第3章 CMOS基本单元电路

合集下载

《CMOS集成电路基础》课件

《CMOS集成电路基础》课件
当输入为0时,截止;当输入为1时,导通。
NMOS
当输入为0时,导通;当输入为1时,截止。
输出
输出反相的输入信号。
CMOS电路组成:CMOS传输门
1 输入端
接收多个输入信号。
3 PMOS
通过开关和截止的方式传递输入信号。
2 NMOS
通过开关和导通的方式传递输入信号。
4 输出端
输出根据输入信号进行逻辑运算的结果。
晶圆切割
将完成的硅片切割成晶圆,以便后续封 装和测试。
CMOS电路组成:MOS管
N沟道MOS管(NMOS)
由N型沟道和P型沟道构成,可以实现电流的传输和 放大。
P沟道MOS管(PMOS)
由P型沟道和N型沟道构成,用于控制电流的开关。
CMOS电路组成:CMOS反相器
输入
接收输入信号(0或1)。
PMOS
CMOS电路组成:CMOS与门
1
输入A
接收输入信号A。
输入B
2
接收输入信号B。
3
NMOS
当输入A为1且输入B为1时,导通。
PMOS
4
Байду номын сангаас
当输入A为0且输入B为0时,导通。
CMOS电路组成:CMOS或门
1
输入A
接收输入信号A。
输入B
2
接收输入信号B。
3
NMOS
当输入A为1且输入B为1时,截止。
PMOS
CMOS的基本工艺流程
1
清洗和蚀刻
2
对硅片进行清洗和蚀刻,去除杂质和氧
化物,并形成特定的表面。
3
沉积
4
在硅片上沉积各种材料,如金属、氧化
物和多晶硅等,用于构建电路的不同部

数字逻辑第3章 门电路

数字逻辑第3章 门电路

逻辑式:Y=A + B
逻辑符号: A 1
B
Y
电压关系表
uA uB uY
0V 0V 0V 0V 3V 2.3V 3V 0V 2.3V 3V 3V 2.3V
真值表
ABY
0
0
0
0
1
1
1
0
1
1
1
1
三、三极管非门
5V
利用二极管的压降为0.7V, 保证输入电压在1V以下时,
电路可靠地截止。
A(V) Y(V) <0.8 5 >2 0.2
II H &
II L &
… …
NOH
I OH (max) I IH
N MIN ( NOH , NOL )
NOL
IOL(max) I IL
六、CMOS漏极开路门(OD)门电路(Open Drain)
1 . 问题的提出
普通门电路
在工程实践中,往往需要将两个门的输出端 能否“线与”?
并联以实现“与”逻辑功能,称为“ 线与 。
输入 0 10% tr tf
tPHL
输出
tPLH
tr:上升时间
tf:下降时间 tw:脉冲宽度 tPHL:导通传输时间
tPLH:截止传输时间
平均传输延迟时间 (Propagation delay)
tpd= tpHL+ tpLH 2
5、功耗: 静态功耗:电路的输出没有状态转换时的功耗。 动态功耗:电路在输出发生状态转换时的功耗。
PMOS
NMOS
3、增强型MOSFET的开关特性
iD管可变子类型恒
VGS1 击开/关的条(件1)N沟道增强开型/M关O的S等FE效T电:路

