空间数据结构的类型(ppt文档)

合集下载

空间数据模型与数据结构ppt课件

空间数据模型与数据结构ppt课件

•篮球比赛 是根据 运动队 在规定 的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
关系模型
多边形和弧段的关系
多边形号 弧段号
弧段和结点的关系
P1
a1 a2 a3
弧段号 起点 终点
P2
a2 a5 a7
P3
a3 a6 a4
a1
N1
N2
a2
N3
我们生活的世界
8
•篮球比赛 是根据 运动队 在规定 的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
9
•篮球比赛 是根据 运动队 在规定 的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
P1 a2 a5
a4
8 a6
P2
a8
a3
a13 P5
P4
a15 a12
a16 a14
a20
P8
a22
P6
a18
a23 a21
16
a9 a7
P3 a11
a10
P7 a17
a19
P9
a24
•篮球比赛 是根据 运动队 在规定 的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 于记录的数据模型:是把数据库定义为多种固 定格式的记录型,每个记录型由固定数量的域或 属性构成,每个域或属性具有固定的长度。
包括:层次模型、网络模型、关系模型
• 基于对象的数据模型:用于在概念和视图抽象级 别上的数据描述,具有相当灵活的结构和较强的 表达能力,允许明确地定义完整性约束。

空间大数据概述(共 34张PPT)

空间大数据概述(共 34张PPT)

四、空间大数据的存储
精确查询
>db.xqpoint.find({"geom.coordinates":[122.53233,52.968872]})
邻域查询
>db.xqpoint.find({"geom.coordinates":{$near:[122,52]}})
>db.xqpoint.find({"geom.coordinates":{$near:[122,52]}}).limit(5)
空间大数据
目录
一、大数据的涵义与研究意义 二、与空间信息和位置相关的大数据 三、空间大数据的应用 四、空间大数据的存储
五、总结
一、大数据的涵义与研究意义
大数据:大型复杂数据集的聚合,这些数据集的 规模和复杂程度常超出目前数据库管理软件和传统 数据处理技术在可接受时间下的获取、管理、检索、 分析、挖掘和可视化能力。
研究大数据的意义:社会变革
2009至今美国政府全面开放了40万联邦政府原始数据集。大数
社会
据已成为美国国家创新战略、国家安全战略、国家IT产业发展战略以 及国家信息网络战略的交叉领域、核心领域。
21世纪数据的价值有可能等同于20世纪的石油,大数据研究使 价值 得人们降低了对因果关系的渴求,而关注相关关系。只需要知道是什 么,而不需知道为什么。这将使得理解现实和做决定的基础也将受到 根本性挑战。
二、与空间信息和位置相关的大数据
轨迹数据
内容:个人轨迹数据、群体轨迹数据、车辆轨迹数据等
特点:数据体量大、信息碎片化、准确性较低、半结构化
出租车轨迹数据示例
二、与空间信息和位置相关的大数据
空间媒体数据

