中考数学全真模拟试卷1

合集下载

备战2023年北京市中考数学全真模拟试卷一(含解析)

备战2023年北京市中考数学全真模拟试卷一(含解析)

黄金卷1(满分100分,考试用时120分钟)一、选择题(本大题共8小题,每小题2分,共16分) 1.下列立体图形中,从正面看得到的图形是圆的是( )A .B .C .D .【答案】D【详解】解:从正面看选项A 中的图形是两个长方形, 从正面看选项B 中的图形是长方形, 从正面看选项C 中的图形是三角形, 从正面看选项D 中的图形是圆, 故选D2.2022年12月28日,第26届长春冰雪节开幕.长春市重点打造的世界级冰雪主题乐园-“长春冰雪新天地”流光溢彩,该园占地超1560000平方米.数字1560000用科学记数法可以表示为( ) A .51.5610⨯ B .61.5610⨯C .415610⨯D .515.610⨯【答案】B【详解】解:61560000 1.5610=⨯, 故选:B .3.如图,AB CD P ,若165∠=︒,则2∠的度数是( )A .65︒B .105︒C .115︒D .125︒【答案】C【详解】解:如图,AB CD ∥Q ,23180∴∠+∠=︒,1365∠=∠=︒Q , 265180∴∠+︒=︒,218065115∴∠=︒−︒=︒,故选:C .4.实数a ,b 在数轴上对应点的位置如图所示,下列结论中正确的是( )A .a b <B .0a b +<C .0a b −>D .0ab >【答案】A【详解】解:根据题意,得21a −<<−,23b <<, ∴12a <<,23b <<,∴a b <,0a b +>,0a b −<,0ab <, ∴选项A 正确,选项B 、C 、D 错误. 故选:A .5.学校新开设了航模、彩绘两个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为( ) A .23B .12C .13D .14【答案】B【详解】解:由题意,画树状图如图所示:由图可知,征征和舟舟选择社团共有4种等可能的结果,其中,征征和舟舟选到同一社团的有2种情况,则征征和舟舟选到同一社团的概率是2142P ==. 故选:B .6.若关于x 的方程20x mx n ++=有两个相等的实数根,则方程21x mx n ++=−的根的情况是( ) A .只有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根【答案】D【详解】Q 20x mx n ++=有两个相等的实数根, 24=0m n ∴−,一元二次方程21x mx n ++=−,即2+10x mx n ++=,()222=4=4+1=44=04=40b ac m n m n ∆−−⨯−−−−<,使用方程21x mx n ++=−没有实数根. 故选:D .7.下列图形中,既是中心对称图形又是轴对称图形,且对称轴条数最多的是( )A .B .C .D .【答案】C【详解】解:A .既是中心对称图形又是轴对称图形,有2条对称轴; B .既是中心对称图形又是轴对称图像,有2条对称轴; C .既是中心对称图形又是轴对称图形,有4条对称轴; D .不是中心对称图形,是轴对称图形,有3条对称轴 故选:C8.下面的四个选项中都有两个变量,其中变量y 与变量x 之间的函数关系可以用如图所示的图像表示的是( )A .圆的面积y 与它的半径x ;B .正方形的周长y 与它的边长x ;C .用长度一定的铁丝围成一个矩形,矩形的面积y 与一边长x ;D .小明从家骑车去学校,路程一定时,匀速骑行中所用时间y 与平均速度x ; 【答案】C【详解】解:A 、圆的面积y 与它的半径x 的关系式为2y x π=,变量y 与变量x 之间的函数关系不可以用如图所示的图像表示,故此选项不符合题意;B 、正方形的周长y 与它的边长x 的关系式为4y x =,变量y 与变量x 之间的函数关系不可以用如图所示的图像表示,故此选项不符合题意;C 、设铁丝的长度为a ,则矩形的面积22122a xy x x ax −=⋅=−+,变量y 与变量x 之间的函数关系可以用如图所示的图像表示,故此选项符合题意;D 、设路程为s ,则所用时间y 与平均速度x 的关系式为sy x=,变量y 与变量x 之间的函数关系不可以用如图所示的图像表示,故此选项不符合题意, 故选:C .二、填空题(本大题共8小题,每小题2分,共16分) 9x 的取值范围是___________. 【答案】2x ≤【详解】解:根据题意,得20x −≥, 解得2x ≤. 故答案为:2x ≤.10.把多项式22369a b ab b −+分解因式的结果是________. 【答案】2(3)b a b −【详解】解:22369a b ab b −+ ()2269b a ab b =−+2(3)b a b =−.故答案为:2(3)b a b −. 11.分式方程3122x xx x−+=−−的解是_____. 【答案】x 53=【详解】解:3122x xx x−+=−−, 去分母得:3﹣x ﹣x =x ﹣2, 解得:x 53=,经检验x 53=是分式方程的解.故答案为:x 53=.12.如图,平面直角坐标系中,若反比例函数()0ky k x=≠的图象过点A 和点B ,则a 的值为______.【答案】32##1.5【详解】解:依题意,将点()1,3A −代入ky x=,得出3k =−, ∴反比例数解析式为3y x =−,当2x =−时,32y =, 即32a =, 故答案为:32.13.为了落实“双减”政策,东营市某学校对初中学生的课外作业时长进行了问卷调查,15名同学的作业时长统计如下表,则这组数据的众数是____________分钟.【答案】70【详解】解:由表可知: ∵6>4>2>2>1,∴这组数据的众数是70分钟.故答案为:70.14.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是________.【答案】5【详解】解:如图,过D作DE⊥AB于E,△DAE和△DAC中,AD平分∠BAC,则∠DAE=∠DAC,∠DEA=∠DCA=90°,DA=DA,∴△DAE≌△DAC(AAS),∴DE=DC=2,∴△ABD的面积=12×AB×DE=12×5×2=5,故答案为:5;15.如图,ABCD中,连接BD,E是BD上一点,连接AE并延长交CD于F,交BC延长线于点G,若2,3EF FG==,则AE=________.【详解】解:如图,过点E作EH AD∥,∴EFH AFD ∽V V , ∴EH EF AD AF =,即22EH AD AE =+, ∵四边形ABCD 是平行四边形, ∴AD BC ∥,AD BC =, ∴EH BC ∥, ∴DEH DBC ∽V V , ∴EH DEBC BD=, ∵AD BC ∥,∴ADE GBE ∽V V, ∴AE AD DE EG BG BE==, ∴DE AEBD AG=, ∴AE EH AG BC =,即23AE EHAE AD=++, ∴2232AE AE AE =+++,解得:AE =,16.某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,经整理形成统计表如表:(1)如果快递员一天工作8小时,且只送某一类件,那么他一天的最大收入为_____元;(2)如果快递员一天累计送x小时甲类件,y小时乙类件,且x+y=8,x,y均为正整数,那么他一天的最大收入为_____元.【答案】160180【详解】解:(1)由统计表可知:如果该快递员一天工作8小时只送甲类件,则他的收入是1×145=145(元)如果该快递员一天工作8小时只送乙类件,则他的收入是2 × 80= 160 (元)∴他一天的最大收入是160元;(2)依题意可知:x和y均正整数,且x+y= 8①当x=1时,则y=7∴该快递员一天的收入是1 ×30+2×70=30+ 140= 170 (元);②当x=2时,则y=6∴该快递员-天的收入是1×55+2×60=55+120=175(元);③当x=3时,则y=5∴该快递员一天的收入是1× 80+2×50= 80+ 100= 180 (元);④当x=4时,则y=4∴该快递员一天的收入是1×100+2×40= 100+80 = 180 (元);⑤当x=5时,则y=3∴该快递员一天的收入是1×115+2×30=115十60 = 175 (元);⑥当x=6时,则y=2∴该快递员一天的收入是1 × 125+ 2× 20= 125+40 = 165 (元);⑦当x=7时,则y=1∴该快递员一天的收入是1×135+2×10=135+20= 155 (元)综上讨论可知:他一天的最大收入为180元.故填:160;180.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分) 17.(5分)计算:()20233tan 4512sin 60−+︒+−−︒.【答案】3【详解】解:()20233tan 4512sin 60−+︒+−−︒31122=+−−⨯3=18.(5分)解不等式组()815171062x x x x ⎧+>−⎪⎨−−≤⎪⎩.【答案】2523x −≤< 【详解】8(1)5171062x x x x +−⎧⎪⎨−−≤⎪⎩>①②, 由①式得:253x ≥−; 由②式得:2x ≤; ∴不等式组的解集为:2523x −≤< 19.(5分)先化简,再求值:()()()212323x x x +−+−,其中x 满足23220320x x −−=. 【答案】23210x x −++,2022− 【详解】解:()()()212323x x x +−+−222149x x x =++−+ 23210x x =−++, ∵23220320x x −−=,∴2322032x x −=,即2322032x x −+=−, ∴当23220320x x −−=时, 原式2032102022=−+=−.20.(5分)(1)如图1,三角形ABC 中,试用平行线的知识证明180A B C ∠+∠+∠=︒;(2)如图2,将线段BC折断成BDC的形状,证明D A B C∠=∠+∠+∠.【答案】(1)见解析;(2)见解析【详解】(1)证明:如图,延长BC到D,过点C作CE∥BA,∵BA∥CE,∴∠B=∠1(两直线平行,同位角相等),∠A=∠2(两直线平行,内错角相等),又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).(2)证明:连接AD并延长,如图1,∵∠2=∠1+∠B,∠4=∠3+∠C,∴∠2+∠4=∠1+∠B+∠3+∠C,∴∠BDC=∠A+∠B+∠C.即∠D=∠A+∠B+∠C.∠=∠,21.(6分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE DF=,A D =.AB DC(1)求证:四边形BFCE 是平行四边形;(2)如果7AD =,2DC =,60EBD ∠=︒,那么当四边形BFCE 为菱形时BE 的长是多少? 【答案】(1)见解析 (2)3【详解】(1)证明:AB DC =Q ,AC DB ∴=,在AEC △和DFB △中,AC DB A D AE DF =⎧⎪∠=∠⎨⎪=⎩, ()SAS AEC DFB ∴V V ≌,BF EC ACE DBF ∴=∠=∠,, EC BF ∴∥,∴四边形BFCE 是平行四边形;(2)当四边形BFCE 是菱形时,BE CE =,722AD DC AB CD ====Q ,,, 7223BC ∴=−−=, 60EBD ∠=︒Q ,BE CE =, BEC ∴V 是等边三角形,3BE BC ∴==,∴当四边形BFCE 是菱形时,BE 的长是3.22.(5分)如图,已知直线,5y x =+与x 轴交于点A ,直线y kx b =+与x 轴交于点()10B ,,且与直线5y x =+交于第二象限点()C m n ,.若ABC V 的面积为12.(1)求点A 、点C 的坐标;(2)写出关于x 的不等式5x kx b +>+的解集. 【答案】(1)()5,0A −;点C 坐标为()1,4− (2)1x >−【详解】(1)解:在直线5y x =+中,令0y =,则50x += 解得:5x =−,()5,0A ∴−; ()1,0B Q ,()156AB ∴=−−=, ()C m n Q ,,11631222ABC C S AB y n n =⋅=⨯==V Q . 4n ∴=,Q 点(),C m n 在直线AB 上,54m n ∴+==,1m ∴=−,∴点C 坐标为()1,4−;(2)解:由图象可知,不等式5x kx b +>+的解集为1x >−.23.(6分)某校举办了一次 “成语知识竞赛”,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组各10名学生成绩分布的折线统计图和成绩统计分析表如图所示.(1) =a _____,b =_____;(2)小军同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上”观察表格试分析判断,小军是哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组,但乙组同学不同意他的说法,认为乙组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由. 【答案】(1)6.8,7.5 (2)小军属于甲组学生(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定【详解】(1)解:由题意,得()131657192101 6.810a =⨯⨯+⨯+⨯+⨯+⨯=; 把乙组成绩从低到高排在中间的两个数为7分,8分,故()7827.5b =+÷=. 故答案为:6.8,7.5;(2)∵甲组的中位数为6,乙组的中位数为7.5,而小军的成绩位于小组中上游 ∴小军属于甲组学生;(3)①乙组的平均分高于甲组,即乙组的总体平均水平高; ②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.24.(6分)如图,ABC V 是O e 的内接三角形,CD 是O e 的直径,AB CD ⊥于点E ,过点A 作O e 的切线交CD 的延长线于点F ,连接FB .(1)求证:FB 是O e 的切线.(2)若AC =1tan 2ACD ∠=,求O e 的半径. 【答案】(1)见解析 (2)O e 的半径为5.【详解】(1)证明:连接OA OB 、,∵在O e 中,OA OB =,AB CD ⊥于点E , ∴AOF BOF =∠,在OAF △和OBF V 中,OA OB AOF BOF OF OF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS OAF OBF ≌△△. ∴OAF OBF ∠=∠.又∵AF 切O e 于点A ,OA 为O e 半径, ∴OA FA ⊥, ∴90OAF ∠=︒. ∴90OBF ∠=︒. ∴OB FB ⊥于点B . ∴FB 是O e 的切线;(2)解:∵AB CD ⊥,1tan 2ACD ∠=, ∴1tan 2AE ACD CE ∠==, ∴2CE AE =,∵AC =∴222AE CE AC +=,即()(2222AE AE +=,∴4AE =,8CE =,设O e 的半径为r ,则OA OC r ==,8OE r =−, 在Rt AOE △中,222AE EO AO +=,即()22248r r +−=, 解得=5r , ∴O e 的半径为5.25.(5分)跳台滑雪是冬季奥运会的比赛项目之一,如图,运动员通过助滑道后在点A 处起跳经空中飞行后落在着陆坡BC 上的点P 处,他在空中飞行的路线可以看作抛物线的一部分,这里OA 表示起跳点A 到地面OB 的距离,OC 表示着陆坡BC 的高度,OB 表示着陆坡底端B 到点O 的水平距离,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系:2116y x bx c =−++,已知70m OA =,60m OC =,落点P 的水平距离是40m ,竖直高度是30m .(1)点A 的坐标是_____,点P 的坐标是_______; (2)求满足的函数关系2116y x bx c =−++; (3)运动员在空中飞行过程中,当他与着陆坡BC 竖直方向上的距离达到最大时,直接写出此时的水平距离. 【答案】(1)()0,70A ,()40,30P ; (2)21370162y x x =−++; (3)18m【详解】(1)解:70m OA =Q ,落点P 的水平距离是40m ,竖直高度是30m , ()0,70A ∴,()40,30P ;(2)解:把()0,70A ,()40,30P 代入2116y x bx c =−++ 得,270130404016c b c =⎧⎪⎨=−⨯++⎪⎩, 解得,3270b c ⎧=⎪⎨⎪=⎩, 21370162y x x ∴=−++; (3)解:60m OC =Q ,∴设直线BC 的表达式为()600y kx k =+≠,把()40,30P 代入,得304060k =+,解得,34k =−,3604y x ∴=−+,设213,70162M m m m ⎛⎫−++ ⎪⎝⎭到BC 竖直方向上的距离最大,作MN y ∥轴交抛物线和直线BC 于点M 、N ,∴3,604N m m ⎛⎫−+ ⎪⎝⎭,213370601624MN m m m ⎛⎫∴=−++−−+ ⎪⎝⎭21910164m m =−++ ()22213618181016m m =−−+−+ ()21811810164m =−−++ ()2112118164m =−−+ ()2118016m −−≤Q , ∴当18m =时,MN 最大,即水平距离为18m 时,运动员与着陆坡BC 竖直方向上的距离达到最大.26.(6分)在平面直角坐标系xOy 中,点(1,)m −,(4,)n −在抛物线2(0)y ax bx c a =++>上,设抛物线的对称轴为x t =.(1)当2c =,m n =时,求抛物线与y 轴交点的坐标及t 的值;(2)点()()00,1x m x ≠−在抛物线上.若m n c <<,求t 的取值范围及0x 的取值范围. 【答案】(1)抛物线与y 轴的交点坐标为:()0,2, 52x t ==−.(2)522t −<<−,0x 的取值范围043x −<<−.【详解】(1)解:∵2c =,∴抛物线为:22(0)y ax bx a =++>, ∴当0x =,则2y =,∴抛物线与y 轴的交点坐标为:()0,2,∵m n =,∴点(1,)m −,(4,)n −关于抛物线的对称轴对称, ∴抛物线的对称轴为直线14522x t −−===−. (2)∵m n c <<,∴164a b c a b c c −+<−+<, 解得45a b a <<,∴54a b a −<−<−, 而2>0a , ∴5222b a −<−<−,即522t −<<−, ∵点(1,)m −,()()00,1x m x ≠−在抛物线上, ∴抛物线的对称轴为直线012x x −=, ∴015222x −−<<−, 解得:043x −<<−, ∴0x 的取值范围043x −<<−.27.(7分)在Rt ABC V 中,90BAC ∠=︒,AB AC =,P 是直线AC 上的一点,连接BP ,过点C 作CD BP ⊥,交直线BP 于点D .(1)当点P 在线段AC 上时,如图①,求证:BD CD −=;(2)当点P 在直线AC 上移动时,位置如图②、图③所示,线段CD ,BD 与AD 之间又有怎样的数量关系?请直接写出你的猜想,不需证明. 【答案】(1)见解析(2)如图②CD BD −=,如图③CD BD += 【详解】(1)证明:如图1,在BD 上截取BE CD =,90BAC BDC ∠︒∠==Q ,90ABP APB ∴∠+∠=︒,90ACD DPC ∠+∠=︒.APB DPC ∠=∠Q ,ABP ACD ∴∠=∠.又AB AC =,(SAS)ABE ACD ∴V V ≌,AE AD ∴=,BAE CAD ∠=∠.90EAD EAP CAD EAP BAE ∴∠=∠+∠=∠+∠=︒.在Rt AED V 中,22222DE AE AD AD =+=,∴DE =∴BD CD BD BE ED −=−==;(2)解:如图2,CD BD −=. 在CD 上截取CE BD =,连接AE ,由(1)可知△≌△ADB AEC , AE AD ∴=,BAD CAE ∠=∠,90EAD BAE BAD BAE CAE ∴∠=∠+∠=∠+∠=︒,在Rt AED V 中,22222DE AE AD AD =+=,DE ∴=,CD BD CD CE DE ∴−=−==,CD BD ∴−=.如图3,CD BD +=.延长DC 至点E ,使得CE BD =,连接AE ,90BAC BDC ∠︒∠==Q ,180ABD ACD ∴∠+∠=︒,180ACD ACE ∠+∠=︒, ABD ACE ∴∠=∠,在ABD △和ACE △中,AB AC ABD ACE BD CE =⎧⎪∠=∠⎨⎪=⎩, (SAS)ADB AEC ∴V V ≌,AE AD ∴=,BAD CAE ∠=∠,90EAD CAE CAD BAD CAD ∴∠=∠+∠=∠+∠=︒,在Rt AED V 中,22222DE AE AD AD =+=,DE ∴=,CD BD CD CE DE ∴+=+==.28.(7分)在平面直角坐标系中,对点(),P a b 作如下变换:若a b ≥,作点P 关于y 轴的对称点;若a b <,作点P 关于x 轴的对称点,我们称这种变换为“YS 变换”.(1)点()1,0作“YS 变换”后的坐标为___________;点()3,4−作“YS 变换”后的坐标为___________;(2)已知点()1,2A m m ++,(),1B m ,()1,1C m +,其中01m <<,且点A ,B 作“YS 变换”后对应的点分为M ,N 两点,74MNC S =△,求m 的值. (3)已知点()1,5E ,()5,5F ,在EF 即所在直线上方作等腰直角三角形EFG ,若点1,2P a b ⎛⎫− ⎪⎝⎭,()1,Q a b −作“YS 变换”后对应的点分别为P ',Q ',其中a b <,若点G 在线段P Q ''上,求a 的取值范围. 【答案】(1)()1,0−,()3,4−− (2)12m =(3)322a ≤≤或1162a ≤≤或742a ≤≤【详解】(1)解:∵10> ∴作点关于y 轴轴的对称点∴点()1,0作“YS 变换”后的坐标为()1,0− ∵34−<∴作点关于x 轴轴的对称点∴点()3,4−作“YS 变换”后的坐标为()3,4−−; 故填:()1,0−,()3,4−−. (2)解:∵01m <<,∴()1,2A m m ++作YS -变换后的点为()1,2M m m +−−,(),1B m 作YS -变换后的点为(),1N m − ∴()173124MNC S m =+⨯=△ ∴12m =; (3)解:∵a b <,∴点1,2P a b ⎛⎫− ⎪⎝⎭作YS 变换后的点为1,2P a b ⎛⎫'−− ⎪⎝⎭,点()1,Q a b −作YS 变换后的点为()1,Q a b '−−, ∵在EF 上方作等腰直角三角形EFG V ∴()1,8G 或()5,8G 或()3,7G , 分类讨论如下:①当()1,8G 在线段P Q ''上时,则11112a a −≤⎧⎪⎨−≥⎪⎩, ∴322a ≤≤, ②当()5,8G 在线段P Q ''上时,则15152a a −≤⎧⎪⎨−≥⎪⎩,∴1162a ≤≤,②当()3,7G ,在线段P Q ''上时,则13132a a −≤⎧⎪⎨−≥⎪⎩, ∴742a ≤≤ ∴322a ≤≤或1162a ≤≤或742a ≤≤.。

