,该家庭使用节水龙头后50 天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50 天日用水量的平均数为x1 = 1(0.05⨯1+ 0.15⨯ 3 + 0.25⨯ 2 + 0.35⨯ 4 + 0.45⨯ 9 + 0.55⨯ 26 + 0.65⨯ 5) = 0.48 .50该家庭使用了节水龙头后50 天日用水量的平均数为x2 = 1(0.05⨯1+ 0.15⨯ 5 + 0.25⨯13 + 0.35⨯10 + 0.45⨯16 + 0.55⨯ 5) = 0.35 .50估计使用节水龙头后,一年可节省水(0.48 - 0.35) ⨯365 = 47.45(m 3) .12.【2018 年高考全国Ⅲ卷文数】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40 名工人,将他们随机分成两组,每组20 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:P (K 2 ≥ k ) 0.050 0.010 0.001 k 3.841 6.635 10.828 (1) 根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2) 求 40 名工人完成生产任务所需时间的中位数 m ,并将完成生产任务所需时间超过 m 和不超过m 的工人数填入下面的列联表:(3) 根据(2)中的列联表,能否有 99%的把握认为两种生产方式的效率有差异?附: K 2n (ad - bc )2, . (a + b )(c + d )(a + c )(b + d )【答案】(1)第二种生产方式的效率更高,理由见解析;(2)列联表见解析;(3)有 99%的把握认为两种生产方式的效率有差异.【解析】(1)第二种生产方式的效率更高. 理由如下:(i ) 由茎叶图可知:用第一种生产方式的工人中,有 75%的工人完成生产任务所需时间至少 80 分钟,用第二种生产方式的工人中,有 75%的工人完成生产任务所需时间至多 79 分钟. 因此第二种生产方式的效率更高.(ii ) 由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为 85.5 分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为 73.5 分钟.因此第二种生产方式的效率更高.(iii ) 由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于 80 分钟;用第二种生产方式的工人完成生产任务平均所需时间低于 80 分钟,因此第二种生产方式的效率更高.(iv ) 由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎 8 上的最多,关于茎 8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎 7 上的最多,关于茎 7 大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了 4 种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知 m = 79 + 81 = 80 .2列联表如下:=2 40(15 15 5 5)(3)由于K⨯-⨯2== 10 > 6.635 ,所以有99%的把握认为两种生产方式的效率有差异.20 ⨯ 20 ⨯ 20 ⨯ 2013.【2018 年高考北京卷文数】电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1 部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1 部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【答案】(1)0.025 ;(2)0.814 ;(3)增加第五类电影的好评率,减少第二类电影的好评率.【解析】(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50,50故所求概率为2000= 0.025 .(2)方法1:由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1=56+10+45+50+160+51=372.故所求概率估计为1-3722000= 0.814 .方法2:设“随机选取 1 部电影,这部电影没有获得好评”为事件B.没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628 部.由古典概型概率公式得P(B) =1628= 0.814 .2000(3)增加第五类电影的好评率,减少第二类电影的好评率.14.【2018 年高考天津卷文数】已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7 名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7 名同学分别用A,B,C,D,E,F,G 表示,现从中随机抽取2 名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.5【答案】(1)分别抽取3人,2人,2人;(2)(i)见解析,(ii).21【分析】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7 名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取 3 人,2 人,2 人.(2)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21 种.(ii)由(1),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7 名同学中随机抽取的 2 名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5 种.5所以,事件M 发生的概率为P(M)=.21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计与概率高考题1(文科)
一、
1.(2018 全国卷Ⅰ, T3)某地区一年的新村建,村的收入增加了一倍.翻
番.更好地了解地区村的收入化情况,了地区新村建前后村
的收入构成比例.得到如下:
下面中不正确的是
A.新村建后,种植收入减少
B.新村建后,其他收入增加了一倍以上
C.新村建后,养殖收入增加了一倍
D.新村建后,养殖收入与第三收入的和超了收入的一半
2.(2018 全国卷Ⅱ, T5)从 2 名男同学和 3 名女同学中任 2 人参加社区服,中的 2 人
都是女同学的概率
A. 0.6B. 0.5C. 0.4D. 0.3
3. (2018全国卷Ⅲ,T5)某群体中的成只用金支付的概率0.45,既用金支付也用非金支付的概率0.15,不用金支付的概率
A .0.3B.0.4C. 0.6 D .0.7
4.( 2017新Ⅰ,T2)估一种作物的种植效果,了n 地作田.n 地的量 (位: kg)分x1,x2,⋯,x n,下面出的指中可以用来估种作物量定程度的是
A .x1,x2,⋯, x n的平均数B.x1,x2,⋯, x n的准差
C.x1,x2,⋯, x n的最大 D .x1,x2,⋯, x n的中位数
5.( 2017 新Ⅰ,T4)如,正方形ABCD 内的形来自中国古代的太极,正方形内切中的黑色部分和白色部分关于正方形的中心成中心称.在正方形内随机取一点,
此点取自黑色部分的概率是
A .
1
B .
C .
1
D .
4 8 2 4
6.( 2017 新课标Ⅱ, T11)从分别写有
1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后
再随机抽取 1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为
A .
1
B .
1
C .
3
D .
2
10 5 10 5
7.( 2017 新课标Ⅲ, T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并
整理了 2014 年 1 月至 2016 年 12 月期间月接待游客量
(单位:万人 )的数据,绘制了下面的
折线图.
根据该折线图,下列结论错误的是
A .月接待游客逐月增加
B .年接待游客量逐年增加
C .各年的月接待游客量高峰期大致在
7,8 月
D .各年 1 月至 6 月的月接待游客量相对于 7 月至 12 月,波动性更小,变化比较平稳
8.( 2016 全国 I 卷, T3)为美化环境,从红、黄、白、紫
4 种颜色的花中任选 2 种花种在一
个花坛中,余下的 2 种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率