空间数据结构的类型

空间数据结构的类型

空间数据结构的类型空间数据结构的类型一、点数据结构●单个点:表示一个位置或特定的实体坐标,常用于地理定位等应用。

●多个点:表示多个位置或实体坐标的集合,可以用于点云数据等应用。

●网格点:表示点在规则网格中的分布,常用于栅格数据结构。

二、线数据结构●线段:表示连接两个点的线段,常用于道路、河流等线状实体的表示。

●多段线:表示多个线段的集合,可以用于表示道路网络、管线等复杂线状实体。

●曲线:表示非直线的线段,常用于河流弯曲等需要弯曲路径的表示。

三、面数据结构●多边形:表示有限面积的几何形状,常用于地块、建筑物等实体的表示。

●公差多边形:表示有限面积的几何形状,并可容忍一定误差,用于拓扑匹配等应用。

●多面体:表示由平面构成的立体空间,常用于建筑、地下管线等实体的表示。

四、体数据结构●三维网格:表示立体空间中的网格,常用于体积模型重建、有限元分析等应用。

●八叉树:通过递归划分空间,将三维空间表示为树状结构,常用于空间索引和快速搜索。

●四叉树:将二维空间递归划分为四个象限,常用于地理信息系统等应用。

五、高级数据结构●栅格:将空间划分为规则的网格,用于栅格数据模型,常用于遥感影像、地理信息系统等。

●拓扑关系图:记录空间要素之间的拓扑关系,常用于空间网络分析、路径规划等应用。

●网状图:表示网络结构中连接关系的图形表示,常用于交通流动分析、网络优化等应用。

附件:本文档无附件内容。

法律名词及注释:⒈拓扑关系:空间要素之间的空间关系,例如邻接、相交、包含等关系。

⒉栅格数据模型:一种将空间分为规则网格的数据模型,适用于遥感影像等栅格数据的表示和处理。

⒊有限元分析:在工程结构分析中,使用有限元法对复杂结构进行数值计算和分析的方法。

数据结构ppt课件完整版

数据结构ppt课件完整版
数据结构是计算机中存储、组织 数据的方式,它定义了数据元素 之间的逻辑关系以及如何在计算 机中表示这些关系。
数据结构分类
根据数据元素之间关系的不同, 数据结构可分为线性结构、树形 结构、图形结构等。
4
数据结构重要性
01
02
03
提高算法效率
合理的数据结构可以大大 提高算法的执行效率,减 少时间和空间复杂度。
33
案例三:最小生成树在通信网络优化中应用
Kruskal算法
基于并查集实现,按照边的权值从小到大依次添加边,直到生成 最小生成树。
Prim算法
从某一顶点开始,每次选择与当前生成树最近的顶点加入,直到 所有顶点都加入生成树。
通信网络优化
最小生成树算法可用于通信网络优化,通过选择最优的通信线路 和节点,降低网络建设和维护成本。
2024/1/28
简化程序设计
数据结构的设计和实现可 以简化程序设计过程,提 高代码的可读性和可维护 性。
解决实际问题
数据结构是解决实际问题 的基础,如排序、查找、 图论等问题都需要依赖于 特定的数据结构。
5
相关术语解析
数据元素
数据元素是数据的基本 单位,通常作为一个整
体进行考虑和处理。
2024/1/28
02
队列的基本操作包括入队(enqueue)、出队( dequeue)、查看队首和队尾元素等。
03
队列的特点
2024/1/28
04
数据从队尾入队,从队首出队。
05
队列中元素的插入和删除操作分别在两端进行,因此也称 为双端操作。
06
队列中没有明显的头尾标记,通常通过计数器或循环数组 等方式实现。
15
栈和队列应用举例

第3讲-空间数据模型和空间数据结构

第3讲-空间数据模型和空间数据结构
地球上大气圈、水圈、生物圈、岩石圈和土壤圈交互作用的区域,地 球上最复杂的物理过程、化学过程、生物过程和生物地球化学过程就 发生在该区域。
空间现象 客观世界的现象划分为5类:
可精密观测的自然对象(如建筑物边界) 受采样限制的自然对象(如河流的边界) 受定义限制的自然对象(如植被覆盖率大小和范围) 不规则的人为对象(如行政区、TIN、Voronoi多边形) 规则的人为对象(栅格、立方体元)
空间实体
➢ 对复杂地理事物和现象进行简化抽象得到的不可再分割的同 类对象,就是地理空间实体,简称空间实体。
➢ 空间实体具有4个基本特征:
➢ 空间位置特征 ➢ 属性特征 ➢ 时间特征 ➢ 空间关系
观察和认知
现实世界
概念世界
ቤተ መጻሕፍቲ ባይዱ抽还 象原 世世 界界
信息
数据世界 (计算机)
空间事物或现象
选择、综合、简化和抽象
程度、地表温度、土壤湿度、地形高度以及大面积空气和水域
的流速和方向等;
根据不同的应用,场可以表现为二维或三维; 一个二维场就是在二维空间R2中任意给定的一个空间位置上,
都有一个表现某现象的属性值,即 A=f(x,y)
一个三维场是在三维空间R3中任意给定一个空间位置上,都对 应一个属性值,即 A=f(x,y,z)
可被标识 在观察中的重要程度 有明确的特征且可被描述
传统的地图是以对象模型进行地理空间抽象和建模的实例。
空间关系 非空间关系 时间关系
地理空间 空间要素
分类
子类 超类
几何坐标 子部分 超部分
非空间属性
对象模型对空间要素的描述
场/域(field)模型
把地理空间中的现象作为连续的变量或体来看待,如大气污染