2023年浙江温州中考数学全真模拟卷1

2023年浙江温州中考数学全真模拟卷1

2023年中考数学全真模拟卷(温州专用)第一模拟注意事项:本试卷满分150分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题4分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.−+的结果等于()1.计算(12)7A.8−B.7−C.5−D.19【分析】根据有理数的加法法则计算即可得出答案.−+【解答】解:(12)7=−−(127)=−.5故选:C.2.如图所示的几何体,其左视图是()A.B.C.D.【分析】根据简单组合体的三视图得出结论即可.【解答】解:根据题意知,该几何体的左视图为,故选:B.3.已知单项式233x y与2mx y,那么(−的积为3n2xy−=)m n−B.5C.1D.1−A.11【分析】根据单项式乘单项式的乘法法则解决此题.【解答】解:23233(2)n x y xy mx y ⋅−=Q ,3536n x y mx y ∴−=. 6m ∴=−,5n =. 6511m n ∴−=−−=−.故选:A .4.为迎接党的二十大胜利召开,某校开展了“学党史,悟初心”系列活动.学校对学生参加各项活动的人数进行了调查,并将数据绘制成如下统计图.若参加“书法”的人数为80人,则参加“大合唱”的人数为( )A .60人B .100人C .160人D .400人【分析】先求出总人数,再用总人数乘以参加“大合唱”人数占的百分比即可得答案.【解答】解:参加“书法”的人数为80人,由扇形统计图知参加“书法”的人数占总人数的20%, ∴总人数为8020%400÷=(人),∴参加“大合唱”的人数为400(120%15%25%)160⨯−−−=(人),故选:C .5.某口袋里装有红色、黑色球共80个,它们除了颜色外其他都相同,已知摸到红球的概率为0.2,则口袋中红球的个数为( ) A .5B .9C .16D .20【分析】首先设红球有x 个,由概率公式可得0.280x=,解此方程即可求得答案. 【解答】解:设红球有x 个,则0.280x=, 解得:16x =, 故选:C .6.若关于x 的一元二次方程240x x c ++=有两个不相等的实数根,则c 的值可能为( ) A .6B .5C .4D .3【分析】根据方程有两个不相等的实数根得出△24410c =−⨯⨯>,解之可得答案. 【解答】解:根据题意,得:△24410c =−⨯⨯>, 解得4c <,故选:D .7.小李骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶,与以上事件吻合得最好的图象是( )A.B.C.D.【分析】根据题意可得开始时匀速行驶,此时对应的图象为直线,函数的图象递减.途中因交通堵塞停留了一段时间,此时到学校的距离为常数,最后加快速度行驶对应的曲线为上凸曲线,即可判断.【解答】解:根据题意可知:开始时匀速行驶,此时对应的图象为直线,函数的图象递减.途中因交通堵塞停留了一段时间,此时到学校的距离为常数,最后加快速度行驶对应的曲线为上凸曲线.故选:C.8.如图,AB为Oe的直径,弦CD AB∠=︒,则AOD∠=()⊥,65BOF⊥,OF BCA.70︒B.65︒C.50︒D.45︒【分析】先根据三角形的内角和定理可得25B ∠=︒,由垂径定理得:¶¶AC AD =,最后由圆周角定理可得结论.【解答】解:OF BC ⊥Q , 90BFO ∴∠=︒, 65BOF ∠=︒Q , 906525B ∴∠=︒−︒=︒,Q 弦CD AB ⊥,AB 为O e 的直径,∴¶¶AC AD =,250AOD B ∴∠=∠=︒.故选:C .9.已知在二次函数223y ax x a =−−的图象上有三点1(A x ,1)y ,2(B x ,2)y ,(0,3)C −,且11x <−,203x <<,则21y y −的值为( )A .正数B .负数C .0D .非负数【分析】用待定系数法求出抛物线的解析式,分别求得1y 、2y 、3y 的值,代入21()y y −即可求得定值.【解答】解:Q 点(0,3)C −在二次函数223y ax x a =−−的图象上, 33a ∴−=−,解得1a =,∴二次函数2223(1)4y x x x =−−=−−,且与x 轴的交点坐标为(1,0)−,(3,0), 11x <−Q ,203x <<, 10y ∴>,20y <,210y y ∴−<,即为负数, 故选:B .10.由四个全等的矩形围成了一个大正方形ABCD ,如图所示.连结CH ,延长EF 交CH 于点G ,作PG CH ⊥交AB 于点P ,若2AH DH =,则APBP的值为( )A .97B .1611C .32D .2【分析】设DH x =,则AK FH x ==,2AH BK FK x ===,3CD x =,利用角的和差关系可得FGP FHG ∠=∠,由平行线的性质可得DCH FHG ∠=∠,则DCH FHG FGP ∠=∠=∠,而1tan 33DH x DCH CD x ∠===,可得1tan 3FG FG FHG FH x ∠===,解得13FG x =,则73KG KF FG x =+=,1tan 733KP KP FGP KG x ∠===,解得79KP x =,可得169AP AK KP x =+=,119BP BK KP x =−=,进而可得出答案.【解答】解:设DH x =,则AK FH x ==,2AH BK FK x ===,3CD x =,PG CH ⊥Q ,90FGP HGF ∴∠+∠=︒, 90HGF FHG ∠+∠=︒Q , FGP FHG ∴∠=∠,由矩形的性质可得//CD FH , DCH FHG ∴∠=∠, DCH FHG FGP ∴∠=∠=∠,1tan 33DH x DCH CD x ∠===Q , 1tan 3FG FG FHG FH x ∴∠===, 解得13FG x =,17233KG KF FG x x x ∴=+=+=,1tan 733KP KPFGP KG x∴∠===, 解得79KP x =, 71699AP AK KP x x x ∴=+=+=, 711299BP BK KP x x x =−=−=,∴1616911119xAP BP x ==. 故选:B .二、填空题(本大题共6小题,每小题5分,共30分)请把答案直接填写在横线上 11.因式分解:2216m m −= 2(8)m m − . 【分析】利用提公因式法分解因式即可解答. 【解答】解:22162(8)m m m m −=−, 故答案为:2(8)m m −. 12.计算:226193x x y x y −=−− 13x y+ .【分析】先通分,化成同分母分式再运算. 【解答】解:原式63(3)(3)(3)(3)x x yx y x y x y x y +=−+−+− 63(3)(3)x x yx y x y −−=+−13x y=+. 故答案为:13x y+. 13.已知数据a ,b ,c 的平均数为8,那么数据1a +,1b +,1c +的平均数是 9 . 【分析】先根据a ,b ,c 的平均数是得出a b c ++的值,再根据平均数的概念列式计算可得. 【解答】解:a Q ,b ,c 的平均数是8, 3824a b c ∴++=⨯=,则数据1a +,1b +,1c +的平均数是11127933a b c +++++==.故答案为:9.14.如图,正方形ABCD 中,分别以B ,D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为 a π .【分析】根据正方形的性质,可以求90B D ∠=∠=︒,AB CB AD CD a ====,即扇形圆心角90︒,半径为a ;由图可知,阴影部分的周长是两个圆心角为90︒、半径为a 的扇形的弧长,可据此求出阴影部分的周长.【解答】解:Q 四边形ABCD 是正方形,边长为a , AB CB AD CD a ∴====,90B D ∠=∠=︒, ∴树叶形图案的周长902180aa ππ⋅=⨯=. 故答案为:a π.15.如图,已知菱形ABCD 中,120ABC ∠=︒,对角线BD 长6cm ,点O 为BD 的中点,过点A 作AE BC ⊥交CB 的延长线于点E ,连接OE ,则线段OE 的长度是 .【分析】由菱形的性质得ABO ∆是含30︒角的直角三角形,再由勾股定理求得AO ,然后由直角三角形斜边上的中线性质即可得出结论.【解答】解:Q 四边形ABCD 是菱形,点O 为BD 的中点, AC ∴、BD 互相垂直平分,BD 平分ABC ∠,3()OB OD cm ∴==,OA OC =,90AOB ∠=︒, 120ABC ∠=︒Q , 60ABO ∴∠=︒,906030BAO ∴∠=︒−︒=︒,26()AB OB BD cm ∴===,)AO cm ∴===,AE BC ⊥Q ,90AEC ∴∠=︒,1)2OE AC OA cm ∴===,故答案为:.16.图1是一款摆臂遮阳蓬的实物图,图2是其侧面示意图,点A ,O 为墙壁上的固定点,摆臂OB 绕点O 旋转过程中,遮阳蓬AB 可自由伸缩,蓬面始终保持平整.如图2,90AOB ∠=︒, 1.5OA OB ==米,光线l 与水平地面的夹角约为tan 3α=,此时身高为1米的小朋友(1MN =米)站在遮阳蓬下距离墙角1.2米( 1.2QN =米)处,刚好不被阳光照射到,此时小朋友的头顶M 距离遮阳蓬的竖直高度()MP 为 0.3 米;同一时刻下,旋转摆臂OB ,点B 的对应点B '恰好位于小朋友头顶M 的正上方,当小朋友后退至刚好不被阳光照射到时,其头顶距离遮阳蓬的竖直高度为 米.【分析】证明BM MP =,从而求得MP 的值,过点B '作//B C BN ',与QN 交于点C ,过B '作B F AQ '⊥于F ,过C 作CD B F ⊥'于点D ,与AB '交于点E ,在Rt △OB M '中,由勾股定理求得B M ',在Rt △B CN '中,解直角三角形求得CN ,再由平行线分线段成比例性质的推论得B D DEB F AF'=',便可求得DE ,问题便可得以解决.【解答】解:OA OB =Q ,90AOB ∠=︒, 45ABO ∴∠=︒, MP MB ∴=,1.2OM QN m ==Q , 1.5OB m =,1.5 1.20.3()MP MB m ∴==−=,过点B '作//B C BN ',与QN 交于点C ,过B '作B F AQ '⊥于F ,过C 作CD B F ⊥'于点D ,与AB '交于点E ,则 1.2()B F OM QN m '===,0.9()FO B M m ∴='=,1.9()B N B M MN m ∴'='+=,0.6()AF OA FO m =−=, //B C BN 'Q , B CN α∴∠'=∠,tan 3B NB CN CN'∴∠'==, 1.919()330B D CN m ∴'===,//DE AF Q ,∴B D DEB F AF'=',即19301.20.6DE = 191.3()15DE m ∴=≈, 即当小朋友后退至刚好不被阳光照射到时,其头顶距离遮阳蓬的竖直高度约为1.3m . 故答案为:0.3;1.3.三、解答题(本大题共8小题,共80分.解答时应写出文字说明、证明过程或演算步骤)17.(1)计算:31(1)|6|2−−+−⨯; (2)解不等式:2223x xx +−−<,并把解集在数轴上表示出来. 【分析】(1)根据实数的混合运算顺序和运算法则计算可得; (2)根据解一元一次不等式的基本步骤依此计算可得.【解答】解:(1)原式11632=−+⨯−,133=−+−, 1=−;(2)去分母,得:63(2)2(2)x x x −+<−, 去括号,得:63642x x x −−<−, 移项,得:63246x x x −+<+, 合并同类项,得:510x <, 系数化为1,得:2x <.在数轴上表示不等式的解集,如图所示:18.如图,网格纸中每个小平行四边形的边长分别为1和2,平行四边形中较小的角为60︒,已知线段AB ,请根据下列要求画格点图形(顶点都在格点上). (1)在图1中画一个Rt ABC ∆;(2)在图2中画一个锐角ABD ∆且ABD S ∆=【分析】(1)根据直角三角形的定义作出图形;(2)利用数形结合的思想画出图形即可.【解答】解:(1)如图1中,ABC∆即为所求;(2)如图2中,ABD∆即为所求.19.2021年是中国共产党建党100周年,为了讴歌党的光辉业绩,继承和发挥党的光荣传统和优良作风,某校组织七、八年级各100名学生参加党史知识竞赛,现从中各随机抽取20名学生的比赛成绩进行调查过程如下:收集数据:七年级:90 77 88 73 98 41 81 68 85 40 80 95 88 71 87 88 72 76 86 84八年级:76 86 61 98 89 84 75 82 93 82 78 83 79 92 81 74 82 64 62 63整理数据:(1)若竞赛成绩大于85分的记为优秀,请估计该校七、八两个年级共有多少名学生获得优秀?(2)甲同学用平均分推断,八年级党史知识竞赛成绩更好些;乙同学用中位数或众数推断,七年级党史知识竞赛成绩更好些.你认为谁的推断比较科学合理?为什么?【分析】(1)用各年级总人数乘以样本中优秀学生的人数所占比例,再相加即可;(2)根据平均数、中位数、众数的意义判定并说明理由即可.【解答】解:(1)估计该校七、八年级参赛学生中优秀学生的人数共有85100100652020⨯+⨯=(名),答:估计该校七、八两个年级共有65名学生获得优秀;(2)乙同学的推断比较科学合理.理由:虽然七年级的平均分比八年级低,但从统计表可以看出,七年级有2名学生的成绩为4050x<,在该组数据中属于极端值,平均分受极端值的影响较大;而中位数或众数不易受极端值得影响,所以乙同学的推断更科学合理.20.如图,在ABC∆中,AD平分BAC∠,过点B作AD的垂线,垂足为点D,//DE AC,交AB于点E,//CD AB.(1)求证:BDE∆是等腰三角形;(2)求证:CD BE=.【分析】(1)根据平行线的性质得到1234∠=∠=∠=∠,推出5ABD∠=∠,根据等腰三角形的判定定理即可得到结论;(2)由(1)知,42∠=∠,根据全等三角形的判断选择即可得到结论.【解答】证明:(1)//DE ACQ,12∠=∠,1234∴∠=∠=∠=∠,290ABD∠+∠=︒Q,5490∠+∠=︒,5ABD∴∠=∠,DE BE∴=,BDE∴∆是等腰三角形;(2)由(1)知,42∠=∠,AE DE∴=,AD AD=Q,14∠=∠,23∠=∠,()ACD DEA ASA∴∆≅∆,CD AE∴=,CD AE DE BE∴===.21.反比例函数kyx=在第一象限的图象如图所示,过点(1,0)A作x轴的垂线,交反比例函数kyx=的图象于点M,AOM∆的面积为3.(1)求反比例函数的解析式;(2)设点B 的坐标为(,0)t ,其中1t >,若以AB 为一边的正方形有一个顶点在反比例函数k y x=的图象上,求t 的值.【分析】(1)根据点(1,0)A 、AOM ∆的面积为3,可求出点M 的坐标,即可求解.(2)分情况讨论即可.【解答】解:(1)Q 点(1,0)A 、AOM ∆的面积为3.1OA ∴=,132OA AM ⋅=. 6AM ∴=.(1,6)M ∴.将M 坐标代入反比例函数解析式得:6k =.∴反比例函数的解析式6y x=. (2)分类讨论:①如图:此时顶点C 在反比例函数上时.(,0)B t Q ,1t >.OB t ∴=.1OA =.1BC AB OB OA t ∴==−=−.(,1)C t t ∴−.将点C坐标代入6yx =.(1)6t t∴⋅−=.3t∴=,或2−(舍去).②如图:此时顶点与M重合时,6AB AM==.7OB∴=.7t∴=.综上:3t=或7.22.如图,▱ABCD中,连接AC,点E是AB中点,点F是AC的中点,连接EF,过E作//EG AF 交DA的延长线于点G.(1)求证:四边形AGEF是平行四边形;(2)若3sin5G∠=,10AC=,12BC=,连接GF,求GF的长.【分析】(1)根据已知条件,可得EF是ABC∆的中位线,根据中位线定理可得//EF AG,又因为//EG AF,即可得证;(2)过点F作FH AD⊥于点H,根据已知条件求出HF的长,再根据平行四边形的性质可得AG的长,进一步求出GH的长,根据勾股定理,即可求出GF的长.【解答】(1)证明:Q点E是AB中点,点F是AC的中点,EF∴是ABC∆的中位线,//EF BC ∴,12EF BC=,在平行四边形ABCD中,//AD BC,//EF AD∴,//EG AF Q ,∴四边形AGEF 是平行四边形;(2)过点F 作FH AD ⊥于点H ,如图所示://EG AF Q ,HAF AGE ∴∠=∠,3sin 5G ∠=Q , 3sin 5HF HAF AF ∴∠==, 10AC =Q ,F 是AC 的中点,5AF ∴=,3HF ∴=,在Rt AHF ∆中,根据勾股定理,得4AH =,12BC =Q ,6EF ∴=,Q 四边形AGEF 是平行四边形,6AG EF ∴==,6410GH ∴=+=,在Rt HGF ∆中,根据勾股定理,得GF ==.23.根据以下素材,探索完成任务.如何设计大棚苗木种植方案?素材1:图1中有一个大棚苗木种植基地及其截面图,其下半部分是一个长为20m ,宽为1m 的矩形,其上半部分是一条抛物线,现测得,大棚顶部的最高点距离地面5m .素材2:种植苗木时,每棵苗木高1.76m ,为了保证生长空间,相邻两棵苗木种植点之间间隔1m ,苗木顶部不触碰大棚,且种植后苗木成轴对称分布.问题解决任务1:确定大棚上半部分形状.根据图2建立的平面直角坐标系,求抛物线的函数关系式.任务2:探究种植范围.在图2的坐标系中,在不影响苗木生长的情况下,确定种植点的横坐标的取值范围.任务3:拟定种植方案.给出最前排符合所有种植条件的苗木数量,并求出最左边一棵苗木种植点的横坐标.【分析】任务1:根据坐标系和题中条件可得出顶点坐标,即可设出抛物线的顶点式,然后把点(10,1)B 代入即可得解析式;任务2:根据题意可得,当215 1.7625x −+=时,解得:19x =−,29x =,再根据题中的要求即可求出种植点的横坐标的取值范围;任务3:根据题中给出的条件可知,可在距离y 轴0.5m 的两则开始种植,结合任务二中的范围可求出答案.【解答】解:任务1:根据图中的坐标系以及题意可得,点A 的坐标为(0,5),点B 的坐标为(10,1),Q 抛物线的顶点坐标为点(0,5)A ,∴可设抛物线的解析式为:25y ax =+,把点(10,1)B 代入可得:10051a +=,解得:125a =−, ∴抛物线的函数关系式为:21525y x =−+; 任务2:Q 种植苗木时,每棵苗木高1.76m ,∴当215 1.7625x −+=时,解得:19x =−,29x =, Q 苗木顶部不触碰大棚,且种植后苗木成轴对称分布,∴种植点的横坐标的取值范围为:99x −<<;任务3:根据题中所知,种植后苗木成轴对称分布,且相邻两棵苗木种植点之间间隔1m , ∴在距离y 轴0.5m 的两则开始种植,最前排可种植:9218⨯=(棵),则最左边一棵苗木种植点的横坐标0.588.5x =−−=−.答:最前排符合所有种植条件的苗木数量为18棵,最左边一棵苗木种植点的横坐标为8.5−.24.如图1,ABC ∆中,90ACB ∠=︒,8AC =,6BC =,延长BC 至D ,使CD CB =,E 为AC 边上一点,连结DE 并延长交AB 于点F .作BEF ∆的外接圆O e ,EH 为O e 的直径,射线AC 交O e于点G ,连结GH .(1)求证:AEF CEB ∠=∠.(2)①如图2,当DF AB ⊥时,求GH 的长及tan EHG ∠的值.②如图3,随着E 点在CA 边上从下向上移动,tan EHG ∠的值是否发生变化,若不变,请你求出tan EHG ∠的值,若变化,求出tan EHG ∠的范围.(3)若要使圆心O 落在ABC ∆的内部(不包括边上),求CE 的长度范围.【分析】(1)由()ECD ECB SAS ∆≅∆,得出DEC BEC ∠=∠,由DEC AEF ∠=∠,即可证明AEF CEB ∠=∠;(2)①当DF AB ⊥时,则90EFB ∠=︒,得出BE 为EFB ∆外接圆的直径,此时,点H 、B 重合,点C 、G 重合,先证明EHG EBC A ∠=∠=∠,再求出3tan 4A =,即可得出3tan tan 4EHG A ∠==; ②tan EHG ∠的值不变,过E 作EP AB ⊥于点P ,延长PE 交HG 的延长线于点Q ,连接FH ,先证明PEF BEH ∠=∠,再证明QEG HEG ∠=∠,继而证明Q EHG ∠=∠,证明Q A ∠=∠,得出A EHG ∠=∠,即可得出3tan tan 4EHG A ∠==; (3)分点O 在BC 上和点O 在AB 上两种情况进行分类讨论,即可得出答案.【解答】(1)证明:如图1,90ACB ∠=︒Q ,90ECD ECB ∴∠=∠=︒,在ECD ∆和ECB ∆中,EC EC ECD ECB CD CB =⎧⎪∠=∠⎨⎪=⎩,()ECD ECB SAS ∴∆≅∆,DEC BEC ∴∠=∠,DEC AEF ∠=∠Q ,AEF CEB ∴∠=∠;(2)解:①如图2,当DF AB ⊥时,则90EFB ∠=︒,BE ∴为EFB ∆外接圆的直径,此时,点H 、B 重合,点C 、G 重合, GH BC ∴=,6BC =Q ,6GH ∴=,DF AB ⊥Q ,90AEF A ∴∠+∠=︒,90ACB ∠=︒Q ,90EBC BEC ∴∠+∠=︒,AEF CEB ∠=∠Q ,A EBC ∴∠=∠,EHG EBC A ∴∠=∠=∠,在Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,63tan 84BC A AC ∴===, 3tan tan 4EHG A ∴∠==; ②tan EHG ∠的值不变,如图3,过E 作EP AB ⊥于点P ,延长PE 交HG 的延长线于点Q ,连接FH ,EP AB ⊥Q ,90PEB EBP ∴∠+∠=︒,EH Q 是直径,90FEH EHF ∴∠+∠=︒,EBP EHF ∠=∠Q ,PEB FEH ∴∠=∠,即PEF FEB FEB BEH ∠+∠=∠+∠, PEF BEH ∴∠=∠,PEF DEQ ∠=∠Q ,DEQ BEH ∴∠=∠,DEC BEC ∠=∠Q ,即DEQ QEG HEG BEH ∠+∠=∠+∠, QEG HEG ∴∠=∠,EH Q 是直径,90EGH EGQ ∴∠=∠=︒,Q QEG EHG HEG ∴∠+∠=∠+∠,Q EHG ∴∠=∠,EP AB ⊥Q ,90A AEP ∴∠+∠=︒,AEP QEG ∠=∠Q ,Q A ∴∠=∠,A EHG ∴∠=∠,3tan tan 4EHG A ∴∠==; (3)解:当点O 在BC 上时,如图4,EH Q 为直径,90G ∴∠=︒,90G ACB ∴∠=∠=︒,//BC GH ∴,EOC EHG ∴∠=∠,3tan tan 4EOC EHG ∴∠=∠=, 设3CE x =,则4OC x =,5OE OB x ==,96BC x ∴==, 解得:23x =, 2323CE ∴=⨯=, 当点O 在AB 上时,如图5,FB Q 为直径,90FEB DEB ∴∠=∠=︒,DEB ∴∆为等腰直角三角形,CD CB =Q ,6CE CD CB ∴===,综上所述,使圆心O 落在ABC ∆的内部(不包括边上),CE 的长度范围为:26CE <<.。

2020年中考数学全真模拟卷1(南京专版)(解析版)

2020年中考数学全真模拟卷1(南京专版)(解析版)

2020年中考数学名校地市好题必刷全真模拟卷一(江苏南京专版)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1.2020年2月14日,电影《刺猬索尼克》在美国上映,据悉,该片仅在首映当日就轻松将2100万美元票房收入囊中.数据“2100万“用科学记数法表示为()A .32.110⨯B .40.2110⨯C .80.2110⨯D .72.110⨯【解答】2100万用科学记数法表示为72.110⨯.故选:D .2.计算20202019(4)0.25(-⨯=)A .4-B .1-C .4D .1【解答】原式201920194(4)0.25=-⨯-⨯,20194(40.25)=-⨯-⨯,4(1)=-⨯-,4=,故选:C .3.2764-的立方根是()A .34-B .38C .49-D .916【解答】34- 的立方等于2764-,2764∴-的立方根等于34-.故选:A .4.已知实数a ,b 满足11a b +>+,则下列选项错误的是()A .a b>B .a b->-C .22a b +>+D .22a b>【解答】由不等式的性质得a b >,22a b +>+,a b -<-,22a b >.故选:B .5.与2+最接近的整数是()A .2B .3C .4D .5【解答】 <<,23∴<<,则最接近的有理数是2,2∴+4.故选:C .6.如图,分别以ABC ∆的边AB ,AC 所在直线为对称轴作ABC ∆的对称图形ABD ∆和ACE ∆,150BAC ∠=︒,线段BD 与CE 相交于点O ,连接BE 、ED 、DC 、OA ,有如下结论:①90EAD ∠=︒;②60BOE ∠=︒;③OA 平分BOC ∠;其中正确的结论个数是()A .0个B .3个C .2个D .1个【解答】ABD ∆ 和ACE ∆是ABC ∆的轴对称图形,BAD CAE BAC ∴∠=∠=∠,AB AE =,AC AD =,3360315036090EAD BAC ∴∠=∠-︒=⨯︒-︒=︒,故①正确.1(36090150)602BAE CAD ∴∠=∠=︒-︒-︒=︒,由翻折的性质得,AEC ABD ABC ∠=∠=∠,又EPO BPA ∠=∠ ,60BOE BAE ∴∠=∠=︒,故②正确.ACE ADB ∆≅∆ ,ACE ADB S S ∆∆∴=,BD CE =,BD ∴边上的高与CE 边上的高相等,即点A 到BOC ∠两边的距离相等,OA ∴平分BOC ∠,故③正确.故选:B .二.填空题(本大题共10小题,每小题2分,共20分。

2024年重庆市沙坪坝区中考数学全真模拟试卷及参考答案

2024年重庆市沙坪坝区中考数学全真模拟试卷及参考答案

2024年重庆市沙坪坝区中考数学全真模拟试卷一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)﹣2的相反数是()A.2B.﹣2C.D.2.(4分)六个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.3.(4分)反比例函数的图象一定经过的点是()A.(1,6)B.(﹣1,﹣6)C.(2,﹣3)D.(3,2)4.(4分)如图,直线m∥n,点A在直线m上,点B在直线n上,连接AB,过点A作AC ⊥AB,交直线n于点C.若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.60°5.(4分)如图,在平面直角坐标系中,△OAB和△OCD是以原点O为位似中心的位似图形.若OB=2OD,△OCD的周长为3,则△OAB的周长为()A.6B.9C.12D.306.(4分)估计的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间7.(4分)下列图形都是由同样大小的菱形按照一定规律组成的,其中第①个图形中共有9个菱形,第②个图形中共有12个菱形,第③个图形中共有15个菱形,…,按此规律排列下去,第⑥个图形中的菱形个数为()A.21B.24C.27D.308.(4分)如图,在△ABC中,∠B=30°,点O是边AB上一点,以点O为圆心,以OA 为半径作圆,⊙O恰好与BC相切于点D,连接AD.若AD平分∠CAB,,则线段AC的长是()A.2B.C.D.9.(4分)如图,正方形ABCD中,点E为边BA延长线上一点,点F在边BC上,且AE =CF,连接DF,EF.若∠FDC=α.则∠AEF=()A.90°﹣2αB.45°﹣αC.45°+αD.α10.(4分)已知a>b>0>c>d>e,对多项式a﹣b﹣c﹣d﹣e任意添加绝对值运算(不可添加为单个字母的绝对值或绝对值中含有绝对值的情况)后仍只含减法运算,称这种操作为“绝对领域”,例如:a﹣|b﹣c﹣d|﹣e,a﹣|b﹣c|﹣|d﹣e|等,下列相关说法正确的数是()①一定存在一种“绝对领域”操作使得操作后的式子化简的结果为非负数;②一定存在一种“绝对领域”操作使得操作后的式子化简的结果与原式的和为0;③进行“绝对领域”操作后的式子化简的结果可能有9种结果.A.0B.1C.2D.3二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)(4﹣π)0﹣|﹣3|=.12.(4分)如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.13.(4分)寒假期间,小明、小红二人在《满江红》《流浪地球2》《中国乒乓》《熊出没》四部影片中各自随机选择了一部影片观看(假设两人选择每部影片的机会均等),则二人恰好选择同一部影片观看的概率为.14.(4分)2023年,哈尔滨旅游强势出圈,全市旅游总收入达到1700亿元,据了解,2021年哈尔滨全市旅游总收入为950亿元,若设这两年全市旅游总收入的年平均增长率为x,则可列方程:.15.(4分)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,∠A=45°,AD=6,BC=2,以点C为圆心,CB长为半径画弧交CD于点E,则图中阴影部分面积为.16.(4分)如图,矩形ABCD中,AB=3,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是.17.(4分)若关于x的一元一次不等式组有且仅有3个偶数解,且关于y的分式方程的解为非负数,则所有满足条件的整数m的值之和是.18.(4分)如果一个四位自然数的各数位上的数字互不相等且均不为0,满足a+b+c =d2;那么称这个四位数为“和方数”.例如:四位数2613,因为2+6+1=32,所以2613是“和方数”;四位数2514,因为2+5+1≠42,所以2514不是“和方数”.若是“和方数”,则这个数是;若四位数M是“和方数”,将“和方数”M的千位数字与百位数字对调,十位数字与个位数字对调,得到新数N,若M+N能被33整除,则满足条件的M的最大值是.三、解答题(本大题共8个小题,19题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)y(x+y)+(x+y)(x﹣y);(2).20.(10分)为进一步营造良好的通信科技人才成长环境,提升信息科技素养,培养科技创新后备人才,某学校开展了以“青少年通信科技创新大赛”为主题的科技系列活动,初赛采用标准试题线上答题.其中该校对七、八年级学生进行了初赛测试,现从七、八年级中各随机抽取10名学生的成绩(百分制,单位:分)进行整理、描述和分析(成绩得分用x表示,共分成四组:A:60≤x<70;B:70≤x<80;C:80≤x<90;D:90≤x≤100),下面给出了部分信息:七年级10名学生的成绩是:63,72,76,82,82,86,86,86,97,100八年级10名学生的成绩在C组中的数据是:84,86,82,87,87.七、八年级抽取的学生成绩统计表年级七年级八年级平均数8383中位数84a众数b87八年级抽取的学生成绩扇形统计图请根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)根据以上数据,你认为哪个年级学生的初赛成绩更好?请说明理由(写出一条理由即可);(3)该校七年级有480人、八年级有560人参加了此次初赛测试,请估计两个年级参加初赛测试的成绩不低于90分的共有多少人.21.(10分)如图,在Rt△ABC中,∠B=90°,AD平分∠BAC.小明在刚学完“三角形全等的判定”这节课后,想利用所学知识,推导出△ABD和△ACD面积的比值与AB,AC两边比值的关系.他的思路是:过点D作AC的垂线,垂足为点H,再根据三角形全等来证明△ABD和△ACD的高相等,进一步得到△ABD和△ACD的面积之比等于∠BAC 的两邻边边长之比.请根据小明的思路完成以下作图与填空:(1)用直尺和圆规,过点D作AC的垂线,垂足为点H(只保留作图痕迹).(2)证明:∵DH⊥AC,∴∠AHD=90°=∠B.∵AD平分∠BAC,∴①.在△ABD和△AHD中,∴△ABD≌△AHD(AAS).∴③.∵,,∴.小明再进一步研究发现,只要一个三角形被其任意一内角角平分线分为两个三角形,均有此结论.请你依照题意完成下面命题:如果一个三角形满足被其任意一内角角平分线分为两个三角形,那么④.22.(10分)远方食品公司有甲、乙两个组共36名工人.甲组每天制作6400个粽子,乙组每天制作12000个粽子.已知乙组每人每天制作的粽子数量是甲组每人每天制作粽子数量的.(1)求甲、乙两组各有多少名工人?(2)为了提高粽子的日产量,公司决定从乙组抽调部分人员到甲组中,抽调后甲组每人每天制作粽子数量提高,而乙组每人每天制作粽子数量降低.若每天至少生产20300个粽子,则至少需要抽调多少人到甲工作组?23.(10分)如图1,在四边形ABCD中,AB∥DC,AD=BC=5,DC=4,AB=10,点P 在四边形的边上,且沿着点B→C→D→A运动.设点P的运动路程为x,记AB、BP、P A 围成的面积为S,y1=S,.(1)请直接写出y1与x的函数关系式,并写出x的取值范围;(2)如图2,平面直角坐标系中已画出函数y2的图象,请在同一坐标系中画出函数y1的图象,并根据函数图象,写出函数y的一条性质;(3)结合y1与y2的函数图象,直接写出当y1>y2时,x的取值范围.(结果保留一位小数,误差范围不超过0.2).24.(10分)今年夏季我市持续高温引发多地山火.如图,某地山火火口AB宽10米,受风力等因素的影响,火源头A正沿东北方向的AD蔓延,火源头B正沿北偏东60°方向的BC蔓延,山火救援队在前方赶造一条阻燃带CD,已知CD∥AB,AB与CD间的距离为40米.(1)求阻燃带CD的长度(精确到个位);(2)若救援队赶造阻燃带的速度为每小时12米,火源头A的蔓延速度是每小时15米,火源头B的蔓延速度是每小时20米,受热浪影响,火源头到来前10分钟无法工作.通过计算说明,救援队能否在最先到达阻燃带CD的火源头到来前10分钟赶造好阻燃带?(参考数据:,)25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2过点(2,)且交x轴于点A(1,0),点B,交y轴于点C,顶点为D,连接AC,BC.(1)求抛物线的表达式.(2)点P是直线BC下方抛物线上的一动点,过点P作PM∥AC交x轴于点M,PH∥x 轴交BC于点H,求PM+PH的最大值,以及此时点P的坐标.(3)连接DA,把原抛物线沿射线DA方向平移个单位长度后交x轴于A,B两点(A′在B′右侧),在新抛物线上是否存在一点G,使得∠GA′B′=45°,若存在,求出点G的坐标,若不存在,请说明理由.26.(10分)已知△ABC为等边三角形,D是边AB上一点,连接CD,点E为CD上一点,连接BE.(1)如图1,延长BE交AC于点F,若∠CBF=45°,,求CF的长;(2)如图2,将△BEC绕点C顺时针旋转60°到△AGC,延长BC至点H,使得CH=BD,连接AH交CG于点N,求证CE=DE+2GN;(3)如图3,AB=8,点H是BC上一点,且BD=2CH,连接DH,点K是AC上一点,CK=AD,连接DK,BK,将△BKD沿BK翻折到△BKQ,连接CQ,当△ADK的周长最小时,直接写出△CKQ的面积.2024年重庆市沙坪坝区中考数学全真模拟试卷参考答案一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.A;2.C;3.C;4.B;5.A;6.B;7.B;8.C;9.B;10.B 二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.﹣2;12.250;13.;14.950(1+x)2=1700;15.6﹣π;16.2;17.8;18.8354;6213三、解答题(本大题共8个小题,19题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(1)xy+x2;(2).;20.86.5;86;30;21.∠BAD=∠HAD;BD=DH;这两个三角形的面积之比,等于这个角的两条邻边边长之比.;22.(1)甲组有16名工人,乙组有20名工人;(2)至少需要抽调7人到甲工作组.;23.(1)y1=;(2)作图见解答过程;当0<x<5时,y随x的增大而增大;当5<x<9时,y随x的增大而不变;当9<x<14时,y随x的增大而小;(3)3.2<x<13.2.;24.(1)阻燃带CD的长度约为39米;(2)救援队能在最先到达阻燃带CD的火源头到来前10分钟赶造好阻燃带,理由见解答.;25.(1);(2)最大值为,此时;(3)点G的坐标为:(1,﹣)或(﹣2,).;26.(1)2.(2)详见解答.(3)4.。