CMOS电路基础原理

CMOS电路基础原理

CMOS电路基础原理CMOS(互补金属氧化物半导体)电路是现代电子领域中常用的集成电路设计技术。

它在数字逻辑电路和模拟电路中广泛应用,并且具有低功耗、高集成度以及较强的抗干扰能力等优点。

本文将介绍CMOS电路的基础原理。

一、CMOS电路结构CMOS电路由N沟道金属氧化物半导体场效应管和P沟道金属氧化物半导体场效应管构成。

N沟道和P沟道管具有互补的传输特性,能够有效降低功耗。

CMOS电路结构包括传输门、组合逻辑电路和时钟电路等。

1. 传输门传输门是CMOS电路的基本单元,常见的有与门、或门以及非门等。

与门由一对并联的P沟道和N沟道管组成,当且仅当两个输入信号同时为高电平时,输出为高电平。

或门由一对串联的P沟道和N沟道管组成,当且仅当两个输入信号中至少一个为高电平时,输出为高电平。

非门由两个逆并联的P沟道和N沟道管组成,当输入信号为高电平时,输出为低电平。

2. 组合逻辑电路CMOS电路中的组合逻辑电路包括与非门、异或门等。

与非门由与门和非门级联而成,输入信号经过与门进行与操作,然后再经过非门进行取反操作。

异或门由与非门和异或非门级联而成,输入信号经过与非门进行与非操作,然后再经过异或非门进行异或操作。

3. 时钟电路CMOS电路中的时钟电路包括振荡电路和触发器等。

振荡电路用于产生稳定的时钟信号,常见的电路有RC振荡电路和LC振荡电路等。

触发器用于存储和传输信息,常见的触发器有RS触发器、D触发器以及JK触发器等。

二、CMOS电路工作原理CMOS电路的工作原理基于PN结和MOSFET的特性。

当控制电压施加于PN结时,PN结正向偏置导通,反向偏置截止。

同时,对于MOSFET来说,当栅极电压低于阈值电压时,沟道断开;当栅极电压高于阈值电压时,沟道导通。

CMOS电路中,P沟道MOSFET和N沟道MOSFET的栅极交替连接,形成互补对。

当输入信号为低电平时,P沟道MOSFET导通,N 沟道MOSFET截止;当输入信号为高电平时,P沟道MOSFET截止,N沟道MOSFET导通。

数字电子技术基础 第三章(1)11-优质课件

数字电子技术基础 第三章(1)11-优质课件

图3.1.2 正逻辑与负逻辑
一些概念
1、片上系统(SoC) 2、双极型TTL电路 3、CMOS
1961年美国TI公司,第一片数字集成电路 (Integrated Circuits, IC)。
VLSI(Very Large Scale Integration)
3.2 半导体二极管门电路
3.2.1 半导体二极管 的开关特性
图3.2.1 二极管开关电路
可近似用PN结方程和下图所 示的伏安特性曲线来描述。
i Is ev/VT 1
其中:i为流过二极管的电流。 v为加到二极管两端的电压。
nkT VT q
图3.2.2 二极管的伏安特性
图3.2.3 二极管伏安特性的几种近似方法
三、电源的动态尖峰电流
图3.5.23 TTL反相器电源电流的计算 (a)vO=VOL 的情况 (b) vO=VOH的情况
图3.5.24 TTL反相器的电源动态尖峰电流
图3.5.25 TTL反相器电源尖峰电流的计算
图3.5.26 电源尖峰电流的近似波形
例3.5.4 计算f=5MHz下电源电流的平均值
图3.3.xx CMOS三态门电路结构之二 (a)用或非门控制 (b)用与非门控制
图3.3.xx CMOS三态门电路结构之三 可连接成总线结构。还能实现数据的双向传输。
3.3.6 CMOS电路的正确使用
一、输入电路的静电防护
1、在存储和运输CMOS器件时最好采用金属屏蔽层 作包装材料,避免产生静电。
tPHL:输出由高电平跳变为低电 平的传输延迟时间。
tPLH:输出由低电平跳变为高电 平的传输延迟时间。
tPD: 经常用平均传输延迟时间tPD
来表示tPHL和tPLH(通常相等)

成都理工大学 数字电子基础第三章TTL和CMOS电路

成都理工大学 数字电子基础第三章TTL和CMOS电路

电源VCC(+5V)
外形
地GND
管脚
74LS00内含4个2输入与非门, 74LS20内含2个4输入与非门。
2.或非门
有1出0,全0出1
T2与T2'形成或 逻辑关系 ABA为为 、高高B都电电为平平低时时电,,
T通 输 T通 输 平 同 截22、 ′, 出 , 出 时 止时、T截 ,TYTY,T544为 为5同截 截止TT同42低 低时止 止、 导,时电 电导, ,T通T导25平 平′,。 。
vo
t pd 2 (t pdLH t pdHL )
原因
结电容(D和T)的存在 o
分布电容的影响
50% t
tpdHL
50% t tpdLH
§3.5.5 其他类型的TTL门电路
一. 其他逻辑功能的门电路
1. 与 非 门
Y (A B)
输入端改成多发 射极三极管
TTL集成门电路的封装:
双列直插式
如:TTL门电路芯片(四2输入与非门,型号74LS00 )
相当于断开的开关,vO≈vDD.
当vI>VGS(th)且vI继续升高时,MOS管工作在可变 电阻区。MOS管导通内阻RON很小,D-S间相当于闭合
的开关,vO≈0。
四、MOS管的四种基本类型
D
D
G
S N沟道增强型
G
S N 沟道耗尽型
D
G S
P 沟道增强型
D
G S
P 沟道耗尽型
在数字电路中,多采用增强型。
一、TTL反相器的电路结构和工作原理
输入级 倒相级 输出级
称为推拉式 电路或图腾 柱输出电路
二、电压传输特性
1.3V 0.6V