第三章 空间数据结构

第三章 空间数据结构

(三)栅格数据的组织
数据文件 像元1
像元2 … 像元n
X坐标
数据文件
Y坐标
层1属性
层1
层2属性 ...
层n属性
层2 …
层n
像元1
X坐标
Y坐标 属性值
数据文件 层1
像元2 ...
像元n
多边 形1
属性值 像元1坐标
像元2坐标 … 像元n坐标
多边形2 ... 多边形n
层2 …
层n
(四)栅格结构的建立
一)建立途径
数据存储量大
(2)费尔曼链码 (边界编码)
将线状地物或区域边界表示为:由某一起始点 和某些基本方向上的单位矢量链组成。
前两个字母表示起点的行列号,从第三个数 字开始每个数字表示单位矢量的方向。
单位矢量的长度 为一个栅格单元, 后续点可能位于前 继点8个基本方向上。
7
0
1
6
2
5
4
3
(2)费尔曼链码 (边界编码)
三)栅格属性值的确定
4、重要性法
突出某些主要属性,只要在栅格中出现就把该属性作为 栅格属性
A
B
C
D
AABB AABB CDDB DDDD
三)栅格属性值的确定
5、百分比法
根据矩形区域内各地理要素所占面积的百分比数确定单 元的取值。
A
B
C
D
AABB AABB CDDB DDDD
(五)栅格数据编码方式
(3)游程(行程)编码
特点:属性的变化愈少,游程愈长,即压缩比的
大小与图的复杂程度成反比。
优点:数据压缩率高,易于实现叠加,检索和合
并运算。
缺点:适合类型区面积较大的专题图、遥感影像

空间数据结构的转换-幻灯片(1)

空间数据结构的转换-幻灯片(1)

2024/10/11
17
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
– 这是这一方法的技术关键所在。其解决办法是, 借助一个在计算机中存储着的,由待剥栅格为 中心的3×3栅格组合图来决定。一个3×3的栅 格窗口,其中心栅格有八个邻域,因此组合图 有多种不同的排列格式,若将相对位置关系的 差异只是转置90、180、270度或互为镜象反射 的方法进行归并,则共有51种排列格式。
2024/10/11
14
根据给定的阈值二值化后得到的栅格数据
2024/10/11
15
– II、细化 细化是消除线划横断面栅格数 的差异,使得每一条线只保留代表其轴 线或周围轮廓线(对面状符号而言)位置的 单个栅格的宽度。
2024/10/11
16
– 对于栅格线划的“细化”方法,常用 “剥皮法” 。剥皮法的实质是从曲线的 边缘开始,每次剥掉等于一个栅格宽的 一层,直到最后留下彼此连通的由单个 栅格点组成的图形。因为一条线在不同 位置可能有不同的宽度,故在剥皮过程 中必须注意一个条件,即不允许剥去会 导致曲线不连通的栅格。
23
• 融合方式:
– 基于转换器 – 基于数据标准 – 基于公共接口 – 基于直接访问
2024/10/11
24
第四节 压缩与重分类
1、数据压缩的意义 优化存储空间,减少处理时间
2、数据压缩:从所取得的数据集合中抽取一个子集, 作为一个新的信息源,在规定的精度范围内最好地逼 近原集合,而又取得尽可能大的压缩比。 a= m/n≧1

空间数据结构的类型

空间数据结构的类型
▪ 区域D上有n个离散点Pi(Xi,Yi)(i=1,2,…,n),若将D 用一组直线段分成n个互相邻接的多边形,满足:
▪ 1)每个多边形内含且仅含一个离散点 ▪ 2)D中任意一点P‘(X’,Y‘)若位于Pi所在的多边形内,
则满足 由以上定义可知,泰森多边形的分法是唯一的;每 个泰森多边形均是凸多边形;任意两个泰森多边形 不存在公共区域。
▪ TIN
它角 连 多从
) 。
被 称 为
形 网 是
形 成 的
边 形 中
左 图 中
狄泰 一 各可
洛森 个 已以
尼多 三 知看
三边 角 点出
角 网 (
形 的 对 偶 图
形 网 , 该 三
)
(
参 考 点