【解析版】潍坊市中考数学模拟试卷(一)

【解析版】潍坊市中考数学模拟试卷(一)

山东省潍坊市中考数学模拟试卷(一)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.计算的结果是()A. 2 B.±2 C.﹣2 D.2.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A. 64×105 B. 6.4×105 C. 6.4×106 D. 6.4×1073.如图是五个相同的正方体组成的一个几何体,它的左视图是()A. B. C. D.4.已知抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),则代数式m2﹣2m+的值为() A. B. C. D.5.如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A. 1 B. C. D.6.如图,AC为⊙O的直径,AB为⊙O的弦,∠A=35°,过点C的切线与OB的延长线相交于点D,则∠D=()A. 20° B. 30° C. 40° D. 35°7.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD 交于点O,则四边形AB1OD的周长是()A. B. 2 C. 1+ D. 38.如图,小正方形的边长均为1,关于△ABC和△DEF的下列说法正确的是()A.△ABC和△DEF一定不相似B.△ABC和△DEF是位似图形C.△ABC和△DEF相似且相似比是1:2D.△ABC和△DEF相似且相似比是1:49.已知二次函数y=ax2+bx+c图象如图所示,则下面结论成立的是()A. a>0,bc<0 B. a<0,bc>0 C. a>0,bc>0 D. a<0,bc<010.如图,是一次函数y=kx+b与反比例函数的图象,则关于方程的解为()A. x1=1,x2=2 B. x1=﹣2,x2=﹣1 C. x1=1,x2=﹣2 D. x1=2,x2=﹣111.已知直线y=x﹣3与函数y=的图象相交于点(a,b),则a2+b2的值是() A. 13 B. 11 C. 7 D. 512.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.πcm2 B.πcm2 C.cm2 D.cm2二、填空题(本大题共6小题,共15分,只要求填写最后结果,每小题填对得3分)13.把a3+ab2﹣2a2b分解因式的结果是.14.数据:1,5,6,5,6,5,6,6的众数是,中位数是,方差是.15.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是米.(精确到1米)16.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为度.17.把两个半径为5和一个半径为8的圆形纸片放在桌面上,使它们两两外切,若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.18.如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x 轴的直线l2的一个交点;…按照这样的规律进行下去,点A n的坐标为.三、解答题(本大题共6小题,共66分,解答要写出必要的文字说明、证明过程或演算步骤.)19.“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.20.如图所示,江北第一楼﹣﹣超然楼,位于济南大明湖畔,始建于元代,是一座拥有近千年历史的名楼.某学校九年级数学课外活动小组的学生准备利用假期测量超然楼的高度,在大明湖边一块平地上,甲和乙两名同学利用所带工具测量了一些数据,下面是他们的一段对话:甲:我站在此处看楼顶仰角为45°.乙:我站在你后面37m处看楼顶仰角为30°.甲:我的身高是1.7m.乙:我的身高也是1.7m.请你根据两位同学的对话,参考右面的图形计算超然楼的高度,结果精确到1米.(请根据下列数据进行计算)21.如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.(1)求证:CD为⊙O的切线;若CD=4,⊙O的半径为3,求BD的值.22.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)… 30 40 50 60 …每天销售量y(件)… 500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?23.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.24.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣6,0)、B (0,﹣8)两点.(1)求出直线AB的函数解析式;若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.山东省潍坊市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.计算的结果是()A. 2 B.±2 C.﹣2 D.考点:算术平方根.分析:即为4的算术平方根,根据算术平方根的意义求值.解答:解:=2.故选A.点评:本题考查了算术平方根.关键是理解算式是意义.2.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A. 64×105 B. 6.4×105 C. 6.4×106 D. 6.4×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:6 400 000=6.4×106,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是五个相同的正方体组成的一个几何体,它的左视图是()A. B. C. D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看易得第一列有1个正方形,第二列有2个正方形.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.已知抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),则代数式m2﹣2m+的值为() A. B. C. D.考点:抛物线与x轴的交点.分析:根据图象上点的坐标性质得出m2﹣2m=﹣1,进而代入求出即可.解答:解:∵抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),∴m2﹣2m+1=0,∴m2﹣2m=﹣1,则代数式m2﹣2m+=﹣1+=.故选:B.点评:此题主要考查了函数图象上点的坐标性质以及整体思想的应用,求出m2﹣2m=﹣1是解题关键.5.如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A. 1 B. C. D.考点:弧长的计算;特殊角的三角函数值.专题:压轴题.分析:扇形的弧长=圆锥的底面圆的周长.利用弧长公式计算.解答:解:设圆锥底面半径为R,∵cos∠BAE==,∴∠BAE=30°,∠EAD=60°,弧DE===2πR,∴R=.故选C.点评:熟记特殊角的三角函数值和掌握弧长公式是解题的关键.6.如图,AC为⊙O的直径,AB为⊙O的弦,∠A=35°,过点C的切线与OB的延长线相交于点D,则∠D=()A. 20° B. 30° C. 40° D. 35°考点:切线的性质;圆周角定理.专题:几何图形问题.分析:连接BC,则∠ABC=90°,且∠A=35°,∠OCB=55°,又△BCO为等腰三角形,即有∠COB=70°,即可求∠D=90°﹣∠COB=20°.解答:解:连接BC,∴∠OCD=90°,∴∠OCB=55°,在△OCB中,OB=OC;即有∠COB=70°;∴∠D=90°﹣∠COB=20°.故选A.点评:本题利用了切线的概念和性质的应用以及三角形内角和为180°的知识点;在直角三角形中,同角或等角的余角相等;7.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD 交于点O,则四边形AB1OD的周长是()A. B. 2 C. 1+ D. 3考点:旋转的性质;正方形的性质.专题:计算题;压轴题.分析:连接AC,由正方形的性质可知∠CAB=45°,由旋转的性质可知∠B1AB=45°,可知点B1在线段AC上,由此可得B1C=B1O,即AB1+B1O=AC,同理可得AD+DO=AC.解答:解:连接AC,∵四边形ABCD为正方形,∴∠CAB=45°,∵正方形ABCD绕点A逆时针旋转45°,∴∠B1AB=45°,∴点B1在线段AC上,易证△OB1C为等腰直角三角形,∴B1C=B1O,∴AB1+B1O=AC==,同理可得AD+DO=AC=,∴四边形AB1OD的周长为2.故选:B.点评:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在线段AC上.8.如图,小正方形的边长均为1,关于△ABC和△DEF的下列说法正确的是()A.△ABC和△DEF一定不相似B.△ABC和△DEF是位似图形C.△ABC和△DEF相似且相似比是1:2D.△ABC和△DEF相似且相似比是1:4考点:相似三角形的判定与性质.专题:网格型.分析:先利用勾股定理分别计算两个三角形三边的长,再计算比值,得出三条对应边成比例,利用相似三角形的判定可知两个三角形相似.解答:解:∵AB=,BC=2,AC==,DE==,DF==2,EF=4,∴===,∴△ABC∽△DEF.故选C.点评:本题考查了勾股定理、相似三角形的判定和性质.9.已知二次函数y=ax2+bx+c图象如图所示,则下面结论成立的是()A. a>0,bc<0 B. a<0,bc>0 C. a>0,bc>0 D. a<0,bc<0考点:二次函数图象与系数的关系.专题:常规题型.分析:由抛物线的开口方向判断a的符号,然后结合对称轴判断b的符号,再由抛物线与y轴的交点判断c的符号,从而得出bc的符号解答即可.解答:解:由抛物线的开口向上知a>0,与y轴的交点为在y轴的负半轴上得c<0,对称轴为x=>0,a>0,得b<0,∴bc>0.故选C.点评:本题考查了二次函数图象与系数的关系,属于基础题,关键是掌握二次函数y=ax2+bx+c系数符号的确定.10.如图,是一次函数y=kx+b与反比例函数的图象,则关于方程的解为()A. x1=1,x2=2 B. x1=﹣2,x2=﹣1 C. x1=1,x2=﹣2 D. x1=2,x2=﹣1考点:反比例函数与一次函数的交点问题.专题:计算题.分析:根据题意可知,函数图象的交点坐标即为方程的解,根据格点找到交点坐标就可找到方程的解.解答:解:由图可知,两函数图象的交点坐标为(1,2);(﹣2,﹣1);则两横坐标为1和﹣2,∵函数的交点坐标符合两个函数的解析式,∴函数的交点坐标就是方程组的解,∴x=1或x=﹣2,故选C.点评:本题考查了反比例函数与一次函数的交点问题,找到两图象的交点坐标是解题的关键.11.已知直线y=x﹣3与函数y=的图象相交于点(a,b),则a2+b2的值是() A. 13 B. 11 C. 7 D. 5考点:反比例函数与一次函数的交点问题.专题:计算题.分析:利用反比例函数与一次函数的交点问题得到b=a﹣3,b=,则a﹣b=3,ab=2,再利用完全平方公式变形得到a2+b2=(a﹣b)2+2ab,然后利用整体代入的方法计算即可.解答:解:根据题意得b=a﹣3,b=,所以a﹣b=3,ab=2,所以a2+b2=(a﹣b)2+2ab=32+2×2=13.故选A.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.12.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.πcm2 B.πcm2 C.cm2 D.cm2考点:扇形面积的计算;等腰直角三角形.专题:压轴题;探究型.分析:过点C作CD⊥OB,CE⊥OA,则△AOB是等腰直角三角形,由∠ACO=90°,可知△AOC 是等腰直角三角形,由HL定理可知Rt△OCE≌Rt△ACE,故可得出S扇形OEC=S扇形AEC,与弦OC围成的弓形的面积等于与弦AC所围成的弓形面积,S阴影=S△AOB即可得出结论.解答:解:过点C作CD⊥OB,CE⊥OA,∵OB=OA,∠AOB=90°,∴△AOB是等腰直角三角形,∵OA是直径,∴∠ACO=90°,∴△AOC是等腰直角三角形,∵CE⊥OA,∴OE=AE,OC=AC,在Rt△OCE与Rt△ACE中,∵,∴Rt△OCE≌Rt△ACE,∵S扇形OEC=S扇形AEC,∴与弦OC围成的弓形的面积等于与弦AC所围成的弓形面积,同理可得,与弦OC围成的弓形的面积等于与弦BC所围成的弓形面积,∴S阴影=S△AOB=×1×1=cm2.故选C.点评:本题考查的是扇形面积的计算与等腰直角三角形的判定与性质,根据题意作出辅助线,构造出直角三角形得出S阴影=S△AOB是解答此题的关键.二、填空题(本大题共6小题,共15分,只要求填写最后结果,每小题填对得3分)13.把a3+ab2﹣2a2b分解因式的结果是a(a﹣b)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再利用完全平方公式继续进行二次因式分解.解答:解:a3+ab2﹣2a2b,=a(a2+b2﹣2ab),=a(a﹣b)2.点评:本题主要考查提公因式法分解因式和完全平方公式分解因式,进行二次因式分解是解本题的关键.14.数据:1,5,6,5,6,5,6,6的众数是6,中位数是 5.5,方差是.考点:众数;中位数;方差.分析:根据方差,众数,中位数的定义解答.解答:解:将数据从小到大依次排列为1,5,5,5,6,6,6,6.众数是6,中位数是(5+6)÷2=5.5,平均数是(1+5×3+6×4)÷8=40÷8=5.方差为[(1﹣5)2+3(5﹣5)2+4(5﹣6)2]=.故填6,5.5,.点评:一组数据中出现次数最多的数据叫做众数.样本方差描述了一组数据围绕平均数波动的大小.把这组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.中位数把样本数据分成了相同数目的两部分.15.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是18米.(精确到1米)考点:二次函数的应用.专题:压轴题.分析:由题可知,E、F两点纵坐标为8,代入解析式后,可求出二者的横坐标,F的横坐标减去E 的横坐标即为EF的长.解答:解:由“在该抛物线上距水面AB高为8米的点”,可知y=8,把y=8代入y=﹣x2+10得:x=±4,∴由两点间距离公式可求出EF=8≈18(米).点评:以丽水市“古廊桥文化”为背景呈现问题,考查了现实中的二次函数问题,赋予传统试题新的活力,感觉不到“老调重弹”,在考查提取、筛选信息,分析、解决实际问题等能力的同时,发挥了让学生“熏陶文化,保护遗产”的教育功能.16.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为85度.考点:三角形内角和定理.专题:压轴题.分析:先根据∠ADF=100°求出∠MDB的度数,再根据三角形内角和定理得出∠BMD的度数即可.解答:解:∵∠ADF=100°,∠EDF=30°,∴∠MDB=180°﹣∠ADF﹣∠EDF=180°﹣100°﹣30°=50°,∴∠BMD=180°﹣∠B﹣∠MDB=180°﹣45°﹣50°=85°.故答案为:85.点评:本题考查的是三角形内角和定理,即三角形内角和是180°.17.把两个半径为5和一个半径为8的圆形纸片放在桌面上,使它们两两外切,若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.考点:相切两圆的性质.专题:计算题;作图题.分析:由题意作出图形,要求则这个大圆形纸片的最小半径,则在△APO中,将OA、OP分别用R表示后由勾股定理可得R值,即这个大圆形纸片的最小半径.解答:解:如图所示,⊙A、⊙B半径为5,⊙C半径为8,设⊙O半径为R.连接AB、BC、CA,则AB=10,BC=CA=13,过C作CP⊥AB,则P是AB中点.∴AP=5,在△ACP中由勾股定理CP2=AC2﹣AP2,∴CP=12,∵OC=R﹣8,∴OP=20﹣R,在△APO中,∵OA=R﹣5,AP=5,∴由勾股定理AP2=AO2﹣OP2,即52=(R﹣5)2﹣2,∴R=,则这个大圆形纸片的最小半径等于.点评:本题考查了相切圆的性质,以及勾股定理的应用,同学们应熟练掌握.18.如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x 轴的直线l2的一个交点;…按照这样的规律进行下去,点A n的坐标为().考点:切线的性质;勾股定理.专题:压轴题;规律型.分析:根据题意,可以首先求得A1(,1),A2(,2),A3(,3).根据这些具体值,不难发现:A n的纵坐标是n,横坐标是.解答:解:∵点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点,∴A1的纵坐标为1,横坐标为:=,即A1(,1);同理可求:A2(,2),A3(,3)∴根据这些具体值,得出规律:A n的纵坐标是n,横坐标是.即A n的坐标为().故答案为:().点评:此题可以首先求得几个具体值,然后进一步发现坐标和脚码的规律.三、解答题(本大题共6小题,共66分,解答要写出必要的文字说明、证明过程或演算步骤.)19.“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.考点:列表法与树状图法.分析:(1)利用频数÷百分比=总数,求得总人数;根据条形统计图先求得C类型的人数,然后根据百分比=频数÷总数,求得百分比,从而可补全统计图;(3)用居民区的总人数×40%即可;(4)首先画出树状图,然后求得所有的情况以及他第二个恰好吃到的是C粽的情况,然后利用概率公式计算即可.解答:解:(1)60÷10%=600(人)答:本次参加抽样调查的居民由600人;600﹣180﹣60﹣240=120,120÷600×100%=20%,100%﹣10%﹣40%﹣20%=30%补全统计图如图所示:(3)8000×40%=3200(人)答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图:P(C粽)=.点评:本题主要考查的是条形统计图、扇形统计图以及概率的计算,掌握画树状图或列表求概率的方法是解题的关键.20.如图所示,江北第一楼﹣﹣超然楼,位于济南大明湖畔,始建于元代,是一座拥有近千年历史的名楼.某学校九年级数学课外活动小组的学生准备利用假期测量超然楼的高度,在大明湖边一块平地上,甲和乙两名同学利用所带工具测量了一些数据,下面是他们的一段对话:甲:我站在此处看楼顶仰角为45°.乙:我站在你后面37m处看楼顶仰角为30°.甲:我的身高是1.7m.乙:我的身高也是1.7m.请你根据两位同学的对话,参考右面的图形计算超然楼的高度,结果精确到1米.(请根据下列数据进行计算)考点:解直角三角形的应用-仰角俯角问题.分析:首先利用CE为超然楼的高度,构造直角三角形,进而利用锐角三角函数关系tan30°=得出CD的长,进而得出EC的长即可得出答案.解答:解:设根据题意画出图形得出:AB=37m,AM=BF=1.7m,∠CAD=30°,∠CBD=45°,故CD=BD,AM=DE=1.7m,∵tan30°====,∴解得:DC===≈50.5(m),则CE=DC+DE=50.5+1.7=52.2≈52(m),答:超然楼的高度为52m.点评:此题主要考查了解直角三角形中仰角问题的应用,根据锐角三角函数的关系得出CD的长是解题关键.21.如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.(1)求证:CD为⊙O的切线;若CD=4,⊙O的半径为3,求BD的值.考点:切线的判定;圆周角定理;相似三角形的判定与性质.分析:(1)连接OC,根据等腰三角形的性质求出∠OCB=∠OBC,根据AB是直径得出∠ABC=90°,求出∠A+∠ABC=90°,代入求出∠OCB+∠BCD=90°,根据切线的判定推出即可;证△DCB∽△DAC,得出CD2=BD×DA,代入即可求出BD.解答:(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠A+∠ABC=90°,又∵∠BCD=∠A,∴∠OCB+∠BCD=90°,∴∠OCD=90°,即OC⊥CD又∵点C在⊙O上,∴CD是⊙O的切线.解:∵∠BCD=∠A,∠D=∠D,∴△BCD∽△CAD,∴,即CD2=AD•BD又∵CD=4,AO=OB=3,∴16=(BD+6)BD,解得:BD=2.点评:本题考查了切线的判定,圆周角定理,相似三角形的性质和判定,等腰三角形的性质等知识点,主要考查学生综合运用性质进行推理的能力,题目比较典型,难度适中.22.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)… 30 40 50 60 …每天销售量y(件)… 500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?考点:二次函数的应用;一次函数的应用.专题:压轴题;图表型.分析:(1)描点,由图可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;利润=销售总价﹣成本总价=单件利润×销售量.据此得表达式,运用性质求最值;(3)根据自变量的取值范围结合函数图象解答.解答:解:(1)画图如图;由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0)∵这个一次函数的图象经过(30,500)(40,400)这两点,∴解得∴函数关系式是:y=﹣10x+800(0≤x≤80)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x﹣20)(﹣10x+800)=﹣10x2+1000x﹣16000=﹣10(x﹣50)2+9000∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数W=﹣10(x﹣50)2+9000,当x≤45时,W的值随着x值的增大而增大,∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.点评:根据函数解析式求出的最值是理论值,与实际问题中的最值不一定相同,需考虑自变量的取值范围.23.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.考点:解直角三角形;等腰三角形的性质;勾股定理;梯形;相似三角形的判定与性质.专题:压轴题.分析:(1)作梯形的两条高,根据直角三角形的性质和矩形的性质求解;平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;(3)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.解答:解:(1)如图①,过A、D分别作AK⊥BC于K,DH⊥BC于H,则四边形ADHK是矩形.∴KH=AD=3.在Rt△ABK中,AK=AB•sin45°=4•=4,BK=AB•cos45°=4=4.在Rt△CDH中,由勾股定理得,HC==3.∴BC=BK+KH+HC=4+3+3=10.如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG.∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴∠NMC=∠DGC.又∵∠C=∠C,∴△MNC∽△GDC.∴,即.解得,.(3)分三种情况讨论:①当NC=MC时,如图③,即t=10﹣2t,∴.②当MN=NC时,如图④,过N作NE⊥MC于E.解法一:由等腰三角形三线合一性质得:EC=MC=(10﹣2t)=5﹣t.在Rt△CEN中,cosC==,又在Rt△DHC中,cosC=,∴.解得t=.解法二:∵∠C=∠C,∠DHC=∠NEC=90°,∴△NEC∽△DHC.∴,即.∴t=.③当MN=MC时,如图⑤,过M作MF⊥CN于F点.FC=NC=t.解法一:(方法同②中解法一),解得.解法二:∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC.∴,即,∴.综上所述,当t=、t=或t=时,△MNC为等腰三角形.点评:注意梯形中常见的辅助线:平移一腰、作两条高.构造等腰三角形的时候的题目,注意分情况讨论.此题的知识综合性较强,能够从中发现平行四边形、等腰三角形等,根据它们的性质求解.24.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣6,0)、B (0,﹣8)两点.(1)求出直线AB的函数解析式;若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)利用待定系数法即可求解;首先根据抛物线的顶点在圆上且与y轴平行即可确定抛物线的顶点坐标,再根据待定系数法求函数解析式;(3)三角形ABC的面积为15,所以假设三角形PDE的面积为1,因为DE长为2,所以P到DE 的距离为1,则P的坐标是(x,1),代入抛物线解析式即可求解.解答:解:(1)设直线AB的解析式为y=kx+b,。

