代数式和因式分解中考题解析

合集下载

【最新资料】温州市中考数学试题分类解析专题2:代数式和因式分解

【最新资料】温州市中考数学试题分类解析专题2:代数式和因式分解

【分析】 直接应用平方差公式即可: x 2 9 x 3 x 3 。
8. ( 2009 年浙江温州 5 分) 某单位全体员工在植树节义务植树 240 棵.原计划每小时植树
a 棵。实际每小时植树的棵数是原计划的 1.2 倍,那么实际比原计划提前了
▲ 小时
完成任务 ( 用含 a 的代数式表示 ) .
【答案】 40 。 a

1 m=
时,原式=
2
6
1
2
3
1。
2
2
【考点】 整式的化简求值。
mm 6
7 ,其中 m=1 2
【分析】 应用平方差公式和单项式乘多项式法则化简后代
m=1 求值。 2
来临前完成加固任务. 设滨海区要加固的海堤长为 a 米,则完成整个任务的实际时间比原计
划时间少用了
▲ 天(用含 a 的代数式表示).
【答案】 a 。 180
【考点】 列代数式(工程问题)。
【分析】 根据工作时间 =工作量÷工作效率的关系, 由已知得, 原计划用的天数为 a 和实际 60
用的天数为
a
a ,二者相减即是完成整个任务的实际时间比原计划时间少用的天
a 2﹣ b2=( a +1)( a -
1)。
12. ( 2011 年浙江温州 5 分) 汛期来临前,滨海区决定实施“海堤加固”工程.某工程队
承包了该项目,计划每天加固 60 米.在施工前,得到气象部门的预报,近期有“台风”袭
击滨海区,于是工程队改变计划, 每天加固的海堤长度是原计划的 1.5 倍,这样赶在“台风”
【分析】 若分式 x 1 的值为零,则 x 1=0
x=1 。故选 B。
x2
x20
8. ( 2009 年浙江温州 4 分) 把多项式 x2 一 4x+4 分解因式,所得结果是【

中考数学代数式和因式分解试卷分类解析

中考数学代数式和因式分解试卷分类解析

中考数学代数式和因式分解试卷分类解析以下是查字典数学网为您举荐的2021年中考数学代数式和因式分解试题分类解析,期望本篇文章对您学习有所关心。

2021年中考数学代数式和因式分解试题分类解析一、选择题1.(2021浙江杭州3分)下列运算正确的是【】A.(﹣p2q)3=﹣p5q3B.(12a2b3c)(6ab2)=2abC.3m2(3m﹣1)=m﹣3m2D.(x2﹣4x)x﹣1=x﹣4【答案】D。

【考点】整式的混合运算,积的乘方和幂的乘方,整式的乘法,同底数幂的乘法和除法。

【分析】依照整式的混合运算法则对各选项分别进行运算,即可判定:A、(﹣p2q)3=﹣p6q3,故本选项错误;B、12a2b3c)(6ab2)=2abc,故本选项错误;C、,故本选项错误;D、(x2﹣4x)x﹣1=x﹣4,故本选项正确。

故选D。

2.(2021浙江湖州3分)运算2a-a,正确的结果是【】A.-2a3B.1C.2D.a【答案】D。

【考点】合并同类项。

【分析】依照合并同类项的运算法则运算作出判定:2a-a= a。

故选D。

3.(2021浙江湖州3分)要使分式有意义,x的取值范畴满足【】A.x=0B.x0C.x0D.x0【答案】B。

【考点】分式有意义的条件。

【分析】依照分式分母不为0的条件,要使在实数范畴内有意义,必须x0。

故选B。

4.(2021浙江嘉兴、舟山4分)若分式的值为0,则【】A. x=﹣2B. x=0C. x=1或2D. x=1【答案】D。

【考点】分式的值为零的条件。

【分析】∵分式的值为0,,解得x=1。

故选D。

5. (2021浙江丽水、金华3分)运算3a(2b)的结果是【】A.3abB.6aC.6abD.5ab【答案】C。

【考点】单项式乘单项式。

【分析】依照单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,运算即可:3a(2b)=32ab=6ab.故选C。

6. (2021浙江宁波3分)下列运算正确的是【】A.a6a2=a3B.(a3)2=a5C.D.【答案】D。

2022中考真题分类4——因式分解(参考答案)

2022中考真题分类4——因式分解(参考答案)

2022中考真题分类——因式分解(参考答案)1.(2022·广西河池)多项式244x x −+因式分解的结果是( )A .x (x −4)+4B .(x +2)(x −2)C .(x +2)2D .(x −2)2 【答案】D【分析】根据完全平方公式进行因式分解即可.【详解】解:()22442x x x −+=−.故选:D .【点睛】本题主要考查了公式法分解因式,理解完全平方公式是解答关键.2.(2022·四川绵阳)因式分解:32312x xy −=_________. 【答案】()()322x x y x y +−【分析】先提取公因式3x ,然后根据平方差公式因式分解即可求解.【详解】解:原式=()()()2234322x x y x x y x y −=+−. 故答案为:()()322x x y x y +−.【点睛】本题考查了因式分解,正确的计算是解题的关键.3.(2022·广西贺州)因式分解:2312m −=__________.【答案】3(2)(2)m m +−【分析】首先提取公因数3,进而利用平方差公式进行分解即可.【详解】解:原式=3(x 2−4)=3(x +2)(x −2);故答案为:3(x +2)(x −2).【点睛】此题主要考查了提取公因式以及公式法分解因式,正确应用平方差公式是解题关键.4.(2022·湖北恩施)因式分解:3269a a a −+=______.【答案】2(3)a a −【分析】先提公因式a ,再利用完全平方公式进行因式分解即可.【详解】解:原式22(69)(3)a a a a a =−+=−,故答案为:2(3)a a −.【点睛】本题考查提公因式法、公式法分解因式,解题的关键是掌握完全平方公式的结构特征.5.(2022·辽宁锦州·)分解因式:2232x y xy y −+=____________. 【答案】2()y x y −【分析】先提取公因数y ,再利用完全平方公式进行二次分解.完全平方公式:(a ±b )2=a 2±2ab +b 2.【详解】解:222223(2)(2)=−++=−−x y xy y x xy y y x y y ;故答案为:2()y x y −【点睛】本题考查了提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.6.(2022·四川内江)分解因式:a 4−3a 2−4=_____.【答案】(a 2+1)(a +2)(a −2)【分析】首先利用十字相乘法分解为()()2214a a +− ,然后利用平方差公式进一步因式分解即可.【详解】解:a 4−3a 2−4=(a 2+1)(a 2−4)=(a 2+1)(a +2)(a −2),故答案为:(a 2+1)(a +2)(a −2).【点睛】本题考查利用因式分解,解决问题的关键是掌握解题步骤:一提二套三检查.7.(2022·黑龙江绥化)因式分解:()()269m n m n +−++=________.【答案】()23m n +−【分析】将m n 看做一个整体,则9等于3得的平方,逆用完全平方公式因式分解即可.【详解】解:()()269m n m n +−++ ()()22233m n m n =+−⨯⨯++ ()23m n =+−,故答案为:()23m n +−.【点睛】本题考查应用完全平方公式进行因式分解,整体思想,能够熟练逆用完全平方公式是解决本题的关键.8.(2022·辽宁沈阳)分解因式:269ay ay a ++=______. 【答案】()23a y +【分析】先提取公因式,然后再利用完全平方公式进行因式分解即可.【详解】解:269ay ay a ++=()269a y y ++ ()23a y =+; 故答案为:()23a y +.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.9.(2022·贵州黔东南)分解因式:2202240442022x x −+=_______.【答案】()220221x −##()220221x −【分析】先提公因式,然后再根据完全平方公式可进行因式分解.【详解】解:原式=()()2220222120221x x x −+=−; 故答案为()220221x −.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.10.(2022·四川广元)分解因式:a 3−4a =_____.【答案】()()22a a a +−【分析】根据提公因式及平方差公式进行因式分解即可.【详解】解:原式=()()()2422a a a a a −=+−; 故答案为:()()22a a a +−.【点睛】本题主要考查提公因式和公式法进行因式分解,熟练掌握因式分解是解题的关键.11.(2022·湖南常德)分解因式:329x xy −=________.【答案】(3)(3)x x y x y −+【分析】先提取公因式,然后再根据平方差公式即可得出答案.【详解】原式=32229(9)x xy x x y −=−=(3)(3)x x y x y −+.故答案为:(3)(3)x x y x y −+.【点睛】本题考查分解因式,解题的关键是熟练掌握分解因式的方法.12.(2022·湖南怀化)因式分解:24−=x x _____. 【答案】2(1)(1)+−x x x【分析】根据提公因式法和平方差公式进行分解即可.【详解】解:()242221(1)(1)−=−=+−x x x x x x x , 故答案为:2(1)(1)+−x x x【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.13.(2022·内蒙古赤峰)分解因式:32242x x x ++=______. 【答案】22(1)x x +【分析】先提取公因式,再利用完全平方公式进行因式分解.【详解】解:32242x x x ++,22(21)x x x =++,22(1)x x =+,故答案是:22(1)x x +.【点睛】本题考查了因式分解,解题的关键是掌握提取公因式及完全平方公式.14.(2022·四川巴中)因式分解:322a a a −+−=______.【答案】2(1)a a −−【分析】先提取公因式,后采用公式法分解即可【详解】∵322a a a −+−=−a 22)1(a a −+=2(1)a a −−故答案为: 2(1)a a −−.【点睛】本题考查了因式分解,熟记先提取公因式,后套用公式法分解因式是解题的关键.15.(2022·山东威海)因式分解24ax a −=___________ 【答案】(2)(2)a x x +−.【详解】试题分析:原式=2(4)(2)(2)a x a x x −=+−.故答案为(2)(2)a x x +−. 考点:提公因式法与公式法的综合运用.16.(2022·贵州黔西)已知2ab =,3a b +=,则22a b ab +的值为_____. 【答案】6【分析】将22a b ab +因式分解,然后代入已知条件即可求值.【详解】解:22a b ab +()ab a b =+23=⨯6=.故答案为:6【点睛】本题考查了因式分解的应用,熟练掌握因式分解的方法是解题的关键.17.(2022·四川广安)已知a +b =1,则代数式a 2−b 2 +2b +9的值为________. 【答案】10【分析】根据平方差公式,把原式化为()()29a b a b b +−++,可得9a b ++,即可求解.【详解】解:a 2−b 2 +2b +9()()29a b a b b =+−++29a b b =−++9a b =++19=+10=故答案为:10【点睛】本题主要考查了平方差公式的应用,利用整体代入思想解答是解题的关键.。

广西各市中考数学分类解析 专题2 代数式和因式分解

广西各市中考数学分类解析 专题2 代数式和因式分解

广西各市2012年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1. (2012广西北海3分)下列运算正确的是:【 】 A .x 3·x 5=x 15B .(2x 2)3=8x 6C .x 9÷x 3=x 3D .(x -1)2=x 2-12【答案】B 。

【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,完全平方公式。

【分析】根据同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法的运算法则和完全平方公式对各选项分析判断后利用排除法求解:A 、x 3•x 5=x 3+5=x 8,故本选项错误;B 、(2x 2)3=23•x 2×3=8x 6,故本选项正确;C 、x 9÷x 3=x9-3=x 6,故本选项错误;D 、(x -1)2=x 2-2x +1,故本选项错误。

故选B 。

2. (2012广西贵港3分)计算(-2a)2-3a 2的结果是【 】 A .-a 2B .a 2C .-5a 2D .5a 2【答案】B 。

【考点】幂的乘方和积的乘方,合并同类项。

【分析】利用积的乘方的性质求得(-2a)2=4a 2,再合并同类项,即可求得答案:(-2a)2-3a 2=4a 2-3a 2=a 2。

故选B 。

3. (2012广西桂林3分)计算2xy 2+3xy 2的结果是【 】A .5xy 2B .xy 2C .2x 2y 4D .x 2y 4【答案】A 。

【考点】合并同类项。

【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进行运算即可:2xy 2+3xy 2=5xy 2。

故选A 。

4. (2012广西河池3分)下列运算正确的是【 】A .236(2a )8a -=- B .a 2a a -= C .632a aa ? D .222(a b)a b +=+【答案】A 。

【考点】幂的乘方和积的乘方,合并同类项,同底数幂的除法,完全平方公式【分析】根据幂的乘方和积的乘方,合并同类项,同底数幂的除法运算法则和完全平方公式解答:A 、因为(()323236(2a )2a8a ´-=-=-,故本选项正确;B 、因为a 2a a -=-,故本选项错误;C 、根据同底数幂的除法法则,底数不变,指数相减,可知63633a aa a -?=,故本选项错误;D 、根据完全平方公式,可知222(a b)a 2ab b +=++,故本选项错误。

中考数学试题分类解析2代数式和因式分解(含答案)

中考数学试题分类解析2代数式和因式分解(含答案)

浙江省2011年中考数学专题2:代数式和因式分解一、选择题1.(浙江舟山、嘉兴3分)下列计算正确的是(A )32x x x =⋅ (B )2x x x =+ (C )532)(x x = (D )236x x x =÷【答案】A 。

【考点】同底数幂的乘法,合并同类项,幂的乘方,同底数幂的除法。

【分析】根据同底数幂的乘法、合并同类项、幂的乘方、同底数幂的除法的运算法则计算即可:A 、正确;B 、x +x =2x ,选项错误;C 、(x 2)3=x 6,选项错误;D 、x 6÷x 3=x 3,选项错误。

故选A 。

2.(浙江金华、丽水3分)下列各式能用完全平方公式进行分解因式的是A 、x 2+1B 、x 2+2x ﹣1C 、x 2+x+1D 、x 2+4x+4【答案】D 。

