时间序列分析法讲义
第一讲 时间序列分析
一、时间序列的含义
例1、国际航线旅客客票数.图1给出某国 际航空公司1949—1960年间客票月总数 (单位:千张)的时间序列曲线.直观上看, 每年有一次大的峰值和一次小的降值.并 且逐年不断增加。
一、时间序列的含义
例2,图2是我国铁路客流员的统计曲线,记录 了1971—1981年客票月总数.从铁路客流量的 时间序列曲线上可见,每年都有一次较大的峰 值,大约是在1、2月份,也就是每年的春节前 后有一次最大的峰值.
例如,对河流水位的测量。其中每一时 刻的水位值都是一个随机变量。如果以 一年的水位纪录作为实验结果,便得到 一个水位关于时间的函数xt。这个水位函 数是预先不可确知的。只有通过测量才 能得到。而在每年中同一时刻的水位纪 录是不相同的。
随机过程:由随机变量组成的一个有序序列称 为随机过程,记为{x (s, t) , sS , tT }。其中S 表示样本空间,T表示序数集。对于每一个 t, tT, x (·, t ) 是样本空间S中的一个随机变量。 对于每一个 s, sS , x (s, ·) 是随机过程在序数集 T中的一次实现。
80 60 40
20
Trend-cy cle for SA LE
S from SEA SO N, MO D_1
0
Seas factors fo r SA L
-20
JAN 1S9E9P01M9A90YJ1A9N911S9E9P21M9A92YJ1A9N931S9E9P41M9A9Y4J1A9N951S9E9P61M9A96YJ1A9N971S9E9P81M9A98YJ1A9N992S0E0P02M0A00YJ2A0N012S0E0P220E0S2 from SEA S ON, MOD_
下面的图2表示了去掉季节成分,只有 趋势和误差成分的序列的一条曲线。 图3用两条曲线分别描绘了纯趋势成分 和纯季节成分。图4用两条曲线分别描 绘了纯趋势成分和纯误差成分。这些 图直观地描述了对于带有几种成分的 时间序列的分解。
精选时间序列分析时间序列讲解讲义
§1.2 平稳序列
一· 平稳序列
定义 如果时间序列 {X t} {X t : t N满}足
(1) 对任何的
t
N,
EX
2 t
(2) 对任何的 t N , EX t
(3) 对任何的 t, s N , E[( X t )( X s )] ts
就称是 X平t 稳时间序列,简称时间序列。称实数 为 的{自 t协} 方差X函t 数。
a则j 称 是绝对可{a和j}的。
j
对于绝对可和的实数列
,{a{定Xj}{义tX}零t}均值白噪声 的无穷{滑t动} 和
如下 X t a j t j ,t ,Z则 是{X平t}稳序列。下面说明 是
j
{X t}
平稳序列。
由 Schwarz不等式得到
E[ a jt j ] a j E t j a j
j0
k
q
0, k q
{ X t }平稳
第三十七页,共74页。
例:X t t 0.36 * t1 0.85 * t2 , t ~ WN (0,22 )
第三十八页,共74页。
概率极限定理:
定理 (单调收敛定理) 如果非负随机变量序列单调不减: 0 1 2
lim 则当 n ,a时s ,有 E
{St }
3. 随机项估计即为
方法一:分段趋势法
1 趋势项(年平均)
第五页,共74页。
减去趋势项后,所得数据 {Xt Tˆt}
第六页,共74页。
2、季节项 {Sˆt}
第七页,共74页。
3.随机项的估计 Rˆt xt Tˆt Sˆt ,t 1,2,,24.