浙江省金华市四校2024届中考数学全真模拟试题含解析

浙江省金华市四校2024届中考数学全真模拟试题含解析

浙江省金华市四校2024学年中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A .2 cmB .32cmC .42cmD .4cm2.如图,在△ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则△PBQ 的面积S 随出发时间t 的函数关系图象大致是( )A .B .C .D .3.解分式方程2x 23x 11x++=--时,去分母后变形为 A .()()2x 23x 1++=- B .()2x 23x 1-+=-C .()()2x 231?x -+=- D .()()2x 23x 1-+=- 4.下列计算,结果等于a 4的是( )A .a+3aB .a 5﹣aC .(a 2)2D .a 8÷a 2 5.一个几何体的三视图如图所示,则该几何体的表面积是( )A .24+2πB .16+4πC .16+8πD .16+12π6.用配方法解方程x 2﹣4x+1=0,配方后所得的方程是( )A .(x ﹣2)2=3B .(x+2)2=3C .(x ﹣2)2=﹣3D .(x+2)2=﹣37.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-的值为()A .7-B .3-C .7D .38.如图,在Rt △ABC 中,∠C=90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E ,若BC=3,则DE 的长为( )A .1B .2C .3D .49.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为( )A .14.4×103B .144×102C .1.44×104D .1.44×10﹣410.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .11.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A .能中奖一次B .能中奖两次C .至少能中奖一次D .中奖次数不能确定 12.下列解方程去分母正确的是( )A .由,得2x ﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是_________.14.如图,在菱形ABCD中,AB=3,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC 于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为_____.15.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________________.16.在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_____m.17.若一个棱柱有7个面,则它是______棱柱.18.如图,在菱形ABCD中,点E、F在对角线BD上,BE=DF=13BD,若四边形AECF为正方形,则tan∠ABE=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积. (2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,①求证:BE′+BF=2,②求出四边形OE′BF的面积.20.(6分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.求甲组加工零件的数量y与时间x之间的函数关系式.求乙组加工零件总量a的值.21.(6分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?22.(8分)解不等式组:2(2)3{3122x xx+>-≥-,并将它的解集在数轴上表示出来.23.(8分)(1)观察猜想如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE之间的数量关系为______;(2)问题解决如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;(3)拓展延伸如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.24.(10分)如图所示,在▱ABCD中,E是CD延长线上的一点,BE与AD交于点F,DE=12 CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求▱ABCD的面积.25.(10分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C 测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)26.(12分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.27.(12分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.(1)判断:一个内角为120°的菱形等距四边形.(填“是”或“不是”)(2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为端点均为非等距点的对角线长为(3)如图1,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连结A D,AC,BC,若四边形ABCD 是以A为等距点的等距四边形,求∠BCD的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.【题目详解】L=1206180π⨯=4π(cm);圆锥的底面半径为4π÷2π=2(cm),226242-cm).故选C.【题目点拨】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=2n r180π;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.2、C【解题分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【题目详解】由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=12PB•BQ=12(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选C.【题目点拨】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.3、D【解题分析】试题分析:方程22311xx x++=--,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.考点:解分式方程的步骤.4、C【解题分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【题目详解】A.a+3a=4a,错误;B.a5和a不是同类项,不能合并,故此选项错误;C.(a2)2=a4,正确;D.a8÷a2=a6,错误.故选C.【题目点拨】本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.5、D【解题分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【题目详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16, 故选:D .【题目点拨】 本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.6、A【解题分析】方程变形后,配方得到结果,即可做出判断.【题目详解】方程2410x x +=﹣,变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣),故选A .【题目点拨】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.7、D【解题分析】由根与系数的关系得出x 1+x 2=5,x 1•x 2=2,将其代入x 1+x 2−x 1•x 2中即可得出结论.【题目详解】解:∵方程x 2−5x +2=0的两个解分别为x 1,x 2,∴x 1+x 2=5,x 1•x 2=2,∴x 1+x 2−x 1•x 2=5−2=1.故选D .【题目点拨】本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x 1+x 2=5,x 1•x 2=2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.8、A【解题分析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE 垂直平分AB ,∴DA=DB ,∴∠B=∠DAB ,∵AD 平分∠CAB ,∴∠CAD=∠DAB , ∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考点:线段垂直平分线的性质9、C【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【题目详解】14400=1.44×1.故选C.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、B【解题分析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.11、D【解题分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【题目详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【题目点拨】解答此题要明确概率和事件的关系:()①,为不可能事件;=P A0()=②为必然事件;P A1()③<<为随机事件.0P A112、D【解题分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【题目详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【题目点拨】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、a<﹣1【解题分析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.14、1或33 【解题分析】 由四边形ABCD 是菱形,得到BC ∥AD ,由于EF ∥AB ,得到四边形ABFE 是平行四边形,根据平行四边形的性质得到EF ∥AB ,于是得到EF=AB=3,当△EFG 为等腰三角形时,①EF=GE=3时,于是得到DE=DG=12AD÷32=1,②GE=GF 时,根据勾股定理得到DE=33. 【题目详解】 解:∵四边形ABCD 是菱形,∠B=120°,∴∠D=∠B=120°,∠A=180°-120°=60°,BC ∥AD ,∵EF ∥AB ,∴四边形ABFE 是平行四边形,∴EF ∥AB ,∴EF=AB=3,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG ,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG 为等腰三角形时,当EF=EG 时,EG=3,如图1,过点D 作DH ⊥EG 于H ,∴EH=12EG=32, 在Rt △DEH 中,DE=0cos30HE =1,GE=GF时,如图2,过点G作GQ⊥EF,∴EQ=123Rt△EQG中,∠QEG=30°,∴EG=1,过点D作DP⊥EG于P,∴PE=12EG=12,同①的方法得,3当EF=FG时,由∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为13【题目点拨】本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.15、4【解题分析】∵点C是线段AD的中点,若CD=1,∴AD=1×2=2,∵点D是线段AB的中点,∴AB=2×2=4,故答案为4.16、13【解题分析】根据同时同地物高与影长成比列式计算即可得解.【题目详解】解:设旗杆高度为x米,由题意得,1.5x=326,解得x=13.故答案为13.【题目点拨】本题考查投影,解题的关键是应用相似三角形.17、5【解题分析】分析:根据n棱柱的特点,由n个侧面和两个底面构成,可判断.详解:由题意可知:7-2=5.故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.18、1 3【解题分析】利用正方形对角线相等且互相平分,得出EO=AO=12BE,进而得出答案.【题目详解】解:∵四边形AECF为正方形,∴EF与AC相等且互相平分,∴∠AOB=90°,AO=EO=FO,∵BE=DF=13 BD,∴BE=EF=FD,∴EO=AO=12 BE,∴tan∠ABE=AOBO=13.故答案为:1 3【题目点拨】此题主要考查了正方形的性质以及锐角三角函数关系,正确得出EO=AO=12BE 是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、 (1)3;(2)①2,②3【解题分析】分析:(1)重合部分是等边三角形,计算出边长即可.()2①证明:在图3中,取AB 中点E,证明OEE '≌OBF ,即可得到,EE BF '=2BE BF BE EE BE +=+=''=', ②由①知,在旋转过程60°中始终有OEE '≌,OBF 四边形OE BF '的面积等于OEB S=3.详解:(1)∵四边形为菱形,120,ADC ∠=︒∴60,ADO ∠=︒∴ABD △为等边三角形∴30,60,DAO ABO ∠=︒∠=︒∵AD //,A O '∴60,A OB ∠=︒'∴EOB △为等边三角形,边长2,OB = ∴重合部分的面积:23234⨯= ()2①证明:在图3中,取AB 中点E,由上题知,60,60,EOB E OF ∠=︒∠=︒'∴,EOE BOF ∠=∠'又∵2,60,EO OB OEE OBF '==∠=∠=︒∴OEE '≌OBF ,∴,EE BF '=∴2BE BF BE EE BE +=+=''=',②由①知,在旋转过程60°中始终有OEE '≌,OBF∴四边形OE BF '的面积等于OEB S 点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.20、(1)y=60x ;(2)300【解题分析】(1)由题图可知,甲组的y 是x 的正比例函数.设甲组加工的零件数量y 与时间x 的函数关系式为y=kx.根据题意,得6k=360,解得k=60.所以,甲组加工的零件数量y 与时间x 之间的关系式为y=60x.(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍. 所以a-100100=24.8-2.82⨯,解得a=300. 21、(1)y 1=(120-a )x (1≤x≤125,x 为正整数),y 2=100x-0.5x 2(1≤x≤120,x 为正整数);(2)110-125a (万元),10(万元);(3)当40<a <80时,选择方案一;当a=80时,选择方案一或方案二均可;当80<a <100时,选择方案二.【解题分析】(1)根据题意直接得出y 1与y 2与x 的函数关系式即可;(2)根据a 的取值范围可知y 1随x 的增大而增大,可求出y 1的最大值.又因为﹣0.5<0,可求出y 2的最大值; (3)第三问要分两种情况决定选择方案一还是方案二.当2000﹣200a >1以及2000﹣200a <1.【题目详解】解:(1)由题意得:y 1=(120﹣a )x (1≤x≤125,x 为正整数),y 2=100x ﹣0.5x 2(1≤x≤120,x 为正整数);(2)①∵40<a <100,∴120﹣a >0,即y 1随x 的增大而增大,∴当x=125时,y 1最大值=(120﹣a )×125=110﹣125a (万元)②y 2=﹣0.5(x ﹣100)2+10,∵a=﹣0.5<0,∴x=100时,y 2最大值=10(万元);(3)∵由110﹣125a >10,∴a <80,∴当40<a <80时,选择方案一;由110﹣125a=10,得a=80,∴当a=80时,选择方案一或方案二均可;由110﹣125a <10,得a >80,∴当80<a <100时,选择方案二.考点:二次函数的应用.22、-1≤x<4,在数轴上表示见解析.【解题分析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:()223{3x 122x x +>-≥-①②, 由①得,x<4;由②得,x ⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:23、(1)BC=BD+CE ,(2)10(3)32【解题分析】(1)证明△ADB ≌△EAC ,根据全等三角形的性质得到BD=AC ,EC=AB ,即可得到BC 、BD 、CE 之间的数量关系;(2)过D 作DE ⊥AB ,交BA 的延长线于E ,证明△ABC ≌△DEA ,得到DE=AB=2,AE=BC=4,Rt △BDE 中,BE=6,根据勾股定理即可得到BD 的长;(3)过D 作DE ⊥BC 于E ,作DF ⊥AB 于F ,证明△CED ≌△AFD ,根据全等三角形的性质得到CE=AF ,ED=DF ,设AF=x ,DF=y ,根据CB=4,AB=2,列出方程组,求出,x y 的值,根据勾股定理即可求出BD 的长.【题目详解】解:(1)观察猜想结论:BC=BD+CE,理由是:如图①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)问题解决如图②,过D作DE⊥AB,交BA的延长线于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:2262210BD=+=;(3)拓展延伸如图③,过D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,设AF=x,DF=y,则42x yx y+=⎧⎨+=⎩,解得:13,xy=⎧⎨=⎩∴BF=2+1=3,DF=3,由勾股定理得:223332BD=+=.【题目点拨】考查全等三角形的判定与性质,勾股定理,二元一次方程组的应用,熟练掌握全等三角形的判定与性质是解题的关键.24、(1)见解析;(2)16【解题分析】试题分析:(1)要证△ABF ∽△CEB ,需找出两组对应角相等;已知了平行四边形的对角相等,再利用AB ∥CD ,可得一对内错角相等,则可证.(2)由于△DEF ∽△EBC ,可根据两三角形的相似比,求出△EBC 的面积,也就求出了四边形BCDF 的面积.同理可根据△DEF ∽△AFB ,求出△AFB 的面积.由此可求出▱ABCD 的面积.试题解析:(1)证明:∵四边形ABCD 是平行四边形∴∠A=∠C ,AB ∥CD∴∠ABF=∠CEB∴△ABF ∽△CEB(2)解:∵四边形ABCD 是平行四边形∴AD ∥BC ,AB 平行且等于CD∴△DEF ∽△CEB ,△DEF ∽△ABF∵DE=12CD ∴21()9DEF CEB SDE S EC ==, 21()4DEF ABF SDE S AB == ∵S △DEF =2S △CEB =18,S △ABF =8,∴S 四边形BCDF =S △BCE -S △DEF =16∴S 四边形ABCD =S 四边形BCDF +S △ABF =16+8=1.考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.25、52【解题分析】根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根据CF=BD可建立方程,解出即可.【题目详解】如图,过点C作CF⊥AB于点F.设塔高AE=x,由题意得,EF=BE−CD=56−27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则29411636520.7533AF xCF xtan+=≈=+︒',在Rt△ABD中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD,∴41165633x x+=+,解得:x=52,答:该铁塔的高AE为52米.【题目点拨】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.26、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.【解题分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.【题目详解】(1)证明:∵四边形ABCD 是正方形,∴AB=AD ,∠B=∠D=90°,在Rt △ABE 和Rt △ADF 中,∵AD AB AF AE⎧⎨⎩==, ∴Rt △ADF ≌Rt △ABE (HL )∴BE=DF ;(2)四边形AEMF 是菱形,理由为:证明:∵四边形ABCD 是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC (正方形四条边相等),∵BE=DF (已证),∴BC-BE=DC-DF (等式的性质),即CE=CF ,在△COE 和△COF 中,CE CF ACB ACD OC OC ⎪∠⎪⎩∠⎧⎨===,∴△COE ≌△COF (SAS ),∴OE=OF ,又OM=OA ,∴四边形AEMF 是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF ,∴平行四边形AEMF 是菱形.27、(1)是;(2)见解析;(3)150°.【解题分析】(1)由菱形的性质和等边三角形的判定与性质即可得出结论;(2)根据题意画出图形,由勾股定理即可得出答案;(3)由SAS 证明△AEC ≌△BED ,得出AC=BD ,由等距四边形的定义得出AD=AB=AC ,证出AD=AB=BD ,△ABD 是等边三角形,得出∠DAB=60°,由SSS 证明△AED ≌△AEC ,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE ﹣∠CAE=30°,由等腰三角形的性质和三角形内角和定理求出∠ACB和∠ACD 的度数,即可得出答案.【题目详解】解:(1)一个内角为120°的菱形是等距四边形;故答案为是;(2)如图2,图3所示:在图2中,由勾股定理得:CD ==在图3中,由勾股定理得:CD ==(3)解:连接BD .如图1所示:∵△ABE 与△CDE 都是等腰直角三角形,∴DE=EC ,AE=EB ,∠DEC+∠BEC=∠AEB+∠BEC ,即∠AEC=∠DEB ,在△AEC 和△BED 中,,DE CE AEC BED AE BE =⎧⎪∠=∠⎨⎪=⎩,∴△AEC ≌△BED (SAS ),∴AC=BD ,∵四边形ABCD 是以A 为等距点的等距四边形,∴AD=AB=AC ,∴AD=AB=BD ,∴△ABD 是等边三角形,∴∠DAB=60°,∴∠DAE=∠DAB ﹣∠EAB=60°﹣45°=15°,在△AED 和△AEC 中,,AD AC DE CE AE AE =⎧⎪=⎨⎪=⎩∴△AED ≌△AEC (SSS ),∴∠CAE=∠DAE=15°,∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE ﹣∠CAE=30°,∵AB=AC ,AC=AD ,∴180301803075,75,22ACB ACD--∠==∠==∴∠BCD=∠ACB+∠ACD=75°+75°=150°.【题目点拨】本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。

2024年辽宁省部分学校中考数学模拟试卷(一)(含解析)

2024年辽宁省部分学校中考数学模拟试卷(一)(含解析)

2024年辽宁省部分学校中考数学模拟试卷(一)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.我国古代数学名著《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”.如:粮库把运进30吨粮食记为“+30”,则“−30”表示( )A. 运出30吨粮食B. 亏损30吨粮食C. 卖掉30吨粮食D. 吃掉30吨粮食2.下列计算正确的是( )A. a2⋅a3=a6B. (−a3b)2=−a6b2C. a6÷a3=a2D. (a2)3=a63.估计6的值在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间4.如图所示的三棱柱的展开图不可能是( )A.B.C.D.5.关于x的一元二次方程x2+mx−8=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的( )A. 南偏西70°方向B. 南偏东20°方向C. 北偏西20°方向D. 北偏东70°方向7.掷两枚质地均匀的骰子,下列事件是随机事件的是( )A. 点数的和为1B. 点数的和为6C. 点数的和大于12D. 点数的和小于138.下列命题中,是真命题的是( )A. 平行四边形是轴对称图形B. 对角线互相垂直的四边形是菱形C. 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上D. 在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形9.今年2月,某班准备从《在希望的田野上》、《我和我的祖国》、《十送红军》三首歌曲中选择两首进行排练,参加永州市即将举办的“唱响新时代,筑梦新征程”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是( )A. 12B. 13C. 23D. 110.二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题:本题共5小题,每小题3分,共15分。

北京四中中考数学全真试卷5套

北京四中中考数学全真试卷5套

中考数学全真模拟试题(1)一、 填空题(每空2分,共40分) 1、21-的相反数是 ;-2的倒数是 ; 16的算术平方根是 ;-8的立方根是 。

2、不等式组⎩⎨⎧-+2804<>x x 的解集是 。

3、函数y=11-x 自变量x 的取值范围是 。

4、直线y=3x-2一定过(0,-2)和( ,0)两点。

5、样本5,4,3,2,1的方差是 ;标准差是 ;中位数是 。

6、等腰三角形的一个角为︒30,则底角为 。

7、梯形的高为4厘米,中位线长为5厘米,则梯形的面积为 平方厘米。

8、如图PA 切⊙O 于点A ,∠PAB=︒30,∠AOB= ,∠ACB= 。

9、 如图PA 切⊙O 于A 割线PBC 过圆心,交⊙O 于B 、C ,若PA=6;PB=3,则PC= ;⊙O 的半径为 。

10题图9题图ACDB8题图A11题图B10、如图∆ABC 中,∠C=︒90,点D 在BC 上,BD=6,AD=BC ,cos ∠ADC=53,则DC 的长为 。

11、如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则阴影部分既圆环的面积为 。

12、已知Rt ∆ABC 的两直角边AC 、BC 分别是一元二次方程06x 5-x 2=+的两根,则此Rt ∆的外接圆的面积为 。

二、 选择题(每题4分,共20分)13、如果方程0m x 2x 2=++有两个同号的实数根,m 的取值范围是 ( )A 、m <1B 、0<m ≤1C 、0≤m <1D 、m >014、徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元。

则平均每次降低成本的百分率是 ( )A .8.5% B. 9% C. 9.5% D. 10%15、二次函数c bx ax y 2++=的图像如图所示,则关于此二次函数的下列四个结论①a<0 ②a>0③ac 4-b 2>0 ④ab<0中,正确的结论有 ( ) A.1个 B.2个 C.3个 D.4个16题图16、如图:点P 是弦AB 上一点,连OP ,过点P 作PC ⊥OP ,PC 交⊙O ,若AP =4,PB =2,则PC 的长是 ( ) A.2 B. 2 C. 22 D. 317、为了美化城市,建设中的某休闲中心准备用边长相等的正方形和正八边形两种地砖镶嵌地面,在每一个顶点周围,正方形、正八边形地砖的块数分别是( ) A. 1、2 B. 2、1 C. 2、3 D. 3、2 三、 (本题每题5分,共20分)18、计算1303)2(2514-÷-+⎪⎭⎫⎝⎛+- 19、计算22)145(sin 230tan 3121-︒+︒--20、计算)+()-(+-abb a ]a b a b b a a [2÷ 21、解方程11-x 1-1-x 22=四、解答题(每题7分,共28分)22、已知关于x 的一元二次方程0)32(22=+-+m x m x 的两个不相等的实数根α、β满足111=+βα,求m 的值。

2024届重庆市九龙坡区中考数学全真模拟试题含解析

2024届重庆市九龙坡区中考数学全真模拟试题含解析

2024届重庆市九龙坡区中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(共10小题,每小题3分,共30分)1.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是( )A .B .C .D .2.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元 B .200元C .225元D .259.2元3.在函数y =1xx 中,自变量x 的取值范围是( ) A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠14.如图所示的几何体的左视图是( )A .B .C .D .5.若矩形的长和宽是方程x 2-7x+12=0的两根,则矩形的对角线长度为( ) A .5B .7C .8D .106.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A :篮球,B :排球,C :足球,D :羽毛球,E :乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )A .选科目E 的有5人B .选科目A 的扇形圆心角是120°C .选科目D 的人数占体育社团人数的15D .据此估计全校1000名八年级同学,选择科目B 的有140人 7.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >08.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( ) A .6B .7C .8D .99.如图,在Rt △ABC 中,∠ACB=90°,AC=23,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将BD 绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为( )A .2233π- B .2233π-C .233π- D .233π-10.若关于x 的分式方程的解为正数,则满足条件的正整数m 的值为( ) A .1,2,3B .1,2C .1,3D .2,3二、填空题(本大题共6个小题,每小题3分,共18分)11.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表: 价格/(元/kg )12 10 8 合计/kg 小菲购买的数量/kg2 2 2 6 小琳购买的数量/kg1236从平均价格看,谁买得比较划算?( )A .一样划算B .小菲划算C .小琳划算D .无法比较12.如图,以原点O 为圆心的圆交X 轴于A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB=20°,则∠OCD= .13.已知一组数据4,x ,5,y ,7,9的平均数为6,众数为5,则这组数据的中位数是_____.14.如图,在平面直角坐标系xOy 中,点A 的坐标为A(1,0),等腰直角三角形ABC 的边AB 在x 轴的正半轴上,∠ABC=90°,点B 在点A 的右侧,点C 在第一象限。

【名师原创】中考数学三轮冲刺:全真模拟试卷(1)及答案解析

【名师原创】中考数学三轮冲刺:全真模拟试卷(1)及答案解析

中考模拟题1(总分120分120分钟)一.选择题(共8小题,每题3分)1.在实数,,0,,,﹣1.414,有理数有()A.1个B.2个C.3个D.4个2.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD为矩形,E、F分别是AB、DC的中点.若AD=8,AB=6,则这个正六棱柱的侧面积为()A.48B.96 C.144 D.963.下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c4.不等式组的解集是()A.﹣1≤x<2 B.﹣1<x≤2C.﹣1≤x≤2D.﹣1<x<25.如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()A.21°B.48°C58°D.30°6.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°7.在平面直角坐标系中,若A(﹣1,1),B(2,1),C(c,0)为一个直角三角形的三个顶点,则c的值有()A.1个B.2个C.3个D.4个8.如图,反比例函数(k>0)与一次函数的图象相交于两点A(x1,y1),B (x2,y2),线段AB交y轴与C,当|x1﹣x2|=2且AC=2BC时,k、b的值分别为()A.k=,b=2 B.k=,b=1 C.k=,b= D.k=,b=二.填空题(共6小题,每题3分)9.计算:=.10.若一件衣服两次打九折后,售价为y元,则原价为元(用y的代数式表示).11.如图,∠B=∠C=90°,E是BC的中点,EF⊥AD于点F,DE平分∠ADC,∠CED=35°,则∠EAB=.12.如图,AB是⊙O的直径,AB=10,C是⊙O上一点,OD⊥BC于点D,BD=4,则AC的长为.13.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是.14.如图,已知二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数y=上,且与x轴交于A、B两点,若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,则a=.三.解答题(共10小题)15.(6分)先化简,再求值:(1﹣)÷,其中x=3.16.(6分)有四张完全一样的空白纸片,在每张纸片的一个面上分别写上1、2、3、4.某同学把这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张.求抽出的两张纸片上的数字之积小于6的概率.(请用树状图或列表法求解)17.(6分)甲喜欢喝西湖龙井茶,乙喜欢喝咖啡.1包西湖龙井茶叶,甲、乙两人一起喝10天喝完,甲单独喝则比乙单独喝快48天喝完;1罐咖啡,甲、乙两人一起喝12天喝完,乙单独喝则需20天喝完.(1)甲、乙单独喝完1包茶叶各需多少天?(2)假如现在让甲单独先喝咖啡,而让乙单独先喝茶,甲在有咖啡的情况下决不能喝自己喜欢的茶,而乙在有茶叶的情况下决不能喝自己喜欢的咖啡,问两人一起喝完1包茶叶和1罐咖啡需要多少天?18.(7分)如图,在某隧道建设工程中,需沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工.为了使开挖点E在直线AC上,现在AC上取一点B,AC外取一点D,测得∠ABD=140°,BD=704m,∠D=50°.求开挖点E到点D的距离.(精确到1米)参考数据:sin50°=0.8,cos50°=0.6,tan50°=1.2.19.(7分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC 交AC于点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.20.(7分)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?21.(8分)全面实现低碳生活已逐渐成为人们的共识.某企业为了发展低碳经济,采用技术革新,减少二氧化碳的排放.随着排放量的减少,企业相应获得的利润也有所提高,且相应获得的利润y(万元)与月份x(月)(1≤x≤6)的函数关系如图所示:(1)根据图象,请判断:y与x(1≤x≤6)的变化规律应该符合函数关系式;(填写序号:①反比例函数、②一次函数、③二次函数);(2)求出y与x(1≤x≤6)的函数关系式(不写取值范围);(3)经统计发现,从6月到8月每月利润的增长率相同,且8月份的利润为151.2万元,求这个增长率.22.(9分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.23.(10分)如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c (c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4).①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.24.(12分)1.如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.中考模拟题1答案一.选择题(共8小题)1.在实数,,0,,,﹣1.414,有理数有()A.1个B.2个C.3个D.4个考点:有理数.分析:根据有理数是有限小数或无限循环小数,可得答案.解答:解:,0,,﹣1.414,是有理数,故选:D.点评:本题考查了有理数,有理数是有限小数或无限循环小数.2.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD为矩形,E、F分别是AB、DC的中点.若AD=8,AB=6,则这个正六棱柱的侧面积为()A.48B.96 C.144 D.96考点:简单几何体的三视图;几何体的表面积.专题:压轴题.分析:根据AE的长,求底面正六边形的边长,用正六边形的周长×AD,得正六棱柱的侧面积.解答:解:如图,正六边形的边长为AC、BC,CE垂直平分AB,由正六边形的性质可知,∠ACB=120°,∠A=∠B=30°,AE=AB=3,所以,AC===2,正六棱柱的侧面积=6AC×AD=6×2×8=96.故选D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c考点:单项式乘多项式.分析:根据单项式乘以多项式法则,对各选项计算后利用排除法求解.解答:解:A、应为(﹣2a)•(3ab﹣2a2b)=﹣6a2b+4a3b,故本选项错误;B、应为(2ab2)•(﹣a2+2b2﹣1)=﹣2a3b2+4ab4﹣2ab2,故本选项错误;C、应为(abc)•(3a2b﹣2ab2)=3a3b2c﹣2a2b3c,故本选项错误;D、(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c,正确.故选D.点评:本题考查了单项式乘以多项式法则.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.要熟记单项式与多项式的每一项都相乘,不能漏乘.4.不等式组的解集是()A.﹣1≤x<2 B.﹣1<x≤2C.﹣1≤x≤2D.﹣1<x<2考点:解一元一次不等式组;不等式的性质;解一元一次不等式.专题:计算题.分析:求出不等式①②的解集,再根据找不等式组解集得规律求出即可.解答:解:,由①得:x<2由②得:x≥﹣1∴不等式组的解集是﹣1≤x<2,故选A.点评:本题主要考查对解一元一次不等式组,不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据找不等式组解集的规律找出不等式组的解集是解此题的关键.5.如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()A.21°B.48°C.58°D.30°考点:平行线的性质;平行公理及推论.专题:计算题.分析:过C作CE∥直线m,根据平行公理的推论得到直线m∥n∥CE,根据平行线的性质得出∠ACE=∠DAC=42°,∠ECB=∠a,由∠ACB=90°即可求出答案.解答:解:过C作CE∥直线m,∵直线m∥n,∴直线m∥n∥CE,∴∠ACE=∠DAC=42°,∠ECB=∠a,∵∠ACB=90°,∴∠a=90°﹣∠ACE=90°﹣42°=48°.故选B.点评:本题主要考查对平行线的性质,平行公理及推论等知识点的理解和掌握,能灵活运用性质进行计算是解此题的关键.6.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°考点:圆周角定理.分析:首先根据等边对等角即可求得∠OAB的度数,然后根据三角形的内角和定理求得∠AOB的度数,再根据圆周角定理即可求解.解答:解:∵OA=OB,∴∠OAB=∠OBA=40°,∴∠AOB=180°﹣40°﹣40°=100°.∴∠C=∠AOB=×100°=50°.故选B.点评:本题考查了等腰三角形的性质定理以及圆周角定理,正确理解定理是关键.7.在平面直角坐标系中,若A(﹣1,1),B(2,1),C(c,0)为一个直角三角形的三个顶点,则c的值有()A.1个B.2个C.3个D.4个考点:坐标与图形性质.分析:分别过A、B点作x轴的垂线,垂足即为所求;以AB的中点为圆心,AB 为直径作圆,交x轴于两点,该两点即为所求.解答:解:如图所示,若A(﹣1,1),B(2,1),C(c,0)为一个直角三角形的三个顶点,c的值有4个.故选D.点评:考查了坐标与图形性质,注意C(c,0)的点在x轴上,有一定的难度.8.如图,反比例函数(k>0)与一次函数的图象相交于两点A(x1,y1),B (x2,y2),线段AB交y轴与C,当|x1﹣x2|=2且AC=2BC时,k、b的值分别为()A.k=,b=2 B.k=,b=1 C.k=,b= D.k=,b=考点:反比例函数综合题.专题:综合题;压轴题.分析:首先由AC=2BC,可得出A点的横坐标的绝对值是B点横坐标绝对值的两倍.再由|x1﹣x2|=2,可求出A点与B点的横坐标,然后根据点A、点B既在一次函数的图象上,又在反比例函数(k>0)的图象上,可求出k、b的值.解答:解:∵AC=2BC,∴A点的横坐标的绝对值是B点横坐标绝对值的两倍.∵点A、点B都在一次函数的图象上,∴可设B(m,m+b),则A(﹣2m,﹣m+b).∵|x1﹣x2|=2,∴m﹣(﹣2m)=2,∴m=.又∵点A、点B都在反比例函数(k>0)的图象上,∴(+b)=(﹣)(﹣+b),∴b=;∴k=(+)=.故选D.点评:此题综合考查了反比例函数、一次函数的性质,注意通过解方程组求出k、b的值.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.二.填空题(共6小题)9.计算:=.考点:二次根式的混合运算.分析:按照运算规则先算乘法,再算减法,即合并同类二次根式.解答:解:原式=﹣=2﹣=.点评:本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.10.若一件衣服两次打九折后,售价为y元,则原价为元(用y的代数式表示).考点:列代数式.分析:设原价为x,则x×0.9×0.9=y,从而可得出原价的表达式.解答:解:设原价为x,则x×0.9×0.9=y,故x=y,即原价为:y.故答案为:y.点评:本题考查了列代数式的知识,可以设出原价,用方程的思想解决,也可以直接表示出来.11.如图,∠B=∠C=90°,E是BC的中点,EF⊥AD于点F,DE平分∠ADC,∠CED=35°,则∠EAB=35°.考点:角平分线的性质.分析:根据角平分线上的点到角的两边距离相等可得CE=EF,然后求出EF=BE,再根据到角的两边距离相等的点在角的平分线上判断出AE平分∠BAD,根据直角三角形两锐角互余求出∠CDE,再求出∠ADC,然后求出∠BAD,再求解即可.解答:解:∵DE平分∠ADC,∠C=90°,EF⊥AD于点F,∴CE=EF,∵E是BC的中点,∴BE=CE,∴EF=BE,∴AE平分∠BAD,∵∠CED=35°,∴∠CDE=90°﹣35°=55°,∴∠ADC=2∠CDE=2×55°=110°,∵∠B=∠C=90°,∴AB∥CD,∴∠BAD=180°﹣110°=70°,∴∠EAB=∠BAD=×70°=35°.故答案为:35°.点评:本题考查了角平分线上的点到角的两边距离相等的性质,到角的两边距离相等的点在角的平分线上,直角三角形两锐角互余的性质和平行线的判定与性质,熟记各性质并准确识图,理清图中各角度之间的关系是解题的关键.12.如图,AB是⊙O的直径,AB=10,C是⊙O上一点,OD⊥BC于点D,BD=4,则AC 的长为6.考点:垂径定理;勾股定理;三角形中位线定理;圆周角定理.分析:根据垂径定理求出BC,根据圆周角定理求出∠C=90°,根据勾股定理求出即可.解答:解:∵OD⊥BC,OD过O,BD=4,∴BC=2BD=8,∵AB是直径,∴∠C=90°,在Rt△ACB中,AB=10,BC=8,由勾股定理得:AC==6,故答案为:6.点评:本题考查了垂径定理,勾股定理的应用,主要考查学生运用定理进行推理和计算的能力,题目比较典型,难度适中.13.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是(,).考点:位似变换;坐标与图形性质.专题:常规题型.分析:由题意可得OA:OD=1:,又由点A的坐标为(1,0),即可求得OD 的长,又由正方形的性质,即可求得E点的坐标.解答:解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,∴OA:OD=1:,∵点A的坐标为(0,1),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案为:(,).点评:此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.14.如图,已知二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数y=上,且与x轴交于A、B两点,若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,则a=.考点:二次函数综合题.分析:根据二次函数y=ax2+2x+c(a>0)图象的顶点M的横坐标是﹣,得出ON=,根据M在反比例函数y=上,得出点M的纵坐标是﹣3a,从而得出NO+MN=+3a,再根据+3a≥2,得出+3a的最小值是2,求出a的值即可.解答:解:∵二次函数y=ax2+2x+c(a>0)图象的顶点M的横坐标是﹣,∴ON=,∵M在反比例函数y=上,∴点M的纵坐标是﹣3a,∴MN=3a,∴NO+MN=+3a,∵+3a≥2,∴+3a≥2,∴+3a的最小值是2,即+3a=2,解得;a=,经检验a=是原方程的解.故答案为:.点评:此题考查了二次函数的综合,用到的知识点是二次函数和反比例函数的图象与性质,关键是求出+3a的最小值是2,列出方程.三.解答题(共10小题)15.先化简,再求值:(1﹣)÷,其中x=3.考点:分式的化简求值.分析:先计算括号内的分式减法,然后把除法转化为乘法进行化简,最后代入求值.解答:解:原式=(﹣)×=×=.把x=3代入,得==,即原式=.故答案为:.点评:本题考查了分式的化简求值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.16.有四张完全一样的空白纸片,在每张纸片的一个面上分别写上1、2、3、4.某同学把这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张.求抽出的两张纸片上的数字之积小于6的概率.(请用树状图或列表法求解)考点:列表法与树状图法.专题:数形结合.分析:列举出所有情况,看抽出的两张纸片上的数字之积小于6的情况数占总情况数的多少即可.解答:解:共有16种情况,积小于6的情况有8种,所以P(小于6)==.点评:考查列树状图解决概率问题;找到抽出的两张纸片上的数字之积小于6的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.17.甲喜欢喝西湖龙井茶,乙喜欢喝咖啡.1包西湖龙井茶叶,甲、乙两人一起喝10天喝完,甲单独喝则比乙单独喝快48天喝完;1罐咖啡,甲、乙两人一起喝12天喝完,乙单独喝则需20天喝完.(1)甲、乙单独喝完1包茶叶各需多少天?(2)假如现在让甲单独先喝咖啡,而让乙单独先喝茶,甲在有咖啡的情况下决不能喝自己喜欢的茶,而乙在有茶叶的情况下决不能喝自己喜欢的咖啡,问两人一起喝完1包茶叶和1罐咖啡需要多少天?考点:分式方程的应用.专题:应用题.分析:(1)用一个字母表示出甲乙两人的工作量,等量关系为:甲乙和喝10天的工作量=1,把相关数值代入计算即可;(2)易得甲乙喝咖啡的工作效率,喝咖啡用的天数少,算出甲喝咖啡用的天数,进而加上甲乙和喝茶叶用的天数即为两人一起喝完1包茶叶和1罐咖啡需要天数.解答:解:(1)设甲单独x天喝完1包茶叶,则每天喝的茶叶为,乙单独(x+48)天喝完1包茶叶,则每天喝的茶叶为.;解得x=12或x=﹣40(舍去),经检验,x=12是原方程的解,∴x+48=60.答:甲单独12天喝完1包茶叶,乙单独60天喝完1包茶叶;(2)甲单独喝一罐咖啡的时间为:1÷()=30天;∴30天后甲喝完咖啡而乙只喝完茶叶的一半,故剩下的茶叶变成两人合喝,由题意可知,他们两人还能喝5天.∴两人35天才全部喝完.点评:考查分式方程的应用;得到甲乙和喝完茶叶的工作量的等量关系是解决本题的关键.18.如图,在某隧道建设工程中,需沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工.为了使开挖点E在直线AC上,现在AC上取一点B,AC外取一点D,测得∠ABD=140°,BD=704m,∠D=50°.求开挖点E到点D的距离.(精确到1米)参考数据:sin50°=0.8,cos50°=0.6,tan50°=1.2.考点:解直角三角形的应用.分析:先根据∠ABD=140°,∠D=50°,求出∠E=90°,判断出△BED为直角三角形,再根据锐角三角函数的定义进行求解即可.解答:解:根据题意得:BD=704m,∠ABD=140°,∠D=50°.∵∠EBD=180°﹣∠ABD,∴∠EBD=180°﹣140°=40°.在△BDE中,∠E=180°﹣∠EBD﹣∠D,∴∠E=180°﹣40°﹣50°=90°,∴△BED为直角三角形,在Rt△BED中,∵cos∠D=,∴DE=BD×cos50°=704×0.6=422.4≈422(m).答:开挖点E到点D的距离为422m.点评:本题考查的是解直角三角形在实际生活中的运用,涉及到三角形内角和定理及锐角三角函数的定义,熟知以上知识是解答此题的关键.19.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC 交AC于点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.考点:切线的判定与性质.专题:压轴题.分析:(1)AF为为圆O的切线,理由为:连接OC,由PC为圆O的切线,利用切线的性质得到CP垂直于OC,由OF与BC平行,利用两直线平行内错角相等,同位角相等,分别得到两对角相等,根据OB=OC,利用等边对等角得到一对角相等,等量代换得到一对角相等,再由OC=OA,OF为公共边,利用SAS得出三角形AOF与三角形COF全等,由全等三角形的对应角相等及垂直定义得到AF垂直于OA,即可得证;(2)由AF垂直于OA,在直角三角形AOF中,由OA与AF的长,利用勾股定理求出OF 的长,而OA=OC,OF为角平分线,利用三线合一得到E为AC中点,OE垂直于AC,利用面积法求出AE的长,即可确定出AC的长.解答:解:(1)AF为圆O的切线,理由为:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,则AF为圆O的切线;(2)∵△AOF≌△COF,∴∠AOF=∠COF,∵OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=5,∵S△AOF=•OA•AF=•OF•AE,∴AE=,则AC=2AE=.点评:此题考查了切线的判定与性质,涉及的知识有:全等三角形的判定与性质,平行线的性质,等腰三角形的性质,三角形的面积求法,熟练掌握切线的判定与性质是解本题的关键.20.君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)由最需要直尺的学生数除以占的百分比求出总人数,确定出最需要圆规的学生数,补全条形统计图即可;(2)求出最需要钢笔的学生占的百分比,乘以970即可得到结果.解答:解:(1)根据题意得:18÷30%=60(名),60﹣(21+18+6)=15(名),则本次调查中,最需要圆规的学生有15名,补全条形统计图,如图所示:(2)根据题意得:970×=97(名),则估计全校学生中最需要钢笔的学生有97名.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.全面实现低碳生活已逐渐成为人们的共识.某企业为了发展低碳经济,采用技术革新,减少二氧化碳的排放.随着排放量的减少,企业相应获得的利润也有所提高,且相应获得的利润y(万元)与月份x(月)(1≤x≤6)的函数关系如图所示:(1)根据图象,请判断:y与x(1≤x≤6)的变化规律应该符合②函数关系式;(填写序号:①反比例函数、②一次函数、③二次函数);(2)求出y与x(1≤x≤6)的函数关系式(不写取值范围);(3)经统计发现,从6月到8月每月利润的增长率相同,且8月份的利润为151.2万元,求这个增长率.考点:一次函数的应用;一元二次方程的应用.分析:(1)根据图象是一条直线,可得函数的类型;(2)根据待定系数法,可得函数解析式;(3)根据自变量的值,可得相应的函数值,根据等量关系,可得方程,根据解方程,可得答案.解答:解:(1)②;(2)设函数解析式为y=kx+b (a≠0),将(1,80)、(4,95)代入得:,∴∴一次函数的解析式是y=5x+75;(3)把x=6代入y=5x+75得y=105,6月份的收入是105万元,设这个增长率是a,根据题意得105(1+a)2=151.2,解得∴,(不合题意,舍去)答:这个增长率是20%.点评:本题考查了一次函数的应用,利用待定系数法求解析式,(3)找出等量关系列方程是解题关键,不符合题意的要舍去.22.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.考点:四边形综合题.分析:(1)三角形ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC;(3)首先证明△BAD≌△CAF,△FCD是直角三角形,然后根据正方形的性质即可求得DF 的长,则OC即可求得.解答:证明:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,则在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;(2)CF﹣CD=BC;(3)①CD﹣CF=BC②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=90°,∴△FCD是直角三角形.∵正方形ADEF的边长为2且对角线AE、DF相交于点O.∴DF=AD=4,O为DF中点.∴OC=DF=2.点评:本题考查了正方形与全等三角形的判定与性质的综合应用,证明三角形全等是关键.23.如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4).①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:几何综合题;压轴题.分析:(1)①将抛物线上的点的坐标代入抛物线即可求出b、c的值;②求证AD=BO和AD∥BO即可判定四边形为平行四边形;(2)根据矩形的各角为90°可以求得△ABO∽△OBC即=,再根据勾股定理可得OC=BC,AC=OC,可求得横坐标为±c,纵坐标为c.解答:解:(1)①∵AC∥x轴,A点坐标为(﹣4,4).∴点C的坐标是(0,4)把A、C两点的坐标代入y=﹣x2+bx+c得,,解得;②四边形AOBD是平行四边形;理由如下:由①得抛物线的解析式为y=﹣x2﹣4x+4,∴顶点D的坐标为(﹣2,8),过D点作DE⊥AB于点E,则DE=OC=4,AE=2,∵AC=4,∴BC=AC=2,∴AE=BC.∵AC∥x轴,∴∠AED=∠BCO=90°,∴△AED≌△BCO,∴AD=BO.∠DAE=∠OBC,∴AD∥BO,∴四边形AOBD是平行四边形.(2)存在,点A的坐标可以是(﹣2,2)或(2,2)要使四边形AOBD是矩形;则需∠AOB=∠BCO=90°,∵∠ABO=∠OBC,∴△ABO∽△OBC,∴=,又∵AB=AC+BC=3BC,∴OB=BC,∴在Rt△OBC中,根据勾股定理可得:OC=BC,AC=OC,∵C点是抛物线与y轴交点,∴OC=c,∴A点坐标为(﹣c,c),∴顶点横坐标=c,b=c,∵将A点代入可得c=﹣(﹣c)2+c•c+c,∴横坐标为±c,纵坐标为c即可,令c=2,∴A点坐标可以为(2,2)或者(﹣2,2).点评:本题主要考查了二次函数对称轴顶点坐标的公式,以及函数与坐标轴交点坐标的求解方法.24.如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC 垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.考点:相似形综合题.专题:压轴题.分析:(1)过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,求出DC=5,OC=4,OB=3,根据四边形DBPC是平行四边形求出DC=BP=5,求出OP=2即可;(2)证△PCO∽△CBO,得出=,求出OP=即可;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,过P作PM⊥DC交DC 延长线于M,求出PM、OP的长即可;②当⊙P与BC相切时,根据△COB∽△PBM得出=,求出R=12即可;③当⊙P与DB相切时,证△ADB∽△MPB得出=,求出R即可.解答:解:(1)∵D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x 轴,y轴,垂足分别为A、C两点,∴DC=5,OC=4,OB=3,∵DC⊥y轴,x轴⊥y轴,∴DC∥BP,∵PC∥DB,∴四边形DBPC是平行四边形,∴DC=BP=5,∴OP=5﹣3=2,2÷1=2,即当t为2秒时,PC∥BD;(2)∵PC⊥BC,x轴⊥y轴,∴∠COP=∠COB=∠BCP=90∴,∴∠PCO+∠BCO=90°,∠CPO+∠PCO=90°,∴∠CPO=∠BCO,。