【考点】运用公式法因式分解。

【分析】完全平方公式是:(a ±b )2=a 2±2a b +b 2,由此可见选项A 、B 、C 都不能用完全平方公式进行分解因式,只有D 选项可以。

故选D 。

3.(浙江金华、丽水3分)计算111a a a ---的结果为 A 、11a a +- B 、1a a -- C 、﹣1 D 、2 【答案】C 。

【考点】分式的加减法。

【分析】根据同分母的分式加减,分母不变,分子相加减的运算法则,得111111a a a a a --==----。

故选C 。

4.(浙江湖州3分)计算a 2·a 3,正确的结果是 A .2a 6 B .2a 5 C .a 6 D .a 5【答案】B 。

【考点】同底幂乘法。

【分析】根据同底幂乘法法则,直接得出结果:a 2·a 3=a 2+3 =a 5。

故选B 。

5.(浙江宁波3分)下列计算正确的是(A)632)(a a =(B) 422a a a =+ (C)a a a 6)2()3(=⋅ (D)33=-a a 【答案】A 。

中考数学试题及答案分类汇编:代数式和因式分解

中考数学试题及答案分类汇编:代数式和因式分解

2018中考数学试卷及答案分类汇编:代数式和因式分解一、选择题1.(天津3分)若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是(A)0x y z ++= (B) 20x y z +-= (C) 20y z x +-= (D) 2=0x z y +- 【答案】D 。

【考点】代数式变形,完全平方公式。

【分析】∵()()2222()4()()=24x z x y y z x xz z xy xz y yz -----+---+()()()()()222222=244=44=2x xz z xy yz y x z y x z y x z y ++-+++-+++-∴由()22=0x z y +-得2=0x z y +-。

故选D 。

2.(河北省2分)下列分解因式正确的是A 、﹣a +a 3=﹣a (1+a 2)B 、2a ﹣4b +2=2(a ﹣2b )C 、a 2﹣4=(a ﹣2)2D 、a 2﹣2a +1=(a ﹣1)2 【答案】D 。

【考点】提公因式法和应用公式法因式分解。

【分析】根据提公因式法,平方差公式,完全平方公式求解即可求得答案:A 、﹣a +a 3=﹣a (1﹣a 2)=﹣a (1+a )(1﹣a ),故本选项错误;B 、2a ﹣4b +2=2(a ﹣2b +1),故本选项错误;C 、a 2﹣4=(a ﹣2)(a +2),故本选项错误;D 、a 2﹣2a +1=(a ﹣1)2,故本选项正确。

故选D 。

3.(河北省2分)下列运算中,正确的是A 、2x ﹣x =1B 、x +x 4=x 5C 、(﹣2x )3=﹣6x 3D 、x 2y ÷y =x 2 【答案】D 。

【考点】合并同类项,幂的乘方与积的乘方,整式的除法。

【分析】A 中整式相减,系数相减再乘以未知数,故本选项错误;B 、不同次数的幂的加法,无法相加,故本选项错误;C 、整式的幂等于各项的幂,故本选项错误;D 、整式的除法,相同底数幂底数不变,指数相减.故本答案正确。

全国中考数学分类汇编 专题 代数式和因式分解

全国中考数学分类汇编 专题 代数式和因式分解

一、选择题1.下列计算正确的是()A .a 3+a 2=a 5B .a 3•a 2=a 6C .(a 2)3=a 6D .2222a a ⎛⎫= ⎪⎝⎭【答案】C考点:1、幂的乘方与积的乘方;2、合并同类项;3、同底数幂的乘法2.【2018广东省广州市番禹区】下列计算正确的是()A .a+a=2a 2B .a 2•a=2a 3C .(﹣ab )2=ab 2D .(2a )2÷a=4a试题分析:利用同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;单项式的除法法则,对各选项分析判断可知:A 、应为a+a=2a ,故本选项错误;B 、应为a 2•a=a 3,故本选项错误;C 、应为(﹣ab )2=a 2b 2,故本选项错误;D 、(2a )2÷a=4a 2÷a=4a,正确.考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方3.化简211m m m m --÷的结果是()A .mB .1mC .m ﹣1D .11m -试题分析:利用除法法则变形,约分即可得到:211m m m m --÷=211m m m m -⋅-=m .故选:A .考点:分式的乘除法4.下列运算正确的是()A .3a+4b=12aB .(ab 3)2=ab 6C .(5a 2﹣ab )﹣(4a 2+2ab )=a 2﹣3abD .x 12÷x 6=x 2【答案】C考点:1、幂的乘方与积的乘方;2、合并同类项;3、去括号与添括号;4、同底数幂的除法5.下列运算中,结果是a 6的式子是()A .(a 3)3B .a 12﹣a 6C .a 2•a 3D .(﹣a )6试题分析:根据同底数幂的乘法、幂的乘方、合并同类项和积的乘方进行计算:A 、(a 3)3=a 9,故此选项错误;B 、不能合并,故此选项错误;C 、a 2•a 3=a 5,故此选项错误;D 、(﹣a )6=a 6,故此选项正确;故选D .考点:幂的乘方和积的乘方6.下列计算正确的是()A .2﹣1=﹣2B .9=±3C .(a 4)3=a 7D .﹣(3pq )2=﹣9p 2q 2【答案】D考点:1、幂的乘方与积的乘方;2、算术平方根;3、负整数指数幂7.下列运算中,错误的是()A.2a﹣3a=﹣a B.(﹣ab)3=﹣a3b3C.a6÷a2=a4D.aa2=a2试题分析:A、根据合并同类项的法则,可知2a-3a=-a,故正确,不合题意;B、根据积的乘方的运算法则,可得(-ab)3=-a3b3,故正确,不合题意;C、根据同底数幂的除法,可得a6÷a2=a4,故正确,不合题意;D、根据同底数幂的乘法,可得a²a2=a3,故错误,故此选项符合题意.故选:D.考点:1、积的乘方运算,2、同底数幂的除法运算,3、同底数幂的乘法8.在下列运算中,计算正确的是()A.a2+a2=a4B.a3•a2=a6C.a8÷a2=a4D.(a2)3=a6试题分析:A、根据合并同类项法则,可得a2+a2=2a2,本选项错误;B、利用同底数幂的乘法法则,可得a3•a2=a5,本选项错误;C、利用同底数幂的除法法则,可得a8÷a2=a6,本选项错误;D、利用幂的乘方运算法则,可得(a2)3=a6,本选项正确.故选D.考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方9.下列运算中,正确的是()A.x3²x=x4B.(﹣3x)2=6x2 C.3x3﹣2x2=x D.x6÷x2=x3【答案】A考点:1、同底数幂的乘除法,2、合并同类项,3、幂的乘方与积的乘方10.下列计算正确的是()A.a3•a4=a12 B.(a3)4=a7C.(a2b)3=a6b3D.a3÷a4=a(a≠0)试题分析:A、根据同底数幂的乘法,应为a3`²a4=a7,故本选项错误;B、根据幂的乘方的性质,应为(a3)4=a12,故本选项错误;C、根据积的乘方的性质,可知每个因式都分别乘方,正确;D、根据同底数幂的除法和负整指数幂的性质,应为a3÷a4=11aa-=(a≠0),故本选项错误.故选C.考点:1、同底数幂的乘法,2、积的乘方和幂的乘方11.计算6m3÷(﹣3m2)的结果是()A.﹣3m B.﹣2m C.2m D.3m【答案】B考点:单项式除单项式12.下列计算正确的是()A.3x+3y=3xy B.(2x3)2=4x5C.﹣3x+2x=﹣x D.y2•2y3=2y6试题分析:A、利用合并同类项法则,原式不能合并,错误;B、利用积的乘方的法则,原式=4x6,错误;C、利用合并同类项法则,原式=﹣x,正确;D、利用同底数幂的乘法,原式=2y5,错误.故选C.考点:1、幂的乘方与积的乘方;2、合并同类项;3、单项式乘单项式13.下列运算正确的是()A.xx2=x2B.(xy)2=x4 C.(x2)3=x6D.x2+x2=x4试题分析:A、根据同底数幂的乘法,底数不变,指数相加,xx2=x3,故本选项错误;B、根据积的乘方,各个因式分别乘方,(xy)2=x2y2,故本选项错误;C、根据幂的乘方,底数不变,指数相乘,(x2)3=x6,故本选项正确;D、根据合并同类项法则,x2+x2=2x2,故本选项错误.故选C.考点:1、同底数幂的乘法,2、合并同类项,3、积的乘方,4、幂的乘方14.下列计算正确的是()A.a2+a2=a4B.a2•a3=a6C.(﹣a2)2=a4D.(a+1)2=a2+1【答案】C考点:1、完全平方公式;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方15.马大哈做题很快,但经常不仔细思考,所以往往错误率很高,有一次做了四个题,但只做对了一个,他做对的是()A.a8÷a4=a2B.a3a4=a12C.4=±2D.2x3x2=2x5试题分析:A、根据同底数幂的除法,底数不变,指数相减,可得a8÷a4=a4,故此选项错误;B、根据同底数幂的乘法,底数不变,指数相加,可得a3a4=a7,故此选项错误;C、根据算术平方根的性质,可知4=2,故此选项错误;D、根据单项式乘以单项式的运算法则,可知2x3x2=2x5,正确.故选:D.考点:1、同底数幂的除法运算法,2、单项式乘以单项式16.下列运算正确的是()A.(﹣2)2=﹣4B.4=2C.2﹣3=8D.π0=0试题分析:A、根据负整数指数幂,可得(﹣2)2=4,故本选项错误;B、根据算术平方根,可得4=2,故本选项正确;C、根据负整数指数幂,可得2﹣3=18,故本选项错误;D、根据零指数幂的定义,可得π0=1,故本选项错误;故选B.考点:1、负整数指数幂,2、算术平方根,3、零指数幂17.若分式242xx-+的值为零,则x的值为()A.0B.2C.﹣2D.±2【答案】B考点:分式为0的条件18.下列运算正确的是()A.3a+2b=5abB.(3a)3=3a3C、a3²a4=a7D、a4+a3=a7试题分析:A.3a+2b不能计算,故此选项错误;B.根据积的乘方的性质可知(3a)3=27a3,故此选项错误;C、根据同底数幂的性质,可知a3²a4=a7,故此选项正确;D、a4+a3,无法计算,故此选项错误;故选:C.考点:1、积的乘方运算法则,2、同底数幂的乘法运算19.下列计算正确的是()A.a4+a2=a6B.2a²4a=8aC.a5÷a2=a3D.(a3)3=a6,C【解析】试题分析:A.a4+a2不是同类项,不能计算,故不正确;B.2a²4a=8a2,故不正确;C.根据同底数幂的除法,可知a5÷a2=a3,故正确;D.根据幂的乘方可知(a3)3=a9,故不正确.故选:C.考点:1、合并同类项法则,2、同底数幂的乘法与除法运算20.若m﹣n=﹣1,则(m﹣n)2﹣2m+2n的值为()A.﹣1B.1C.2D.3试题分析:把(m﹣n)看作一个整体并直接代入代数式进行计算即可得(m﹣n)2﹣2m+2n=(m﹣n)2﹣2(m﹣n)=(﹣1)2﹣2³(﹣1)=1+2=3.故选D.考点:代数式求值21.下列运算中,正确的是()A.x3+x=x4B.(x2)3=x6C.3x﹣2x=1D.(a﹣b)2=a2﹣b2【答案】B考点:1、合并同类项,2、幂的乘方运算,3、完全平方公式22.下列运算正确的是()A.x3+x2=x5B.x3﹣x2=xC.x3•x﹣2=x﹣5D.x3÷x2=x试题分析:A、不是同底数幂的乘法指数不能相加,故A错误;B、不是同底数幂的除法指数不能相减,故B错误;C 、同底数幂的乘法底数不变指数相加,故C 错误;D 、同底数幂的除法底数不变指数相减,故D 正确;故选:D .考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、负整数指数幂23.若x ,y 为实数,且|x+4|+4y =0,则(xy )2018的值为()A .1B .﹣1C .4D .﹣4试题分析:根据非负数的性质得x+4=0,y ﹣4=0,解得x=﹣4,y=4,则(xy )2018=﹣1.故选:B .考点:非负数的性质24.下列等式成立的是()A .(a+4)(a ﹣4)=a 2﹣4B .2a 2﹣3a=﹣aC .a 6÷a 3=a 2D .(a 2)3=a 6【答案】D考点:1、平方差公式;2、合并同类项;3、幂的乘方与积的乘方;4、同底数幂的除法25.马大哈做题很快,但经常不仔细思考,所以往往错误率很高,有一次做了四个题,但只做对了一个,他做对的是()A .a 8÷a 4=a 2B .a 3•a 4=a 12C .4=±2D.2x 3•x 2=2x 5试题分析:A 、根据同底数幂的除法,可得a 8÷a 4=a 4,故此选项错误;B 、根据同底数幂的乘法,可得a 3•a 4=a 7,故此选项错误;C 、根据算术平方根的意义知4=2,故此选项错误;D、根据单项式乘以单项式运算法则可知2x3•x2=2x5,故正确.故选:D.考点:1、算术平方根;2、同底数幂的乘除法;3、单项式乘单项式二、填空题1.因式分解:x3﹣2x2+x=.【答案】x(x﹣1)2考点:提公因式法与公式法的综合运用2.【2018广东省广州市番禹区】使得二次根式21x+有意义的x的取值范围是.试题分析:根据被开方数大于等于0,可得2x+1≥0,解得x≥﹣12.考点:二次根式有意义的条件3.【2018广东省广州市番禹区】分解因式:ay2+2ay+a=.试题分析:首先提取公因式a,进而利用完全平方公式分解因式,即ay2+2ay+a=a(y2+2y+1)=a(y+1)2.考点:分解因式4.把多项式2x2﹣8分解因式得:2x2﹣8=.【解析】试题分析:首先提取公因式2,再利用平方差进行二次分解,即2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).考点:因式分解5.分解因式:ax2﹣9ay2=.试题分析:首先提公因式a,然后利用平方差公式分解.即可得ax2﹣9ay2=a(x2﹣9y2)=a(x+3y)(x﹣3y).考点:分解因式6.已知实数a、b满足(a+2)2+223b b--=0,则a+b的值为.【答案】1或﹣3考点:1、非负数的性质:2、算术平方根;3、非负数的性质:偶次方7.因式分解:x 3﹣xy 2=.试题分析:先提取公因式x ,再对余下的多项式利用平方差公式继续分解.即x 3﹣xy 2=x (x 2﹣y 2)=x (x ﹣y )(x+y ).考点:因式分解8.代数式11x -有意义时,x 应满足的条件是.试题分析:直接利用二次根式的定义可得x-1>0,解得:x >1.考点:二次根式有意义的条件9.分解因式:x 3﹣xy 2=.试题分析:首先提取公因式x ,进而利用平方差公式分解因式得出答案,可得x 3-xy 2=x (x 2-y 2)=x (x+y )(x-y ).考点:分解因式10.分解因式:x 2+3x=.试题分析:观察原式,发现公因式为x ;提出后,即可得x 2+3x=x (x+3).考点:因式分解11.若x <2,化简()222x --=.试题分析:首先根据x 的范围确定x-2<0,然后利用二次根式的性质即可化简原式=2﹣x ﹣2=﹣x . 考点:二次根式的性质与化简12.若920x y x y -+++=,则x+y=.【答案】3考点:1、非负数的性质;2、解二元一次方程组13.因式分解:x3y﹣xy=.试题分析:首先提取公因式xy,再运用平方差公式进行二次分解.x3y﹣xy,=xy(x2﹣1)=xy(x+1)(x﹣1).考点:因式分解14.分解因式:﹣3x+6x2﹣3x3=.试题分析:原式提取﹣3x,再利用完全平方公式分解即可得:﹣3x+6x2﹣3x3=﹣3x(1﹣2x+x2)=﹣3x(x﹣1)2.考点:因式分解15.分解因式:x2﹣9=.试题分析:本题中两个平方项的符号相反,直接运用平方差公式分解因式x2﹣9=(x+3)(x﹣3).考点:因式分解16.因式分解:ax2﹣ay2=.【解析】试题分析:首先提取公因式a,再利用平方差公式分解因式得出答案.即ax2﹣ay2=a(x2﹣y2)=a(x+y)(x ﹣y).考点:分解因式17.要使式子2aa+有意义,则a的取值范围为.【答案】a≥﹣2且a≠0考点:分式有意义18.分解因式:4ax2﹣ay2=.试题分析:首先提取公因式a,再利用平方差进行分解即可.即可得原式=a(4x2﹣y2)=a(2x+y)(2x﹣y).考点:分解因式19.已知a≠0,a≠b,x=1是方程ax2+bx﹣10=0的一个解,则2222a ba b--的值是.【答案】5考点:分式的化简与方程解的定义20.当x时,函数1xyx+=在实数范围内有意义.试题分析:根据二次根式有意义的条件和分式有意义的条件,由题意得,x+1≥0,x≠0,解得x≥-1且x≠0.考点:1、二次根式有意义的条件,2、分式有意义的条件21.因式分解:x3﹣9x=.试题分析:先提取公因式x,再利用平方差公式进行分解.即x3﹣9x=x(x2-9)=x(x+3)(x-3).22.因式分解:x3﹣9x=.试题分析:先提取公因式x,再利用平方差公式进行分解.即x3-9x=x(x2-9)=x(x+3)(x-3).考点:分解因式23.化简:a ba b b a+--=.试题分析:先将第二项变形,使之分母与第一项分母相同,然后再进行计算.a ba b b a+--=a ba b--=1.考点:分式的加减法24.分解因式:2x2y﹣8y=.【答案】2y(x+2)(x﹣2)考点:因式分解25.已知a≠0,a≠b,x=1是方程ax2+bx﹣10=0的一个解,则2222a ba b--的值是.试题分析:根据一元二次方程根与系数的关系和代数式变形求则可.2222a b a b --=()()()2a b a b a b +--=2a b+,将x=1代入方程ax 2+bx-10=0中可得a+b-10=0,解得a+b=10则2a b+=5,考点:一元二次方程的解;分式的化简求值三、解答题1.计算:﹣12+(﹣12)﹣2+(3﹣π)0+2cos30°.试题分析:原式利用零指数幂、负整数指数幂法则,乘方的意义,以及特殊角的三角函数值计算即可得到结果.试题解析:﹣12+(﹣12)﹣2+(3﹣π)0+2cos30°=﹣1+4+1+2³32 =4+3.考点:1、实数的运算;2、零指数幂;3、负整数指数幂;4、特殊角的三角函数值2.先化简,再求代数式的值:2462393a a a -÷+--,其中a=3﹣3. 【答案】13a +,33考点:分式的化简求值3.先化简,再求值:(1+1a )•221a a -,其中a=3+1.试题分析:先算括号里面的加法,再算乘法,分式化为最简分式后,把a=3+1代入进行计算即可 试题解析:(1+1a )•221a a - =()()2111a a a a a +⋅+- =1aa -,当a=3+1时,原式=31311++-=333+.考点:分式的化简求值4.先化简,再求值:(x+1)2+x (x ﹣2),其中x=123-.【答案】15+83考点:整式的混合运算﹣﹣化简求值5.先化简,再求值:2221122a ab b a b b a -+⎛⎫÷- ⎪-⎝⎭,其中a=5,b=2. 试题解析:2221122a ab b a b b a -+⎛⎫÷- ⎪-⎝⎭=()()22a b a ba b ab --÷- =2a baba b -⋅- =2ab,当a=5,b=2时,原式=252=5. 考点:实数的运算6.已知A=(x ﹣2)2+(x+2)(x ﹣2)(1)化简A ;(2)若x 2﹣2x+1=0,求A 的值.【答案】(1)A=2x 2﹣4x ;(2)-2考点:整式的混合运算﹣化简求值7.已知023ab=≠,求代数式()225224a ba b a b -⋅--的值.试题分析:将所求式子第一个因式的分母利用平方差公式分解因式,约分后得到最简结果,然后由已知的等式用b 表示出a ,将表示出的a 代入化简后的式子中计算,即可得到所求式子的值. 试题解析:2252(2)4a ba b a b -⋅-- =52(2)(2)a ba b a b -+-•(a ﹣2b ) =522a ba b -+, ∵23ab=≠0,∴a=23b ,∴原式=1023223b b b b -+=1061262b bb b -=+.考点:分式的化简求值8.先化简,再求值:2111x x x -⎛⎫÷- ⎪⎝⎭,其中x 是方程x 2+3x+2=0的根.【答案】x+1,-1考点:分式的化简求值9.先化简2244111x xx x x⎛⎫-+⎛⎫+-⎪ ⎪--⎝⎭⎝⎭,然后从﹣3<x <3范围内选取一个合适的整数作为x的值代入求值.试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.试题解析:2244111 x xx x x⎛⎫-+⎛⎫+-⎪ ⎪--⎝⎭⎝⎭=()()22221 x xx x x--+--=221 x xx x----=()()()()2121x x x xx x-----=21xx--,当x=12时,原式=122112--=-3.考点:分式的化简求值10.先化简,再求值:221aba b a b ⎛⎫-÷ ⎪--⎝⎭,其中a=2+1,b=21-.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.考点:分式的化简求值11.先化简,再求值:(1﹣11a -)÷2221a a a --+,其中a=2+1.试题分析:先对括号里的减法运算进行通分,再把除法运算转化为乘法运算,约去分子分母中的公因式,化为最简形式,再把a 的值代入求解.试题解析:(1﹣11a -)÷2221a a a --+=()2112121a a a a a ---÷--+ =()22211a a a a --÷-- =()21212a a a a --⨯--=a ﹣1,把a=2+1代入a ﹣1=211+-=2.考点:分式的混合运算12.化简:2221211xx x x x x x ++⎛⎫-÷ ⎪--⎝⎭,并从﹣1,0,1,2中选择一个合适的数求代数式的值. 【答案】1x x +,23考点:分式的化简求值13.先化简,再求值:23422x x xx x x-⎛⎫-⋅⎪-+⎝⎭,再选择一个使原式有意义的x代入求值.【答案】2x+8,10考点:分式的化简求值14.先化简,再求值:(1-12x+)÷2212x xx+++,其中x=3.试题分析:先算括号里面的,再算除法,最后把x的值代入进行计算即可.试题解析:(1-12x +)÷2212x x x +++ =()21221x x x x ++⋅++ =11x +,当x=3时,原式=131231-=+.考点:分式的化简求值15.先化简,再求值:()2221211x x x x x x -+÷+--,其中x=3. 【答案】3x ,3考点:分式的化简求值。