第八页,共74页。
方法二:回归直线法
当 0, 2 称1为标准白噪声。
《时间序列分析》讲义 第三章 平稳时间序列分析
k
1 k1 2 k2,k
2
自相关系数
自相关系数的定义
k
k 0
平稳AR(p)模型的自相关系数递推公式
k 1k 1 2 k 2 p k p
常用AR模型自相关系数递推公式
AR(1)模型 k 1k , k 0
AR(2)模型
1,
k
1
1 2
1k1 2 k2
k 0 k 1 k2
自回归系数多项式
(B) 11B 2B2 pBp
特征方程
中心化AR(p)模型
xt 1 xt1 2 xt2 p xt p t
可以看成p阶常系数非齐次线性差分方程
xt 1 xt1 2 xt2 p xt p t
它对应的齐次方程的特征方程为
p 1 p1 p1 p 0
1 12
协方差函数
在平稳AR(p)模型两边同乘xt-k,再求期望
E(xt xtk ) 1E(xt1xtk ) p E(xt p xtk ) E(t xtk )
根据
E( t xtk ) 0 ,k 1
得协方差函数的递推公式
k 1 k1 2 k 2 p k p
例题
例3.3 求平稳AR(1)模型的协方差
12
2 2
,
0,
k 0 k 1
k 2 k 3
偏自相关系数
滞后k偏自相关系数由Yule-Walker方程 确定
zt a1 zt1 a2 zt2 a p zt p h(t)
齐次线性差分方程
zt a1 zt1 a2 zt2 a p zt p 0
齐次线性差分方程的解
特征方程
p a1p1 a2p2 ap 0
特征方程的根称为特征根,记作1,2,…,p
时间序列分析讲义
– 在SAS系统中有一个专门进行计量经济与时间序列分析 的模块:SAS/ETS。SAS/ETS编程语言简洁,输出功能强 大,分析结果精确,是进行时间序列分析与预测的理 想的软件
– 由于SAS系统具有全球一流的数据仓库功能,因此在进 行海量数据的时间序列分析时它具有其它统计软件无 可比拟的优势
例2.3自相关图
时间序列分析讲义
例2.4时序图
时间序列分析讲义
例2.4 自相关图
时间序列分析讲义
例2.5时序图
时间序列分析讲义
例2.5自相关图
时间序列分析讲义
• 例2.3时序为非平稳的,有趋势; • 例2.4时序非平稳性,有趋势 • 例2.5时序是一个平稳的
时间序列分析讲义
非平稳性序列的平稳化
时间序列分析讲义
2020/11/16
时间序列分析讲义
第一章 时间序列分析基本概 念
时间序列分析讲义
第一章 时间序列分析基本概念
1.1 时间序列的定义
• 随机序列:按时间顺序排列的一组随机变量
• 观察值序列:随机序列的 个有序观察值,称之为 序列长度为 的观察值序列
• 随机序列和观察值序列的关系
– 观察值序列是随机序列的一个实现 – 我们研究的目的是想揭示随机时序的性质 – 实现的手段都是通过观察值序列的性质进行推断
满足下列条件的随机序列称为白噪声序列,也称 为纯随机序列:
注1:白噪声序列也是平稳时间序列中的特例. 注2:由于白噪声序列不同时刻的值相互独立,那么 这样的序列数值不能对于将来进行推断与预测,所以 白噪声是不能建立模型的。 时序图1.3符合白噪声序列特征
时间序列分析讲义
若满足时间序列满足: 称该时间序列是周期为T的时间序列.
时间序列分析法讲义
2004
(4) 1451604 1494570 1478651 1577307 6002132
季别累计
(5) 5277839 5503950 5333203 5724816 21839808
季别平均 季节指数
(6) 1319460 1375988 1333301 1431204 1364988
(7) 0.9666 1.0081 0.9768 1.0485 4.0000
97
8
20 -1 503 - 1
07
50
3
20 0 526 0 0 08
20 1 559 55 1
09
9
解:设t表示年次,y表示年发电量,则方成为:y=a+bt
a y 2677 535.4
n5
b ty 278 27.8 t 2 10
y=535.4+27.8t
当t=3时,y=618.8
指数平滑法是生产预测中常用的一种方法。 也用于中短期经济发展趋势预测,
(1) 一次指数平滑法(单重指数平滑法)
X t1
S (1) t
X t
(1
)S
(1) t 1
一次指数平滑法的初值的确定有几种方法
(A) 取第一期的实际值为初值(数据资料较多);S0(1) X1 (B) 取最初几期的平均值为初值(数据资料较少)。
2、指数的分类 (1)个体指数:反映某一具体经济现象动态变动的相
对数
(2)综合指数:反映全部经济现象动态变动的相对数
(3)数量指标指数:它是表明经济活动结果数量 多少的指数。
(4)质量指标指数:它是表明经济工作质量好坏 的指数。
(5)定基指数:它是指各个指数都是以某一个固 定时期为基期而进行计算的一系列指数。
时间序列分析课件讲义
3.5E+09 3.0E+09 2.5E+09 2.0E+09 1.5E+09 1.0E+09
5.0E+08 99:01 99:07 00:01 00:07 01:01 01:07 02:01 02:07
Y
8
单变量时间序列分析
趋势模型
确定型趋势模型
平滑模型 季节模型
水平模型
加法模型
9
乘法模型
ARMA模型 ARIMA模型 (G)ARCH类模型
42
(2)ADF检验 DF检验只对存在一阶自相关的序列适用。 ADF检验 适用于存在高阶滞后相关的序列。 y = y t 1 + t
表述为
y t = y t 1 + t
t
存在高阶滞后相关的序列,经过处理可以表述为 y t = y t 1 + 1yt 1+ 2yt 2 + ....... + p1yt p1 + t 上式中,检验假设为
34
特别地,若 其中,{ t }为独立同分布,且E( t ) = 0,
D( t )
2 = <
yt= y t 1+ t
t = 1,2,......