2024届陕西省西安市重点中学中考数学全真模拟试题含解析

2024届陕西省西安市重点中学中考数学全真模拟试题含解析

2024届陕西省西安市重点中学中考数学全真模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是()A.40°B.43°C.46°D.54°2.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0;②﹣1≤a≤23;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个3.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )A.22B.4 C.32D.424.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC 的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A .5B .2C .52D .255.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .6.下列方程中是一元二次方程的是( )A .20ax bx c ++=B .2211x x +=C .(1)(2)1x x -+=D .223250x xy y --=7.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示:成绩(米)4.50 4.60 4.65 4.70 4.75 4.80 人数 2 3 2 3 4 1则这15名运动员成绩的中位数、众数分别是( )A .4.65,4.70B .4.65,4.75C .4.70,4.70,D .4.70,4.758.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .9.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )A .259×104B .25.9×105C .2.59×106D .0.259×10710.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5 B.6 C.7 D.8二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,连接BD,若∠C=40°,则∠B=_____度.12.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可).13.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.14.不等式组42348xx-+<⎧⎨-≤⎩①②的解集是_____.15.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:S Ⅲ=________.16.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为____.三、解答题(共8题,共72分)17.(8分)无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p (桶)与销售单价x (元)的函数图象如图所示.(1)求日均销售量p (桶)与销售单价x (元)的函数关系;(2)若该经营部希望日均获利1350元,那么销售单价是多少?18.(8分)先化简,再求值:22x 3x 311x 1x 2x 1x 1--⎛⎫÷-+ ⎪-++-⎝⎭,再从0x 4<<的范围内选取一个你最喜欢的值代入,求值. 19.(8分) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A 型号的空调比1台B 型号的空调少200元,购买2台A 型号的空调与3台B 型号的空调共需11200元,求A 、B 两种型号的空调的购买价各是多少元?20.(8分)如图,在△ABC 中,D 为BC 边上一点,AC=DC ,E 为AB 边的中点,(1)尺规作图:作∠C 的平分线CF ,交AD 于点F (保留作图痕迹,不写作法);(2)连接EF ,若BD=4,求EF 的长.21.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A ,B ,C ,D 四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.22.(10分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.23.(12分)(1)解方程:11322xx x--=---.(2)解不等式组:312215(1) xxx x-⎧<-⎪⎨⎪+≥-⎩24.某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】根据DE ∥AB 可求得∠CDE =∠B 解答即可.【题目详解】解:∵DE ∥AB ,∴∠CDE =∠B =46°,故选:C .【题目点拨】本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.2、C【解题分析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误;②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c ,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确;③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.【题目详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴-2b a=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0),∴a-b+c=3a+c=0,∴a=-3c . 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ),∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,又∵a <0,∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.故选C .【题目点拨】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.3、B【解题分析】求出AD =BD ,根据∠FBD +∠C =90°,∠CAD +∠C =90°,推出∠FBD =∠CAD ,根据ASA 证△FBD ≌△CAD ,推出CD =DF 即可.【题目详解】解:∵AD ⊥BC ,BE ⊥AC ,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【题目点拨】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.4、C【解题分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【题目详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a.∴12DE•AD=a.∴DE=1.当点F从D到B5∴5Rt △DBE 中,1=,∵四边形ABCD 是菱形,∴EC=a-1,DC=a ,Rt △DEC 中,a 1=11+(a-1)1.解得a=52. 故选C .【题目点拨】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系. 5、B【解题分析】根据相似三角形的判定方法一一判断即可.【题目详解】解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等, 故选:B .【题目点拨】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 6、C【解题分析】找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可.【题目详解】解:A 、当a =0时,20ax bx c ++=不是一元二次方程,故本选项错误;B 、2211x x+=是分式方程,故本选项错误; C 、(1)(2)1x x -+=化简得:230x x +-=是一元二次方程,故本选项正确;D 、223250x xy y --=是二元二次方程,故本选项错误;故选:C .【题目点拨】本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键.7、D【解题分析】根据中位数、众数的定义即可解决问题.【题目详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1.故选:D.【题目点拨】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.8、A【解题分析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.9、C【解题分析】绝对值大于1的正数可以科学计数法,a×10n,即可得出答案.【题目详解】n由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.【题目点拨】本题考查了科学计数法的运用,熟悉掌握是解决本题的关键.10、B【解题分析】根据垂径定理求出AD,根据勾股定理列式求出半径,根据三角形中位线定理计算即可.【题目详解】解:∵半径OC垂直于弦AB,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【题目点拨】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、25【解题分析】∵AC 是⊙O 的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD ,∴∠ABD=∠BDO ,∵∠ABD+∠BDO=∠AOC ,∴∠ABD=25°,故答案为:25.12、y =x 2+2x (答案不唯一).【解题分析】设此二次函数的解析式为y =ax (x+2),令a =1即可.【题目详解】∵抛物线过点(0,0),(﹣2,0),∴可设此二次函数的解析式为y =ax (x+2),把a =1代入,得y =x 2+2x .故答案为y =x 2+2x (答案不唯一).【题目点拨】本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一.13、a1+1ab+b1=(a+b)1【解题分析】试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,所以a1+1ab+b1=(a+b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.14、2<x≤1【解题分析】本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集.【题目详解】由①得x>2,由②得x≤1,∴不等式组的解集为2<x≤1.故答案为:2<x≤1.【题目点拨】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15、1:3:5【解题分析】∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD=DF=FB,∴AD:AF:AB=1:2:3,S S S=1:4:9,∴::ADE AFG ABC∴SⅠ:SⅡ:SⅢ=1:3:5.故答案为1:3:5.点睛: 本题考查了平行线的性质及相似三角形的性质.相似三角形的面积比等于相似比的平方.16、24【解题分析】试题分析:因为四边形ABCD是菱形,根据菱形的性质可知,BD与AC互相垂直且平分,因为,AB=10,所以BD=6,根据勾股定理可求的AC=8,即AC=16;考点:三角函数、菱形的性质及勾股定理;三、解答题(共8题,共72分)17、(1)日均销售量p (桶)与销售单价x (元)的函数关系为p=﹣50x+850;(2)该经营部希望日均获利1350元,那么销售单价是9元.【解题分析】(1)设日均销售p (桶)与销售单价x (元)的函数关系为:p=kx+b (k≠0),把(7,500),(12,250)代入,得到关于k ,b 的方程组,解方程组即可;(2)设销售单价应定为x 元,根据题意得,(x-5)•p -250=1350,由(1)得到p=-50x+850,于是有(x-5)•(-50x+850)-250=1350,然后整理,解方程得到x 1=9,x 2=13,满足7≤x≤12的x 的值为所求;【题目详解】(1)设日均销售量p (桶)与销售单价x (元)的函数关系为p=kx+b ,根据题意得7500{12250k b k b +=+=, 解得k=﹣50,b=850,所以日均销售量p (桶)与销售单价x (元)的函数关系为p=﹣50x+850;(2)根据题意得一元二次方程 (x ﹣5)(﹣50x+850)﹣250=1350,解得x 1=9,x 2=13(不合题意,舍去),∵销售单价不得高于12元/桶,也不得低于7元/桶,∴x=13不合题意,答:若该经营部希望日均获利1350元,那么销售单价是9元.【题目点拨】本题考查了一元二次方程及一次函数的应用,解题的关键是通过题目和图象弄清题意,并列出方程或一次函数,用数学知识解决生活中的实际问题.18、原式=11x -,把x=2代入的原式=1. 【解题分析】试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可.试题解析:原式=()()()21311·1131x x x x x x x +-+--+--- =11x - 当x=2时,原式=119、A、B两种型号的空调购买价分别为2120元、2320元【解题分析】试题分析:根据题意,设出A、B两种型号的空调购买价分别为x元、y元,然后根据“已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,列出方程求解即可.试题解析:设A、B两种型号的空调购买价分别为x元、y元,依题意得:200 2311200y xx y-=⎧⎨+=⎩解得:21202320 xy=⎧⎨=⎩答:A、B两种型号的空调购买价分别为2120元、2320元20、(1)见解析;(1)1【解题分析】(1)根据角平分线的作图可得;(1)由等腰三角形的三线合一,结合E为AB边的中点证EF为△ABD的中位线可得.【题目详解】(1)如图,射线CF即为所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD为等腰三角形;又CF是顶角∠ACD的平分线,∴CF是底边AD的中线,即F为AD的中点,∵E是AB的中点,∴EF为△ABD的中位线,∴EF=BD=1.【题目点拨】本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键.21、(1)50;(2)16;(3)56(4)见解析【解题分析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【题目详解】(1)10÷20%=50(名)答:本次抽样调查共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.图形统计图补充完整如下图所示:(3)700×450=56(名)答:估计该中学八年级学生中体能测试结果为D等级的学生有56名. (4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=21 126.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.22、(1)50,108°,补图见解析;(2)9.6;(3)13.【解题分析】(1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据E景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E景点旅游的人数;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【题目详解】解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:(2)∵E景点接待游客数所占的百分比为:650×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率=31 93 .【题目点拨】本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.23、(1)无解;(1)﹣1<x≤1.【解题分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【题目详解】(1)去分母得:1﹣x+1=﹣3x+6,解得:x=1,经检验x=1是增根,分式方程无解;(1)()3122151x x x x -⎧<-⎪⎨⎪+≥-⎩①②,由①得:x >﹣1,由②得:x≤1,则不等式组的解集为﹣1<x≤1.【题目点拨】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24、(1)A 、B 两种品牌得化妆品每套进价分别为100元,75元;(2)A 种品牌得化妆品购进10套,B 种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元【解题分析】(1)求A 、B 两种品牌的化妆品每套进价分别为多少元,可设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.根据两种购买方法,列出方程组解方程;(2)根据题意列出不等式,求出m 的范围,再用代数式表示出利润,即可得出答案.【题目详解】(1)设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.得5695032450x y x y +⎧⎨+⎩== 解得:10075x y ⎧⎨⎩==, 答:A 、B 两种品牌得化妆品每套进价分别为100元,75元.(2)设A 种品牌得化妆品购进m 套,则B 种品牌得化妆品购进(50﹣m )套.根据题意得:100m +75(50﹣m )≤4000,且50﹣m ≥0,解得,5≤m ≤10,利润是30m +20(50﹣m )=1000+10m ,当m 取最大10时,利润最大,最大利润是1000+100=1100,所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.【题目点拨】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.。