广西各市中考数学分类解析专题 代数式和因式分解

广西各市中考数学分类解析专题 代数式和因式分解

广西各市2012年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1. (2012广西北海3分)下列运算正确的是:【】A .x 3·x 5=x 15B .(2x 2)3=8x 6C .x 9÷x 3=x 3D .(x -1)2=x 2-12【答案】B 。

【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,完全平方公式。

【分析】根据同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法的运算法则和完全平方公式对各选项分析判断后利用排除法求解:A 、x 3•x 5=x 3+5=x 8,故本选项错误;B 、(2x 2)3=23•x 2×3=8x 6,故本选项正确;C 、x 9÷x 3=x 9-3=x 6,故本选项错误;D 、(x -1)2=x 2-2x +1,故本选项错误。

故选B 。

2. (2012广西贵港3分)计算(-2a)2-3a 2的结果是【 】A .-a 2B .a 2C .-5a 2D .5a 2【答案】B 。

【考点】幂的乘方和积的乘方,合并同类项。

【分析】利用积的乘方的性质求得(-2a)2=4a 2,再合并同类项,即可求得答案:(-2a)2-3a 2=4a 2-3a 2=a 2。

故选B 。

3. (2012广西桂林3分)计算2xy 2+3xy 2的结果是【】A .5xy 2B .xy 2C .2x 2y 4D .x 2y 4【答案】A 。

【考点】合并同类项。

【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进行运算即可:2xy 2+3xy 2=5xy 2。

故选A 。

4. (2012广西河池3分)下列运算正确的是【】A .236(2a )8a -=-B .a 2a a -=C .632a a a ?D .222(a b)a b +=+ 【答案】A 。

【考点】幂的乘方和积的乘方,合并同类项,同底数幂的除法,完全平方公式【分析】根据幂的乘方和积的乘方,合并同类项,同底数幂的除法运算法则和完全平方公式解答:A 、因为(()323236(2a )2a 8a ´-=-=-,故本选项正确;B 、因为a 2a a -=-,故本选项错误;C 、根据同底数幂的除法法则,底数不变,指数相减,可知63633a aa a -?=,故本选项错误; D 、根据完全平方公式,可知222(a b)a 2ab b +=++,故本选项错误。

2020年中考数学二轮专题——代数式求值及因式分解 (名校资料——含详解答案)

2020年中考数学二轮专题——代数式求值及因式分解  (名校资料——含详解答案)