华中科技大学CMOS拉扎维第三章课后作业中文答案

华中科技大学CMOS拉扎维第三章课后作业中文答案

3.1分析:对于PMOS 和NMOS 管二极管连接形式的CS 放大电路,最大的区别在于PMOS 做负载无体效应,所以这里应该考虑g mb 的影响。

同时,由于L=0.5,沟道长度比较短,所以,沟长调制效应也应该考虑进去。

2441401034.11099.31085.8350μμ2V A t C OX sio nOX n ---⨯=⨯⨯⨯⨯=∙=εε 同理 25p 10835.3μV A C OX -⨯=∵ 5.0501=⎪⎪⎭⎫⎝⎛L W 5.0102=⎪⎪⎭⎫ ⎝⎛L W A I I D D m 5.021== ∴ K I r DN o o 201r 21===λ()()22222n 2121DS N TH GS ox D V V V L W C I λμ+-⎪⎪⎭⎫ ⎝⎛= V O = 1.46V V A I LWC D OX m /106.32g 31-⨯==μ VA m /1063.1g 32-⨯=V A V g SBF m m /1038.222g 422b -⨯=+=φγ输出电阻:Ω=++=-508//g 1R 11222o o mb m OUT r r g∴增益 85.1g A 1-=-=OUT m V RM2换为PMOS 管,则可忽略M2的体效应,同理可得Ω=+=-974//g 1R 1122o o m OUT r r∴增益 85.0g A 1-=-=OUT m V R3.2 (a )∵ 5.0501=⎪⎪⎭⎫⎝⎛L W 2502=⎪⎪⎭⎫ ⎝⎛L W A I I D D m 5.021== ∴ K I DN o 201r 1==λ K I DP o 101r 2==λ又 2401034.1μμ2V A t C OXsion OX n -⨯=∙=εε∴ V A I LWC D OX m /106.32g 31-⨯==μ∴增益 ()4.24//r g A 211-=-=o o m V r(b )求输出电压的最大摆幅及求输出电压最大值与最小值之差 分析可知,当M1管处于临界三极管区时输出电压有最小值V omin ,此时有:11TH GS DS OUT V V V V -==()()DS N TH GS ox D V V V L W C I λμ+-⎪⎪⎭⎫ ⎝⎛=121211n 有以上两式可推得 V omin =0.27当M2管处于临界三极管区是输出电压有最大值V omax ,同理有:()()SDP TH GS ox D V V V L W C I λμ+-⎪⎪⎭⎫ ⎝⎛=121222pV SDMIN = 0.99 ∴ V omax = V DD -V SDMIN = 2V ∴输出电压的最大摆幅为V omax - V omin = 1.73V3.3 (a )∵5.050=⎪⎪⎭⎫⎝⎛L W A I D m 11= Ω=K R D 2∴K I DN o 101r ==λK R D o O U T 66.1//r R 1==V A I LWC D OX m /1018.52g 31-⨯==μ∴ 增益 86.0g A 1-=-=OUT m V R (b )∵M1工作在线性区边缘 ∴ TH GS DS OUT V V V V -==1()DO U TDD THGS ox D R V V V V L W C I -=-⎪⎪⎭⎫ ⎝⎛=21n 21μ由以上两式可得 V V GS 13.1= , A I D 3-1028.1⨯= ∴K I DN o 8.71r ==λ∴ 增益 ()34.9//r g A 1-=-=Do m V R(c )各区域主要由DS V 决定,进入线性区50mV 即三极管临界区的DS V 减小50mV ∵ 临界区的V R I V V D D DD DS 44.0=-= 所以进入线性区50mV 时的DS V =0.39V∴A R V V I DDSDD D 3103.1-⨯=-==∴ ()()V V V V V V L W C I GS DS DS TH GS ox D 14.122121n =⇒--⎪⎪⎭⎫ ⎝⎛=μ又∵ 三极管区 19.5g 1n =⎪⎪⎭⎫⎝⎛=DS ox m V L W C μ()K R V V V L W C V I R O DS TH GS ox DS D O28.111n 1=⇒--⎪⎪⎭⎫⎝⎛=∂∂=-μ ∴增益 ()4//R g A -=-=Do m V R3.12分析:已知各支路电流及M1宽长比,可求得M1过驱动电压即out V ,从而由M2的gsV 及电流可求得其宽长比。

cmos电路和器件基本结构

cmos电路和器件基本结构

cmos电路和器件基本结构CMOS电路和器件基本结构一、引言CMOS(亦称为互补金属-氧化物-半导体)电路是一种常用的逻辑电路,它由NMOS(N型金属-氧化物-半导体)和PMOS(P型金属-氧化物-半导体)两种互补型的MOSFET(金属-氧化物-半导体场效应晶体管)组成。

CMOS电路以其低功耗、高集成度和低电压操作等特点,在现代集成电路设计中得到广泛应用。

本文将介绍CMOS电路和器件的基本结构。

二、CMOS电路的基本结构1. NMOS器件NMOS器件由P型衬底上生长的N型沟道和两个掺入P型源极和漏极的P型扩散区组成。

沟道区域上方由一层薄的氧化硅(SiO2)作为绝缘层,上面再覆盖一层金属(通常为铝)作为电极。

当沟道区没有电压施加时,NMOS处于截止状态,导通状态需要在沟道区施加正电压。

2. PMOS器件PMOS器件与NMOS器件相反,由N型衬底上生长的P型沟道和两个掺入N型源极和漏极的N型扩散区组成。

沟道区域上方同样有一层氧化硅和金属电极。

当沟道区施加负电压时,PMOS处于导通状态,截止状态需要在沟道区施加正电压。

3. CMOS电路CMOS电路是通过将NMOS和PMOS器件相互串联或并联而构成的。

在CMOS电路中,NMOS器件的漏极与PMOS器件的源极相连,共同组成电路的输出端;NMOS器件的源极与PMOS器件的漏极相连,共同组成电路的输入端。

当输入信号施加到NMOS和PMOS器件上时,根据不同的输入信号电平,其中一个器件处于导通状态,另一个器件处于截止状态,从而实现电路的逻辑功能。

三、CMOS电路的工作原理CMOS电路的工作原理是基于MOSFET的三个重要特性:沟道截止、沟道饱和和门极电势控制。

当输入信号为低电平时,NMOS处于导通状态,PMOS处于截止状态,此时电路输出为高电平;当输入信号为高电平时,NMOS处于截止状态,PMOS处于导通状态,此时电路输出为低电平。