2023年湖南省长沙市中考数学模拟试卷(一)及答案解析

2023年湖南省长沙市中考数学模拟试卷(一)及答案解析

2023年湖南省长沙市中考数学模拟试卷(一)一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.(3分)﹣2023的倒数是()A.2023B.﹣2023C.D.2.(3分)下列立体图形中,三视图都一样的是()A.B.C.D.3.(3分)为起草党的二十大报告,党中央开展了深入的调查研究,有关部门组织了党的二十大相关工作网络征求意见活动,收到留言约8542000条.数据8542000用科学记数法表示为()A.854.2×104B.8.542×106C.85.24×106D.0.8542×107 4.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=4a2D.5a2÷a2=5a 5.(3分)在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)某班六名同学体能测试成绩(分)如下:80,90,75,75,80,80,对这组数据表述错误的是()A.众数是80B.方差是25C.平均数是80D.中位数是75 7.(3分)我国明代数学读本《算法统宗》中有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,还差8两.问客人有几人?设客人有x人,则可列方程为()A.7x+4=9x﹣8B.7x﹣4=9x+8C.D.8.(3分)如图,把一个直角三角尺的直角顶点放在直尺的一边上.若∠1=56°,则∠2的度数为()A.14°B.28°C.30°D.34°9.(3分)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=30°,AB=12,则BD的长为()A.6B.C.10D.10.(3分)如图,在△ABC中,∠BAC=90°,以点A为圆心、AC长为半径作弧交BC于点D,再分别以点C,D为圆心、大于的长为半径作弧,两弧交于点F,作射线AF 交BC于点E.若AC=6,AB=8,连接AD,则△ABD的面积为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)若代数式有意义,则x的取值范围是.12.(3分)当x=时,分式的值等于.13.(3分)兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为m.14.(3分)如果关于x的方程x2﹣6x+k=0有两个相等的实数根,那么实数k的值为.15.(3分)生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉50只雀鸟,给它们做上标记后放回山林;一段时间后,再从山林中随机捕捉100只,其中有标记的雀鸟有2只.请你帮助工作人员估计这片山林中雀鸟的数量为只.16.(3分)有四张卡片,每张卡片上分别写了一个代数式:①a2+2ab+b2;②﹣x2+6x﹣10;③;④2a3b﹣5ab+3.甲、乙、丙、丁四位同学每人拿到一张卡片并作如下描述:甲:我拿到的是个四次三项式;乙:不管字母取何值,我拿到的这个式子的值总是负数;丙:我拿到的式子的值为整数时,字母有6个不同的值;丁:我拿到的式子可以写成一个整式的平方.请问甲、乙、丙、丁对应的卡片序号分别是.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:.18.(6分)先化简,再求值:(x+y)(x﹣y)+(4x3y﹣2xy3)÷2xy,其中x=2,y=﹣1.19.(6分)如图,AB,CD为两栋建筑物,两建筑物底部之间的水平距离BD的长度为18m,从建筑物AB的顶部A点测得建筑物CD的顶部C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求建筑物AB的高度;(2)求建筑物CD的高度(结果保留根号).20.(8分)我市某校准备成立四个活动小组:A.声乐,B.体育.c.舞蹈,D.书画.为了解学生对四个活动小组的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中必须选择而且只能选择一个小组,根据调查结果绘制如图所示两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次抽样调查共抽查了名学生,扇形统计图中的m值是.(2)请补全条形统计图.(3)喜爱“书画”的学生中有2名男生和2名女生表现特别优秀,现从这4人中随机选取2人参加比赛,请用列表或叫树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.21.(8分)如图,在四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.(1)求证:四边形ABCD是平行四边形;(2)若AC=BD=10,AD=6,求四边形ABCD的面积.22.(9分)如图,在△ABC中,D是BC延长线上一点,满足CD=BA,过点C作CE∥AB,且CE=BC,连接DE并延长,分别交AC,AB于点F,G.(1)求证:△ABC≌△DCE;(2)若BD=12,AB=8,求BC的长度.23.(9分)近年来,湖南省积极推进农村危房改造工作,帮助农村地区脱贫攻坚.某地区2022年共完成危房改造1.2万户,地方财政拨款6000万元用于补贴危房改造,加上国家专项拨款后,危房改造户每户可获得补贴12000元,已知地方财政和国家专项拨款按一定标准补贴到每户.(1)判断:正确的打“√”,错误的打“×”.①国家专项拨款标准为每户5000元.;②2022年该地区用于危房改造的国家专项拨款共8400万元.;(2)预计2023年该地区用于危房改造的地方财政拨款可增加20%,国家专项拨款增加10%,如果每户补贴金额不变,2023年该地区最多能完成危房改造多少万户?24.(10分)定义:有一个内角等于另外两个内角之和的四边形称为“和谐四边形”.(1)已知∠A=100°,∠B=60°,∠C=α,请直接写出一个α的值,使四边形ABCD为“和谐四边形”.(2)如图1,在△ABC中,D,E分别是边AB,AC上的点,AE=DE.求证:四边形DBCE为“和谐四边形”.(3)在(2)的条件下,如图2,过D,E,C三点作⊙O,与边AB交于点F,与边BC 交于点G,连接FG,EG是⊙O的直径.①求证:BF=FC;②若AE=1,,∠BGF﹣∠B=45°,求“和谐四边形”DBCE的面积.25.(10分)如图,抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(3,﹣2).(1)请直接写出A,B两点的坐标及直线l的函数解析式;(2)若点P是抛物线上的点,点P的横坐标为m,过点P作直线PM⊥x轴,垂足为M,PM与直线l交于点N,当P,M,N其中一点是另外两点所连线段的中点时,求点P的坐标;(3)若点Q是对称轴上的点,且△ADQ为直角三角形,求点Q的坐标.2023年湖南省长沙市中考数学模拟试卷(一)参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.【分析】根据倒数的定义解答即可.【解答】解:﹣2023的倒数是﹣.故选:D.【点评】此题考查的是倒数的定义,乘积是1的两数互为倒数.2.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答即可.【解答】解:A、圆柱的主视图和左视图是矩形,俯视图是圆,故本选项不合题意;B、圆锥的主视图和左视图是三角形,俯视图是带有圆心的圆,故本选项不合题意;C、球的三视图都是圆,故本选项符合题意;D、三棱柱的主视图和俯视图是矩形,左视图是三角形,故本选项不合题意.故选:C.【点评】本题考查的是几何体的三视图,理解主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形是解题的关键.3.【分析】科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法,由此即可得到答案.【解答】解:8542000用科学记数法表示为8.542×106.故选:B.【点评】本题考查科学记数法—表示较大的数,关键是掌握用科学记数法表示数的方法.4.【分析】根据同底数幂的乘法的运算方法,幂的乘方与积的乘方的运算方法,以及整式的除法的运算方法,逐项判断即可.【解答】解:∵a2•a3=a5,∴选项A不符合题意;∵(a2)3=a6,∴选项B不符合题意;∵(2a)2=4a2,∴选项C符合题意;∵5a2÷a2=5,∴选项D不符合题意.故选:C.【点评】此题主要考查了同底数幂的乘法的运算方法,幂的乘方与积的乘方的运算方法,以及整式的除法的运算方法:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.5.【分析】根据各象限内点的坐标特征解答.【解答】解:点P(2,﹣3)在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.【分析】根据众数,方差、平均数,中位数的概念逐项分析即可.【解答】解:A、80出现的次数最多,所以众数是80,正确,不符合题意;B、方差是:×[3×(80﹣80)2+(90﹣80)2+2×(80﹣75)2]=25,正确,不符合题意;C、平均数是(80+90+75+75+80+80)÷6=80,正确,不符合题意;D、把数据按大小排列,中间两个数都为80,80,所以中位数是80,错误,符合题意.故选:D.【点评】本题为统计题,考查方差、众数、平均数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.【分析】若每人7两,还剩4两,则银子共有(7x+4)两;若每人9两,还差8两,则银子共有(9x﹣8)两.根据银子数量不变,即可得出关于x的一元一次方程,此题得解.【解答】解:根据题意,得7x+4=9x﹣8.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.8.【分析】利用平行线的性质可得∠3的度数,再利用平角定义可得答案.【解答】解:如图,∵AB∥CD,∴∠1=∠3=56°,∴∠2=180°﹣90°﹣56°=34°,故选:D.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.9.【分析】连接AD,如图,先根据切线的性质得到∠OAC=90°,再利用互余计算出∠AOC =60°,接着根据圆周角定理得到∠B=30°,∠ADB=90°,然后根据含30度角的直角三角形三边的关系计算BD的长度.【解答】解:连接AD,如图,∵OC交⊙O于点D,∴OA⊥AC,∴∠OAC=90°,∵∠C=30°,∴∠AOC=90°﹣∠C=60°,∵∠B=AOC=30°,∵AB为直径,∴∠ADB=90°,在Rt△ABD中,∵∠B=30°,∴AD=AB=×12=6,∴BD=AD=6.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.10.【分析】根据题意可知AF垂直平分CD,然后根据勾股定理可以得到BC的长,再根据等面积法可以求得AE的长,再根据勾股定理即可得到CE的长,从而可以得到CD的长,进而得到BD的长,然后即可求得△ABD的面积.【解答】解:由题意可得,AF垂直平分CD交CD于点E,∴AD=AC,∵∠BAC=90°,AC=6,AB=8,∴BC===10,∵,∴,解得AE=,∵∠AEC=90°,AC=6,∴CE===,∴CD=2CE=,∴BD=BC﹣CD=10﹣=,∴△ABD的面积为==,故选:C.【点评】本题考查勾股定理、等面积法,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】根据二次根式中的被开方数是非负数,可得:3﹣x≥0,据此求出x的取值范围即可.【解答】解:∵代数式有意义,∴3﹣x≥0,∴x≤3.故答案为:x≤3.【点评】此题主要考查了二次根式有意义的条件,解答此题的关键是要明确:二次根式中的被开方数是非负数.12.【分析】根据题意得出分式方程,再方程两边都乘2(5+x)得出2(7﹣x)=5+x,求出方程的解,再进行检验即可.【解答】解:根据题意得=,方程两边都乘2(5+x),得2(7﹣x)=5+x,解得:x=3,检验:当x=3时,2(5+x)≠0,所以x=3是所列方程的解.故答案为:3.【点评】本题考查了分式方程,能把分式方程转化成整式方程是解此题的关键.13.【分析】根据图可知OC⊥AB,由垂径定理可知∠ADO=90°,AD=AB=8,在Rt△AOD中,利用勾股定理可求OD,进而可求CD.【解答】解:∵OC⊥AB,∴∠ADO=90°,AD=AB=8,在Rt△AOD中,OD2=OA2﹣AD2,∴OD==6,∴CD=10﹣6=4(m).故答案是4.【点评】本题考查了垂径定理、勾股定理,解题的关键是先求出OD.14.【分析】由方程根的个数,根据根的判别式可得到关于k的方程,则可求得k的值.【解答】解:∵关于x的方程x2﹣6x+k=0有两个相等的实数根,∴Δ=0,即(﹣6)2﹣4×1×k=0,解得k=9.故答案为:9.【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.15.【分析】由题意可知:随机捕捉100只,其中带标记的有2只,可以知道,在样本中,有标记的占到.而在总体中,有标记的共有50只,根据比例即可解答.【解答】解:根据题意得:50÷=2500(只),答:估计这片山林中雀鸟的数量为2500只.故答案为:2500.【点评】本题考查了用样本估计总体的知识,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.16.【分析】根据完全平方公式,配方法,分式的值,多项式的含义即可确定答案.【解答】解:①a2+2ab+b2=(a+b)2,是一个整式的平方;②﹣x2+6x﹣10=﹣(x2﹣6x+9)﹣1=﹣(x﹣3)2﹣1,∵(x﹣3)2≥0,∴﹣(x﹣3)2﹣1<0,∴不管字母取何值,﹣x2+6x﹣10的值总是负数;③为整数时,x+1=±1或x+1=±2或x+1=±4,∴x=0或﹣2或1或﹣3或3或﹣5,x有6个不同的取值;④2a3b﹣5ab+3是四次三项式,故答案为:④②③①.【点评】本题考查了完全平方式,配方法,分式的值,多项式等,熟练掌握这些知识是解题的关键.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17.【分析】首先计算乘方、负整数指数幂和特殊角的三角函数值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:=1+3﹣2×+2=1+3﹣1+2=5.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.18.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:(x+y)(x﹣y)+(4x3y﹣2xy3)÷2xy=x2﹣y2+2x2﹣y2=3x2﹣2y2,当x=2,y=﹣1时,原式=3×22﹣2×(﹣1)2=12﹣2=10.【点评】本题考查了整式的混合运算﹣化简求值,准确熟练地进行计算是解题的关键.19.【分析】(1)过点C作CF⊥AB于点F,由题意可知:∠EAD=∠ADB=45°,从而可知AB=18(m).(2)由题可知:∠EAC=∠ACF=30°,在Rt△ACF中,所以tan∠ACF=,从而可求出AF的长度,再根据BF=AB﹣AF的长度.【解答】解:(1)过点C作CF⊥AB于点F,由题意可知:∠EAD=∠ADB=45°,∴BD=AB=18m.答:建筑物AB的高度是18m.(2)∵四边形BFCD是矩形,∴BD=CF=18m,CD=BF,由题可知:∠EAC=∠ACF=30°,在Rt△ACF中,tan∠ACF=,∴AF=18×=6m,∴BF=AB﹣AF=(18﹣6)m,∴CD=(18﹣6)m.答:建筑物CD的高度(18﹣6)m,【点评】本题考查解直角三角形的应用,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.20.【分析】(1)用D小组的人数除以对应的百分数,可求出调查的总人数,用C组的人数除以总人数,再乘100%就是C小组对应的百分数,由此解答;(2)用调查的总人数减去其余三个小组的人数,得出B小组人数,从而补全条形统计图;(3)用列表法列出所有可能的情况,再用所选的2人恰好是1名男生和1名女生的情况数除以总情况数即可求出概率.【解答】解:(1)共抽查的学生人数为:10÷20%=50,×100%=32%,所以m=32.故答案为:50,32;(2)喜爱活动小组B的学生人数为:50﹣6﹣16﹣10=18.补全条形统计图为:(3)记2名女生为A1,A2,2名男生为B1,B2,根据题意列表如下:A1A2B1B2 A1(A2,A1)(B1,A1)(B2,A1)A2(A1,A2)(B1,A2)(B2,A2)B1(A1,B1)(A2,B1)(B2,B1)B2(A1,B2)(A2,B2)(B1,B2)由表格可知,共有12种结果,且每种结果出现的可能性相同,其中所选的2人恰好是1名男生和1名女生的结果共有8种,所以P(1名男生和1名女生)==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果数n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.【分析】(1)证△AOD≌△COB(AAS),由全等三角形的性质得OD=OB,即可解决问题;(2)证明四边形ABCD是矩形,即可解决问题.【解答】(1)证明:∵AD∥BC,∴∠ADO=∠CBO,∵O是AC的中点,∴OA=OC,在△AOD和△COB中,∵,∴△AOD≌△COB(AAS),∴OD=OB,又∵OA=OC,∴四边形ABCD是平行四边形;(2)解:由(1)得:四边形ABCD是平行四边形,又∵AC=BD,∴平行四边形ABCD是矩形.∴∠DAB=90°.在直角△DAB中,BD=10,AD=6,由勾股定理知:AB===8.=AD•AB=48.则S四边形ABCD即四边形ABCD的面积是48.【点评】本题考查平行四边形的判定和性质、全等三角形的判定与性质、矩形的判定与性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)根据SAS证明△ABC与△DCE全等即可;(2)根据全等三角形的性质解答即可.【解答】(1)证明:∵CE∥AB,∴∠B=∠ECD,在△ABC与△DCE中,,∴△ABC≌△DCE(SAS);(2)解:∵△ABC≌△DCE,∴AB=CD=8,∴BC=BD﹣CD=12﹣8=4.【点评】此题考查全等三角形的判定和性质,关键是根据SAS证明△ABC与△DCE全等解答.23.【分析】(1)①危房改造户每户可获得补贴﹣地方财政每户可获得补贴=国家专项拨款每户标准,依此计算即可求解;②2022年该地区用于危房改造的国家专项拨款=2022年该地区用于危房改造的地方财政和国家专项拨款﹣地方财政拨款,依此计算即可求解;(2)先求出2023年该地区用于危房改造的地方财政和国家专项拨款,再除以危房改造户每户可获得补贴即可求解.【解答】解:(1)①12000﹣6000÷1.2=12000﹣5000=7000(元).故国家专项拨款标准为每户7000元.题干的说法是错误的.故答案为:×;②12000×1.2﹣6000=14400﹣6000=8400(万元).故2022年该地区用于危房改造的国家专项拨款共8400万元.题干的说法是正确的.故答案为:√;(2)[6000×(1+20%)+8400×(1+20%)]÷12000=(7200+10080)÷12000=17280÷12000=1.4(万户).故2023年该地区最多能完成危房改造1.4万户.【点评】本题考查了有理数的混合运算,关键是理解题意,正确得到地方财政和国家专项拨款的标准.24.【分析】(1)先根据四边形的内角和为360°表示∠D的度数,根据“和谐四边形”的定义分8种情况列方程可得结论;(2)根据条件证明∠BDE=∠B+∠C,由“和谐四边形”的定义可得结论;(3)①根据圆周角定理及直角三角形的性质推出,∠ACF+∠BCF=90°,∠A+∠B=90°,根据圆内接四边形的性质和等腰三角形的性质推出∠ADE=∠FGE,∠ADE=∠A,进而得出∠A=∠ACF,根据等式的性质求解即可;②如图3,作辅助线,构建相似三角形,证明△AHE∽△ACB,根据勾股定理和相似三角形的性质求解即可.【解答】(1)解:∵∠A=100°,∠B=60°,∠C=α,∴∠D=360°﹣100°﹣60°﹣α=200°﹣α,若∠A=∠B+∠D,则100°=50°+(200°﹣α),解得:α=150°,若∠A=∠C+∠B,则100°=α+60°,解得:α=40°,若∠A=∠C+∠D,则100°=α+(200°﹣α),无解,若∠B=∠D+∠C,则60°=200°﹣α+α,无解,若∠C=∠B+∠A,则α=160°,若∠C=∠B+∠D,则α=60°+(200°﹣α),α=130°,综上,α的值是150°或40°或160°或130°(写一个即可),故答案为:150°或40°或160°或130°(写一个即可);(2)证明:设∠A=x,∠C=y,则∠B=180°﹣x﹣y,∵AE=DE,∴∠ADE=∠A=x,∴∠BDE=180°﹣x,在四边形DBCE中,∠BDE=∠B+∠C,∴四边形DBCE为“和谐四边形”;(3)①证明:∵EG是⊙O的直径,∴∠GCE=90°,∴∠ACF+∠BCF=90°,∠A+∠B=90°,∵AE=DE,∴∠ADE=∠A,∵D、F、G、E四点都在⊙O上,∴∠ADE=∠FGE,∴∠FGE=∠A,∵∠FGE=∠ACF,∴∠A=∠ACF,∴∠B=∠BCF,∴BF=CF;②解:连接DE、DG、FG,过E作EH⊥AB于H,连接DG,∵BF=CF,∴∠B=∠BCF=∠BDG,∴BG=DG,∵EG是⊙O的直径,∴∠GDE=90°,∵DE=AE=1,EG=5,∴DG==7=BG,∵∠BGF﹣∠B=45°,∠BGF﹣∠BCF=∠CFG,∴∠CFG=∠CEG=45°,∴△ECG是等腰直角三角形,∴CE=CG=EG=5,∴BC=7+5=12,AC=5+1=6,∴AB===6,∵∠AHE=∠ACB=90°,∠A=∠A,∴△AHE∽△ACB,∴=,=,∵==,∴AH=,=,∴EH==,=AH•EH=××=,∴S△AHE==36,∴S△ACB∵DE=AE,EH⊥AD,=2S△AHE=,∴S△ADE﹣S△ADE=36﹣=.∴“和谐四边形”DBCE的面积=S△ACB【点评】本题是圆的综合题,考查圆周角定理,圆内接四边形的性质,相似三角形的性质和判定,新定义:“和谐四边形”的理解和运用,勾股定理等知识,解题的关键是学会理解新定义,正确作辅助线解决问题,属于中考压轴题.25.【分析】(1)在y=x2﹣x﹣2中,令y=0可得A(﹣1,0),B(4,0);设直线l的函数解析式为y=kx+b,用待定系数法得直线l的函数解析式为y=﹣x﹣;(2)由点P的横坐标为m,知P(m,m2﹣m﹣2),N(m,﹣m﹣),M(m,0),①若P为MN中点,则2(m2﹣m﹣2)=﹣m﹣+0,②若N为PM的中点,则2(﹣m﹣)=m2﹣m﹣2+0,③若M为PN中点,则m2﹣m﹣2﹣m﹣=0,分别解方程可得答案;(3)由y=x2﹣x﹣2得抛物线对称轴为直线x=,设Q(,t),有AQ2=+t2,DQ2=+(t+2)2,AD2=20,①若AQ为斜边,则+t2=+(t+2)2+20,②若DQ为斜边,则+t2+20=+(t+2)2,③若AD为斜边,则+t2++(t+2)2=20,分别解方程可得答案.【解答】解:(1)在y=x2﹣x﹣2中,令y=0得:x2﹣x﹣2=0,解得x=﹣1或x=4,∴A(﹣1,0),B(4,0);设直线l的函数解析式为y=kx+b,将A(﹣1,0),D(3,﹣2)代入得:,解得,∴直线l的函数解析式为y=﹣x﹣;(2)∵点P的横坐标为m,∴P(m,m2﹣m﹣2),N(m,﹣m﹣),M(m,0),①若P为MN中点,则2(m2﹣m﹣2)=﹣m﹣+0,解得m=或m=﹣1(三点重合,舍去),∴P(,﹣);②若N为PM的中点,则2(﹣m﹣)=m2﹣m﹣2+0,解得m=2或m=﹣1(舍去),∴P(2,﹣3);③若M为PN中点,则m2﹣m﹣2﹣m﹣=0,解得m=5或m=﹣1(舍去),∴P(5,3);综上所述,P的坐标为(,﹣)或(2,﹣3)或(5,3);(3)由y=x2﹣x﹣2得抛物线对称轴为直线x=,设Q(,t),又A(﹣1,0),D(3,﹣2),∴AQ2=+t2,DQ2=+(t+2)2,AD2=20,①若AQ为斜边,则+t2=+(t+2)2+20,解得t=﹣5,∴Q (,﹣5);②若DQ 为斜边,则+t2+20=+(t+2)2,解得t=5,∴Q (,5);③若AD为斜边,则+t2++(t+2)2=20,解得t =或t =,∴Q (,)或(,);综上所述,Q 的坐标为(,﹣5)或(,5)或(,)或(,).【点评】本题考查二次函数综合应用,涉及待定系数法,中点坐标公式,直角三角形性质等知识,解题的关键是用含字母的代数式表示相关点坐标和相关线段的长度。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

重庆市广益中学2024届中考数学全真模拟试卷含解析

重庆市广益中学2024届中考数学全真模拟试卷含解析

重庆市广益中学2024学年中考数学全真模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,直线与y 轴交于点(0,3)、与x 轴交于点(a ,0),当a 满足时,k 的取值范围是( )A .B .C .D .2.二次函数2y ax bx c =++(a ≠0)的图象如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y =ax +c 的图象不经第四象限C .m (am +b )+b <a (m 是任意实数)D .3b +2c >03.如图,正方形ABCD 的对角线AC 与BD 相交于点O ,∠ACB 的角平分线分别交AB ,BD 于M ,N 两点.若AM =2,则线段ON 的长为( )A .22B 3C .1D 64.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩()m 1.50 1.60 1.65 1.70 1.75 1.80 人数124 332这些运动员跳高成绩的中位数是( ) A .1.65mB .1.675mC .1.70mD .1.75m5.如图,菱形ABCD 的对角线相交于点O ,过点D 作DE ∥AC , 且DE=12AC ,连接CE 、OE ,连接AE ,交OD 于点F ,若AB=2,∠ABC=60°,则AE 的长为( )A .3B .5C .7D .226.已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如右图所示,则该封闭图形可能是( )A .B .C .D .7.如图,在ABC ∆中,90,4,3C AC BC ︒∠===,将ABC ∆绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则,B D 两点间的距离为( )A 10B .22C .3D 58.如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A .85°B .105°C .125°D .160°9.如图所示,90,,E F B C AE AF ∠=∠=∠=∠=,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM ∆≅∆,其中正确的是有( )A .1个B .2个C .3个D .4个10.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A→D→E→F→G→B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A .B .C .D .11.将抛物线221y x =-+向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( ) A .()2212y x =--- B .()2212y x =-+- C .()2214y x =--+D .()2214y x =-++12.下列关于x 的方程中,属于一元二次方程的是( ) A .x ﹣1=0B .x 2+3x ﹣5=0C .x 3+x=3D .ax 2+bx+c=0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若a、b为实数,且b =22117a aa-+-++4,则a+b=_____.14.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.15.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.16.在平面直角坐标系中,抛物线y=x2+x+2上有一动点P,直线y=﹣x﹣2上有一动线段AB,当P点坐标为_____时,△PAB的面积最小.17.当x为_____时,分式3621xx-+的值为1.18.不等式组42348xx-+<⎧⎨-≤⎩①②的解集是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC与△A1B1C1是位似图形.(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B的坐标为____________;(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.20.(6分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书).请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图.九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校 2000 名学生所捐图书的数量.21.(6分)关于x 的一元二次方程()23220x k x k -+++=.求证:方程总有两个实数根;若方程有一根小于1,求k的取值范围.22.(8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A (1,1),B (4,1),C (3,3). (1)将△ABC 向下平移5个单位后得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,请画出△A 2B 2C 2; (3)判断以O ,A 1,B 为顶点的三角形的形状.(无须说明理由)23.(8分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格: 组别 成绩(分)频数(人数) 频率 一20.04二100.2 三 14b 四 a0.32 五80.16请根据表格提供的信息,解答以下问题: (1)本次决赛共有 名学生参加; (2)直接写出表中a= ,b= ; (3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .24.(10分) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A 型号的空调比1台B 型号的空调少200元,购买2台A 型号的空调与3台B 型号的空调共需11200元,求A 、B 两种型号的空调的购买价各是多少元?25.(10分)化简求值:212(1)211x x x x -÷-+++,其中x 是不等式组273(1)423133x x x x -<-⎧⎪⎨+≤-⎪⎩①②的整数解. 26.(12分)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC DF AE ⊥=,,垂足为F .(1)求证:AF BE =;(2)如果21BE EC :=:,求CDF 的余切值. 27.(12分)如图①,在正方形ABCD 中,点E 与点F 分别在线段AC 、BC 上,且四边形DEFG 是正方形.(1)试探究线段AE 与CG 的关系,并说明理由.(2)如图②若将条件中的四边形ABCD 与四边形DEFG 由正方形改为矩形,AB=3,BC=1.①线段AE 、CG 在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由. ②当△CDE 为等腰三角形时,求CG 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、C 【解题分析】解:把点(0,2)(a ,0)代入,得b=2.则a=,∵, ∴,解得:k≥2. 故选C . 【题目点拨】本题考查一次函数与一元一次不等式,属于综合题,难度不大. 2、D 【解题分析】解:A .由二次函数的图象开口向上可得a >0,由抛物线与y 轴交于x 轴下方可得c <0,由x =﹣1,得出2ba=﹣1,故b >0,b =2a ,则b >a >c ,故此选项错误;B .∵a >0,c <0,∴一次函数y =ax +c 的图象经一、三、四象限,故此选项错误;C .当x =﹣1时,y 最小,即a ﹣b ﹣c 最小,故a ﹣b ﹣c <am 2+bm +c ,即m (am +b )+b >a ,故此选项错误;D .由图象可知x =1,a +b +c >0①,∵对称轴x =﹣1,当x =1,y >0,∴当x =﹣3时,y >0,即9a ﹣3b +c >0② ①+②得10a ﹣2b +2c >0,∵b =2a ,∴得出3b +2c >0,故选项正确; 故选D .点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y =a +b +c ,然后根据图象判断其值. 3、C 【解题分析】作MH ⊥AC 于H ,如图,根据正方形的性质得∠MAH=45°,则△AMH 为等腰直角三角形,所以AH=MH=22AM=2,再根据角平分线性质得BM=MH=2,则AB=2+2,于是利用正方形的性质得到AC=2AB=22+2,OC=12AC=2+1,所以CH=AC-AH=2+2,然后证明△CON ∽△CHM ,再利用相似比可计算出ON 的长. 【题目详解】试题分析:作MH ⊥AC 于H ,如图,∵四边形ABCD 为正方形, ∴∠MAH=45°,∴△AMH 为等腰直角三角形, ∴AH=MH=22AM=22×2, ∵CM 平分∠ACB , ∴2∴,∴+2,∴OC=12,CH=AC ﹣+2 ∵BD ⊥AC , ∴ON ∥MH , ∴△CON ∽△CHM ,∴ON OCMH CH ==, ∴ON=1. 故选C . 【题目点拨】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质. 4、C 【解题分析】根据中位数的定义解答即可. 【题目详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1. 所以这些运动员跳高成绩的中位数是1.1. 故选:C . 【题目点拨】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数. 5、C 【解题分析】在菱形ABCD 中,OC=12AC ,AC ⊥BD ,∴DE=OC ,∵DE ∥AC ,∴四边形OCED 是平行四边形,∵AC ⊥BD ,∴平行四边形OCED 是矩形,∵在菱形ABCD 中,∠ABC=60°,∴△ABC 为等边三角形,∴AD=AB=AC=2,OA=12AC=1,在矩形OCED 中,由勾股定理得:=在Rt△ACE中,由勾股定理得:AE=2222AC CE+=+=;故选C.2(3)7点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.6、A【解题分析】解:分析题中所给函数图像,-段,AP随x的增大而增大,长度与点P的运动时间成正比.O E-段,AP逐渐减小,到达最小值时又逐渐增大,排除C、D选项,E FF G-段,AP逐渐减小直至为0,排除B选项.故选A.【题目点拨】本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.7、A【解题分析】先利用勾股定理计算出AB,再在Rt△BDE中,求出BD即可;【题目详解】解:∵∠C=90°,AC=4,BC=3,∴AB=5,∵△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=AC=4,DE=BC=3,∴BE=AB-AE=5-4=1,在Rt△DBE中,223110+=故选A.【题目点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8、C【解题分析】首先求得AB 与正东方向的夹角的度数,即可求解.【题目详解】根据题意得:∠BAC =(90°﹣70°)+15°+90°=125°,故选:C .【题目点拨】本题考查了方向角,正确理解方向角的定义是关键.9、C【解题分析】根据已知的条件,可由AAS 判定△AEB ≌△AFC ,进而可根据全等三角形得出的结论来判断各选项是否正确.【题目详解】解:如图:在△AEB 和△AFC 中,有90B C E F AE AF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△AEB ≌△AFC ;(AAS )∴∠FAM=∠EAN ,∴∠EAN-∠MAN=∠FAM-∠MAN ,即∠EAM=∠FAN ;(故③正确)又∵∠E=∠F=90°,AE=AF ,∴△EAM ≌△FAN ;(ASA )∴EM=FN ;(故①正确)由△AEB ≌△AFC 知:∠B=∠C ,AC=AB ;又∵∠CAB=∠BAC ,∴△ACN ≌△ABM ;(故④正确)由于条件不足,无法证得②CD=DN ;故正确的结论有:①③④;故选C .【题目点拨】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.10、B【解题分析】解:当点P 在AD 上时,△ABP 的底AB 不变,高增大,所以△ABP 的面积S 随着时间t 的增大而增大;当点P 在DE 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在EF 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的减小而减小;当点P 在FG 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在GB 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的减小而减小;故选B .11、A【解题分析】根据二次函数的平移规律即可得出.【题目详解】解:221y x =-+向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为()2212y x =---故答案为:A .【题目点拨】本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律.12、B【解题分析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.A. 未知数的最高次数不是2 ,不是一元二次方程,故此选项错误;B. 是一元二次方程,故此选项正确;C. 未知数的最高次数是3,不是一元二次方程,故此选项错误;D. a=0时,不是一元二次方程,故此选项错误;故选B.【题目点拨】本题考查一元二次方程的定义,解题的关键是明白:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、5或1【解题分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【题目详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=1,故答案为5或1.【题目点拨】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.14、8【解题分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为:8【题目点拨】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.15、214【解题分析】先由根与系数的关系得:两根和与两根积,再将m 2+n 2进行变形,化成和或积的形式,代入即可.【题目详解】由根与系数的关系得:m+n=52,mn=12, ∴m 2+n 2=(m+n )2-2mn=(52)2-2×12=214, 故答案为:214. 【题目点拨】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如1211 x x 、x 12+x 22等等,本题是常考题型,利用完全平方公式进行转化. 16、(-1,2)【解题分析】因为线段AB 是定值,故抛物线上的点到直线的距离最短,则面积最小,平移直线与抛物线的切点即为P 点,然后求得平移后的直线,联立方程,解方程即可.【题目详解】因为线段AB 是定值,故抛物线上的点到直线的距离最短,则面积最小,若直线向上平移与抛物线相切,切点即为P 点,设平移后的直线为y=-x-2+b ,∵直线y=-x-2+b 与抛物线y=x 2+x+2相切,∴x 2+x+2=-x-2+b ,即x 2+2x+4-b=0,则△=4-4(4-b )=0,∴b=3,∴平移后的直线为y=-x+1,解212y x y x x -+⎧⎨++⎩==得x=-1,y=2, ∴P 点坐标为(-1,2),故答案为(-1,2).【题目点拨】本题主要考查了二次函数图象上点的坐标特征,三角形的面积以及解方程等,理解直线向上平移与抛物线相切,切点即为P 点是解题的关键.17、2【解题分析】分式的值是1的条件是,分子为1,分母不为1.【题目详解】∵3x-6=1,∴x=2,当x=2时,2x+1≠1.∴当x=2时,分式的值是1.故答案为2.【题目点拨】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.18、2<x≤1【解题分析】本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集.【题目详解】由①得x >2,由②得x≤1,∴不等式组的解集为2<x≤1.故答案为:2<x≤1.【题目点拨】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)作图见解析;点B的坐标为:(﹣2,﹣5);(2)作图见解析;(3)62+45【解题分析】分析:(1)直接利用已知点位置得出B点坐标即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.详解:(1)如图所示:点B的坐标为:(﹣2,﹣5);故答案为(﹣2,﹣5);(2)如图所示:△AB2C2,即为所求;(3)如图所示:P点即为所求,P点坐标为:(﹣2,1),四边形ABCP的周长为:22++222422+=42+25+22+25=62+45.++22++224424故答案为62+45.点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.20、(1)50;(2)详见解析;(3)36°;(4)全校2000名学生共捐6280册书.【解题分析】(1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;(2)根据条形统计图求出捐4本的人数为,再画出图形即可;(3)用360°乘以所捐图书是6本的人数所占比例可得;(4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可.【题目详解】(1)∵捐 2 本的人数是 15 人,占 30%,∴该班学生人数为 15÷30%=50 人;(2)根据条形统计图可得:捐 4 本的人数为:50﹣(10+15+7+5)=13;补图如下;(3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为 360°×550=36°. (4)∵九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=15750, ∴全校 2000 名学生共捐 2000×15750=6280(本), 答:全校 2000 名学生共捐 6280 册书.【题目点拨】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.21、(2)见解析;(2)k<2.【解题分析】(2)根据方程的系数结合根的判别式,可得△=(k-2)2≥2,由此可证出方程总有两个实数根;(2)利用分解因式法解一元二次方程,可得出x 1=2、x 2=k+2,根据方程有一根小于2,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【题目详解】(2)证明:∵在方程()23220x k x k -+++=中,△=[-(k+3)]2-4×2×(2k+2)=k 2-2k+2=(k-2)2≥2, ∴方程总有两个实数根.(2) ∵x 2-(k+3)x+2k+2=(x-2)(x-k-2)=2,∴x 1=2,x 2=k+2.∵方程有一根小于2,∴k+2<2,解得:k<2,∴k的取值范围为k<2.【题目点拨】此题考查根的判别式,解题关键在于掌握运算公式.22、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.【解题分析】【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,(3)根据勾股定理逆定理解答即可.【题目详解】(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA12253+34+=A1224117即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形.【题目点拨】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解题分析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)2÷0.04=50(2)50×0.32=16 14÷50=0.28(3)(4)(0.32+0.16)×100%=48%考点:频数分布直方图24、A、B两种型号的空调购买价分别为2120元、2320元【解题分析】试题分析:根据题意,设出A、B两种型号的空调购买价分别为x元、y元,然后根据“已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,列出方程求解即可.试题解析:设A、B两种型号的空调购买价分别为x元、y元,依题意得:200 2311200y xx y-=⎧⎨+=⎩解得:21202320 xy=⎧⎨=⎩答:A、B两种型号的空调购买价分别为2120元、2320元25、当x=﹣3时,原式=﹣12,当x=﹣2时,原式=﹣1.【解题分析】先化简分式,再解不等式组求得x的取值范围,在此范围内找到符合分式有意义的x的整数值,代入计算可得.【题目详解】原式=÷=•=,解不等式组,解不等式①,得:x>﹣4,解不等式②,得:x≤﹣1,∴不等式组的解集为﹣4<x≤﹣1,∴不等式的整数解是﹣3,﹣2,﹣1.又∵x+1≠0,x ﹣1≠0∴x≠±1,∴x=﹣3或x=﹣2,当x=﹣3时,原式=﹣,当x=﹣2时,原式=﹣1.【题目点拨】本题考查了分式的化简求值及一元一次不等式组的整数解,求分式的值时,一定要选择使每个分式都有意义的未知数的值.26、(1)见解析;(2)25cot 5CDF ∠=. 【解题分析】(1)矩形的性质得到AD BC AD BC =,∥,得到AD AE DAF AEB ∠∠=,=,根据AAS 定理证明ABE DFA ≌;(2)根据全等三角形的性质、勾股定理、余切的定义计算即可.【题目详解】解:(1)证明:四边形ABCD 是矩形, AD BC AD BC ∴=,∥,AD AE DAF AEB ∴∠∠=,=,在ABE △和DFA 中,DAF AEB AFD EBA AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABE DFA ∴≌,AF BE ∴=;(2)ABE DFA ≌,AD AE DAF AEB ∴∠∠=,=,设CE k =,21BE EC :=:, 2BE k ∴=,3AD AE k ∴==,225AB AE BE k ∴-=,9090ADF CDF ADF DAF ∠+∠︒∠+∠︒=,=,CDF DAE ∴∠∠=,CDF AEB ∴∠∠=, 225cot cot 55BE k CDF AEB AB k∴∠=∠===.【题目点拨】本题考查的是矩形的性质、勾股定理的运用、全等三角形的判定和性质以及余切的定义,掌握全等三角形的判定定理和性质定理是解题的关键.27、(1)AE=CG ,AE ⊥CG ,理由见解析;(2)①位置关系保持不变,数量关系变为34CG AE =; 理由见解析;②当△CDE 为等腰三角形时,CG 的长为32或2120或158. 【解题分析】 试题分析:()1AE CG AE CG =⊥,,证明ADE ≌CDG ,即可得出结论.()2①位置关系保持不变,数量关系变为3.4CG AE =证明ADE CDG ∽,根据相似的性质即可得出. ()3分成三种情况讨论即可.试题解析:(1)AE CG AE CG =⊥,,理由是:如图1,∵四边形EFGD 是正方形,∴90DE DG EDC CDG =∠+∠=︒,,∵四边形ABCD 是正方形,∴90AB CD ADE EDC ,,=∠+∠=︒∴ADE CDG ∠=∠,∴ADE ≌CDG ,∴45AE CG DCG DAE =∠=∠=︒,,∵45ACD ∠=︒,∴90ACG ,∠=︒∴CG AC ,⊥ 即AE CG ⊥;(2)①位置关系保持不变,数量关系变为3.4CG AE = 理由是:如图2,连接EG 、DF 交于点O ,连接OC ,∵四边形EFGD 是矩形,∴OE OF OG OD ===,Rt DGF △中,OG=OF ,Rt DCF 中,OC OF ,=∴OE OF OG OD OC ====,∴D 、E 、F 、C 、G 在以点O 为圆心的圆上,∵90DGF ∠=︒,∴DF 为O 的直径,∵DF EG =,∴EG 也是O 的直径,∴∠ECG =90°,即AE CG ⊥,∴90DCG ECD ,∠+∠=︒∵90DAC ECD ∠+∠=︒, ∴DAC DCG ∠=∠,∵ADE CDG ∠=∠,∴ADE CDG ∽,∴3.4CG DC AE AD ==②由①知:3.4CG AE = ∴设34CG x AE x ==,,分三种情况:(i )当ED EC =时,如图3,过E 作EH CD ⊥于H ,则EH ∥AD ,∴DH CH =,∴4AE EC x ,== 由勾股定理得:5AC =,∴85x =,5.8x = 1538CG x ∴==; (ii )当3DE DC ==时,如图1,过D 作DH AC ⊥于H ,EH CH ∴=,∵90CDH CAD CHD CDA ∠=∠∠=∠=︒,,∴CDH CAD ∽,∴,CD CH CA CD= 3,53CH ∴= ∴95CH =, ∴97425255AE x AC CH ==-=-⨯=,720x =, ∴21320CG x ,==(iii )当3CD CE ==时,如图5,∴4532AE x ==-=,12x =, ∴332CG x ==, 综上所述,当CDE △为等腰三角形时,CG 的长为32或2120或158. 点睛:两组角对应,两三角形相似.。