2020年中考数学二轮专题——代数式求值及因式分解基础过关1. “比a 的2倍大1的数”用式子可以表示为( ) A. 2(a +1) B. 2(a -1) C. 2a -1D. 2a +12. (2019海南)当m =-1时,代数式2m +3的值是( ) A. -1B. 0C. 1D. 23. 下列各式由左边到右边的变形中,是因式分解的是( ) A. x 2y +xy 2=xy (x +y ) B. x 2-4x +4=x (x -4)+4 C. y +1=y (1+1y)D. (x -1)(x -2)=x 2-3x +24. (2019贺州)把多项式4a 2-1分解因式,结果正确的是( ) A. (4a +1)(4a -1)B. (2a +1)(2a -1)C. (2a -1)2D. (2a +1)25. (2019云南)按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,…,第n 个单项式是( ) A. (-1)n -1x 2n -1 B. (-1)n x 2n -1 C. (-1)n -1x 2n +1D. (-1)n x 2n +16. (2019泰州)若2a -3b =-1,则代数式4a 2-6ab +3b 的值为( ) A. -1B. 1C. 2D. 37. (2019 株洲)下列各选项中因式分解正确的是( ) A. x 2-1=(x -1)2 B. a 3-2a 2+a =a 2(a -2) C. -2y 2+4y =-2y (y +2) D. m 2n -2mn +n =n (m -1)28. (2018河北)用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按如图的方式向外等距扩1(单位:cm ),得到新的正方形,则这根铁丝需增加( )第8题图A. 4 cmB. 8 cmC. (a +4) cmD. (a +8) cm9. (2019荆门)欣欣服装店某天用相同的价格a (a >0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( )A. 盈利B. 亏损C. 不盈不亏D. 与售价a 有关10. (2019南充)原价为a 元的书包,现按8折出售,则售价为________元.11. (2019咸宁)若整式x 2+my 2(m 为常数,且m ≠0)能在有理数范围内分解因式,则m 的值可以是________(写出一个即可).12. (2019锦江区二诊)分解因式:4ax 2-ay 2=______. 13. (2019湘潭)若a +b =5,a -b =3,则a 2-b 2=________.14. 已知实数m ,n 满足|n -2|+m +1=0,则m +2n 的值为________. 15. (2019潍坊)若2x =3,2y =5,则2x +y =________. 16. (2019 兰州)因式分解:a 3+2a 2+a =________.17. (2019湘西州)下面是一个简单的数值运算程序,当输入x 的值为16时,则输出的数值为____.(用科学计算器计算或笔算)第17题图18. (2019南京)分解因式(a -b )2+4ab 的结果是________.19. (2019高新区二诊)已知m +n =mn ,则(m -1)(n -1)=________. 20. (2019双流区一诊)若a 6=b 5=c4≠0,且a +b -2c =3,则a =________.满分冲关1. (2019武侯区二诊)已知x =13-5,y =13+5,则代数式x 2-2xy +y 2的值是________.2. (2019新都区5月监测)已知(2019-a )2+(a -2017)2=7,则代数式(2019-a )(a -2017)的值是________.3. 当x =a 与x =b (a ≠b )时,代数式x 2-2x +3的值相等,则x =a +b 时,代数式x 2-2x +3的值为________.参考答案基础过关1. D2. C3. A4. B5. C 【解析】单项式的系数符号规律为:处在奇数位置上的单项式的系数符号为正,处在偶数位置上的单项式的系数符号为负,故第n 个数的符号为(-1)n -1;x 的指数规律为:3=2×1+1,5=2×2+1,7=2×3+1,…,∴第n 个单项式的x 的指数为2n +1, ∴第n 个单项式为(-1)n -1x 2n +1.6. B 【解析】∵2a -3b =-1,∴4a 2-6ab +3b =2a (2a -3b )+3b =-2a +3b =1.7. D 【解析】逐项分析如下:8. B 【解析】∵原正方形周长为a ,则边长为a 4,∴新正方形为a 4+2,∴新正方形周长为4(a4+2)=a+8,则这根铁丝需要增加8 cm .9. B 【解析】设第一件衣服的进价为x 元,第二件衣服的进价为y 元,依题意,得x (1+20%)=a ,y (1-20%)=a ,∴x (1+20%)=y (1-20%),化简,得3x =2y ,由x (1+20%)=a 得x =5a6,∴该服装店卖出这两件服装的盈利情况为0.2x -0.2y =0.2x -0.3x =-0.1x =-0.1×5a 6=-a 12,即亏损了a12元.10. 0.8a 【解析】8折出售即为原价的0.8,∴售价为0.8a . 11. -1(答案不唯一)12. a (2x +y )(2x -y ) 【解析】原式=a (4x 2-y 2)=a (2x +y )(2x -y ). 13. 15 【解析】∵a +b =5,a -b =3,∴a 2-b 2=(a +b )(a -b )=5×3=15. 14. 315. 15 【解析】2x +y =2x ·2y =3×5=15.16. a (a +1)2 【解析】原式=a (a 2+2a +1)=a (a +1)2. 17. 3 【解析】根据运算程序可知,若输入的是x ,则输出的是x 2+1,∴当x =16时,输出的数值是162+1=3.18. (a +b )2 【解析】原式=a 2-2ab +b 2+4ab =a 2+2ab +b 2=(a +b )2.19. 1 【解析】原式=mn -m -n +1=mn -(m +n )+1,把m +n =mn 代入原式,得=mn -mn +1=1.20. 6 【解析】∵a 6=b 5=c4≠0,且a +b -2c =3,∴设a =6x ,则b =5x ,c =4x ,则6x +5x -8x =3,解得x =1,∴a =6.满分冲关1. 20 【解析】∵x =13-5,y =13+5,∴x -y =13-5-(13+5)=-25,∴x 2-2xy +y 2=(x -y )2=(-25)2=20.2. -32 【解析】设2019-a =x ,则a -2017=2-x ,有x 2+(x -2)2=7,解得x 1=1+102,x 2=1-102,∴(2019-a )(a -2017)=12×[(2019-a )+(a -2017)]2-[(2019-a )2+(a -2017)2]=-32.3. 3 【解析】根据题意得:a 2-2a +3=b 2-2b +3,∴(a -b )(a +b -2)=0,∵a ≠b ,∴a +b -2=0,则a +b =2,∴当x =a +b =2时,x 2-2x +3=22-2×2+3=3.。

中考数学专题02代数式和因式分解(第03期)-2017年中考数学试题分项版解析汇编(解析版)

中考数学专题02代数式和因式分解(第03期)-2017年中考数学试题分项版解析汇编(解析版)

一、选择题目1.(2017四川省南充市)下列计算正确的是( ) A.842a a a ÷= B .236(2)6a a = C .3232a a a -=D .23(1)33a a a a -=-【答案】D . 【解析】试题分析:A .原式=4a ,不符合题意; B .原式=68a ,不符合题意; C .原式不能合并,不符合题意; D .原式=233a a -,符合题意. 故选D .考点:整式的混合运算.2.(2017四川省广安市)下列运算正确的是( )A .|√2−1|=√2−1B .x 3⋅x 2=x 6C .x 2+x 2=x 4D .(3x 2)2=6x 4 【答案】A . 【解析】试题分析:A .|√2−1|=√2−1,正确,符合题意; B .325x x x ⋅=,故此选项错误; C .2222x x x +=,故此选项错误;D .224(3)9x x =,故此选项错误;故选A .考点:1.幂的乘方与积的乘方;2.实数的性质;3.合并同类项;4.同底数幂的乘法.学科*网 3.(2017四川省广安市)要使二次根式√2x −4在实数范围内有意义,则x 的取值范围是( ) A .x >2 B .x ≥2 C .x <2 D .x =2 【答案】B .【解析】试题分析:∵二次根式√2x −4在实数范围内有意义,∴2x ﹣4≥0,解得:x ≥2,则实数x 的取值范围是:x ≥2.故选B .考点:二次根式有意义的条件.4.(2017四川省眉山市)下列运算结果正确的是( )A-= B .2(0.1)0.01--= C .222()2a b ab a b ÷= D .326()m m m -=-【答案】A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.5.(2017四川省眉山市)已知2211244m n n m +=--,则11m n -的值等于( ) A .1 B .0 C .﹣1 D .14-【答案】C . 【解析】试题分析:由2211244m n n m +=--,得:22(2)(2)0m n ++-= ,则m =﹣2,n =2,∴11m n -=1122--=﹣1.故选C .考点:1.分式的化简求值;2.条件求值. 6.(2017四川省绵阳市)使代数式√x+3+√4−3x 有意义的整数x 有( )A .5个B .4个C .3个D .2个 【答案】B .考点:二次根式有意义的条件.7.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+⋯+1a 19的值为( )A .2021B .6184C .589840D .421760【答案】C . 【解析】试题分析:a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2);∴1a 1+1a 2+1a3+⋯+1a 19=11111 (13243546)1921+++++⨯⨯⨯⨯⨯ =1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=589840,故选C .学科#网 考点:1.规律型:图形的变化类;2.综合题. 8.(2017四川省达州市)下列计算正确的是( ) A .235a b ab +=B 6=±C .22122a b ab a ÷=D .()323526ab a b =【答案】C .【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确; C .22122a b ab a÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 9.(2017山东省枣庄市)下列计算,正确的是( )A-= B .13|2|22-=-C= D .11()22-=【答案】D . 【解析】=,A 错误;13|2|22-=,B 错误;2,C 错误;11()22-=,D 正确,故选D .考点:1.立方根;2.有理数的减法;3.算术平方根;4.负整数指数幂. 10.(2017山东省枣庄市)实数a ,b在数轴上对应点的位置如图所示,化简||a 的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b 【答案】A .考点:1.二次根式的性质与化简;2.实数与数轴.11.(2017山东省济宁市)单项式39m x y 与单项式24n x y 是同类项,则m +n 的值是( ) A .2 B .3 C .4 D .5 【答案】D . 【解析】试题分析:由题意,得m =2,n =3.m +n =2+3=5,故选D . 考点:同类项.12.(20171+在实数范围内有意义,则x 满足的条件是( )A .x ≥12B .x ≤12C .x =12D .x ≠12【答案】C . 【解析】试题分析:由题意可知:210120x x -≥⎧⎨-≥⎩,解得:x =12.故选C .考点:二次根式有意义的条件. 13.(2017山东省济宁市)计算()322323a a a a a -+-÷,结果是( )A .52a a - B .512a a -C .5aD .6a【答案】D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂.14.(2017山西省)如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20B .30C .35D .55 【答案】A . 【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A . 考点:1.平行线的性质;2.翻折变换(折叠问题). 15.(2017广东省)下列运算正确的是( )A .223a a a +=B .325a a a ⋅=C .426()a a =D .424a a a +=【答案】B . 【解析】试题分析:A .a +2a =3a ,此选项错误; B .325a a a ⋅=,此选项正确;C .428()a a =,此选项错误;D .4a 与2a 不是同类项,不能合并,此选项错误;故选B .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 16.(2017广西四市)下列运算正确的是( )A .−3(x −4)=−3x +12B .(−3x)2⋅4x 2=−12x 4C .3x +2x 2=5x 3D .x 6÷x 2=x 3 【答案】A .考点:整式的混合运算.17.(2017江苏省盐城市)下列运算中,正确的是( )A .277a a aB .236a aa C .32a aa D .22abab【答案】C . 【解析】 试题分析:A .错误、7a +a =8a .B .错误.235aa a . C .正确.32a aa .D .错误.222aba b故选C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.18.(2017江苏省连云港市)计算2a a 的结果是( )A .aB .2aC .22aD .3a 【答案】D .考点:同底数幂的乘法.19.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O 上的A 0点出发,沿着射线A 0O 方向运动到⊙O 上的点A 1处,再向左沿着与射线A 1O 夹角为60°的方向运动到⊙O 上的点A 2处;接着又从A 2点出发,沿着射线A 2O 方向运动到⊙O 上的点A 3处,再向左沿着与射线A 3O 夹角为60°的方向运动到⊙O 上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.23C.2D.0【答案】A.【解析】试题分析:如图,∵⊙O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=,OA5=2,OA6=0,OA7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴OA2017=2R=4.故选A.考点:1.规律型:图形的变化类;2.综合题.20.(2017河北省)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.446+=B.004446++=C.46+=D.1446-=【答案】D.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.图表型.21.(2017河北省)若321xx--= +11x-,则中的数是()A.﹣1B.﹣2C.﹣3D.任意实数【答案】B.【解析】试题分析:∵321xx-- = +11x-,∴321xx--﹣11x-=3211xx---=2(1)1xx--=﹣2,故____中的数是﹣2.故选B.考点:分式的加减法.22.(2017浙江省丽水市)计算23a a⋅,正确结果是()A.5a B.4a C.8a D.9a 【答案】A.【解析】试题分析:23a a⋅=23a+=5a,故选A.考点:同底数幂的乘法.23.(2017浙江省丽水市)化简2111x x x +--的结果是( )A .x +1B .x ﹣1C .21x -D .211x x +-【答案】A .考点:分式的加减法.24.(2017浙江省台州市)下列计算正确的是( ) A .()()2222a a a +-=-B .()()2122a a a a +-=+-C .()222a b a b +=+D .()2222a b a ab b -=-+【答案】D . 【解析】试题分析:A .原式=24a -,不符合题意;B .原式=22a a --,不符合题意; C .原式=222a ab b ++,不符合题意;D .原式=222a ab b -+,符合题意. 故选D .考点:整式的混合运算.25.(2017湖北省襄阳市)下列运算正确的是( )A .32a a -=B .()325a a = C . 235a a a = D .632a a a ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.学科*网 26.(2017重庆市B 卷)计算53a a ÷结果正确的是( ) A .a B .2a C .3a D .4a 【答案】B . 【解析】试题分析:53a a ÷=2a .故选B . 考点:同底数幂的除法.27.(2017重庆市B 卷)若x =﹣3,y =1,则代数式2x ﹣3y +1的值为( ) A .﹣10 B .﹣8 C .4 D .10 【答案】B . 【解析】试题分析:∵x =﹣3,y =1,∴2x ﹣3y +1=2×(﹣3)﹣3×1+1=﹣8,故选B . 考点:代数式求值.28.(2017重庆市B卷)若分式13x -有意义,则x 的取值范围是( )A .x >3B .x <3C .x ≠3D .x =3 【答案】C . 【解析】试题分析:∵分式13x -有意义,∴x ﹣3≠0,∴x ≠3;故选C .考点:分式有意义的条件.29.(2017重庆市B 卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150 【答案】B .考点:规律型:图形的变化类. 二、填空题目30.(2017四川省南充市)计算:0|1(π+= .【解析】试题分析:原式1+1 考点:1.实数的运算;2.零指数幂.31.(2017四川省广安市)分解因式:24mx m -= . 【答案】m (x +2)(x ﹣2). 【解析】试题分析:24mx m -=2(4)m x -=m (x +2)(x ﹣2).故答案为:m (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.32.(2017四川省眉山市)分解因式:228ax a -= . 【答案】2a (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.33.(2017四川省绵阳市)分解因式:282a -= . 【答案】2(2a +1)(2a ﹣1). 【解析】试题分析:282a -=22(41)a - =2(2a +1)(2a ﹣1).故答案为:2(2a +1)(2a ﹣1).考点:提公因式法与公式法的综合运用.34.(2017四川省达州市)因式分解:3228a ab -= .【答案】2a (a +2b )(a ﹣2b ). 【解析】试题分析:2a 3﹣8ab 2 =2a (a 2﹣4b 2) =2a (a +2b )(a ﹣2b ).故答案为:2a (a +2b )(a ﹣2b ). 考点:提公因式法与公式法的综合运用.35.(2017山东省枣庄市)化简:2223321(1)x x xx x x ++÷-+-= . 【答案】1x .【解析】试题分析:2223321(1)x x x x x x ++÷-+-=223(1)(1)(3)x x x x x +-⋅-+=1x ,故答案为:1x . 考点:分式的乘除法.36.(2017山东省济宁市)分解因式:222ma mab mb ++=.【答案】2()m a b + .【解析】试题分析:原式=22(2)m a ab b ++=2()m a b +,故答案为:2()m a b +.考点:提公因式法与公式法的综合运用.37.(2017山西省)计算:-= .【答案】.考点:二次根式的加减法.38.(2017广东省)分解因式:a a +2= .【答案】a (a +1). 【解析】试题分析:a a +2=a (a +1).故答案为:a (a +1).考点:因式分解﹣提公因式法.学&科网39.(2017广东省)已知4a +3b =1,则整式8a +6b ﹣3的值为 . 【答案】﹣1. 【解析】试题分析:∵4a +3b =1,∴8a +6b =2,8a +6b ﹣3=2﹣3=﹣1;故答案为:﹣1. 考点:1.代数式求值;2.整体思想.40.(2017江苏省盐城市)分解因式2a b a 的结果为 .【答案】a (ab ﹣1). 【解析】试题分析:2a b a =a (ab ﹣1),故答案为:a (ab ﹣1).考点:提公因式法与公式法的综合运用.41.(2017在实数范围内有意义,则x 的取值范围是 . 【答案】x ≥3. 【解析】试题分析:根据题意得x ﹣3≥0,解得x ≥3.故答案为:x ≥3. 考点:二次根式有意义的条件.42.(2017江苏省连云港市)分式11x 有意义的x 的取值范围为 . 【答案】x ≠1.考点:分式有意义的条件.43.(2017江苏省连云港市)计算(a ﹣2)(a +2)=. 【答案】24a -. 【解析】试题分析:(a ﹣2)(a +2)=24a -,故答案为:24a -. 考点:平方差公式.44.(2017浙江省丽水市)分解因式:22m m += . 【答案】m (m +2). 【解析】试题分析:原式=m (m +2).故答案为:m (m +2). 考点:因式分解﹣提公因式法.45.(2017浙江省丽水市)已知21a a +=,则代数式23a a --的值为 . 【答案】2. 【解析】试题分析:∵21a a +=,∴原式=23()a a -+=3﹣1=2.故答案为:2.考点:1.代数式求值;2.条件求值;3.整体思想.46.(2017浙江省台州市)因式分解:26x x += .【答案】x (x +6). 【解析】试题分析:原式=x (6+x ),故答案为:x (x +6). 考点:因式分解﹣提公因式法.47.(2017浙江省绍兴市)分解因式:2x y y -= .【答案】y (x +1)(x ﹣1).考点:1.提公因式法与公式法的综合运用;2.因式分解.48.(2017重庆市B 卷)计算:0|3|(4)-+- .【答案】4. 【解析】试题分析:原式=3+1=4.故答案为:4. 考点:1.实数的运算;2.零指数幂.三、解答题49.(2017四川省南充市)化简21(1)1x x x x x --÷++,再任取一个你喜欢的数代入求值.【答案】1x x -,当x =5时,原式=54.【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.试题解析:原式=2211x x x x x xx +-+⋅+-=21(1)1x x x x x +⋅+-=1x x - ∵x ﹣1≠0,x (x +1)≠0,∴x ≠±1,x ≠0,当x =5时,原式=551-=54.考点:分式的化简求值.50.(2017四川省广安市)计算:6118cos 4520173--+⨯-+.【答案】13 .考点:1.二次根式的混合运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.51.(2017四川省广安市)先化简,再求值:2211a a a aa +-⎛⎫+÷⎪⎝⎭,其中a =2. 【答案】11a a +-,3.【解析】试题分析:先化简分式,再代入求值.试题解析:原式=221(1)(1)a a a a a a ++⨯+-=2(1)(1)(1)a a a a a +⨯+-=11a a +- 当a =2时,原式=3. 考点:分式的化简求值.52.(2017四川省眉山市)先化简,再求值:2(3)2(34)a a +-+,其中a =﹣2. 【答案】21a +,5. 【解析】试题分析:原式利用完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值. 试题解析:原式=26968a a a ++--=21a +,当a =﹣2时,原式=4+1=5. 考点:整式的混合运算—化简求值.53.(2017四川省绵阳市)(1)计算:√0.04+cos 2450−(−2)−1−|−12|;(2)先化简,再求值:(x−y x 2−2xy +y 2−x x 2−2xy )÷yx−2y ,其中x=y.【答案】(1)0.7;(2)1y x -,.考点:1.分式的化简求值;2.实数的运算;3.负整数指数幂;4.特殊角的三角函数值.54.(2017四川省达州市)计算:11201712cos453-⎛⎫--+︒⎪⎝⎭.【答案】5.【解析】试题分析:首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=1132+++55.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.学科#网55.(2017四川省达州市)设A=223121a aaa a a-⎛⎫÷-⎪+++⎝⎭.(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:()()()27341124x xf f f---≤+++,并将解集在数轴上表示出来.【答案】(1)21a a+;(2)x≤4.考点:1.分式的混合运算;2.在数轴上表示不等式的解集;3.解一元一次不等式;4.阅读型;5.新定义.56.(2017山东省枣庄市)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=p q.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3 4.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)3 4.考点:1.因式分解的应用;2.新定义;3.因式分解;4.阅读型.57.(2017广东省)计算:()11713π-⎛⎫---+ ⎪⎝⎭.【答案】9. 【解析】试题分析:直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案. 试题解析:原式=7﹣1+3=9.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.58.(2017广东省)先化简,再求值:()211422x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x【答案】2x , 【解析】试题分析:先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.试题解析:原式=()()()()222222x x x x x x ++-+--+=2x当x= 考点:分式的化简求值.59.(2017广西四市)先化简,再求值:2211121x x x x x ---÷++,其中x =√5−1. 【答案】11x +考点:分式的化简求值.60.(201711()20172.【答案】3. 【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 试题解析:原式=2+2﹣1=3.考点:1.实数的运算;2.零指数幂;3.负整数指数幂. 61.(2017江苏省盐城市)先化简,再求值:35222x x x x ,其中33x .【答案】13x -.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 的值代入计算即可求出值. 试题解析:原式=3(2)(2)5[]222x x x x x x =23922x x x x +-÷--=322(3)(3)x x x x x +-⋅-+-=13x -当33x 时,原式.考点:分式的化简求值.62.(2017江苏省连云港市)计算:0318 3.14.【答案】0. 【解析】试题分析:先去括号、开方、零指数幂,然后计算加减法. 试题解析:原式=1﹣2+1=0.考点:1.实数的运算;2.零指数幂.63.(2017江苏省连云港市)化简: 211a aa a .【答案】21a .考点:分式的乘除法.64.(2017河北省)发现 任意五个连续整数的平方和是5的倍数.验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍.(2)()()()()() 2222222 211251052n n n n n n n-+-+++++=+=+.∵n为整数,∴这个和是5的倍数.延伸余数是2.理由:设中间的整数为n,()()22221132n n n n-+++=+被3除余2.考点:1.完全平方公式;2.整式的加减.65.(2017浙江省丽水市)计算:011(2017)()3---【答案】1.【解析】试题分析:本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.学&科网试题解析:原式=1﹣3+3=1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.66.(2017)013 +---.【答案】1.考点:1.实数的运算;2.零指数幂.67.(2017浙江省台州市)先化简,再求值:1211x x⎛⎫-⋅⎪+⎝⎭,其中x=2017.【答案】21x+,11009.【解析】试题分析:根据分式的减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.试题解析:原式=1121xx x+-⨯+ =21xx x⨯+=21x+当x =2017时,原式=220171+=22018=11009.考点:分式的化简求值.68.(2017浙江省绍兴市)(1)计算:()4π-+-(2)解不等式:()4521x x +≤+.【答案】(1)﹣3;(2)x ≤32-.考点:1.解一元一次不等式;2.实数的运算;3.零指数幂.69.(2017湖北省襄阳市)先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中2x =,2y =-.【答案】2xy x y -,12.【解析】试题分析:先根据分式的混合运算顺序和法则化简原式,再将x 、y 的值代入求解可得.试题解析:原式=1[]()()()()()x y x y x y x y x y x y y x y -++÷+-+-+=2()()()x y x y x y x y ⋅++- =2xyx y -当2x =+,2y =-时,原式24=12. 考点:分式的化简求值. 70.(2017重庆市B 卷)计算:(1)2()(2)x y x y x+--;(2)23469 (2)22a a aaa a--++-÷--.【答案】(1)222x y+;(2)3aa-.考点:1.分式的混合运算;2.单项式乘多项式;3.完全平方公式.71.(2017重庆市B卷)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=()()F sF t,当F(s)+F(t)=18时,求k的最大值.【答案】(1)F(243)=9,F(617)=14;(2)54.【解析】试题分析:(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k= ()()F sF t中,找出最大值即可.试题解析:(1)F (243)=(423+342+234)÷111=9; F (617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6.∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴16x y =⎧⎨=⎩或25x y =⎧⎨=⎩或34x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩或61x y =⎧⎨=⎩.∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5,∴16x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩,∴()6()12F s F t =⎧⎨=⎩或()9()9F s F t =⎧⎨=⎩或()10()8F s F t =⎧⎨=⎩,∴k =()()F s F t =12或k =()()F s F t =1或k =()()F s F t =54,∴k 的最大值为54.考点:1.因式分解的应用;2.二元一次方程的应用;3.新定义;4.阅读型;5.最值问题;6.压轴题.祝你考试成功!祝你考试成功!。