由于CMOS电路的输出仅在输入发生变化时才会改变,且输出信号的上升和下降均经过一个NMOS和一个PMOS器件,因此CMOS电路具有较低的功耗和较高的抗噪声能力。

第三章-CMOS门电路

第三章-CMOS门电路
2
3.3.1 MOS管的开关特性 第一页 上一页 下一页
最后 一页
结束 放映
BJT是一种电流控制元件(iB~ iC),工作时,多数 载流子和少数载流子都参与运行,所以被称为双极型 器件。
MOS管是一种电压控制器件(uGS~ iD) ,工作时, 只有一种载流子参与导电,因此它是单极型器件。
MOS管因其制造工艺简单,功耗小,温度特性好, 输入电阻极高等优点,得到了广泛应用。
3.3.3 其它类型的CMOS门电路
第一页 上一页 下一页
最后 一页
结束 放映
1. 其他逻辑功能的CMOS门电路(P91~93)
在CMOS门电路的系列产品中,除了反相器外常用的还 有与门、或门、与非门、或非门、与或非门、异或门等 。 2. 漏极开路的门电路(OD门)
如同TTL电路中的OC门那样,CMOS门的输出电路结 构也可做成漏极开路(OD)的形式。其使用方法与TTL的 OC门类似。
强。
原因:TTL的输出电阻小。5mA内 变化很小IOH
实际只有0.4mA
21
3.3.4 CMOS反相器的动态特性(门电第路一页状上态一页切下一换页 时最一后页
结束 放映
所呈现的特性)
tPLH:输出由低电平变为高电平的传输延迟时间 tPHL:输出由高电平变为低电平的传输延迟时间
22
CMOS反相器传输延迟的原因:
24
第一页 上一页 下一页
最后 一页
结束 放映
漏极开路的门电路(OD门)(Open-Drain)
VDD1
内部逻辑 A B
VDD2 使用时必须外接上拉电阻
D vO
G
TN•
S
RL
Y=(AB)'

第 3 章 逻辑门电路总结

第 3 章 逻辑门电路总结

EXIT
逻辑门电路
一、三极管的开关作用及其条件
iC 临界饱和线 M T IC(sat) S
放大区
IB(sat)
uI=UIL
三极管为什么能用作开关? 饱 Q + 怎样控制它的开和关? uBE 和 区
O UCE(sat) B uBE < Uth
负载线
A N C
截止区
uCE
三极管关断的条件和等效电路
当输入 uI 为低电平,使 uBE < Uth时,三极管截止。
逻辑门电路
第3章
逻辑门电路
概 述 三极管的开关特性
TTL 集成逻辑门 CMOS 集成逻辑门 集成逻辑门的应用
本章小结
EXIT
逻辑门电路
3.1
主要要求:
概 述
了解逻辑门电路的作用和常用类型。 理解高电平信号和低电平信号的含义。
EXIT
逻辑门电路
一、门电路的作用和常用类型
按逻辑功能不同分 指用以实现基本逻辑关系和 门电路 (Gate Circuit) 常用复合逻辑关系的电子电路。 与门 或门 非门 异或门 与非门 或非门 与或非门 按电路结构不同分
上例中三极管反相 器的工作波形是理想波 形,实际波形为 :
t
UCE(sat) O
EXIT
逻辑门电路
二、三极管的动态开关特性
uI
UIH
UIL O iC 0.9IC(sat) IC(sat) 0.1IC(sat) O uO VCC ton toff t
uI 正跳变到 iC 上升到 0.9IC(sat) 所需的时间 ton 称 为三极管开通时间。
逻辑门电路
(2) 对应输入波形画出输出波形 三极管截止时, iC 0,uO +5 V 三极管饱和时, uO UCE(sat) 0.3 V

拉扎维模拟CMOS集成电路设计第三章作业答案详解完整版教程解析

拉扎维模拟CMOS集成电路设计第三章作业答案详解完整版教程解析

拉扎维模拟CMOS集成电路设计第三章作业答案详解完整版教程解析1. 引言在拉扎维模拟CMOS集成电路设计第三章的作业中,涉及了多个内容,包括放大电路、反馈放大电路、功率放大电路等。