,则{
(random waik process) 。可以看出,随机游动过程是 单位根过程的一个特例。
yt }为一随机游动过程
(2) 季节差分
3. 随机性
23
(四)ARMA模型及其改进 1. 自回归模型 AR(p) 模型的一般形式
( B) yt
=
et
AR (p) 序列的自相关和偏自相关 rk :拖尾性 k :截尾性
时间序列分析讲义 第01章 差分方程
第一章差分方程差分方程是连续时刻情形下微分方程的特例。
差分方程及其求解是时刻序列方法的根底,也是分析时刻序列动态属性的全然方法。
经济时刻序列或者金融时刻序列方法要紧处理具有随机项的差分方程的求解咨询题,因此,确定性差分方程理论是我们首先需要了解的重要内容。
§1.1一阶差分方程假设利用变量t y 表示随着时刻变量t 变化的某种事件的属性或者结构,那么t y 便是在时刻t 能够瞧测到的数据。
假设t y 受到前期取值1-t y 和其他外生变量t w 的碍事,并满足下述方程:t t t w y y ++=-110φφ(1.1)在上述方程当中,由于t y 仅线性地依靠前一个时刻间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。
要是变量t w 是确定性变量,那么此方程是确定性差分方程;要是变量t w 是随机变量,那么此方程是随机差分方程。
在下面的分析中,我们假设t w 是确定性变量。
例1.1货币需求函数假设实际货币余额、实际收进、银行储蓄利率和商业票据利率的对数变量分不表示为t m 、t I 、bt r 和ct r ,那么能够估量出美国货币需求函数为: 上述方程便是关于t m 的一阶线性差分方程。
能够通过此方程的求解和结构分析,判定其他外生变量变化对货币需求的动态碍事。
1差分方程求解:递回替代法差分方程求解确实是根基将方程变量表示为外生变量及其初值的函数形式,能够通过往常的数据计算出方程变量的当前值。
由于方程结构关于每一个时刻点根基上成立的,因此能够将(1.1)表示为多个方程: 0=t :01100w y y ++=-φφ1=t :10101w y y ++=φφt t =:t t t w y y ++=-110φφ依次进行叠代能够得到:i ti i t t i i t w y y ∑∑=-=++=0111010φφφφ(1.2)上述表达式(1.2)便是差分方程(1.1)的解,能够通过代进方程进行验证。
随机时间序列分析模型讲义
随机时间序列分析模型讲义【讲义】随机时间序列分析模型一、引言随机时间序列分析是一种经济学、统计学和数学领域的重要研究方法,用于描述和预测随机现象(例如经济指标、股票价格)随时间发展的变化规律。
本讲义将介绍常见的随机时间序列分析模型。
二、自回归模型(AR)1. 定义:自回归模型是一种常见的线性时序模型,它假设当前时刻的数值与过去若干时刻的数值相关。
AR(p)模型表示当前时刻的值与前p个时刻的值相关。
2. 公式:AR(p)模型的数学公式可表示为:y_t = c + φ_1 * y_(t-1) + φ_2 * y_(t-2) + ... + φ_p * y_(t-p) + ε_t其中,y_t代表当前时刻的数值,c为常数,φ_i为自回归系数,ε_t为误差项,服从均值为0,方差为σ^2的正态分布。
3. 参数估计:通过样本数据拟合AR(p)模型,可使用最小二乘法或极大似然法估计自回归系数。
三、移动平均模型(MA)1. 定义:移动平均模型是一种常见的线性时序模型,它假设当前时刻的数值与过去若干时刻的误差相关。
MA(q)模型表示当前时刻的值与过去q个时刻的误差相关。
2. 公式:MA(q)模型的数学公式可表示为:y_t = c + ε_t + θ_1 * ε_(t-1) + θ_2 * ε_(t-2) + ... + θ_q * ε_(t-q)其中,y_t代表当前时刻的数值,c为常数,θ_i为移动平均系数,ε_t为误差项。
3. 参数估计:通过样本数据拟合MA(q)模型,可使用最小二乘法或极大似然法估计移动平均系数。
四、自回归移动平均模型(ARMA)1. 定义:自回归移动平均模型是自回归模型与移动平均模型的结合,综合考虑了过去若干时刻的数值和误差对当前时刻数值的影响。
ARMA(p, q)模型表示当前时刻的值与过去p个时刻的值和过去q个时刻的误差相关。