中考数学试题分类解析汇编:代数式和因式分解

中考数学试题分类解析汇编:代数式和因式分解
中考数学试题分类解析汇编:代数式和因式分解
A.选择题
1.(3分)在下列各组根式中,是同类二次根式的是【】
(A) 和 ;(B) 和 ;
(C) 和 ;(D) 和 .
【答案】B,C。.
【考点】同类二次根式。
【分析】首先把各选项中不是最简二次根式的式子化成最简二次根式,然后根据同类二次根式的定义判断:
A、 和 被开方数不同,不是同类二次根式;
【考点】分式的混合运算。
【分析】首先把分式分子分母能分解因式的先分解因式,进行乘法运算,约分后进行减法运算。
2.(7分)已知 ,将下式先简化,再求值: .
【答案】解:
当 时,原式= 。
【考点】整式的混合运算(化简求值)。
【分析】首先将所求代数式化简,然后将x2-2x的值整体代入,从而求得代数式的值。
(A) ;(B) ;(C) ;(D) .
【答案】B。
【考点】最简二次根式。
【分析】∵ , , ,∴ , , 都不是最简二次根式。故选B。
7.(4分)在下列代数式中,次数为3的单项式是( )
A.xy2B.x3+y3C..x3yD..3xy
【答案】A。
【考点】单项式。
【分析】解:根据单项式的次数定义可知:
13.(4分)计算: ▲.
【答案】 。
【考点】平方差公式。
【分析】根据平方差公式计算即可: 。
14.(4分)分解因式: =▲.
【答案】 。
【考点】提公因式法因式分解。
【分析】直接提取公因式 即可: 。
15.(4分)计算: ▲.
【答案】a5
【考点】同底幂乘法运算法则。
【分析】根据底数不变,指数相加的同底幂乘法运算法则,得 。
A、xy2的次数为3,符合题意;

海南省2001-2012年中考数学试题分类解析 专题2 代数式和因式分解

海南省2001-2012年中考数学试题分类解析 专题2 代数式和因式分解

[中考12年]海南省2001-2012年中考数学试题分类解析专题2:代数式和因式分解一、选择题1. (2001年海南省3分)下列运算正确..的是【】.A.x3+x3=2x6 B.x·x2=x3C.(-x3)2=-x6 D.x6÷x3=x22. (2001年海南省3分)(a-b)2=【】.A.a2-b2B.a2+b2C.a2-ab+b2D.a2-2ab+b2【答案】D。

【考点】完全平方公式。

【分析】直接根据完全平方公式得出结论:(a-b)2=a2-2ab+b2。

故选D。

3. (2001年海南省3分)某商场在统计今年第一季度的销售额时发现,二月份比一月份增加10%,三月份比二月份减少10%,则三月份的销售额比一月份的销售额【】.A.增加10% B.减少10% C.不增也不减D.减少1%4. (2002年海南省3分)下列运算中正确的是【】A.x2+x2=x2 B.x•x4=x4 C.(xy)4=xy4 D.x6÷x2=x4【答案】D。

【考点】合并同类项,同底幂乘法和除法,积的乘方。

【分析】根据合并同类项,同底幂乘法和除法,积的乘方运算法则逐一计算作出判断:A 、应为x 2+x 2=2x 2,故本选项错误;B 、应为x•x 4=x 5,故本选项错误;C 、应为(xy )4=x 4y 4,故本选项错误; D 、x 6÷x 2=x 4,故本选项正确。

故选D 。

5.(2002年海南省3分)下列因式分解中,错误的是【 】A .()()219x 13x 13x -=+-B .2211a a (a )42-+=-C .()mx my m x y -+=-+D .()()ax ay bx by x y a b --+=--6. (2003年海南省2分)下列各式中,不一定成立的是【 】A .222a b a 2ab b +=++()B .222b a a 2ab b -=-+()C .()()22a b a b a b +-=-D .222a b a b -=-()【答案】D 。

中考《整式及因式分解》经典例题及解析

中考《整式及因式分解》经典例题及解析

整式及因式分解一、代数式代数式的书写要注意规范,如乘号“×”用“·”表示或省略不写;分数不要用带分数;除号用分数线表示等. 二、整式1.单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的次数,数字因数叫做单项式的系数.注:○1单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如2143a b -,这种表示就是错误的,应写成2133a b -;○2一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如325a b c -是6次单项式。