本文将对这些内容进行详细的解析和讲解,并给出相应的答案。

2. 放大电路放大电路是电子电路中非常常见且重要的一种电路结构。

在本章的作业中,我们需要设计一个放大电路,并回答一些相关问题。

2.1 放大电路设计根据作业要求,我们需要设计一个放大电路,输入信号为正弦波,放大倍数为10倍。

我们可以选择使用CMOS集成电路来实现这个放大电路。

首先,我们需要根据放大倍数和输入信号的幅度来确定CMOS放大电路的电路参数。

在设计过程中,我们需要考虑一些关键因素,包括电流源、负反馈电阻等。

其次,我们可以选择合适的电路拓扑结构,例如共源共栅放大电路、共源共漏放大电路等。

根据实际情况,我们可以选择合适的电路结构。

最后,我们需要进行电路参数的计算和电路的仿真。

通过计算和仿真,我们可以得到放大电路的性能指标,例如增益、截止频率等。

2.2 放大电路问题解答在作业中,还需要回答一些问题,例如输入电阻、输出电阻、频率响应等。

针对这些问题,我们需要根据放大电路的拓扑结构和电路参数做相应的计算和分析。

例如,输入电阻可以通过计算输入端的电流和电压之比得到;输出电阻可以通过计算输出端的电流和电压之比得到;频率响应可以通过对放大电路进行交流分析得到。

总的来说,放大电路的设计和问题解答需要综合考虑多个因素,包括电路参数、电路结构、输入信号的幅度、负载等。

需要进行一系列的计算和仿真,以得到满足要求的电路性能。

3. 反馈放大电路反馈放大电路是一种常见的电路结构,它可以通过引入反馈回路来改善电路性能,例如增益稳定性、线性度等。

在作业中,我们需要设计一个反馈放大电路,并回答一些相关问题。

3.1 反馈放大电路设计根据作业要求,我们需要设计一个反馈放大电路,输入信号为正弦波,放大倍数为20倍。

cmos 开关电路设计

cmos 开关电路设计

cmos 开关电路设计CMOS 开关电路设计CMOS (互补金属氧化物半导体) 开关电路是数字集成电路设计中非常重要的基本构建模块。

它们广泛应用于存储器、数据通路和控制逻辑等领域。

CMOS 开关电路具有低功耗、高噪声免疫性和良好的可扩展性等优点。

1. CMOS 传输门传输门是最基本的 CMOS 开关电路,由一个 NMOS 和一个 PMOS 晶体管并联组成。

当控制信号为逻辑高电平时,传输门打开,输入端与输出端之间传输数据;当控制信号为逻辑低电平时,传输门关闭,输入端与输出端之间断开连接。

2. CMOS 复传输门复传输门由两个并联的传输门组成,可以在输入端和输出端之间传输补码信号对。

这种结构常用于设计存储单元、多路复用器/解复用器等电路。

3. CMOS 三态门三态门是一种特殊的开关电路,除了开路和关路两种状态外,还有一种高阻抗状态。

它由一个传输门和一个反相器组成。

当使能信号为逻辑高电平时,三态门处于开路状态;当使能信号为逻辑低电平时,三态门处于关路状态;当使能信号处于高阻抗状态时,三态门的输出端也处于高阻抗状态。

三态门常用于构建总线结构。

4. CMOS 开关电容器开关电容器是一种采样数据的电路,由一个传输门和一个电容器组成。

当时钟信号为高电平时,传输门导通,输入端的电压值被采样存储在电容器中;当时钟信号为低电平时,传输门关闭,电容器保持之前采样的电压值。

开关电容器广泛应用于模数转换器、滤波器和模拟信号处理电路中。

CMOS 开关电路的设计需要考虑信号完整性、可靠性、功耗和布局等多方面因素。

正确的电路拓扑结构、尺寸和布局布线对于获得良好的性能至关重要。

第3章CMOS集成电路工艺与版图

第3章CMOS集成电路工艺与版图
Via
含义
引线孔(连接金属与多晶硅 或有源区)
通孔(连接第一和第二层金 属)
MOS器件版图图层 ——PMOS
N阱——NWELL P型注入掩模——PSELECT 有源扩散区——ACTIVE 多晶硅栅——POLY 引线孔——CC 金属一——METAL1 通孔一——VIA 金属二——METAL2
MOS管宽长比(W/L)比值大于10:1的器 件可称为大尺寸器件。在版图上需要做特 殊处理。
大尺寸器件普遍应用于:
缓冲器(buffer)、
运放对管、
VDD
系统输出级。
BIAS
IN
OUT
IN-
IN
IN+
OUT
OUT
GND
buffer 对管
缓冲器中的一级反相器
运放对管
大尺寸器件存在的问题: 寄生电容; 栅极串联电阻
MOS管中电流由源极流向漏极。 沟道宽度
沟道中电流流过 的距离为沟道长度;
W
截面尺寸为沟道
宽度。
沟道长度 L
电流方向
设计中,常以宽度和长度值的比例式即宽 长比(W/L)表示器件尺寸。
例:假设一MOS管,尺寸参数为20/5。则 在版图上应如何标注其尺寸。
20/5
3、图形绘制
英特尔65纳米双核处理器的扫描电镜(SEM)截面图
CMOS工艺与版图
王智鹏
集成电路制造(平面工艺)
先在硅表面制作一层二氧化硅; 然后通过光刻,在二氧化硅上需要扩散掺
入杂质的区域开设窗口; 最后完成掺杂和金属化等工序,完成芯片
的制造。
光刻胶 氧化硅
硅片
扩散区
定义版图
什么是版图? 集成电路制造工艺中,通过光刻和刻蚀将