来 , 将 泰 森
D-

▪ 用狄洛尼三角网构建泰森多边形
▪ 给定一个D-TIN,对于它的所有内边,连接共 有每条内边的两个三角形的外接圆的圆心,即构 成该TIN的平面点集Voronoi图。 (1)首先构建离散平面点集的D-TIN; (2)然后求取各三角形的外接圆心; (3)对每一个离散点,按顺时针或逆时针方 向连接与其关联的三角形的外接圆心,即得到该 离散点的泰森多边形;
3) 多边形矢量编码
由多边形边界的x,y
坐标队集合及说明
信息组成
多边形环路(坐标序列法)法
树状(层次)索引编码法
拓扑结构编码法
形成完整的 拓扑结构
对所有边界点数字化,将坐 标对以顺序方式存储,由点 索引与边界线号相联系,以 线索引与各多边形相联系
(1)多边形环路法
3Ⅲ
P1 x1,y1;x2,y2;
3 4
1
B
8
2

5.空间数据组织及结构

5.空间数据组织及结构
3 矢量数据结构
矢量结构是通过记录坐标的方式来表示点、线、面等 地理实体。
特点:定位明显,属性隐含。 获取方法: (1) 手工数字化法; (2) 手扶跟踪数字化法; (3) 数据结构转换法。
2020/10பைடு நூலகம்6
空间数据库
17
二、地理信息空间数据结构 地理信息数字化描述方法
2020/10/6
空间数据库
一般讲实体特征愈复杂,栅格尺寸越小,分辨率愈高,然 而栅格数据量愈大(按分辨率的平方指数增加)计算机成 本就越高,处理速度越慢。
2)方法:用保证最小多边形的精度标准来确定尺寸经验公 式: h为栅格单元边长;Ai为区域所有多边形的面积。
2020/10/6
空间数据库
27
三、地理数据的编码方法
6 栅格单元代码确定
1 2 22
1
22
1
1
1
1 1
8 88 88 88
1 1
1
88 88 8 88
8 8 88 888 88 8 88 888
1
88 88 88 88
1
88 88 88 88
2020/10/6
空间数据库
19
二、地理信息空间数据结构
(x2,y2)
地图的矢量和栅格表示
(x1,y1) (x3,y3)
(x4,y4)
三级、六位整数代码描述地图要素: 1)地图要素类别:水系、居民地、交通网、境界、地 貌、植被和其他要素七类;01~07 2)要素几何类型:点、线、面;00~39 ,40~69 , 70~99 3)要素的质量特征:道路的等级,普通或简易道路;
2020/10/6
空间数据库
24
三、地理数据的编码方法

2024版《数据结构图》ppt课件

2024版《数据结构图》ppt课件
重要性
良好的数据结构可以带来更高的运 行或存储效率,是算法设计的基础, 对程序设计的成败起到关键作用。
常见数据结构类型介绍
线性数据结构
如数组、链表、栈、队 列等,数据元素之间存
在一对一的关系。
树形数据结构
如二叉树、多叉树、森 林等,数据元素之间存
在一对多的关系。
图形数据结构
由顶点和边组成,数据 元素之间存在多对多的
队列定义、特点及应用场景
队列的特点 只能在队尾进行插入操作,队头进行删除操作。
队列是一种双端开口的线性结构。
队列定义、特点及应用场景
应用场景 操作系统的任务调度。 缓冲区的实现,如打印机缓冲区。
队列定义、特点及应用场景
广度优先搜索(BFS)。
消息队列和事件驱动模型。
串定义、基本操作及实现方法
最短路径问题 求解图中两个顶点之间的最短路径,即路径上边 的权值之和最小。
3
算法介绍 Prim算法、Kruskal算法、Dijkstra算法、Floyd 算法等。
拓扑排序和关键路径问题探讨
拓扑排序
对有向无环图(DAG)进行排序, 使得对每一条有向边(u,v),均有
u在v之前。
关键路径问题
求解有向无环图中从源点到汇点 的最长路径,即关键路径,它决
遍历二叉树和线索二叉树
遍历二叉树
先序遍历、中序遍历和后序遍历。遍历算 法可以采用递归或非递归方式实现。
VS
线索二叉树
利用二叉链表中的空指针来存放其前驱结 点和后继结点的信息,使得在遍历二叉树 时可以利用这些线索得到前驱和后继结点, 从而方便地遍历二叉树。
树、森林与二叉树转换技巧
树转换为二叉树
加线、去线、层次调整。将树中的每个结点的所有孩子结点用线连接起来,再去掉与原结点相连的线,最后 将整棵树的层次进行调整,使得每个结点的左子树为其第一个孩子,右子树为其兄弟结点。