2.多项式:由几个单项式相加组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个多项式的次数,其中不含字母的项叫做常数项. 3.整式:单项式和多项式统称为整式.4.同类项:多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项. 5.整式的加减:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 6.幂的运算:a m ·a n =a m +n ;(a m )n =a mn ;(ab )n =a n b n ;a m ÷a n =m n a -.7.整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:m (a +b +c )=ma +mb +mc . (3)多项式与多项式相乘:(m +n )(a +b )=ma +mb +na +nb .8.乘法公式:(1)平方差公式:22()()a b a b a b +-=-. (2)完全平方公式:222()2a b a ab b ±=±+. 9.整式的除法:(1)单项式除以单项式,把系数、同底数的幂分别相除,作为商的因式:对于只在被除式含有的字母,则连同它的指数作为商的因式.(2)多项式除以单项式:先把这个多项式的每一项除以单项式,再把所得的商相加. 三、因式分解1.把一个多项式化成几个因式积的形式,叫做因式分解,因式分解与整式乘法是互逆运算. 2.因式分解的基本方法:(1)提取公因式法:()ma mb mc m a b c ++=++.(2)公式法:运用平方差公式:²²()()a b a b a b -=+-.运用完全平方公式:22²2()a ab b a b ±+=±. 3.分解因式的一般步骤:(1)如果多项式各项有公因式,应先提取公因式; (2)如果各项没有公因式,可以尝试使用公式法:为两项时,考虑平方差公式;为三项时,考虑完全平方公式;为四项时,考虑利用分组的方法进行分解;(3)检查分解因式是否彻底,必须分解到每一个多项式都不能再分解为止. 以上步骤可以概括为“一提二套三检查”.经典例题 代数式及相关问题1.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m 张成人票和n 张儿童票,则共需花费___________元. 【答案】()3015m n +【分析】根据单价×数量=总价,用代数式表示结果即可.【解析】解:根据单价×数量=总价得,共需花费()3015m n +元,故答案为:()3015m n +.【点睛】本题考查代数式表示数量关系,理解和掌握单价×数量=总价是解题的关键,注意当代数式是多项式且后面带单位时,代数式要加括号.2.若221m m +=,则2483m m +-的值是( ) A .4 B .3C .2D .1【答案】D【分析】把所求代数式2483m m +-变形为24(2)3m m +-,然后把条件整体代入求值即可. 【解析】∵221m m +=,∴2483m m +-=24(2)3m m +-=4×1-3=1.故选:D .【点睛】此题主要考查了代数式求值以及“整体代入”思想,解题的关键是把代数式2483m m +-变形为24(2)3m m +-.1.已知73a b =-,则代数式2269a ab b ++的值为_________. 【答案】49【分析】先将条件的式子转换成a +3b =7,再平方即可求出代数式的值.【解析】解:∵73a b =-,∴37a b +=,∴()2222693749a ab b a b ++=+==,故答案为:49.【点睛】本题考查完全平方公式的简单应用,关键在于通过已知条件进行转换. 2.点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于( ) A .5 B .3C .3-D .1-【答案】C【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果;【解析】把(),P a b 代入函数解析式32y x =+得:32=+b a ,化简得到:32-=-a b , ∴()()621=231=221=-3-+-+⨯-+a b a b .故选:C .【点睛】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键.3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A ,B ,C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A 同学拿出三张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学; 第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学, 请你确定,最终B 同学手中剩余的扑克牌的张数为___________________. 【答案】9【分析】把每个同学的扑克牌的数量用相应的字母表示出来,列式表示变化情况即可找出最后答案. 【解析】设每个同学的扑克牌的数量都是x ;第一步,A 同学的扑克牌的数量是3x -,B 同学的扑克牌的数量是3x +; 第二步,B 同学的扑克牌的数量是33x ++,C 同学的扑克牌的数量是3x -;第三步,A 同学的扑克牌的数量是2(3x -),B 同学的扑克牌的数量是33x ++-(3x -); ∴B 同学手中剩余的扑克牌的数量是:33x ++-(3x -)9=.故答案为:9.【点睛】本题考查了列代数式以及整式的加减,解决此题的关键根据题目中所给的数量关系,建立数学模型.根据运算提示,找出相应的等量关系.经典例题 整式及其相关概念1.若多项式||22(2)1m n xyn x y -+-+是关于x ,y 的三次多项式,则mn =_____.【答案】0或8【分析】直接利用多项式的次数确定方法得出答案. 【解析】解:Q 多项式||22(2)1m n xyn x y -+-+是关于x ,y 的三次多项式,20n ∴-=,1||3m n +-=,2n ∴=,||2m n -=,2m n ∴-=或2n m -=,4m ∴=或0m =,0mn \=或8.故答案为:0或8.【点睛】本题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.1.单项式3212a b 的次数是_____. 【答案】5.【分析】根据单项式次数的意义即可得到答案. 【解析】单项式3212a b 的次数是325+=.故答案为5. 【点睛】本题考查单项式次数的意义,解题的关键是熟练掌握单项式次数的意义. 2.下列各式中,与233x y 是同类项的是( )A .52xB .323x yC .2312x y -D .513y -【答案】C【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【解析】解:A.52x 与233x y 不是同类项,故本选项错误;B.3x 3y 2与233x y 不是同类项,故本选项错误;C.2312x y -与233x y 是同类项,故本选项正确;D.513y -与233x y 不是同类项,故本选项错误;故选:C .【点睛】本题考查了同类项的知识,解答本题的关键是理解同类项的定义.经典例题1.若单项式32m x y 与3m n xy +的值是_______________. 【答案】2【分析】先根据同类项的定义求出m 与n 的值,再代入计算算术平方根即可得.【解析】由同类项的定义得:13m m n =⎧⎨+=⎩解得12m n =⎧⎨=⎩2===故答案为:2.【点睛】本题考查了同类项的定义、算术平方根,熟记同类项的定义是解题关键.1.若单项式122m x y -与单项式2113n x y +是同类项,则m n +=___________. 【答案】4【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同的单项式是同类项.可列式子m-1=2,n+1=2,分别求出m,n 的值,再代入求解即可. 【解析】解:∵单项式122m x y -与单项式2113n x y +是同类项,∴m-1=2,n+1=2, 解得:m=3,n=1.∴m+n=3+1=4.故答案为:4.【点睛】本题考查了同类项的概念,正确理解同类项的定义是解题的关键. 2.若3m x y 与25n x y -是同类项,则m n +=___________. 【答案】3【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可求得m 和n 的值,根据合并同类项法则合并同类项即可. 【解析】解:由同类项的定义可知,m=2,n=1,∴m+n=3故答案为3.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.经典例题 规律探索题1.观察下列一组数:﹣23,69,﹣1227,2081,﹣30243,…,它们是按一定规律排列的,那么这一组数的第n 个数是_____. 【答案】(1)n-(1)3⨯+nn n 【分析】观察已知一组数,发现规律进而可得这一组数的第n 个数. 【解析】解:观察下列一组数:﹣23=﹣1123⨯,69=2233⨯,﹣1227=﹣3343⨯2081=4453⨯, ﹣30243=﹣5563⨯,…,它们是按一定规律排列的,那么这一组数的第n 个数是:(﹣1)n (1)3⨯+nn n , 故答案为:(1)n-(1)3⨯+nn n . 【点睛】本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化寻找规律.1.按一定规律排列的单项式:a ,2a -,4a ,8a -,16a ,32a -,…,第n 个单项式是( ) A .()12n a --B .()2na -C .12n a -D .2n a【答案】A【分析】先分析前面所给出的单项式,从三方面(符号、系数的绝对值、指数)总结规律,发现规律进行概括即可得到答案.【解析】解:Q a ,2a -,4a ,8a -,16a ,32a -,…, 可记为:()()()()()()0123452,2,2,2,2,2,,a a a a a a ------∙∙∙∴ 第n 项为:()12.n a -- 故选A .【点睛】本题考查了单项式的知识,分别找出单项式的系数和次数的规律是解决此类问题的关键.2.右表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之个数记为2a ,第三个数记为3a ,……,【答案】20110【分析】根据所给数据可得到关系式【解析】由已知数据1,3,6,10,15,∴445102a ⨯==,2002002012a ⨯==【点睛】本题主要考查了数字规律题的知识经典例题1.如图,正方体的每条棱上放置相同数目则表达错误的是( )A .12(1)m -B .48(2)m m +【答案】A【分析】先根据规律求出小球的总个数【解析】解:由题可知求小球的总数的方法会衔接处的小球,则每条棱上剩下12(m-2)个小项B 中48(2)m m +-1216m =-,故B,C,【点睛】本题考查了图形的规律,合并同类行线之间的一列数:1,3,6,10,15,……,我们把,第n 个数记为n a ,则4200a a +=_________.()12n n n a +=,代入即可求值. ,……,可得()12n n n a +=, 20100,∴420020100+10=20110+=a a .的知识点,找出关系式是解题的关键. 同数目的小球,设每条棱上的小球数为m ,下列代数式- C .12(2)8m -+ D .1216m -,再将选项逐项化简求值即可解题.方法会按照不同的计数方法而规律不同,比如可以按照个小球,加上衔接处的8个小球,则小球的个数为12(B,C,D均正确,故本题选A. 并同类项,需要学生具有较强的逻辑抽象能力,能够不重我们把第一个数记为1a ,第二10.故答案为20110. 代数式表示正方体上小球总数,以按照一共有12条棱,去掉首尾2)81216m m -+=-,选够不重不漏的表示出小球的总数是解题关键.1. 把黑色三角形按如图所示的规律拼图案形,第③个图案中有6个黑色三角形A .10 B .15 【答案】B【分析】根据前三个图案中黑色三角形的个第⑤个图案中黑色三角形的个数.【解析】解:∵第①个图案中黑色三角形的第②个图案中黑色三角形的个数3=第③个图案中黑色三角形的个数6=∴第⑤个图案中黑色三角形的个数为1+2+【点睛】本题主要考查图形的变化规律,1+2+3+4+……+n .2.小明用大小和形状都完全一样的正方体方体上写“心”字,寓意“不忘初心”.其中案中有6个正方体,……按照此规律,从第体的概率是( )A .1100B .120【答案】D拼图案,其中第①个图案中有1个黑色三角形,第角形,…,按此规律排列下去,则第⑤个图案中黑色C .18D .21形的个数得出第n 个图案中黑色三角形的个数为1+2角形的个数为1, 1+2, 1+2+3,……1+2+3+4+5=15,故选:B .,解题的关键是根据已知图形得出规律:第n 个图正方体按照一定规律排放了一组图案(如图所示),每个其中第(1)个图案中有1个正方体,第(2)个图案中有从第(100)个图案所需正方体中随机抽取一个正方体C .1101D .2101第②个图案中有3个黑色三角中黑色三角形的个数为( )1+2+3+4+……+n ,据此可得个图案中黑色三角形的个数为每个图案中他只在最下面的正案中有3个正方体,第(3)个图正方体,抽到带“心”字正方【分析】根据图形规律可得第n 个图形共有1+2+3+4+...+n=()12n n +个正方体,最下面有n 个带“心”字正方体,从而得出第100个图形的情况,再利用概率公式计算即可.【解析】解:由图可知:第1个图形共有1个正方体,最下面有1个带“心”字正方体; 第2个图形共有1+2=3个正方体,最下面有2个带“心”字正方体; 第3个图形共有1+2+3=6个正方体,最下面有3个带“心”字正方体; 第4个图形共有1+2+3+4=10个正方体,最下面有4个带“心”字正方体;... 第n 个图形共有1+2+3+4+...+n=()12n n +个正方体,最下面有n 个带“心”字正方体;则:第100个图形共有1+2+3+4+ (100)()11001002+=5050个正方体,最下面有100个带“心”字正方体;∴从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是10025050101=, 故选:D .【点睛】本题考查了图形变化规律,概率的求法,解题的关键是总结规律,得到第100个图形中总正方体的个数以及带“心”字正方体个数.经典例题 幂的运算1.下列运算正确的是( ) A .236a a a ⋅= B .()325a a = C .22(2)2a a = D .32a a a ÷=【答案】D【分析】根据同底数幂的乘除法、幂的乘方、积的乘方逐项判断即可. 【解析】A 、23235a a a a +⋅==,此项错误;B 、()23236a a a ⨯==,此项错误C 、22(2)4a a =,此项错误;D 、3232a a a a -÷==,此项正确;故选:D .【点睛】本题考查了同底数幂的乘除法、幂的乘方、积的乘方,熟记整式的运算法则是解题关键.1.下列计算正确的是( ) A .a 3+a 3=a 6 B .(a 3)2=a 6C .a 6÷a 2=a 3D .(ab )3=ab3【答案】B【分析】根据合并同类项、同底数幂的乘除法、幂的乘方、积的乘方的计算法则进行计算即可. 【解析】解:3332a a a +=,因此选项A 不正确;32326()a a a ⨯==,因此选项B 正确;62624a a a a -÷==,因此选项C 不正确;333()ab a b =,因此选项D 不正确;故选:B .【点睛】本题考查合并同类项、同底数幂的乘除法、幂的乘方、积的乘方的计算方法,掌握相关运算方法是解题的关键.2.电子文件的大小常用, ,,B KB MB GB 等作为单位,其中10101012,12,12GB MB MB KB KB B ===,某视频文件的大小约为1,1GB GB 等于( ) A .302B B .308BC .10810B ⨯D .30210B ⨯【答案】A【分析】根据题意及幂的运算法则即可求解.【解析】依题意得1010101010101222222GB MB KB B ==⨯=⨯⨯=302B ;故选A . 【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的运算法则.经典例题 整式的运算1.先化简,再求值:22(2)(2)()2(2)(2)x y x y x x y x y x y +++-+-++,其中1,1x y =+=-.【答案】23y xy -;-.【分析】利用完全平方公式将原式化简,然后再代入计算即可.【解析】解:原式22[(2)(2)]x y x y x xy =+-+--22()x y x xy =---2222x xy y x xy =-+--23y xy =-当1,1x y =+=-时,原式21)1)=--+- 33=--=-。

中考中的因式分解

中考中的因式分解

中考中的“因式分解”题考点例析因式分解是中考命题中很重要的一个考点,单独命题的题型多见填空题、选择题,也经常与方程、函数、化简求值、分式运算、根式运算等知识电结合进行综合考察.因此,复习这一部分应从定义、方法、和一般步骤三个方面入手,在正确理解其定义、方法、和一般步骤的基础上应当明确运用公式法分解因式的思路:当多项式只有两项,各项指数都是2的倍数,且两项系数异号时,可考虑用平方差公式加以分解;若多项式为三项时,可考虑用完全平方式加以分解;若四项以上多项式,可考虑分组分解.分解因式时,常见的思维误区有:1、提公因式时,其公因式应找字母指数最低的,而不是以首项为准.2、提取公因时,如有一项被全部提出,括号内的项“1”易漏掉.3、结果不彻底,如保留中括号形式等.利用因式分解巧妙地简化计算或求值,解方程,解实际应用问题,解决整数论等问题:因式分解的基本要求1、结果一定是几个因式积的形式;2、分解后的每一个因式都是整式;3、如果没有特殊说明,分解的结果中,各个因式必须分解到有理数范围内不能再分解为止.考点一:提公因式法这类题目主要考查公因式是单项式、多项式以及能否运用提公因式法分解因式。