第三章-MOS管反相器

第三章-MOS管反相器

图3.5.2 两级CMOS反相器级联
(a)充电模型
(b)放电模型
图3.5.3 延迟模型
(a)充电过程
(b)放电过程
图3.5.4 主要电阻和电容来源
3.6 功耗
CMOS反相器的耗功P由两部分组成, (1)静态功耗,即反向漏电造成的功耗PD; (2)动态功耗,即反相器电平发生跳变时产生的 功耗。
3.1 引言
反相器是这样的电路,当其输入信号为高电平时,其输出为低 电平,而当其输入信号为低电平,其输出则为高电平。反相器在 电路中的表示符号如图3.1.1所示。
图3.1.1 反相器符号
图3.1.2 反相器结构
3.2 NMOS管负载反相器 3.2.1 增强型NMOS管负载反相器
1、负载NMOS管工作于饱和区的反相器
1、静态功耗 图3.6.1 CMOS反相器的稳态时没有电流
图3.6.2 NMOS反相器稳态会产生电流
2、动态功耗
以CMOS反相器为例来分析动态功耗。在输入信号从 逻辑0到逻辑1的跳变或输入信号从逻辑1到逻辑0跳变的瞬间, CMOS反相器的NMOS晶体管和PMOS晶体管都处于导通状态, 这导致一个从电源VDD到地的窄电流脉冲。同时为了对负载电容 进行充电和放电,也需要有电流流动,这将引起功耗。通常,对 负载电容的充电和放电所需要的电流是造成动态功耗的主要因素。
(a)电路
3.3.2 CMOS反相器直流特性 (b)转移特性 (c)电流的变化
图3.3.1 CMOS反相器
3.4 动态反相器 3.4.1 动态有比反相器
图3.4.1 动态反相器
3.4.2 动态无比反相器 图3.4.2 动态无比反相器
3.5 延迟
(a)反相器
(b)输入从逻辑0跳变到逻辑1 (c)输入从逻辑1跳变到逻辑 图3.5.1 反相器产生延迟

第三章(1)门电路---CMOS

第三章(1)门电路---CMOS
G2 门 v I 范围
输入低电平的上限值 VIL(max)
输入高电平的下限值 VIH(min)
输出高电平的下限值 VOH(min)
输出低电平的上限值 VOL(max)
3.1.2 逻辑门电路的一般特性
2.噪声容限:在保证输出电平不 变的条件下,输入电平允许波动 的范围。它表示门电路的抗干扰
驱动门
01 1
数据输入端
EN A B
其他三态与非门: A
&
逻辑符号 B
低电平有效
2.产生的高、低电平半导体器件
iC
VCC Rc
Rb vI
VCC Rc
vo
vCE VCC
工作在饱和区:输出低电平 工作在截止区:输出高电平
3.1.3 MOS开关及其等效电路
场效应三极管
利用电场效应来控制电流的三极管,称为场效应管,也 称单极型三极管。
由金属、氧化物和半导体制成。称为金属 -氧化物-半导体场 效应管,或简称 MOS 场效应管。
2、 逻辑门电路的分类 分立门电路
逻辑门电路 集成门电路
二极管门电路 三极管门电路
MOS门电路
TTL门电路
NMOS 门 PMOS门 CMOS门
TTL系列门
开关速度较快 平均延迟时间:3~10ns 结构复杂、集成度低 功耗高(2~20mw )
MOS门
开关速度稍低
平均延迟时间:75ns 结构和制造工艺简单 容易实现高密度制作 功耗低(0.01mw)
IOL= nIIL
IIL

灌电流
1
IIL n个
NOL
?
I OL (驱动门) I IL (负载门)
3.1.2 逻辑门电路的一般特性

《数字电子技术基础》第3章 门电路

《数字电子技术基础》第3章 门电路
VDD
导通
TP vI vO
TN
vo=―1” 截止
vI=1
VDD
截止
T1 vI
vO T2
vo=―0” 导通
静态下,无论vI是高电平还是低电平,T1、T2总有 一个截止,因此CMOS反相器的静态功耗极小。
二、电压传输特性和电流传输特性
T1导通T2截止
电 压 传 输 特 性
T1T2同时导通
T2导通T1截止
噪声电压作用时间越短、电源电压越高,交流噪声容 限越大。
三、动态功耗
反相器从一种稳定状态突然变到另一种稳定状态的过
程中,将产生附加的功耗,即为动态功耗。
动态功耗包括:负载电容充放电所消耗的功率PC和 PMOS、NMOS同时导通所消耗的瞬时导通功耗PT。 在工作频率较高的情况下,CMOS反相器的动态功耗 要比静态功耗大得多,静态功耗可忽略不计。
VNL VIL (max) VOL (max)
测试表明:CMOS电路噪声容限 VNH=VNL=30%VDD,且随VDD的增加而加大。
噪声容限--衡量门电路的抗干扰能力。 噪声容限越大,表明电路抗干扰能力越强。
§3.3.3 CMOS反相器的静态输入输出特性
一、输入特性 因为MOS管的栅极和衬底之间存在着以SiO2 为介质的输入电容,而绝缘介质非常薄,极易被
S1
输 入v I 信 号 输 vo 出 信 号
S2
图3.1.3 互补开关电路
互补开关电路由于两个开关总有一个是断开的, 流过的电流为零,故电路的功耗非常低,因此在数字 电路中得到广泛的应用
3.1 概述
4. 数字电路的概述 (1)优点: 在数字电路中由于采 用高低电平,并且高低电 平都有一个允许的范围, 如图3.1.1所示,故对元器 件的精度和电源的稳定性 的要求都比模拟电路要低, 抗干扰能力也强。