地信空间数据结构【PPT】

地信空间数据结构【PPT】

C (x24,y24),(x25,y25),(x26,y26),
(x27,y27),(x28,y28),(x29,y29),
(x30,y30),(x31,y31),(x24,y24)
D (x19,y19),(x20,y20),(x21,y21),
(x22,y22),(x23,y23),(x15,y15),
栅格数据表示的是二维表面上的地理数据的离 散化数值。在栅格数据中,地表被分割为相互邻接、 规则排列的地块,每个地块与一个像元相对应。因 此,栅格数据的比例尺就是栅格(像元)的大小与地 表相应单元的大小之比,当像元所表示的面积较大 时,对长度、面积等的量测有较大影响。每个像元 的属性是地表相应区域内地理数据的近似值,因而 有可能产生属性方面的偏差。
16
98
17
7
6
3
5 18
19
4
23
22 21 20
实体式(Spaghetti):又称面条结构 (坐标序列法),以实体为单位,记录 多边形边界的坐标对(x、y)集合及说 明信息组成,只记录空间对象的位置坐 标和属性信息,不记录拓扑关系。
多边形
数据项
A (x1,y1),(x2,y2),(x3,y3),(x4,y4),
(三)链状双重独立式编码结构的特点
拓扑关系明确,也能表达岛信息,而且以弧段为记录单位, 满足实际应用需要。因为一般数字化一条街道时,必然有许多中 间点,但我们在做空间分析是却没有必要以这些中间点所组成的 折线为研究对象,而应以整条弧段(某条街道)为研究对象.
当图形数据修改、删除、增加点、线、面要素后,其拓扑关 系也发生改变,所以,需重新建拓扑。
在链状双重独立式编码中,主要有四个文件:多边形文 件、弧段文件、弧段点文件、点坐标文件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矢量数据模型
▪ 对于点实体(0维对象),没有长度和宽度
只记录其在特定坐标系下的坐标和属性 代码;
▪ 线实体(1维对象),只有长度没有宽度:
用一系列足够短的直线首尾相接表示一条 曲线。
矢量结构中只记录这些小线段的端点坐标, 将曲线表示为一个坐标序列,坐标之间认 为是以直线段相连,在一定精度范围内可 以逼真地表示各种形状的线状地物 。
▪ 拓扑编辑功能包括多边形连接编辑和结点 连接编辑
a.多边形连接编辑
弧段号 起点 终点 左多边形 右多边形
a2
N2 N4 0
p4
a7
N3 N4 p4
p3
a8
N2 N3 p4
p2
N1
P2
P1
N5
N3
N2
P3
P4ቤተ መጻሕፍቲ ባይዱ
弧段号 起点 终点 左多边形 右多边形
N4
a2
N2 N4 0
p4
a7
N4 N3 p3
▪ 30:x33,y33;x34,y34;x35,y35;x36,y36;x37,y37;x38,y38; x39,y39;x40,y40; x33,y33;
▪ 40:x19,y19;x20,y20;x21,y21;x28,y28;x29,y29;x30,y30; x31,y31;x32,y32; x19,y19;
边界被数字化和存储两次,造成数据冗余和不一致; 3.点、线和多边形有各自的坐标数据,但没有拓扑数
据,互相之间不关联。 4. 岛只作为一个单个的图形建造,没有与外包多边形
的联系; 5.不易检查拓扑错误。这种方法可用于简单的粗精度
制图系统中
2)拓扑数据结构
▪ 拓扑型数据结构由弧段坐标文件、结点文 件和多边形文件等一系列含拓扑关系的数 据文件组成。
▪ 50:x21,y21;x22,y22;x23,y23;x8,y8;x7,y7;x6,y6;x24,y24; x25,y25;x26,y26;x27,y27;x28,y28; x21,y21;
特点: 1.数据按点、线或多边形为单元组织,数据编排直观,
数字化操作简单; 2.每个多边形都以闭合线段存储,多边形之间的公共
➢结点文件由结点记录组成,存贮每个结 点的结点号、结点坐标及与该结点连接 的弧段等
➢弧段坐标文件存贮组成弧段的点的坐标
➢弧段文件由弧记录组成,存贮弧段的起 止结点号和左右多边形号;
➢多边形文件由多边形记录组成,存贮多 边形号、组成多边形的弧段号以及多边 形的周长、面积、中心点坐标。
▪ DIME(双重独立坐标地图编码,Dual Independent Map Encoding)编码系统
由多边形边界的x、y坐标对集合及说明信息组成,是 最简单的一种多边形矢量编码,如上图记为以下坐标文件:
▪ 10:x1,y1;x2,y2;x3,y3;x4,y4;x5,y5;x6,y6;x7,y7;x8,y8; x9,y9;x10,y10;x11,y11; x1,y1;
▪ 20:x1,y1;x12,y12;x13,y13;x14,y14;x15,y15;x16,y16; x17,y17;x18,y18;x19,y19;x20,y20;x21,y21;x22,y22; x23,y23;x8,y8;x9,y9;x10,y10;x11,y11; x1,y1;
常用的空间数据结构
X
i
xn yn
xi yi
x1 y1
x2 y2
Y
j
同一条曲线的矢量与栅格表示法
2.3.2 矢量数据结构
▪ (1) 定义 ▪ 基于矢量模型的数据结构简称为矢量数据
结构。 ▪ 矢量也叫向量,数学上称“具有大小和方
向的量”为向量。 ▪ 在计算机图形中,相邻两结点间的弧段长
度表示大小,弧段两端点的顺序表示方向, 因此弧段也是一个直观的矢量。
2.3.2 矢量数据结构
▪ 矢量数据结构是利用欧几里得几何学 中的点、线、面及其组合体来表示地 理实体空间分布的一种数据组织方式;
▪ 即通过记录坐标的方式尽可能精确地 表示点、线、多边形等地理实体.
注意:由于坐标空间设为连续,所以允许任 意位置、长度和面积的精确定义。
但是,其精度仅受数字化设备的精度和数 值记录字长的限制,在一般情况下,比栅格 结构精度高得多 。