解此类题目的关键在于找准公因式(公因式不仅可以是单项式,也可以是多项式,可以是字母,也可以是数字系数)以及利用乘法分配律分离公因式并提出公因式。

例1、(2004年长沙)分解因式:xy2-x2y = .解:xy2-x2y=xy(y-x).例2、(2004年西宁)分解因式:2x(a-2) + 3y(2-a) = .解:2x(a-2) + 3y(2-a)= 2x(a-2) -3y(a-2)= (a-2)(2x -3y).例3、(2004年安徽)下列各式中,能用提公因式法分解因式的是()(A)x2-y (B)x2+2x (C)x2 + y2 (D)x2-xy + y2解:由公因式的定义可知x2+2x中有公因式x,故选B.考点二:运用公式法因式分解的公式主要包括:平方差公式、和(差)的完全平方公式。

中考数学试题分项版解析汇编(第05期)专题02 代数式和因式分解(含解析)-人教版初中九年级全册数学

中考数学试题分项版解析汇编(第05期)专题02 代数式和因式分解(含解析)-人教版初中九年级全册数学

专题02 代数式和因式分解一、选择题1.(2017年某某省某某地区第3题)下列计算正确的是( ) A .a 3•a 3=a 9B .(a+b )2=a 2+b 2C .a 2÷a 2=0 D .(a 2)3=a6【答案】D. 【解析】试题分析:A 、原式=a 6,不符合题意;B 、原式=a 2+2ab+b 2,不符合题意; C 、原式=1,不符合题意;D 、原式=a 6,符合题意, 故选D考点:整式的混合运算2.(2017年某某省黔东南州第3题)下列运算结果正确的是( ) A .3a ﹣a=2 B .(a ﹣b )2=a 2﹣b 2C .6ab 2÷(﹣2ab )=﹣3bD .a (a+b )=a 2+b 【答案】C 【解析】考点:整式的混合运算3. (2017年某某省某某市第7题)下列计算正确的是( )A .325a a a +=B .325a a a ⋅= C. ()235a a = D .623a a a ÷=【答案】B 【解析】考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方4.(2017年某某省某某市第14题)计算()()224x y x yxy+--的结果为()A.1 B.12C.14D.0【答案】A【解析】考点:约分5.(2017年某某省第4题)下列运算正确的是()A.(﹣a5)2=a10B.2a•3a2=6a2C.﹣2a+a=﹣3a D.﹣6a6÷2a2=﹣3a3【答案】A【解析】试题分析: A.根据幂的乘方,可得(﹣a5)2=a10,故A正确;B.根据单项式乘以单项式,可得2a•3a2=6a3,故B错误;C.根据合并同类项法则,可得﹣2a+a =a,故C错误;D.根据单项式除以单项式法则,可得﹣6a6÷2a2=﹣3a4,故D错误;故选:A考点:整式的混合运算6.(2017年某某省东营市第2题)下列运算正确的是( ) A .(x ﹣y )2=x 2﹣y 2 B .|3﹣2|=2﹣3 C .8﹣3=5 D .﹣(﹣a+1)=a+1【答案】B 【解析】考点:1、二次根式的加减法,2、实数的性质,3、完全平方公式,4、去括号 7. (2017年某某省某某市第2题)下列运算正确的是( ) A .2222a a a = B .224a a a +=C .22(12)124a a a +=++D .2(1)(1)1a a a -++=- 【答案】D 【解析】试题分析:A 、根据同底数幂相乘,底数不变,指数相加,可知a 2•a 2=a 4,此选项错误; B 、根据合并同类项法则,可知a 2+a 2=2a 2,此选项错误; C 、根据完全平方公式,可知(1+2a )2=1+4a+4a 2,此选项错误; D 、根据平方差公式,可知(﹣a+1)(a+1)=1﹣a 2,此选项正确; 故选:D .考点:1、平方差公式;2、合并同类项;3、同底数幂的乘法;4、完全平方公式8. (2017年某某省某某市第5题)化简22211(1)(1)x x x--÷-的结果为( ) A .11x x -+ B .11x x +- C.1x x + D .1x x-【答案】A 【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到:原式=2222211x x x x x-+-÷=222(1)(1)(1)x x x x x -⋅+-=11x x -+ , 故选:A考点:分式的混合运算9. (2017年某某省威海市第3题)下列运算正确的是( ) A .422743x x x =+ B .333632x x x =⋅ C .32a a a =÷- D .363261)21(b a b a -=-【答案】C 【解析】考点:1、整式的混合运算,2、负整数指数幂10.(2017年某某省潍坊市第1题)下列计算,正确的是().A.623a a a =⨯B.33a a a =÷C.422a a a =+D.422a a =)(【答案】D 【解析】试题分析:A 、根据同底数幂相乘,底数不变,指数相加,可知原式=a 5,故A 错误; B 、根据同底数幂相除,可知原式=a 2,故B 错误; C 、根据合并同类项法则,可知原式=2a 2,故C 错误;D 、根据幂的乘方,底数不变,指数相乘,可知422a a =)(,故正确. 故选:D考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方11. (2017年某某省潍坊市第9题)若代数式12--x x 有意义,则实数x 的取值X 围是(). A.1≥x B.2≥x C.1>x D.2>x 【答案】B 【解析】试题分析:根据二次根式有意义的条件可知:2010x x -⎧⎨-⎩≥>,解得:x ≥2.故选:B考点:二次根式有意义的条件12. (2017年某某省某某市第4题)下列运算正确的是( )A .235()a a = B .235a a a ⋅= C .1a a -=- D .22()()a b a b a b +-=+【答案】B. 【解析】试题分析:选项A ,原式=a 6;选项B ,原式=a 5;选项C ,原式=1a;选项D ,原式=a 2﹣b 2,故选B. 考点:整式的运算.13.(2017年某某省内江市第8题)下列计算正确的是( ) A .232358x y xy x y += B .222()x y x y +=+ C .2(2)4x x x -÷= D .1y x x y y x+=-- 【答案】C . 【解析】考点:分式的加减法;整式的混合运算.14. (2017年某某省某某市第7题)下列运算正确的是( ) A.358x x x +=B.3515x x x +=C.()()2111x x x +-=-D.()5522x x =【答案】C. 【解析】试题分析:选项A ,不是同类项,不能够合并,选项A 错误;选项B ,不是同底数幂的乘法,不能够计算,选项B 错误;选项C ,根据平方差公式,选项C 计算正确;选项D ,根据积的乘方可得原式=532x =,选项D 错误,故选C. 考点:整式的计算.15. (2017年某某省某某市第6题)下列计算正确的是 ( )A .5510a a a += B . 76a a a ÷= C. 326a a a = D .()236a a -=-【答案】B 【解析】考点:幂的性质16. (2017年某某省六盘水市第3题)下列式子正确的是( ) A.7887m n m nB.7815m n mnC.7887m n n mD.7856m n mn 【答案】C.试题分析:选项C 、利用加法的交换律,此选项正确;故选C. 考点:整式的加减.17. (2017年某某省六盘水市第8题)使函数3y x 有意义的自变量的取值X 围是( )A. 3≥xB. 0≥xC.3≤xD.0≤x【答案】C .试题分析:根据二次根式a ,被开方数0≥a 可得3-x ≥0,解得x ≤3,故选C . 考点:函数自变量的取值X 围.18. (2017年某某省某某市第2题)下列运算正确的是 A .()235xx = B .()55x x -=- C .326x x x ⋅= D .235325x x x +=【答案】B . 【解析】考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法. 19. (2017年某某省黄冈市第2题)下列计算正确的是( ) A . 235x y xy += B .()2239m m +=+ C . ()326xy xy = D .1055a a a ÷=【答案】D 【解析】试题分析:A 、原式中的2x 与3y 不是同类项,不能进行加减计算,故不正确;B 、根据完全平方公式()2222a b a ab b ±=±+,可知22(3)69m m m +=++,故不正确;C 、根据积的乘方,等于各项分别乘方,可得2336()xy x y =,故不正确; D 、根据同底数幂相除,底数不变,指数相减,可知1055a a a ÷=,故正确. 故选:D考点:整式的运算20.(2017年某某省某某市第2题)下列计算正确的是( ) A .532=+ B .222a a a =+ C .xy x y x +=+)1( D .632)(mn mn =【答案】C 【解析】考点:1、同类项,2、同类二次根式,3、单项式乘以多项式,4、积的乘方二、填空题1.(2017年某某省某某地区第16题)分解因式:2x2﹣8xy+8y2=.【答案】2(x﹣2y)2【解析】试题分析:2x2﹣8xy+8y2=2(x2﹣4xy+4y2)=2(x﹣2y)2.故答案为:2(x﹣2y)2.考点:提公因式法与公式法的综合运用2.(2017年某某省某某市第12题)若a﹣b=1,则代数式2a﹣2b﹣1的值为.【答案】1.【解析】试题分析:∵a﹣b=1,∴原式=2(a﹣b)﹣1=2﹣1=1.故答案为:1.考点:代数式求值3.(2017年某某省黔东南州第13题)在实数X围内因式分解:x5﹣4x=.【答案】x(x2+3)(x)【解析】试题分析:先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.)(x即原式=x(x4﹣22)=x(x2+2)(x2﹣2)=x(x2+2)(故答案是:x(x2+3)()(x)考点:实数X围内分解因式4.(2017年某某省荆州市第12题)若单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,则m-7n的算术平方根是_________.【答案】4【解析】考点:1、算术平方根;2、同类项;3、解二元一次方程组 5. (2017年某某某某市第14题)若关于x 的二次三项式412++ax x 是完全平方式,则a 的值是. 【答案】±1 【解析】试题分析:这里首末两项是x 和12这两个数的平方,那么中间一项为加上或减去x 和12积的2倍,故﹣a=±1,求解得a=±1, 故答案为:±1. 考点:完全平方式6.(2017年某某省东营市第12题)分解因式:﹣2x 2y+16xy ﹣32y=. 【答案】﹣2y (x ﹣4)2【解析】试题分析:根据提取公因式以及完全平方公式即可求出:原式=﹣2y (x 2﹣8x+16)=﹣2y (x ﹣4)2故答案为:﹣2y (x ﹣4)2 考点:因式分解7.(2017年某某省潍坊市第13题)计算:212(1)11x x x --÷-- = .【答案】x+1【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,从而可以解212(1)11x x x --÷-- =11(1)(1)12x x x x x --+-⋅-- =2(1)(1)12x x x x x -+-⋅--=x+1,故答案为:x+1. 考点:分式的混合运算8. (2017年某某省潍坊市第14题)因式分解:=-+-)2(22x x x .【答案】(x+1)(x ﹣2) 【解析】考点:因式分解﹣提公因式法9. (2017年某某省某某市第10题)函数1y x =+的自变量x 的取值X 围是.【答案】x ≥﹣1. 【解析】试题分析:由题意得,x+1≥0,解得x ≥﹣1. 考点:函数自变量的取值X 围.10. (2017年某某省某某市第11题)把多项式2312x -因式分解的结果是. 【答案】3(x ﹣2)(x+2). 【解析】试题分析:先提取公因式,再利用平方差公式进行二次分解即可,即3x 2﹣12=3(x 2﹣4)=3(x ﹣2)(x+2). 考点:因式分解.11.(2017年某某省内江市第13题)分解因式:231827x x -+=. 【答案】23(3)x - . 【解析】试题分析:231827x x -+=23(69)x x -+=23(3)x -.故答案为:23(3)x -.考点:提公因式法与公式法的综合运用. 12.(2017年某某省内江市第14题)在函数123y x x =+--中,自变量x 的取值X 围是. 【答案】x ≥2且x ≠3.考点:函数自变量的取值X 围.13.(2017年某某省内江市第22题)若实数x 满足2210x x --=,则322742017x x x -+-=. 【答案】﹣2020. 【解析】 试题分析:∵2210x x --=,∴221x x =+,322742017x x x -+-=2(21)7(21)42017x x x x +-++-=24214742017x x x x +--+-=2482024x x --=4(21)82024x x +--=4﹣2024=﹣2020,故答案为:﹣2020. 考点:因式分解的应用;降次法;整体思想.14. (2017年某某省某某市第11题)因式分解23a a +=. 【答案】3(3a+1). 【解析】试题分析:直接提公因式a 即可,即原式=3(3a+1). 考点:因式分解.15. (2017年某某省某某市第13题)2121x xx x x +⋅=++. 【答案】11x +. 【解析】 试题分析:原式=211(1)1x x x x x +⋅=++. 考点:分式的运算.16.(2017年某某省六盘水市第14题)计算:2017×1983. 【答案】3999711.试题分析:2017×1983=()()399971117200017200017200022=-=-+考点:平方差公式.17.(2017年某某省日照市第13题)分解因式:2m 3﹣8m=.【答案】2m (m+2)(m ﹣2).试题分析:提公因式2m ,再运用平方差公式对括号里的因式分解即可,即2m 3﹣8m=2m (m 2﹣4)=2m (m+2)(m ﹣2).考点:提公因式法与公式法的综合运用.18. (2017年某某省某某市第10题)因式分解:269x x -+=. 【答案】(x-3)2. 【解析】试题解析:x 2-6x+9=(x-3)2. 考点:因式分解-运用公式法.19. (2017年某某省黄冈市第8题)分解因式:22mn mn m -+=____________. 【答案】m (n-1)2考点:分解因式20. (2017年某某省黄冈市第11题) 化简:23332xx x x x -⎛⎫+= ⎪---⎝⎭_____________. 【答案】1 【解析】试题分析:原式变形后,利用乘法分配律计算,再约分化简即可得23()332x x x x x -+⋅---=23()332x x x x x --⋅---=222x x x ---=1. 考点:分式的运算21.(2017年某某省某某市第13题)分解因式:=++2422a a . 【答案】2(a+1)2【解析】一般步骤:一提(公因式)、二套(平方差公式()()22-=+-a b a b a b ,完全平方公式()2222±+=±a ab b a b)、三检查(彻底分解),可以先提公因式2,再用完全平方分解为2(a+1)2.故答案为:2(a+1)2考点:因式分解22.(2017年某某省某某市第16题)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.【答案】30﹣2t【解析】考点:列代数式三、解答题1.(2017年某某省某某地区第22题)先化简,再求值:(2221x xx x-+-+2242xx x-+)÷1x,且x为满足﹣3<x<2的整数.【答案】【解析】试题分析:首先化简(2221x xx x-+-+2242xx x-+)÷1x,然后根据x为满足﹣3<x<2的整数,求出x的值,再根据x的取值X围,求出算式的值是多少即可.试题解析:(2221x xx x-+-+2242xx x-+)÷1x=[2(1)1)xx x--(+(2)(2(2)x xx x+-+)]×x=(1xx-+2xx-)×x=2x﹣3∵x为满足﹣3<x<2的整数,∴x=﹣2,﹣1,0,1,∵x要使原分式有意义,∴x≠﹣2,0,1,∴x=﹣1,当x=﹣1时,原式=2×(﹣1)﹣3=﹣5考点:分式的化简求值.2.(2017年某某省某某市第18题)化简:(21a++221aa+-)÷1aa-【答案】31aa+.【解析】考点:分式的混合运算3.(2017年某某省黔东南州第18题)先化简,再求值:(x﹣1﹣)÷,其中x=+1.【答案】3x-【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.试题解析:原式=221(1).(1)(1) x x x xx x x-+++-=2(1)(1).(1)(1)x x x x x x -++- =x ﹣1,当x=3+1时,原式=3. 考点:分式的化简求值4. (2017年某某某某市第19题)先化简,再求值.165)121(2-+-÷--x x x x ,其中x 从0,1,2,3,四个数中适当选取.【答案】12x -,-12【解析】考点:分式的化简求值5.(2017年某某省东营市第19题)(1)计算:6cos45°+(13)﹣1+3﹣1.73)0+|5﹣2|+42017×(﹣0.25)2017(2)先化简,再求值:(31a +﹣a+1)÷244412a a a a -+++-﹣a ,并从﹣1,0,2中选一个合适的数作为a 的值代入求值.【答案】(1)8(2)﹣a ﹣1,当a=0时,原式=﹣0﹣1=﹣1 【解析】考点:1、分式的化简求值,2、实数的运算,3、殊角的三角函数值,4、负整数指数幂,5、零指数幂,6、绝对值,7、幂的乘方6. (2017年某某省威海市第19题)先化简)111(11222+-+-÷-+-x x x x x x ,然后从55<<-x 的X 围内选取一个合适的整数作为x 的值代入求值.【答案】1x -,12【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后在﹣<x <中选取一个使得原分式有意义的整数值代入化简后的式子即可解答本题.试题解析:22211(1)11x x x x x x -+-÷-+-+ =2(1)1(1)(1)(1)(1)1x x x x x x x ----+÷+-+=211111x x x x x -+⋅+--+ =1(1)x x x --- =1x-∵﹣5<x <5且x+1≠0,x ﹣1≠0,x ≠0,x 是整数, ∴x=﹣2时,原式=﹣12-=12. 考点:1、分式的化简求值,2、估算无理数的大小 7. (2017年某某省某某市第18题)先化简,再求值21639a a ---,其中1a =. 【答案】原式=13a +,当a=1时,原式=14. 【解析】考点:分式的化简求值.8. (2017年某某省某某市第16题)化简求值:2121211x x x x -⎛⎫÷- ⎪+++⎝⎭,其中31x =-.【答案】11x +,33【解析】考点:分式的化简求值9.(2017年某某省日照市第17题)(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2; (2)先化简,再求值:﹣÷,其中a=.【答案】(1)3+1;(2)原式= 221a --,当2=2-.试题分析:(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a 的值代入即可解答本题. 试题解析:(1)原式==3﹣2﹣1+(1﹣32)×4 =3-2-1+4-23 =-3+1; (2)原式=21111(1)1a a a a a ++-÷+--考点:分式的化简求值;实数的运算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年代数式和因式分解中考题解析以下是查字典数学网为您推荐的2019年代数式和因式分解中考题解析,希望本篇文章对您学习有所帮助。