2. 公式:ARMA(p, q)模型的数学公式可表示为:y_t = c + φ_1 * y_(t-1) + φ_2 * y_(t-2) + ... + φ_p * y_(t-p) + ε_t + θ_1 * ε_(t-1) + θ_2 * ε_(t-2) + ... + θ_q * ε_(t-q)3. 参数估计:通过样本数据拟合ARMA(p, q)模型,可使用最小二乘法或极大似然法估计自回归系数和移动平均系数。
时间序列分析基本知识讲解
时间序列分析基本知识讲解时间序列分析是指对一系列按照时间顺序排列的数据进行分析、建模和预测的方法。
它在许多领域都有广泛的应用,如经济学、金融学、气象学等。
时间序列数据的特点是具有时间依赖性和序列自相关性,即当前的观测值与前面的观测值之间存在一定的关联。
时间序列分析的基本目的是通过观察过去的数据模式,来预测未来的值或者了解数据的发展趋势。
在进行时间序列分析时,我们通常关注以下几个方面的内容:1. 趋势分析:时间序列数据中的趋势是指长期内数据值的增长或下降趋势。
趋势的存在可能是持续性的,也可能是周期性的。
常见的趋势分析方法包括移动平均法、指数平滑法等。
2. 季节性分析:时间序列数据中的季节性是指每年或每个周期内数据值呈现出的周期性规律。
季节性可以是固定的,也可以是随机的。
常用的季节性分析方法有季节性指数法、周期性指数法等。
3. 周期性分析:时间序列数据中的周期性是指数据值在一段时间内出现的循环规律。
周期性往往是由于外部因素引起的,如经济周期、自然环境等。
周期性分析常用的方法有傅里叶分析、自相关函数等。
4. 随机性分析:时间序列数据中的随机性是指数据值的不可预测性和不规律性。
随机性分析可以用来寻找数据中的异常值、离群点等。
常用的随机性分析方法有自回归滑动平均模型(ARMA)、随机游走模型等。
时间序列分析的基本步骤包括收集数据、可视化数据、数据预处理、建立模型、模型检验和评估模型的预测能力等。
常用的时间序列模型有自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)、季节性自回归整合移动平均模型(SARIMA)等。
总之,时间序列分析是研究时间序列数据的变化规律和趋势的一种方法。
通过对时间序列数据的分析,我们可以预测未来的趋势和变化,辅助决策制定和问题解决。
在实际应用中,时间序列分析与其他统计方法和机器学习方法结合,可以提高分析预测的准确性和可靠性。
时间序列分析是研究时间序列数据的内在规律和趋势的一种方法。
时间序列分析讲义 第01章 差分方程
第一章 差分方程差分方程是连续时间情形下微分方程的特例。
差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。
经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。
§1.1 一阶差分方程假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。
假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程:t t t w y y ++=-110φφ (1.1)在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。
如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。
在下面的分析中,我们假设t w 是确定性变量。
例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为:ct bt t t t r r I m m 019.0045.019.072.027.01--++=-上述方程便是关于t m 的一阶线性差分方程。
可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。
1.1.1 差分方程求解:递归替代法差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。