人教版2023年中考数学模拟测试试卷(一)

人教版2023年中考数学模拟测试试卷(一)

2023年中考数学模拟测试试卷(一)一、选择题(本大题10小题,每小题3分,共30分)1.–1.5的倒数是()A.0B.–1.5C.1.5D.232.计算a6÷(﹣a)3的结果是()A.a2B.﹣a2C.a3D.﹣a33.作为中国非物质文化遗产之一的紫砂壶,成型工艺特别,造型式样丰富,陶器色泽古朴典雅,鲜明地反映了中华民族造型审美意识.如图是一把做工精湛的紫砂壶“景舟石瓢”,下列选项是从上面看到的图形的是()A B C D 第3题图4.如图,BE是△ABC的角平分线,在AB上取点D,使DE∥BC.已知∠ADE=80°,则∠EBC的度数为()A.30°B.40°C.50°D.60°第4题图5.不等式–3x+5≥–6的非负整数解有()A.2个B.3个C.4个D.5个6.用半径为2 cm的半圆围成一个圆锥的侧面,则这个圆锥的底面圆的半径为()A.1 cm B.2 cm C.π cm D.2π cm7.下列选项中,根据圆规作图的痕迹,可以用直尺成功找到三角形内心的图形是()A B C D8.移动5G 通信网络将推动我国数字经济发展迈上新台阶.据预测,2020年到2025年中国5G 直接经济产出和间接经济产出的情况如图所示.根据图中提供的信息,下列推断不正确的是( ) A .2020年到2025年,5G 间接经济产出和直接经济产出都呈增长趋势 B .2022年,5G 间接经济产出是直接经济产出的2倍C .2024年到2025年,5G 间接经济产出和直接经济产出的增长率相同D .2025年,5G 间接经济产出比直接经济产出多3万亿元第8题图9.如图,D 是等边三角形ABC 的边AC 上一点,四边形CDEF 是平行四边形,点F 在BC 的延长线上,G 为BE 的中点,连接DG .若AB =10,AD =DE =4,则DG 的长为( ) A .2B .3C .4D .5第9题图 第10题图10.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点(﹣3,0),其对称轴为直线x =12-,下列结论:①abc >0;①3a +c >0;①当x <0时,y 随x 的增大而增大;①一元二次方程cx 2+bx +a =0的两个根分别为x 1=13-,x 2=12;①若m ,n (m <n )为方程a (x +3)(x ﹣2)+3=0的两个根,则m <﹣3且n >2.其中正确结论的个数是( ) A .2B .3C .4D .5二、填空题(本大题6小题,每小题4分,共24分) 11()231+28-= .12.2022年第一季度,某市“蓝天白云、繁星闪烁”天数持续增加,获得省环境空气质量生态补偿资金408万元,408万用科学记数法可表示为 .13.一组数3,2,2,0,4,5,-1,6的中位数为 .14.如图,四边形ABCD 内接于圆,点B 关于对角线AC 的对称点E 落在CD 边上,连接AE .若①ABC =115°,则①DAE 的度数为 .第14题图 第15题图 第16题图15.如图,点A 1,A 2,A 3,…,A n 在反比例函数y =1x(x >0)的图象上,点B 1,B 2,B 3,…,B n 在y 轴上,已知A 1是直线y =x 与双曲线y =1x的交点,B 1A 1①OA 1,B 2A 2①B 1A 2,B 3A 3①B 2A 3,…,且①B 1OA 1=①B 2B 1A 2=①B 3B 2A 3=…,则点B 2022的坐标是 .16.如图,正方形ABCD 的边长为5,以点C 为圆心,2为半径作①C ,P 为①C 上的动点,连接BP ,并将BP 绕点B 逆时针旋转90°至BP ′,连接CP ′,在点P 移动的过程中,CP ′长度的最大值是 .三、解答题(本大题8小题,共66分)17.(每小题4分,共8分)(1)解方程组:321,46;x y x y +=⎧⎨-=-⎩①② (2)解不等式组:()2432,1 2.2x x x +≤+⎧⎪⎨-⎪⎩①<②18.(6分)如图,在①ABC 中,点D 在边AC 上,BD =BC ,E 是CD 的中点,F 是AB 的中点. (1)求证:EF =12AB ; (2)如图,在①ABC 外作①EAG =①FEA ,交BE 的延长线于点G ,求证:①ABE ①①AGE .第18题图19.(6分)某市甲、乙、丙三所初级中学期末调研测试拟实行联合命题,为确保命题的公平性,决定采取三轮抽签的方式来确定各学校负责命题的学科.第一轮,各校从语文、数学、英语三个学科中随机抽取一科;第二轮,各校从物理、化学、历史三个学科中随机抽取一科;第三轮,各校从道德与法治、地理、生物三个学科中随机抽取一科.(1)甲中学在第一轮抽到语文学科的概率;(2)用画树状图或列表法求乙中学在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的概率.20.(8分)如图,著名旅游景区B位于大山深处,原来到此旅游需要绕行C地,沿折线A→C→B方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从A地到景区B的笔直公路.请结合∠A=45°,∠B=30°,BC=502≈1.43 1.7等数据信息,解答下列问题:(1)公路修建后,从A地到景区B旅游可以少走多少千米?(2)为迎接旅游旺季的到来,修建公路时,施工队采用了新的施工技术,因此实际施工时每天的工作效率比原计划增加了25%,结果提前25天完成了施工任务.求施工队原计划每天修建多少千米?第20题图21.(8分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7 km,图书馆离宿舍1 km.周末,小亮从宿舍出发,匀速走了7 min到食堂;在食堂停留16 min吃早餐后,匀速走了5 min 到图书馆;在图书馆停留30 min借书后,匀速走了10 min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离y km 与离开宿舍的时间x min 之间的对应关系.第21题图 请根据相关信息,解答下列问题: (1)填表:离开宿舍的时间/min 2 5 20 23 30 离宿舍的距离/km0.20.7(2)填空:①食堂到图书馆的距离为 km ;②小亮从食堂到图书馆的速度为 km/min ; ③小亮从图书馆返回宿舍的速度为 km/min ;④当小亮离宿舍的距离为0.6 km 时,他离开宿舍的时间为 min . (3)当0≤x ≤28时,请直接写出y 关于x 的函数表达式.22.(8分)如图,在①O 中,半径OC 垂直于弦AB ,垂足为E . (1)若OC =5,AB =8,求sin ①OCA 的值; (2)若①DAC =21①AOC ,且点D 在①O 的外部,判断直线AD 与①O 的位置关系,并说明理由.第22题图23. (10分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E ,A ,D 在同一条直线上),发现BE =DG 且BE ⊥DG . 小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG 绕点A 按逆时针方向旋转(如图①),还能得到BE =DG 吗?若能,请给出证明;若不能,请说明理由.(2)把背景中的正方形分别改成菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按逆时针方向旋转(如图②),试问当∠EAG 与∠BAD 的大小满足怎样的关系时,背景中的结论BE =DG 仍成立?请说明理由.(3)把背景中的正方形分别改成矩形AEFG 和矩形ABCD ,且AE AG =AB AD =23,AE =4,AB =8,将矩形AEFG 绕点A 按顺时针方向旋转(如图③),连接DE ,BG .小组发现:在旋转过程中,DE 2+BG 2的值是定值,请求出这个定值.① ② ③ 第23题图24.(12分)在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (4,0)两点,与y 轴交于点C (0,﹣2). (1)求抛物线的函数表达式;(2)如图①,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求12S S 的最大值; (3)如图②,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使△PQB ∽△CAB .若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.① ② 第24题图参考答案2023年山东省枣庄市中考数学模拟测试试卷(一)答案一、1.D 2.D 3.A 4.B 5.C 6.A 7.B 8.C 9.B 10.C 二、11.5212.4.08×106 13.2.5 14.50° 15.(0,22022 16.225+ 三、解答题见“答案详解”答案详解15.(0,22022 解析:易得A 1(1,1),因为①OA 1B 1,①B 1A 2B 2,①B 2A 3B 3,…都是等腰直角三角形,所以OB 1=2.设A 2(a ,2+a ),则a (2+a )=1,解得a =21(舍去负值).所以OB 2=22设A 3(b ,22b ),则b (22b )=1,解得a =32OB 3=23 以此规律,得OB n =2n ,所以B n (0,2n ).所以B 2022(0,2202216.225+ 解析:连接对角线AC ,当点P'在对角线CA 的延长线上时,CP'有最大值. 三、17.解:(1)①+①×2,得11x =﹣11. 解得x =﹣1.把x =﹣1代入①,得y =2. 所以方程组的解为1,2.x y =-⎧⎨=⎩(2)解不等式①,得x ≥﹣2; 解不等式②,得x <5.所以不等式组的解集为﹣2≤x <5.18.证明:(1)因为BD =BC ,E 是CD 的中点,所以BE ①CD . 在Rt △AEB 中,F 是AB 的中点,所以EF =12AB . (2)因为AF =12AB ,EF =12AB ,所以AF =EF .所以①EAB =①FEA . 因为①EAG =①FEA ,所以①EAB =①EAG .又①AEB =①AEG =90°,AE =AE ,所以①ABE ①①AGE (ASA ).19. 解:(1)13(2)列表如下:第三轮 第二轮 物理化学历史道法 (物理,道法) (化学,道法) (历史,道法) 地理 (物理,地理) (化学,地理) (历史,地理) 生物(物理,生物)(化学,生物)(历史,生物)由上表知,总共有9种可能的结果,每种结果出现的可能性相同.其中乙中学在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的结果只有1种,所以抽到的学科恰好是历史和地理的概率为19.20.解:(1)如图,过点C 作CD ⊥AB ,垂足为D .在Rt △BCD 中,∠B =30°,BC =50千米,所以CD =BC •sin 30°=50×12=25(千米),BD =BC •cos 30°=50×32=253(千米). 在Rt △ACD 中,∠A =45°,所以AD =CD =25千米,AC =sin 45CD︒=252(千米). 所以AB =AD+BD =()25253+千米.所以从A 地到景区B 旅游可以少走的路程为AC +BC ﹣AB =252+50﹣()25253+=25+252﹣253≈17.5(千米).答:从A 地到景区B 旅游可以少走17.5千米.第20题图(2)设施工队原计划每天修建x 千米. 根据题意,得25+253x -()25+253125x +%=25.解得x=1+35≈0.54.经检验x =0.54是原分式方程的解. 答:施工队原计划每天修建0.54千米. 21. 解:(1)依次填0.5 0.7 1 (2)①0.3 ②0.06 ③0.1④6或62 解析:当0≤x ≤7时,小亮离宿舍的距离为0.6 km 时,他离开宿舍的时间为0.6÷0.1=6(min ),当58≤x ≤68时,小亮离宿舍的距离为0.6 km 时,他离开宿舍的时间为(1﹣0.6)÷0.1+58=62(min ). 故答案为6或62.(3)当0≤x ≤28时,y 关于x 的函数表达式是y =0.10.70.060.68x x ⎧⎪⎨⎪-⎩(0≤x ≤7);(7<x ≤23);(23<x ≤28). 22.解:(1)因为OC ①AB ,所以AE =21AB=4. 在Rt ①AOE 中,OA =OC =5,AE =4,所以OE 22OA AE - 所以CE =OC -OE =5-3=2.所以22=25EC AE + 在Rt ①AEC 中,sin ①OCA =42525AE AC ==(2)AD 与①O 相切.理由如下: 连接OB.因为OC ①AB ,所以BC ①=AC ①. 所以①BAC=21①BOC =21①AOC . 又①DAC =21①AOC ,所以①DAC =①BAC . 因为OA=OC ,所以①O AC =①ACO .因为①ACO +①BAC =90°,所以①OAC +①DAC =90°,即①OAD =90°. 因为OA 为⊙O 的半径,所以AD 与①O 相切.23. (1)证明:因为四边形AEFG 为正方形,所以AE =AG ,∠EAG =90°.又因为四边形ABCD 为正方形,所以AB =AD ,∠BAD =90°,所以∠EAG -∠BAG =∠BAD -∠BAG ,即∠EAB =∠GAD .所以△AEB ≌△AGD (SAS ).所以BE =DG . (2)解:当∠EAG =∠BAD 时,BE =DG . 理由如下:因为∠EAG =∠BAD ,所以∠EAG+∠BAG =∠BAD+∠BAG ,即∠EAB =∠GAD . 又因为四边形AEFG 和四边形ABCD 都为菱形,所以AE =AG ,AB =AD . 所以△AEB ≌△AGD (SAS ).所以BE =DG .(3)解:如图,设BE 与AG ,DG 分别相交于点P ,Q . 因为AE AG =AB AD =23,AE =4,AB =8,所以AG =6,AD =12. 因为四边形AEFG 和四边形ABCD 都为矩形,所以∠EAG =∠BAD .所以∠EAG+∠BAG =∠BAD+∠BAG ,即∠EAB =∠GAD . 因为AE AG =ABAD,所以△EAB ∽△GAD .所以∠BEA =∠DGA . 又∠EP A =∠GPQ ,所以∠GQP =∠EAP =90°.所以GD ⊥EB . 连接EG ,BD ,所以ED 2+GB 2=EQ 2+QD 2+GQ 2+QB 2=EG 2+BD 2.因为EG 2+BD 2=AE 2+AG 2+AB 2+AD 2=42+62+82+122=260,所以ED 2+GB 2=260.第23题图24. 解:(1)设抛物线的函数表达式为y =a (x +1)(x ﹣4). 将点C (0,﹣2)代入,得-4a =-2,解得a =12. 所以抛物线的函数表达式为y =12(x +1)(x ﹣4),即y =12x 2﹣32x ﹣2. (2)如图①,过点D 作DG ⊥x 轴于点G ,交BC 于点F .过点A 作AK ⊥x 轴交BC 的延长线于点K ,则有AK ①DG .所以△AKE ∽△DFE ,所以DF AK =DE AE.所以12S S =BDE ABE S S △△=DE AE =DFAK .设直线BC 的表达式为y =kx +b .将点B (4,0),C (0,﹣2)代入,得40,2.k b b +=⎧⎨=-⎩解得1,22.k b ⎧=⎪⎨⎪=-⎩所以直线BC 的表达式为y =12x ﹣2. 因为A (﹣1,0),所以y k =﹣12﹣2=﹣52.所以AK =52. 设D 213222m m m ⎛⎫-- ⎪⎝⎭,,则F 122m m ⎛-⎫ ⎪⎝⎭,,所以DF =12m ﹣2–213222m m ⎛⎫-- ⎪⎝⎭=﹣12m 2+2m .所以12S S =212252m m -+=﹣15m 2+45m =﹣15(m -2)2+45.11所以当m =2时,12S S 有最大值,最大值是45.① ②第24题图(3)符合条件的点P 的坐标为349689⎛⎫ ⎪⎝⎭,或3+416+241⎝⎭,. 因为l ∥BC ,所以直线l 的表达式为y =12x .设P ,2a a ⎛⎫ ⎪⎝⎭. ①当点P 在直线BQ 右侧时,如图②,过点P 作PN ⊥x 轴于点N ,过点Q 作QM ⊥直线PN 于点M . 因为A (﹣1,0),C (0,﹣2),B (4,0),所以AC 5,AB =5,BC =5.因为AC 2+BC 2=AB 2,所以∠ACB =90°.因为△PQB ∽△CAB ,所以PQ BP =CA BC =12∠QPB =90°.所以∠MPQ +∠NPB =90°.因为∠QMP =∠BNP =90°,所以∠MQP +∠MPQ =90°.所以∠MQP =∠NPB .所以Rt △QPM ∽Rt △PBN ,所以QM PN =PM BN =PQ BP =12. 所以QM =4a ,PM =12(a ﹣4)=12a ﹣2.所以 y Q =MN =a ﹣2, x Q =ON ﹣QM =a ﹣4a =34a . 所以Q 234a a ⎛⎫ ⎪⎝⎭,﹣.将点Q 的坐标代入抛物线的表达式,得12×234a ⎛⎫ ⎪⎝⎭﹣32×34a -2=a -2. 解得a =0(舍去)或a =689.所以点P 的坐标为349689⎛⎫ ⎪⎝⎭,. ②当点P 在直线BQ 左侧时,由①的方法同理可得点Q 的坐标为5,24a ⎛⎫ ⎪⎝⎭.此时点P 的坐标为3+416+241⎝⎭,.12。

2023年中考数学模拟试卷(1)(含详解)

2023年中考数学模拟试卷(1)(含详解)

2023年中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.在﹣3,2,﹣1,0这四个数中,比﹣2小的数是()A.﹣3 B.2 C.﹣1 D.02.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.3.2022年10月12日,“天宫课堂”第三课在中国空间站开讲,3名航天员演示了在微重力环境下毛细效应实验、水球变“懒”实验等,相应视频在某短视频平台的点赞量达到150万次,数据150万用科学记数法表示为()A.1.5×105B.0.15×105C.1.5×106D.1.5×1074.下列运算正确的是()A.2a3﹣a2=a B.(a3)2=a5C.2a3•3a2=6a5D.﹣8a2÷4a=25.某校对部分参加研学活动的中学生的年龄(单位:岁)进行统计,结果如下表:年龄13 14 15 16人数 1 3 4 2则这些学生年龄的众数和中位数分别是()A.15,15 B.15,13 C.15,14 D.14,156.如图为一节楼梯的示意图,BC⊥AC,∠BAC=a,AC=6米.现要在楼梯上铺一块地毯,楼梯宽度为1米,则地毯的面积至少需要()平方米.A.6tanα+6B.+6 C.D.7.如图,在△ABC中,DE∥AB,且,则的值为()A.B.C.D.8.已知一次函数y=(4﹣m)x﹣3,y随x的增大而减小,则m的值可能是()A.1 B.2 C.3 D.59.如图,AB为⊙O的直径,C、D为⊙O上两点,若∠BCD=25°,则∠ABD的大小为()A.50°B.55°C.60°D.65°10.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①HF=2HG;②∠GDH=∠GHD;③图中有8个等腰三角形;④S△CDG=S△DHF.其中正确的结论个数是()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分24分,每小题4分)11.分解因式:3x2﹣3=.12.在平面直角坐标系中,点(﹣2,3)关于原点对称的点的坐标是.13.不等式组的解为.14.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是.15.如图,已知A为反比例函数y=(x<0)图象上的一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为1,则k的值为.16.如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为.三.解答题(共8小题,满分66分)17.(6分)计算:()﹣1+3tan30°+|1﹣|﹣(3.4﹣π)0.18.(6分)先化简÷(﹣x﹣1),再从﹣2,﹣1,0,1,2中选一个合适的数作为x的值代入求值,19.(6分)为有效落实双减工作,切实做到减负提质,很多学校决定在课后看护中增加乒乓球项目.体育用品商店得知后,第一次用600元购进乒乓球若干盒,第二次又用600元购进该款乒乓球,但这次每盒的进价是第一次进价的倍,购进数量比第一次少了30盒,求第一次每盒乒乓球的进价是多少元?20.(8分)某居民小区为宣传生活垃圾分类,开展了相关知识测试,并随机抽取50户的成绩分成A、B、C、D、E 五个等级,制成如下统计图表,部分信息如下:等级分数频数A90≤x≤10011B80≤x<90 mC70≤x<80 10D60≤x<70 nE x<60 3(1)频数统计表中有两个数字模糊不清,分别记为m,n,直接写出m=,n=.(2)求这50户的成绩的中位数所在的等级以及扇形统计图中D等级所对应的扇形的圆心角度数.(3)已知这个居民小区共有1200户,这次测试成绩在A和B两个等级者为优秀,请你估计该小区测试成绩为优秀的有多少户.21.(9分)如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.22.(9分)如图,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,联结PC,交AD于点E.(1)求证:AD是圆O的切线.(2)若PC是圆O的切线,BC=4,求PE的长.23.(10分)如图,在矩形ABCD中,AB=4,AD=6,E是AD边上的一个动点,将四边形BCDE沿直线BE折叠,得到四边形BC′D′E,连接AC′,AD′.(1)若直线DA交BC′于点F,求证:EF=BF;(2)当AE=时,求证:△AC′D′是等腰三角形;(3)在点E的运动过程中,求△AC′D′面积的最小值.24.(12分)如图,已知抛物线y=﹣x2+bx+c与y轴交于点C,与x轴交于A(﹣1,0),B(3,0)两点.(1)求抛物线的解析式.(2)连接AC,在抛物线的对称轴上是否存在点P,使得△ACP的周长最小?若存在,求出点P的坐标和△ACP 的周长的最小值,若不存在,请说明理由.(3)点M为抛物线上一动点,点N为x轴上一动点,当以A,C,M,N为顶点的四边形为平行四边形时,直接写出点M的横坐标.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:∵﹣3<﹣2<﹣1<0<2,∴比﹣2小的数是﹣3.故选:A.2.【解答】解:四棱锥的主视图与俯视图不相同.故选:C.3.【解答】解:150万=1500000=1.5×106.故选:C.4.【解答】解:A、2a3与a2不是同类项,故不能合并,故A不符合题意.B、原式=a6,故B不符合题意.C、原式=6a5,故C符合题意.D、原式=﹣2a,故D不符合题意.故选:C.5.【解答】解:15出现的次数最多,15是众数.一共10个学生,按照顺序排列第5、6个学生年龄分别是15、15,所以中位数为=15.故选:A.6.【解答】解:在Rt△ABC中,∴tanα=,∴BC=AC•tanα=6tanα(米),∴AC+BC=(6+6tanα)(米),∴地毯的面积至少需要1×(6+6tanα)=(6+6tanα)(米2),故选:A.7.【解答】解:∵=,∴=,∵DE∥AB,∴==,故选:A.8.【解答】解:∵y随x的增大而减小,∴4﹣m<0,∴m>4,故选:D.9.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵圆周角∠BCD和∠A都对着,∴∠BCD=∠A,∵∠BCD=25°,∴∠A=25°,∴∠ABD=90°﹣∠A=65°,故选:D.10.【解答】解:∵DF=BD,∴∠DFB=∠DBF∵四边形ABCD是正方形,∵AD∥BC,AD=BC=CD,∠ADB=∠DBC=45°,∴DE∥BC,∠DFB=∠GBC,∵DE=AD,∴DE=BC,∴四边形DBCE是平行四边形,∴∠DEC=∠DBC=45°,∴∠DEC=∠ADB=∠DFB+∠DBF=2∠EFB=45°,∴∠GBC=∠EFB=22.5°,∠CGB=∠EGF=22.5°=∠GBC,∴CG=BC=DE,∵BC=CD,∴DE=CD=CG,∴∠DEG=∠DCE=45°,EC=CD,∠CDG=∠CGD=(180°﹣45°)=67.5°,∴∠DGE=180°﹣67.5°=112.5°,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD(AAS),∴∠EDG=∠CGB=∠CBF,∴∠GDH=90°﹣∠EDG,∠GHD=∠BHC=90°﹣∠CGB,∴∠GDH=∠GHD,∴∠GDH=∠GHD,故②符合题意;∵∠EFB=22.5°,∴∠DHG=∠GDH=67.5°,∴∠GDF=90°﹣∠GDH=22.5°=∠EFB,∴DG=GF,∴HG=DG=GF,∴HF=2HG,即EC≠HF=2HG,故①符合题意;∵△CHG≌△EGD,∴S△CHG=S△EGD,∴S△CHG+S△DHG=S△EGD+S△DHG,即S△CDG=S四边形DHGE≠S△DHF,故④不符合题意;结合前面条件易知等腰三角形有:△ABD、△CDB、△BDF、△CDE、△BCG、△DGH、△EGF、△CDG、△DGF 共9个,故③不符合题意;则正确的个数有2个.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:3x2﹣3,=3(x2﹣1),=3(x+1)(x﹣1).12.【解答】解:点(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故答案是:(2,﹣3).13.【解答】解:,解得,0<x≤4.故答案为:0<x≤4.14.【解答】解:根据题意得k﹣1≠0且Δ=(﹣2)2﹣4×(k﹣1)>0,解得k<2且k≠1,所以k的取值范围是k<2且k≠1.故答案为:k<2且k≠1.15.【解答】解:∵AB⊥y轴,∴S△OAB=|k|=1,而k<0,∴k=﹣2.故答案为﹣2.16.【解答】解:由翻折变换的性质得:AE=EF,∵∠ACB=90°,AC=12,BC=5,∴AB==13,设AE=EF=x,则BF=13﹣2x;分三种情况讨论:①当BF=BC时,13﹣2x=5,解得:x=4,∴AE=4;②当BF=CF时,F在BC的垂直平分线上,∴F为AB的中点,∴AF=BF,∴x+x=13﹣2x,解得:x=,∴AE=;③当CF=BC时,作CG⊥AB于G,如图所示:则BG=FG=BF,根据射影定理得:BC2=BG•AB,∴BG===,即(13﹣2x)=,解得:x=,∴AE=;综上所述:当△BCF为等腰三角形时,AE的长为:4或或;故答案为:4或或.三.解答题(共8小题,满分66分)17.【解答】解:原式=4+3×+﹣1﹣1=4++﹣1﹣1=2+2.18.【解答】解:原式=÷=•=﹣,∵x≠0且x≠1,x=2,∴x只能取﹣2或﹣1,当x=﹣1时,原式=﹣=﹣.19.【解答】解:设第一次每盒乒乓球的进价是x元,则第二次每盒乒乓球的进价是x元,由题意得:=+30,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,答:第一次每盒乒乓球的进价是4元.20.【解答】解:(1)m=50×40%=20,n=50﹣11﹣20﹣10﹣3=6,故答案为:20,6;(2)∵中位数是数据从大到小排列的第25和第26个的平均数,∴这50户的成绩的中位数在的B等级,D等级所对应的扇形的圆心角度数是360°×=43.2°;(3)1200×=744(户),答:估计该小区测试成绩为优秀的有744户.21.【解答】解:(1)作AE、BF分别垂直于x轴,垂足为E、F.∵△AOE∽△BOF,又=,∴===.由点A在函数y=的图象上,设A的坐标是(m,),∴==,==,∴OF=3m,BF=,即B的坐标是(3m,).又点B在y=的图象上,∴=,解得k=9,则反比例函数y=的表达式是y=;(2)由(1)可知,A(m,),B(3m,),又已知过A作x轴的平行线交y=的图象于点C.∴C的纵坐标是,把y=代入y=得x=9m,∴C的坐标是(9m,),∴AC=9m﹣m=8m.∴S△ABC=×8m×=8.22.【解答】解:(1)∵AB=AC,D是BC的中点,∴AD⊥BC,BD=DC,∵OD是⊙O的半径,∴AD是圆O的切线;(2)连接OP,∵BC=4,∴BD=DC=2,∵BD为直径,∴BO=OD=1,∵EP为⊙O切线,∴OP=1,∵OC=3,∴在Rt△OPC中,OP2+OC2=PC2,∴,∵∠EDC=∠PCO,∠EDC=∠OPC=90°,∴△EOC∽△POC,∴,∴,∴,∴PE=PC﹣EC==.23.【解答】(1)证明:由折叠得:∠FBE=∠CBE,∵四边形ABCD是矩形,∴AD∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴EF=BF;(2)解:在Rt△ABE中,∵AB=4,AE=,∴BE==,∴∠ABE=30°,∴∠AEB=60°,由(1)知:EF=BF,∴△BEF是等边三角形,∵AB⊥EF,∴AE=AF,如图1,过A作AH⊥C'D',∵FC'⊥C'D',ED'⊥C'D',∴FC'∥AH∥ED',∴C'H=D'H,∵AH⊥C'D',∴AC'=AD',∴△AC′D′是等腰三角形;(3)如图1,S△C'D'A=AH•C'D',∵C'D'=CD=4为定值,∴当AH最小时,△AC′D′面积最小,如图2,当C'、A、B三点共线时,此时H与C'重合,△AC′D′面积最小,由折叠得:BC=BC'=6,∠C=∠C'=90°,∵AB=4,∴AC'=6﹣4=2,△AC′D′面积的最小值===4.24.【解答】解:(1)将A(﹣1,0),B(3,0)代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+2x+3;(2)抛物线的对称轴上存在点P,使得△ACP的周长最小,理由如下:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,∵A、B点关于直线x=1对称,∴P A=PB,∴△ACP的周长=AC+AP+CP=AC+PB+CP≥AC+BC,∴当B、C、P三点共线时,△ACP的周长有最小值,当x=0时,y=3,∴C(0,3),设直线BC的解析式为y=kx+m,∴,解得,∴y=﹣x+3,∴P(1,2),∵AC=,BC=3,∴△ACP的周长的最小值为+3;(3)设M(x,﹣x2+2x+3),N(n,0),当AC为平行四边形的对角线时,∴,解得(舍)或,∴M(2,3);当AM为平行四边形的对角线时,∴,解得(舍)或,∴M(2,3);当AN为平行四边形的对角线时,∴,解得或,∴M(1+,﹣3)或(1﹣,﹣3);综上所述:M点横坐标为2或1+或1﹣.。