1 1
C .
2 5 A .
B .
3
D .
3
2
6
9.( 2016 全国 II 卷, T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间
为 40 秒.若一名行人来到该路口遇到红灯,则至少需要等待 15 秒才出现绿灯的概率

7
5
3 3
A .
B .
C .
D .
10
8
8
10
10.( 2016 年全国
III 卷, T4)某旅游城市为向游客介绍本地的气温情况,
绘制了一年中各月
平均最高气温和平均最低气温的雷达图.
图中 A 点表示十月的平均最高气温约为
B 点表示四月的平均最低气温约为
5℃.下面叙述不正确的是
15℃,
A .各月的平均最低气温都在
0℃以上
B .七月的平均温差比一月的平均温差大
C .三月和十一月的平均最高气温基本相同
D .平均最高气温高于 20℃的月份有 5 个
11.(2016 全国 III 卷, T5 )小敏打开计算机时,忘记了开机密码的前两位,只记得第一位
是 M , I , N 中的一个字母,第二位是 1,2, 3, 4, 5 中的一个数字,则小敏输入一
次密码能够成功开机的概率是
A .
8
B .
1
C .
1
D .
1
15 8 15 30
12.( 2016 年北京, T6 )从甲、乙等 5 名学生中随机选出
2 人,则甲被选中的概率为 A .
1
B .
2
C .
8
D .
9
5 5
25
25
13.( 2016 年北京, T8 )某学校运动会的立定跳远和 30 秒跳绳两个单项比赛分成预赛和决
赛两个阶段 .下表为 10 名学生的预赛成绩,其中有三个数据模糊.
学生序号
1
2
3
4
5
6
7
8
9
10
立定跳远(单位:
米)
1.96
1.92
1.82
1.80 1.78 1.76 1.74
1.72
1.68 1.60
30 秒跳绳(单位:
次)
63a75
60637270
a-1
b
65
在这 10 名学生中,进入立定跳远决赛的有 8 人,同时进入立定跳远决赛和
30 秒跳绳
决赛的有 6 人,则
A . 2 号学生进入 30 秒跳绳决赛
B . 5 号学生进入 30 秒跳绳决赛
C .8 号学生进入
30 秒跳绳决赛
D . 9 号学生进入 30 秒跳绳决赛
14.( 2015 新课标 1,T4 )如果 3 个正整数可作为一个直角三角形三条边的边长,则称这
3
个数为一组勾股数, 从 1,2,3,4,5 中任取 3 个不同的数, 则这 3 个数构成一组勾股数的概
率为
A .
3
B .
1
C.
1
D .
1 1051020
15.( 2015 新课标 2,T3)根据下面给出的2004 年至 2013 年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是
A .逐年比较,2008 年减少二氧化硫排放量的效果最显著
B. 2007 年我国治理二氧化硫排放显现成效
C. 2006 年以来我国二氧化硫年排放量呈减少趋势
D. 2006 年以来我国二氧化硫年排放量与年份正相关
16.( 2015 北京, T4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320 人,则该样本的老年教师人数为
A .90
B .100C.180D. 300
类别人数
老年教师900
中年教师1800
青年教师1600
合计4300
二、填空题
17.(2018全国卷Ⅲ,T14)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.
18.( 2016 年全国 II 卷, T16)有三张卡片,分别写有 1 和 2, 1 和 3, 2 和 3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.
19.( 2016 年北京,T14)某网店统计了连续三天售出商品的种类情况:第一天售出19 种商品,第二天售出13 种商品,第三天售出18 种商品;前两天都售出的商品有 3 种,后两天都售出的商品有 4 种,则该网店
②第一天售出但第二天未售出的商品有______种;
②这三天售出的商品最少有_______种.
20.( 2015 北京, T14 )高三年级267 位学生参加期末考试,某班37 位学生的语文成绩,数
学成绩与总成绩在全年级中的排名情况如下,甲、乙、丙为该班三位学生.
从这次考试成绩看,
①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;
②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.。

相关文档
最新文档