由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程:0=t :01100w y y ++=-φφ1=t :10101w y y ++=φφt t =:tt t w y y ++=-110φφ依次进行叠代可以得到:1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ0111122113121102)1(w w w y y φφφφφφφ++++++=-i ti i t t i i t w y y ∑∑=-=++=0111010φφφφ (1.2)上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。
时间序列分析基本知识讲解
时间序列分析基本知识讲解时间序列分析是指对一系列按时间顺序排列的数据进行统计分析和预测的方法。
它是统计学中的一个重要分支,在许多领域中都有广泛的应用,例如经济学、金融学、气象学等。
在时间序列分析中,我们通常假设观察到的数据是由内部的趋势、季节性和随机性构成的。
首先要介绍的概念是时间序列。
时间序列是按时间顺序记录的一组数据点,其中每个数据点代表某个变量在特定时间点的观测值。
每个数据点可以是连续的时间单位,如小时、天、月或年,也可以是离散的时间单位,如季度或年度。
时间序列数据通常包含趋势、季节性和随机成分。
趋势是时间序列长期上升或下降的的总体倾向,它可以是线性的,也可以是非线性的。
季节性是周期性出现在时间序列中的模式,它在一年中的特定时间段内循环出现,如一年中的季节、月份或周几。
随机成分是不可预测的随机波动,可能是由于外部因素或不可预见的事件引起的。
时间序列分析的目标通常有三个:描述、检验和预测。
描述的目标是对时间序列的特征进行统计分析,通过计算均值、方差、自相关系数等指标来揭示数据的规律和模式。
检验的目标是验证时间序列数据是否满足一定的假设条件,例如平稳性、白噪声等。
预测的目标是基于已有的时间序列数据来预测未来的值。
预测方法可以是单变量的,只使用时间序列自身的历史数据来进行预测;也可以是多变量的,将其他相关变量的信息纳入预测模型。
在时间序列分析中,有一些重要的概念和方法需要掌握。
首先是平稳性。
平稳性是指时间序列的均值、方差和自相关结构在时间上的不变性。
平稳性是许多时间序列模型的基本假设,它能够简化模型的建立和推断。
其次是自相关性。
自相关性是指时间序列中的观测值之间的相关性。
自相关结构可以通过自相关函数(ACF)和偏自相关函数(PACF)来描述,其中ACF表示不同时滞的自相关系数,PACF表示在剔除之前的滞后时其他滞后效应后,特定滞后的自相关系数。
另外,还有移动平均、自回归过程和ARMA模型等重要的方法和模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①当其他几个变动因素较弱,长期变动趋势 明显时,可以采取直接根据时间序列建立预测数 学模型的方法,叫做线性趋势法。
②当几种变动因素同时作用而使时间序列长 期趋势不明显时,则可采用移动平均法对时间序 列的数据进行处理。
三、时间序列预测方法介绍
1、线性趋势法(长期趋势预测法)
时间序列一次的线性趋势方程为: y a bt
2007 0
134369
2008 1
146197
2009 2
157670
2010 合计 3
172516 940876
a y 948078 135439
n
7
b ty 324789 11600 t 2 28
y 135439 11600t
预测2011年用电量时,t=4,则y=181839千瓦时
aˆ
bˆ
y
bˆx lxy
lxx
n
lxx (xi x)2 i1 n
lxy (xi x) ( yi y) i 1
实际统计工作中常用下面表达式:
n
b
i 1
( xi
n
x)( yi (xi x)2
y)
n ty n
t t2 t2
y
i 1
a y bx y b x
n
采用简易计算时
2、季节变动预测法(或叫移动平均法)
(1)简单平均法
例2:设某电网2001-2004年个季度的发电量如表2-5所示,试
用简易计算法列出发电量的一次线性趋势方程,再用简单平
均法计算出季节指数,并以次预测2005年该电网全年及各季
度的发电量。
表2-5
年次 季节
2001
2002
一 二 三 四 全年
(1) 1206030 1283687 1211133 1328247 5029097
(2) 1282940 1340792 1267836 1365738 5257306
2003
(3) 1337265 1384901 1375583 1453524 5551273
2004