②手扶跟踪数字化法;

③数据结构转换法。
2.3.2 矢量数据结构
矢量数据结构分为以下几种主要类型 ▪ 简单数据结构 ▪ 拓扑数据结构 ▪ 曲面数据结构
1)简单数据结构 a.面条(Spaghetti方式)在简单数据结构中,空间数据按 照以基本的空间对象(点、线、多边形)为单位进行单独 组织,不含有拓扑关系数据,最典型的是面条(Spaghetti 方式)
▪ “多边形”在地理信息系统中是指一个任 意形状、边界完全闭合的空间区域。
其边界将整个空间划分为两个部分:包含 无穷远点的部分称为外部,另一部分称为 多边形内部。
多边形的边界线同线实体一样,可以被看 作是由一系列多而短的直线段组成。
▪ (2) 特点:定位明显,属性隐含。
▪ (3) 获取方法:

①手工数字化法;
2.3 空间数据结构的类型
2.3.1 空间数据结构的概念和类型
空间数据结构 也称为图形数据格式,是指适用于 计算机系统存贮、管理和处理的地理图形数据的逻 辑结构,是地理实体的空间排列方式和相互关系的 抽象描述。换句话说,是指空间数据以什么形式在 计算机中存储和管理。
在地理信息系统中,常用的空间数据结构有两种, 即矢量数据结构和栅格数据结构。
DIME是美国人口调查局在人口调查的 基础上发展起来的,它通过有向编码建立 了多边形、边界、节点之间的拓扑关系, DIME编码成为其它拓扑编码结构的基础
▪ 拓扑整合的地理编码和参考系统(TIGER) ▪ 多边形转换器(POLYVRT)
▪ 特点:
点是相互独立的,点连成线,线构成 面。
每条线始于起始结点(FN),止于 终止结点(TN)并与左右多边形(LP和 RP)相邻接。
▪ 构成多边形的线又称为链段或弧段,两条 以上的弧段相交的点成为结点,由一条弧 段组成的多边形成为岛,多边形图中不含 岛的多边形称为简单多边形,表示单连通 区域;含岛区的多边形成为复合多边形, 表示复连通区域。
▪ 在这种数据结构中,弧段或链段是数据组 织的基本对象。
▪ 拓扑数据结构最重要的技术特征和贡献是 具有拓扑编辑功能。
相关文档
最新文档