2019年代数式和因式分解中考题解析一、选择题1. (2019山东滨州3分)求1+2+22+23++22019的值,可令S=1+2+22+23++22019,则2S=2+22+23+24++22019,因此2S ﹣S=22019﹣1.仿照以上推理,计算出1+5+52+53++52019的值为【】A.52019﹣1B.52019﹣1C.D.【答案】C。

【考点】分类归纳(数字的变化类),同底数幂的乘法。

【分析】设S=1+5+52+53++52019,则5S=5+52+53+54++52019,5S﹣S=52019﹣1,S= 。

故选C。

2. (2019山东东营3分)下列运算正确的是【】A.x3x2=x5B.(x3)3=x6C.x5+x5=x10D.x6-x3=x3【答案】A。

【考点】同底数幂的乘法,幂的乘方合并同类【分析】根据同底数幂的乘法,幂的乘方与合并同类项的知识求解,即可求得答案:A、x3x2=x5,故本选项正确;B、(x3)3=x9,故本选项错误;C、x5+x5=2x5,故本选项错误;D、x6和x3不是同类项,来可以合并,故本选项错误。

故选A。

3. (2019山东东营3分)根据下图所示程序计算函数值,若输入的x的值为,则输出的函数值为【】A. B. C. D.【答案】B。

【考点】新定义,求函数值。

【分析】根据所给的函数关系式所对应的自变量的取值范围,发现:当x= 时,在24之间,所以将x的值代入对应的函数即可求得y的值:。

故选B。

4. (2019山东东营3分)若,则的值为【】A. B. C. D.【答案】A。

【考点】同底数幂的除法,幂的乘方。

【分析】∵,。

故选A。

5. (2019山东济南3分)下列各式计算正确的是【】A.3x-2x=1B.a2+a2=a4C.a5a5=aD. a3a2=a5【答案】D。

【考点】合并同类项,同底数幂的除法,同底数幂的乘法。

【分析】根据合并同类项法则,同底数幂乘除法法则,逐一检验:A、3x-2x=x,本选项错误;B、a2+a2=2a2,本选项错误;C、a5a5=a5-5=a0=1,本选项错误;D、a3a2=a3+2=a5,本选项正确。

故选D。

6. (2019山东济南3分)化简5(2x-3)+4(3-2x)结果为【】A.2x-3B.2x+9C.8x-3D.18x-3【答案】A。

【考点】整式的加减法。

【分析】利用分配律相乘,然后去掉括号,进行合并同类项即可求和答案:原式=10x-15+12-8x=2x-3。

故选A。

7. (2019山东济宁3分)下列运算正确的是【】A.﹣2(3x﹣1)=﹣6x﹣1B.﹣2(3x﹣1)=﹣6x+1C.﹣2(3x﹣1)=﹣6x﹣2D.﹣2(3x﹣1)=﹣6x+2【答案】D。

【考点】去括号法则。

【分析】利用去括号法则,将各式去括号,从而判断即可得出答案:A.∵﹣2(3x﹣1)=﹣6x+2,﹣2(3x﹣1)=﹣6x﹣1错误,故此选项错误;B.∵﹣2(3x﹣1)=﹣6x+2,﹣2(3x﹣1)=﹣6x+1错误,故此选项错误;C.∵﹣2(3x﹣1)=﹣6x+2,﹣2(3x﹣1)=﹣6x﹣2错误,故此选项错误;D.﹣2(3x﹣1)=﹣6x+2,故此选项正确。

故选D。

8. (2019山东济宁3分)下列式子变形是因式分解的是【】A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)【答案】B。

【考点】因式分解的意义。

【分析】根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误。

故选B。

9. (2019山东聊城3分)下列计算正确的是【】A.x2+x3=x5B.x2x3=x6C.(x2)3=x5D.x5x3=x2【答案】D。

【考点】合并同类项,同底数幂的乘法和除法,幂的乘方。

【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;同底数幂的除法法则:底数不变,指数相减,分别进行计算,即可选出答案:A、x2与x3不是同类项,不能合并,故此选项错误;B、x2x3=x2+3=x5,故此选项错误;C、(x2)3=x6,故此选项错误;D、x5x3=x2,故此选项正确。

故选D。

10. (2019山东临沂3分)下列计算正确的是【】A. B. C. D.【答案】D。

【考点】合并同类项,完全平方公式,幂的乘方,同底数幂的除法。

【分析】根据合并同类项,幂的乘方,同底数幂的除法的运算法则和完全平方公式逐一分析判断:A. ,所以A选项不正确;B. ,所以B选项不正确;C. ,所以C选项不正确;D. ,所以D选项正确。

故选D。

11. (2019山东临沂3分)化简的结果是【】A. B. C. D.【答案】A。

【考点】分式的混合运算。

【分析】。

故选A。

12. (2019山东泰安3分)下列运算正确的是【】A. B. C. D.【答案】B。

【考点】二次根式的性质与化简,负整数指数幂,同底数幂的除法,幂的乘方。

【分析】根据二次根式的性质与化简,负整数指数幂,同底数幂的除法,幂的乘方运算法则逐一判断:A、,所以A选项不正确;B、,所以B选项正确;C、,所以C选项不正确;D、,所以D选项不正确。

故选B。

13. (2019山东威海3分)下列运算正确的是【】A. B. C. D.【答案】C。

【考点】同底幂乘法,合并同类项,同底幂乘除法,幂的乘方和积的乘方。

【分析】根据同底幂乘法,合并同类项,同底幂乘除法,幂的乘方和积的乘方运算法则逐一计算作出判断:A. ,选项错误;B. ,选项错误;C. 选项正确;D. ,选项错误。

故选C。

14. (2019山东威海3分)化简的结果是【】A. B. C. D.【答案】B。

【考点】分式运算法则,平方差公式。

【分析】通分后约分化简即可:。

故选B。

15. (2019山东潍坊3分)如果代数式有意义,则x的取值范围是【】.A.x3B.x3C.x3D.x3【答案】C。

【考点】二次根式有意义的条件,分式有意义的条件。

【分析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须。

故选C。

16. (2019山东枣庄3分)下列运算,正确的是【】A. B. C. D.【答案】A。

【考点】合并同类项,幂的乘方和积的乘方,完全平方公式,去括号法则。

【分析】根据合并同类项,幂的乘方和积的乘方运算法则,完全平方公式,去括号法则逐一判断:A. ,选项正确;B. ,选项错误;C. ,选项错误;D. 选项错误。

故选A。

二、填空题1. (2019山东滨州4分)根据你学习的数学知识,写出一个运算结果为a6的算式▲ .【答案】a4a2=a6(答案不唯一)。

【考点】幂的运算。

【分析】根据幂的乘方与积的乘方,同底数乘法,同底数幂的除法的运算法则写出一个即可:如a4a2=a6(答案不唯一)。

2. (2019山东德州4分)化简:6a63a3= ▲ .【答案】2a3。

【考点】整式的除法。

【分析】单项式除以单项式就是将系数除以系数作为结果的系数,相同字母除以相同字母作为结果的一个因式即可:6a63a3=(63)(a6a3)=2a3。

3. (2019山东东营4分)分解因式:x3-9x = ▲ .【答案】x(x+3)(x-3)。

【考点】提公因式法与公式法因式分解。

【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式。

因此,先提取公因式x,再利用平方差公式进行分解:x3-9x=x(x2-9)=x(x+3)(x-3)。

4. (2019山东济南3分)分解因式:a2-1= ▲ .【答案】(a+1)(a-1)。

【考点】运用公式法因式分解。

【分析】符合平方差公式的特征,直接应用平方差公式即可:a2-1=(a+1)(a-1)。

5. (2019山东济宁3分)某种苹果的售价是每千克x元,用面值为100元的人民币购买了5千克,应找回▲元.【答案】(100﹣5x)。

【考点】列代数式。

【分析】根据题意,5千克苹果售价为5x元,所以应找回(100﹣5x)元。

6. (2019山东聊城3分)计算:= ▲ .【答案】。

【考点】分式的混合运算。

【分析】将式子括号内部分通分,然后根据分式除法的运算法则,将其转化为乘法,再将分母中的式子因式分解,即可得到结果:7. (2019山东临沂3分)分解因式:= ▲ .【答案】。

【考点】提公因式法与公式法因式分解。

【分析】。

8. (2019山东临沂3分)读一读:式子1+2+3+4++100表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为,这里是求和符号通过对以上材料的阅读,计算= ▲ .【答案】。

【考点】分类归纳(数字的变化类),分式的加减法。

【分析】∵,9. (2019山东泰安3分)分解因式:= ▲ .【答案】。

【考点】提公因式法和公式法因式分解。

【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解:10. (2019山东泰安3分)化简:= ▲ .【答案】。

【考点】分式的混合运算,平方差公式。

【分析】应用分配律即可:原式= 。

或先通分计算括号里的,再算括号外的也可。

13. (2019山东枣庄4分)化简的结果是▲.【答案】m。

【考点】分式的混合运算。

【分析】把(m+1)与括号里的每一项分别进行相乘,再把所得结果相加即可求出答案:三.解答题1. (2019山东德州6分)已知:,求的值.【答案】解:原式= 。

当时,原式= 。

【考点】分式的化简求值。

【分析】将原式的分子利用完全平方公式分解因式,分母利用平方差公式分解因式,约分后得到最简结果,将x与y的值代入,化简后即可得到原式的值。

2. (2019山东东营4分)先化简,再求代数式的值,其中x 是不等式组的整数解.【答案】解:原式= 。

解不等式组得2∵x是整数,x=3。

当x=3时,原式= 。

【考点】分式的化简求值,一元一次不等式组的整数解。

【分析】先将括号内通分,再根据分式的除法进行化简,然后求出不等式组的整数解代入求值。

相关文档
最新文档