(4) 1451604 1494570 1478651 1577307 6002132
季别累计
(5) 5277839 5503950 5333203 5724816 21839808
季别平均 季节指数
(6) 1319460 1375988 1333301 1431204 1364988
(7) 0.9666 1.0081 0.9768 1.0485 4.0000
调整后季 节指数 (8)
0.9666 1.0081 0.9768 1.0485 4.0000
2、季节变动预测法(或叫移动平均法)
表2-6
年份
年次t 发电量y
t*y
t2
2001 -3 2002 -1
5029097 5257306
-
9
15087291
-5257306 1
2003 1
5551273
5551273 1
2004 3
6002132
18006396 9
合计 0
21839808
3213072 20
a y 21839808 5459952
(2) 1282940 1340792 1267836 1365738 5257306
2003
(3) 1337265 1384901 1375583 1453524 5551273
2004
(4) 1451604 1494570 1478651 1577307 6002132
季别累计
(5) 5277839 5503950 5333203 5724816 21839808
季别平均 季节指数
(6) 1319460 1375988 1333301 1431204 1364988
(7) 0.9666 1.0081 0.9768 1.0485 4.0000
调整后季 节指数 (8)
0.9666 1.0081 0.9768 1.0485 4.0000
按简易计算法列表计算如表2-6所示:
(1)简单平均法
例2:设某电网2001-2004年个季度的发电量如表2-5所示,试
用简易计算法列出发电量的一次线性趋势方程,再用简单平
均法计算出季节指数,并以次预测2005年该电网全年及各季
度的发电量。
表2-5
年次 季节
2001
2002
一 二 三 四 全年
(1) 1206030 1283687 1211133 1328247 5029097
4、时间序列的分类 一般分为2类:时期序列和时点序列。 (1) 时期序列:在时期序列中,每一个相同时期的经济指标 是一个绝对数,都是反映某经济指标在该时期内的总量; (2) 时点序列:在时点序列中经济指标所反映的都是该指标 在某一瞬间所达到的水平。
二、变动因素分析
① 长期变动因素 ② 季节性变动因素 ③ 周期性变动因素 ④ 偶然变动因素或不规则变动
n
4
b ty 3213072 160653.6
t2
20
y=a+bt=5459952+160653.6t
2005年t=5,代入公式,得到y=6263220 根据表2-5的调整后季节指数,2005年各季度 发电量为: 一季度:6263220×0.9666/4=1513507 二季度:6263220×1.0081/4=1578488 三季度:6263220×0.9768/4=1529478 四季度:6263220×1.0485/4=1641747
(2)移动平均法
①定义:移动平均法是修匀时间序列的一个简便的方法, 它是对自然分布的时间序列采用逐项移动平均,即边平均 边移动,得出一个由移动平均数所构成的新的时间序列, 这个新派生的时间序列把原序列中某些不规则的偶然因素 引起的变动加以修匀,使时间序列表现出长期的基本发展 变化趋势。 ②注意的问题
a y
n
b
ty t2
例1:试用简易计算方法,求某省2004-2010年煤炭工业用电 量的时间序列一次线性方程(煤炭工业2004-2010年用电量为 已知数),并求2011年用电量。
表2-4
年份
年次t
煤炭工业 用电量y
(千瓦时)
2004 -3
102598
2005 -2
111776
2006 -1
122950
§2.3时间序列分析法
一、基本概念
1、时间序列 时间序列又称为动态序列,把同一经济变量的实际
数据按时间先后顺序排列起来所构成的动态序列。 2、时间序列分析法
对时间序列应用数学的方法进行分析,找出同一经 济变量(或事物)随时间变化的趋势和规律,并把这 种趋势用数学模型表示出来。
3、时间序列Biblioteka 测时间序列预测就是分析这种趋势,应用数学模型以求得预 测值。