数电第三章门电路知识点总结

数电第三章门电路知识点总结

数电第三章门电路知识点总结
数电第三章——门电路
1.杂志半导体特点
在杂质半导体中,多数载流子的浓度主要取决于掺入的杂质浓度;而小数载流子的浓度主要取决于温度。

杂质半导体,无论是N型还是P型,从总体上看,仍然保持着电中性。

2.CMOS与非门
P并N串
3.CMOS或非门
P串N并
4.CMOS传输门
5.三态门
三态分别是导通、截止、高阴态。

是有一个控制端,如果控制端设置为某个值(1或0),会让输入端无论输入什么都是不通的(有些情况是通的,就是状态不改变),这就叫高阻态,在图中由一个三角形表示。

6.TTL与CMOS优缺点
TL电路的优点是开关速度较高,抗干扰能力较强,带负载的能力也比较强,缺点是功耗较大。

CMOS电路具有制造工艺简单、功耗小、输入阻抗高、集成度高、电源电压范国宽等优点,其主要缺点是工作速度稍低,但随着集成工艺的不断改进,CMOS电路的工作速度已有了大幅度的提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

W 1/L 1 M1
W 2/L 2 M2
M1 W 1/L 1
M2 W 2/L 2
IREF
Rout
Iout
NMOS
ห้องสมุดไป่ตู้
PMOS
W2 / L2 W2 L1 I out I I REF W1 / L1 REF W1 L2
(理想情况)
Iout与IREF的比值由M1与M2的尺寸比率决定,不受电源电压、工艺
和温度的影响(理想情况)

M1工作在饱和区(Vds=Vgs,Vgd=0),同时为M2提供偏置电压。
4
基本电流镜的误差(沟道长度调制引起)
I
REF

C
n
OX
2
W ( )(V V ) (1 V ) L
1 2 gs th ds 1 1
I
C
n
OX
OUT
2
W ( )(V V ) (1 V ) L
线性区
静态偏置电压不同,放大管 工作在不同的区域,应保证工 作在饱和区。
12
电压放大原理(在饱和区,电阻负载)
ut
13
电阻负载放大器的优缺点
电阻负载(直流电阻与交流电阻相同)的缺点:
电压放大倍数Av= -gm(RL//rds1) ,
为了增大Av → 增大RL → 限制输出电压的摆幅;
CMOS工艺条件下制作大电阻(数百KΩ)会占用较大芯
片面积;
增加静态(直流)功耗(Ids2 ×RL)。
电阻负载的优点: 产生较小的寄生电容和噪声电压,适应于低增益高频 放大器(RF电路中)。
14
共源极放大器(电流镜作为有源负载)
NMOS放大管
Vdd M3 Vin M1
S
PMOS放大管
Vdd Vdd
S
Active load M2 Vout
Ibias
M2 Vout
Ibias
2)当Vin>Vth1时,M1和M2都进入饱和区, 漏极电流基本保持恒定(电流镜的作 用),Vout开始减小 3)当Vin> Vout +Vth1 (或Vout< Vin -Vth1) 时,M1进入线性区
输出电压Vout的下限是M1的过驱动电压( Vin -Vth1),而输出电压 的上限是Vdd减去M2的过驱动电压(|VGS2 –Vth2|),因此,输出电压 的摆幅是电源电压减去两个过驱动电压,即
小信号特性与二极管 等效,故称为二极管连 接的MOS管。
10
3.2 共源极放大器(电阻负载)
Vdd 负载线 Vout = Vdd - RLIds Ids RL
Vin0
Vout Vin
Vin0
Vin
vin VDD Vds
Source端交流接地
11
共源极放大器的输入-输出特性(大信号特性)
截止区
饱和区
7
多路输出电流镜(输出电流导向)
VDD
VDD IREF M0 W0/L0
Sink current
I1
M3 W3/L3 I3 I2
M4 W4/L4 I4
M1 W1/L1
M2 W2/L2
Source current
I1
W1 / L1 I REF W0 / L0
I 2 I3
W2 / L2 I REF W0 / L0
第3章 CMOS基本单元电路
魏廷存/2008年
1
单级放大器的特性




直流或低频增益(DC Gain) 频率特性(带宽) 动态响应速度(Slewing rate,Settling time) 功耗、电源电压 输入电压范围 最大电压摆幅(无失真放大范围) 输入/输出电阻 信噪比(S/N) 以上特性大部分互相制约,要根据实际应用 场合进行折衷选择或优化设计。
2 2 gs th ds 2 2 2 2 ds 2
I I
OUT
REF
W /L 1 V ( )( ) W /L 1 V
1 1 ds 1
由于Vds2一般不等于Vds1,输出电流出现偏差。且λ愈大,电流误差愈
大。因此为了提高电流源的精度,通常使用L尺寸较大的管子形成电流
镜(λ∝1/L)。为了进一步减小沟道长度调制的影响,可采用后面介绍 的共源共栅电流镜。
2)较大的Rs将占用较大的芯片面积及功耗。
26
源极跟随器的大信号特性
VDD D M1 VDD
Vout
VDD-VTH1
Ibias
Vin
S
Vout
Vin
M3
M2
0
VTH1
VDD
1) 当Vin<VTH1时,M1处于截止区,ID1=0,M2处于深度线性区,Vout=0。 2) 当Vin>VTH1时,M1和M2都进入饱和区,由于电流镜的作用,漏极电流基本保 持恒定。如果忽略M1的沟道长度调制效应和体效应(VTH1随Vout变化),则 M1的漏极电流可表示为 1 W 2 I D1 nCox 1 Vin Vout VTH 1 2 L1 Vout随Vin线性增加,但其差值始终保持为VTH1+Veff1。因此,源极跟随器的输 入和输出电压之间产生直流电平位移,其位移幅度为VTH1 +Veff1。由于 Vin<VDD(最大工作电压),M1始终工作在饱和区,不会进入线性区。
25
3.3 共漏极放大器(源极跟随器/Source follower)
Drain端交流接地
VDD
VDD D M1 S
VDD
M1
I bias
V in
Vin Vout Rs
NMOS放大管
电阻负载的缺点:
M3 M2
V out A ctive L oad
1)M1的漏极电流受输入直流电平的强烈影响→导致AMP的输入-输 出特性严重非线性;
VDD
0
VDD/2
Vin
M1和M2均工作在饱和区时的电压放大倍数(NMOS与PMOS同时 起放大作用): 较单级NMOS或PMOS共源放大器增益大
A ( g g )( r // r )
v m1 m2 ds 1 ds 2
如果将放大器的静态工作点设置在Vin=Vdd/2,则可获得最大电压 增益和输出动态范围。例如用在A/D变换的比较器中(将输入和输出 瞬间短路使Vin=Vdd/2)。
负载电阻: r L2 , ds 2
ID
L2 rds 2 Av
| Vds 2 |min 输出电压摆幅
(在偏置电流ID和W2不变的情况下,L2 ↑→|Vgs2-Vth2| ↑→ |Vds2| min↑) 结论: 在ID确定的情况下,适当增加管子的尺寸(保持宽长比不 变),可提高电压增益。缺点是寄生电容增大,频率特性变差。
21
电压放大倍数(工作在饱和区)
本征增益: A g .r 2u c W1 I ( 1 ) W1L1 v m1 ds1 n ox D
0
L1
1I D
ID
W1 L1 ID
Av0
但是,W1L1↑→Cgs1 ↑→频率特性变差。为了提高放大倍数,可适当 减小偏置电流ID(受到放大器的速度和噪声要求的限制)。
19
电流镜作为有源负载时的放大原理
Id
有源负载为恒流源 Rds2=∞
ID
∆Vin
∆Vout
Q
∆Vout
Vds
有源负载的输出 电阻不为无穷大 Rds2≠∞
有源负载的输出电阻不为无穷大时,电压放大倍数减小。
20
电压放大倍数(工作在饱和区)
rin Vout + _ + Vgs1 _
Vin
gm1Vgs1
I d n C OX
W (Vgs Vth )Vds L
17
输出电压的摆幅
Vout 截止区(M1) VDD 饱和区(M1)
线性区(M1)
0

VTH1 Vout+VTH1
Vin
为了保证M1与M2均工作在饱和区,输出电压被限制在以下范围: (Vin-Vth1)<Vout<VDD-|Vds2|min
22
电阻负载与电流镜有源负载的比较
Id
电阻的负载线
饱和区
Vin Active load的负载线
线性区
Vdd*
Vdd
电流镜有源负载的等效电阻随Vin变化:
Vds
Vdd * RL I ds 500k 100uA 50V
线性区(小电阻)
饱和区(大电阻)
23
反相器放大器(推挽放大器)
线性放大区域
5
基本电流镜的误差(其它原因引起)


M1与M2的Vth不同(例如栅氧化膜的厚度不同)
M1与M2的尺寸误差(几何失配)
提高电流源精度的措施:
1)在电流镜的版图设计中,M1与M2的结构应尽可能保持对称且紧靠在一起 配置,保证较小的Vth偏差。 2)可将管子的W和L取大一些,以减小尺寸失配误差的影响。 3)在CMOS制造过程中存在源/漏区的横向扩散现象,即 Leff =Ldrawn-2LD,由于源/漏区的横向扩散长度LD是与工艺相关的某一常 数,与栅长Ldrawn无关,因此,如果将Ldrawn加倍,但Leff并不能相应加
9
基本电流镜的小信号等效电路(NMOS)
M1 M2
ix
+
1/gm1
Vgs2
_
+
gm2vgs2
rds2
_
Vx
rout = rds2
V1
i1
i1 1/gm1
+
Vgs1
_
rds1 gm1vgs1
相关文档
最新文档