2023年浙江宁波中考数学全真模拟卷1

2023年浙江宁波中考数学全真模拟卷1

2023年中考数学全真模拟卷(宁波专用)第一模拟注意事项:本试卷满分150分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题4分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.2023的相反数是( ) A .12023−B .12023C .2023−D .2023【分析】利用相反数的定义判断. 【解答】解:2023的相反数是2023−, 故选:C .2.下列运算正确的是( ) A .235a b ab +=B .235a a a ⋅=C .33(2)6a a =D .633a a a ÷=【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则计算得出答案. 【解答】解;A 、2a 与3b 无法运算,故此选项错误; B 、235a a a ⋅=,故此选项正确;C 、33(2)8a a =,故此选项错误;D 、624a a a ÷=,故此选项错误;故选:B .3.卢塞尔体育场是卡塔尔世界杯的主体育场,由中国建造,是卡塔尔规模最大的体育场.世界杯之后,将有约170000个座位将捐赠给需要体育基础设施的国家,其中大部分来自世界杯决赛场地卢塞尔体育场,170000这个数用科学记数法表示为( ) A .50.1710⨯B .51.710⨯C .41710⨯D .61.710⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:5170000 1.710=⨯. 故选:B .4.如图所示,正三棱柱的俯视图是( )A .B .C .D .【分析】正三棱柱从上面看到的图形即俯视图.【解答】解:俯视图是从上面看所得到的图形,看见的棱用实线表示,看不见的用虚线表示, 故选:B .5.在今年“支援河南洪灾”捐款活动中,某班级8名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)60,25,60,30,30,25,65,60.这组数据的众数和中位数分别是( ) A .60元,30元B .30元,30元C .60元,45元D .25元,45元【分析】根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可. 【解答】解:60出现了3次,出现的次数最多, 则众数是60元;把这组数据从小到大排列为:25,25,30,30,60,60,60,65, 则中位数是3060452+=(元). 故选:C .6.如图所示,小红要制作一个母线长为8cm ,底面圆周长是12cm π的圆锥形小漏斗,若不计损耗,则她所需纸板的面积是( )A .260cm πB .296cm πC .2120cm πD .248cm π【分析】圆锥的侧面积=底面周长⨯母线长2÷.【解答】解:圆锥形小漏斗的侧面积21128482cm ππ=⨯⨯=.故选:D .7.如图,已知ABC ∆的面积为210cm ,BP 为ABC ∠的角平分线,AP 垂直BP 于点P ,则PBC ∆的面积为( )A .26cmB .25cmC .24cmD .23cm【分析】取AB 的中点Q ,连接PQ ,CQ ,根据直角三角形斜边中线的性质得出PQ BQ =,即可求出ABP QPB ∠=∠,进而求得QPB ABP ∠=∠,证得//PQ BC ,则PBC BCQ S S ∆∆=,又知AQC ∆和BQC ∆等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积. 【解答】解:取AB 的中点Q ,连接PQ ,CQ , AP BP ⊥Q ,PQ BQ ∴=,ABP QPB ∴∠=∠,AP Q 垂直B ∠的平分线BP 于P ,ABP CBP ∴∠=∠,QPB CBP ∴∠=∠,//PQ BC ∴,PBC BCQ S S ∆∆∴=, 12AQ BQ AB ==Q , 1110522BCQ ABC S S ∆∆∴==⨯= 5PBC S ∆∴=,故选:B .8.用一根绳子环绕一棵大树,若环绕大树3周,则绳子还多5尺;若环绕大树4周,则绳子又少了2尺,这根绳子有多长?环绕大树一周需要多少尺?设绳子有x 尺,环绕大树一周需要y 尺,所列方程组中正确的是( )A .3542x y x y −=⎧⎨+=⎩B .3542x yx y +=⎧⎨−=⎩C .3542y x y x −=⎧⎨+=⎩D .3542y xy x +=⎧⎨−=⎩【分析】根据“若环绕大树3周,则绳子还多5尺;若环绕大树4周,则绳子又少了2尺”,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】解:依题意得:3542y xy x +=⎧⎨−=⎩.故选:D .9.在平面直角坐标系xOy 中,点(2,)m 和点(4,)n 在抛物线2(0)y ax bx a =+<上.已知点1(1,)y −,2(1,)y ,3(3,)y 在该抛物线上.若0mn <,比较1y ,2y ,3y 的大小关系为( )A .132y y y <<B .123y y y <<C .312y y y <<D .231y y y <<【分析】根据0mn <可得(42)(164)0a b a b ++<,即可得到20a b +>,40a b +<,进一步得到20b a >−>,求得23y y −的符号以及31y y −的符号即可判断1y ,2y ,3y 的大小关系. 【解答】解:Q 点(2,)m 和点(4,)n 在抛物线2(0)y ax bx a =+<上, 42a b m ∴+=,164a b n +=, 0mn <Q ,(42)(164)0a b a b ∴++<, 2a b ∴+与4a b +异号, 0a <Q , 24a b a b ∴+>+, 20a b ∴+>,40a b +<, 20b a ∴>−>,1(1,)y −Q ,2(1,)y ,3(3,)y 在该抛物线上, 1y a b ∴=−,2y a b =+,393y a b =+, 31(93)()4(2)0y y a b a b a b −=+−−=+>Q , 31y y ∴>,23()(93)2(4)0y y a b a b a b −=+−+=−+>Q , 23y y ∴>,132y y y ∴<<.故选:A .10.如图,在知形ABCD 中,矩形EBFG 通过平移变换得到矩形HMND ,点E 、F 、N 、H 都在矩形ABCD 的边上.若3BN =,4BF =,3124S S S =+,且四边形AEJH 和CFKN 都是正方形,则图中阴影部分3S 的面积为( )A .2B .5C D .【分析】证明正方形AEJH 和CFKN 边长相等,假设其边长为a ,列出关于a 的二元一次方程,解出a 后,即可算出3S 的面积. 【解答】解:Q 四边形JMKG 为矩形, JM GK ∴=,Q 矩形EBFG 通过平移变换得到矩形HMND ,HM GF ∴=, HJ KF ∴=,即正方形AEJH 和CFKN 边长相等,假设其边长为a , 则4MK a =−,3GK a =−, 3124S S S =+Q ,即24(4)(3)2a a a −−=, 解得2a =或12, 3a <Q , 2a ∴=,2MK ∴=,1GK =, 32S ∴=,故选:A .二、填空题(本大题共6小题,每小题5分,共30分)请把答案直接填写在横线上11.请你写出一个大于2小于3【分析】根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.【解答】解:2=Q 3=,∴写出一个大于2小于3等.等.本题答案不唯一.12.因式分解:224x y −= (2)(2)x y x y +− . 【分析】直接运用平方差公式进行因式分解. 【解答】解:224(2)(2)x y x y x y −=+−.13.在一个不透明的袋中装有5个白色小球,n 个红色小球,小球除颜色外其他完全相同.若从中随机摸出一个球,恰为白球的概率为14,则n 为 15 . 【分析】根据概率公式列式求得n 的值即可. 【解答】解:根据题意得:354n n =+, 解得:15n =,经检验:15n =是原方程的解, 故答案为:15. 14.符号“||a b c d ”称为二阶行列式,规定它的运算法则为:||a bad bc c d=−,请你根据运算法则求出等式中x 的值.若21||13111x x =++,那么x = 2− . 【分析】根据定义列分式方程直接求解即可. 【解答】解:由已知条件整理得,132111x x ⨯−=++, 方程两边同时乘以1x +得, 231x −=+,解得2x =−,经检验是原方程的解.15.如图,在Rt ABC ∆中,90C ∠=︒,3AC =,BC =AB 上有一点O ,以点O 为圆心,OA 长为半径的半圆与边BC 相切于点D ,交AC 边于点E ,则图中阴影部分的面积为43π− .【分析】先利用三角函数定义可知30B ∠=︒,得60CAB ∠=︒,证明AOE ∆是等边三角形,利用切线的性质得直角BOD ∆,利用含30度的直角三角形三边的关系得到24OB OD ==,最后根据面积差可得答案. 【解答】解:如图,90C∠=︒Q,3AC=,BC=tanACBBC∴∠===,30B∴∠=︒,60CAB∠=︒,26AB AC∴==,OA OE=Q,AOE∴∆是等边三角形,60AOE∴∠=︒,120EOF∴∠=︒,OAQ为半径的半圆与BC边相切于点D,OD AC∴⊥,90BDO∴∠=︒,224OB OD OA∴===,2OA∴=,∴S阴影=SΔACB−SΔAOE−S扇形OEF2211202322360π⨯=⨯⨯−43π=−43π=.43π.16.如图,点D是▱OABC内一点,CD y⊥轴,//BD y轴,2BD=,135ADB∠=︒,3ABDS∆=.若反比例函数11(0)ky kx=<的图象过A,D两点,22(0)ky kx=>的图象过点C,则12kk的值为23−.【分析】过点A 作AE y ⊥轴,延长BD 交AE 于点F ,易证AOE CBD ∆≅∆,COG BAF ∆≅∆,求得2OE BD ==,根据3ABD S ∆=.求得3AF =,得到(3,5)C ,(2,5)D −,进而可得12k k 的值.【解答】解:过点A 作AE y ⊥轴,延长BD 交AE 于点F ,Q 四边形OABC 为平行四边形,//AB OC ∴,//OA BC ,AB OC =,BC OA =, AOE CBD ∴∠=∠, BD Q 与y 轴平行,90CDB ∴∠=︒,在AOE ∆和CBD ∆中, CDB AEO CBD AOE BC OA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AOE CBD AAS ∴∆≅∆, 2OE BD ∴==,132ABD S BD AF ∆=⋅=Q , 3AF ∴=, 135ADB ∠=︒Q , 45ADF ∴∠=︒, 3DF AF ∴==, 235BF ∴=+=,同理COG BAF ∆≅∆,3CG AF ∴==,5OG BF ==,(3,5)C ∴,(2,5)D −,Q 反比例函数11(0)k y k x =<的图象过D 点,22(0)ky k x=>的图象过点C , ∴12252353k k −⨯==−⨯,故答案为:23−.三、解答题(本大题共8小题,共80分.解答时应写出文字说明、证明过程或演算步骤) 17.完成下列各题:(1)化简:(1)(1)(2)1x x x x +−++−(2)解不等式组:{4x −3>2x −6①25−x ⩾−35②,并把解集在数轴上表示出来.【分析】(1)根据整式混合运算的法则先算乘法,再算加减即可;(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可. 【解答】解:(1)原式22121x x x =−++− 2x =;(2)由①得,32x >−,由②得,1x ,故不等式的解集为:312x −<.在数轴上表示为:.18.如图是由边长为1的小正六边形构成的网格图,网格上的点称为格点.已知格点线段AB ,利用网格图,仅用无刻度的直尺来完成下面几何作图. (1)请在图①中作一个格点等腰三角形ABC ∆;(2)请在图②在线段AB 上求作点P ,使得:3:4AP BP =.(要求:不写作法但保留作图痕迹)【分析】(1)画出如图中所示的线段AC ,再连接BC 即可; (2)如图②,作ADP BCP ∆∆∽即可得出结论.【解答】解:(1)如图所示,ABC ∆即为所求作的等腰三角形:(2)如图②,点P 即为所求作;19.如图,点A ,B 在反比例函数(0,0)ky k x x=>>的图象上,AM x ⊥轴于点M ,//BC AM 交线段OA 于点C ,连结OB .已知点A ,B 的横坐标分别为6,4. (1)求BCAM的值. (2)当AOM ∆与OBC ∆的面积之差等于4时,求k 的值.【分析】(1)延长BC 交OM 于N ,得到6OM =,4ON =,进而得到4k BN =,6kAM =,证得CON OAM ∆∆∽,根据相似三角形的性质求得9k CN =,536k BC =,代入BCAM即可求出结果;(2)由122AOM k S OM AM ∆=⋅⋅=,15218OBC k S ON BC ∆=⋅⋅=,根据4AOM OBC S S ∆∆−=,即可求出k . 【解答】解:(1)延长BC 交OM 于N ,AM x ⊥Q 轴,//BC AM ,BN x ∴⊥轴,CON OAM ∆∆∽, ∴CN ON AM OM=, A Q ,B 的横坐标分别为6,4,6OM ∴=,4ON =,Q 点A ,B 在反比例函数(0,0)k y k x x=>>的图象上, 4k BN ∴=,6k AM =, ∴4263CN AM ==, 239k CN AM ∴==, 54936k k k BC BN CN ∴=−=−=, ∴553666kBC k AM ==; (2)1162262AOM k k S OM AM ∆=⋅⋅=⨯⋅=Q , 11554223618OBC k k S ON BC ∆=⋅⋅=⨯⋅=, 4AOM OBC S S ∆∆−=, ∴54218k k −=, 解得:18k =.20.某村深入贯彻落实习近平新时代中国特色社会主义思想,认真践行“绿水青山就是金山银山”理念.在外打工的王大叔返回家乡创业,承包了甲、乙两座荒山,各栽100棵小枣树,发现成活率均为97%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两座山上随意各采摘了4棵树上的小枣,每棵的产量如折线统计图所示.(1)直接写出甲山4棵小枣树产量的中位数 38 ;(2)分别计算甲、乙两座山小枣样本的平均数,并判断哪座山的样本的产量高;(3)用样本平均数估计甲乙两座山小枣的产量总和.【分析】(1)根据中位数的定义求解可得;(2)根据平均数的定义分别计算出甲、乙两山样本的产量,据此可得;(3)用平均数乘以枣树的棵树,求得两山的产量和,再乘以成活率即可得.【解答】解:(1)Q 甲山4棵枣树产量为34、36、40、50,∴甲山4棵小枣树产量的中位数为3640382+=(千克). 故答案为:38;(2)x 甲=50+36+40+344=40(千克), x 乙=36+40+48+364=40(千克),∴两山的样本产量相同;(3)(4010039100)0.977663⨯+⨯⨯=(千克),答:用样本平均数估计甲乙两座山小枣产量总和为7663千克.21.图1是淘宝上常见的“懒人桌”,其主体由一张桌面以及两根长度相等的支架组成,支架可以通过旋转收拢或打开,图2是其打开示意图,经操作发现,当90ADC BCD ∠=∠︒时,可稳定放置在水平地面上,经测量,30AD BC cm ==,40CD cm =.(1)当其完全打开且置于水平地面上时,测得140ADC ∠=︒,求AB 距离;(2)在(1)的基础上,若要在该桌上办公,已知眼睛与桌面的垂直距离以30cm 为佳,实际办公时,眼睛与桌面的垂直距离为34.8cm ,若保持身体不动,通过旋转支架AD 以及BC 抬高桌面,则A 点应向内移动多少厘米,才能达到最佳距离?(参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84)︒≈【分析】(1)通过作高,构造直角三角形,利用直角三角形的边角关系求出AM 即可;(2)求出抬高后的DM 的长,根据勾股定理求出AM ,进而求出向内移动的距离即可.【解答】解:(1)过点D 作DM AB ⊥,垂足为M ,过点C 作CN AB ⊥,垂足为N ,则40CD MN cm ==,cos AM BN DAB AD ==∠⋅0.7730≈⨯23.1()cm =,23.124086.2()AB cm ∴=⨯+=,答:AB 的距离约为86.2cm ;(2)由题意得,桌子要抬高34.830 4.8()cm −=,即DM 要变为sin 30 4.824()DAB cm ∠⨯+=,AM ∴==18cm =,即点A 要向内移动23.118 5.1()cm −=,答:向内移动5.1cm .22.公路上正在行驶的甲车发现前方20m 处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s (单位:)m 、速度v (单位:/)m s 与时间t (单位:)s 的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)直接写出s 关于t 的函数关系式 21162s t t =−+ 和v 关于t 的函数关系式 (不要求写出t 的取值范围)(2)当甲车减速至9/m s 时,它行驶的路程是多少?(3)若乙车以10/m s 的速度匀速行驶,两车何时相距最近,最近距离是多少?【分析】(1)根据图象,利用待定系数法分别求出一次函数和二次函数解析式即可;(2)把v 9=代入一次函数解析式求出t ,再把t 的值代入二次函数解析式求出s 即可;(3)分析得出当v 10=m /s 时,两车之间距离最小,代入计算即可.【解答】解:(1)由图可知:二次函数图象经过原点,设二次函数表达式为2s at bt =+,一次函数表达式为v kt c =+,Q 二次函数经过(2,30),(4,56),∴423016456a b a b +=⎧⎨+=⎩,解得:1216a b ⎧=−⎪⎨⎪=⎩, ∴二次函数表达式为21162s t t =−+. Q 一次函数经过(0,16),(8,8),∴8816k c c +=⎧⎨=⎩,解得:116k c =−⎧⎨=⎩, ∴一次函数表达式为16v t =−+. 故答案为:21162s t t =−+,16v t =−+;(2)16v t =−+Q ,∴当v 9=时,169t −+=,解得t 7=,21162s t t =−+Q , ∴当t 7=时,12s =−2716787.5⨯+⨯=, ∴当甲车减速至9m /s 时,它行驶的路程是87.5m ;(3)Q 当t 0=时,甲车的速度为16m /s ,∴当0<v 10<时,两车之间的距离逐渐变大,当10<v 16<时,两车之间的距离逐渐变小,∴当v 10=m /s 时,两车之间距离最小,将v 10=代入16v t =−+中,得t 6=,将t 6=代入21162s t t =−+中,得78s =, 此时两车之间的距离为:10620782()m ⨯+−=,6∴秒时两车相距最近,最近距离是2m .23.锐角ABC ∆中,6BC =,12ABC S ∆=,两动点M ,N 分别在边AB ,AC 上滑动,且//MN BC ,以MN 为边向下作正方形MPQN ,设其边长为x ,正方形MPQN 与ABC ∆公共部分的面积为y .(1)ABC ∆中边BC 上高AD = 4 ;(2)当x 为何值时,PQ 恰好落在边BC 上(如图1);(3)当PQ 在ABC ∆外部时(如图2),求y 关于x 的函数关系式(注明x 的取值范围).【分析】(1)根据三角形的面积公式计算,求出AD ;(2)证明AMN ABC ∆∆∽,根据相似三角形的性质列出比例式,计算即可;(3)根据相似三角形的性质列出比例式,用含x 的代数式表示MH ,根据相交的面积公式计算即可.【解答】解:(1)12ABC S ∆=Q ,6BC =, ∴16122AD ⨯⨯=, 解得:4AD =,故答案为:4;(2)//MN BC Q ,AMN ABC ∴∆∆∽, ∴MN AG BC AD =, ∴464x x −=, 解得:125x =, 答:当125x =时,PQ 恰好落在边BC 上; (3)由题意得,四边形MHDG 为矩形,GD MH ∴=,//MN BC Q ,AMN ABC ∴∆∆∽,∴MN AG BC AD=, ∴464x GD −=, 解得:243GD x =−+, 243MH x ∴=−+, 则22212(4)4(6)335y MH MN x x x x x =⋅=−+⋅=−+<.24.如图,已知锐角三角形ABC 内接于O e ,OD BC ⊥于点D ,连接OA .(1)若60BAC ∠=︒,①求证:12OD OA =. ②当1OA =时,求ABC ∆面积的最大值.(2)点E 在线段OA 上,OE OD =.连接DE ,设ABC m OED ∠=∠,(ACB n OED m ∠=∠,n 是正数),若ABC ACB ∠<∠,试探索m 、n 之间的数量关系,并证明.【分析】(1)①连接OB 、OC ,则1602BOD BOC BAC ∠==∠=︒,即可求解;②BC 长度为定值,ABC ∆面积的最大值,要求BC 边上的高最大,即可求解;(2)11801802BAC ABC ACB mx nx BOC DOC ∠=︒−∠−∠=︒−−=∠=∠,而1802180AOD COD AOC mx nx mx mx nx ∠=∠+∠=︒−−+=︒+−,即可求解.【解答】(1)证明:①连接OB 、OC ,则1602BOD BOC BAC ∠=∠=∠=︒, 30OBC ∴∠=︒,1122OD OB OA ∴==; ②BC Q 长度为定值,ABC ∴∆面积的最大值,要求BC 边上的高最大,当AD 过点O 时,AD 最大,即:32AD AO OD =+=,ABC ∆面积的最大值1132sin 60222BC AD OB =⨯⨯=⨯︒⨯= (2)20m n −+=.证明:如图2,连接OC ,设:OED x ∠=,则ABC mx ∠=,ACB nx ∠=, 则11801802BAC ABC ACB mx nx BOC DOC ∠=︒−∠−∠=︒−−=∠=∠,22Q,∠=∠=AOC ABC mx∴∠=∠+∠=︒−−+=︒+−,1802180AOD COD AOC mx nx mx mx nx Q,1802∴∠=︒−,AOD xOE OD=即:1801802︒+−=︒−,mx nx x化简得:20m n−+=.∴−+=.20m n。

2024年海南省海口市中考数学全真模拟冲刺卷(一)

2024年海南省海口市中考数学全真模拟冲刺卷(一)

2024年海南省海口市中考数学全真模拟冲刺卷(一)一、单选题1.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .+0.8B .﹣3.5C .﹣0.7D .+2.12.已知223a b -=,则2202324a b -+的值是( )A .2017B .2018C .2019D .20263.如图是由七个完全相同的小正方体组成的立体图形,则它的俯视图是( )A .B .C .D .4.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( ) A .880.1610⨯ B .98.01610⨯ C .100.801610⨯ D .1080.1610⨯ 5.下列运算正确的是( )A .6a ﹣3a =3B .C .x 5•x 6=x 3D .(x 2)5=x 10 6.解分式方程12122x x x -=--,去分母后得到的方程正确的是( ) A .()122x x --=-B .()212x x -+=C .()212x x --=D .()212x x -+=7.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如图所示,则这些运动员成绩的中位数为( )A .160B .165C .170D .1758.一副三角板如图放置,点A 在DF 的延长线上,∠D =∠BAC =90°,∠E =30°,∠C =45°,若BC //DA ,则∠ABF 的度数为( )A .15°B .20°C .25°D .30°9.如图,在平面直角坐标系中,矩形AOBC 的一个顶点O 在坐标原点,且(A -,反比例函数k y x =的图象经过点B 和点C ,则k 的值是( )AB C .34 D 10.如图,在△ABC 中,60C ∠=︒,以点B 为圆心,适当长度为半径画弧,分别交,BA BC 于点,E F ,再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧交于点G ,作射线BG ,交AC 于点D ,若AD BD =,则A ∠的度数为( )A .35︒B .40︒C .45︒D .50︒11.如图,在菱形ABCD 中,顶点A ,B ,C ,D 在坐标轴上,且()0,1A ,60ABC ∠=︒,分别以点A ,D 为圆心,以AD 的长为半径作弧,两弧交于点E ,连接EA ,ED .将菱形ABCD 与EAD V 构成的图形绕点O 逆时针旋转,每次旋转45°,则第2022次旋转结束时,点2022E 的坐标为( )A .)2-B .()C .(2,-D .(2, 12.如图,四边形ABCD 是正方形, 点EF ,分别在AB BC ,的延长线上, 且BE CF =,设AD a AE b AF c ===,,.给出下面三个结论:①a b c +>;②22ab c <;2a >.上述结论中,所有正确结论的序号是( )A .①②B .②③C .①③D .①②③二、填空题13.因式分解:223251015x y xy x y -+-=.14.若x y 、为实数,且2y ,则11yy -=-.15.如图,PA 与O e 相切于点A ,PO 与弦AB 相交于点C ,OB OP ⊥,若3OB =,1OC =,则PA 的长为 .16.如图,矩形ABCD 中,3AB =,4BC =,点E 是AB 边上一点,且2AE =,点F 是边BC 上任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG ,CG ,AC ,则△ACG 的面积最小值为.三、解答题17.(1)计算:2o 12sin 6022-⎛⎫- ⎪⎝⎭. (2)解不等式组()213323123x x x x ⎧-≥-⎪⎨++<+⎪⎩①②: 18.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是购买10本以上,每本按标价的8折卖.(1)小明要买20本练习本,到哪个商店较省钱?(2)小明要买10本以上练习本,买多少本时到两个商店付的钱一样多?(3)小明现有32元钱,最多可买多少本练习本?19.文明是一座城市的名片.某校积极组织师生参加全县“共创文明城市,巩固国家卫生县城”志愿者服务活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名志愿者只参加其中一项服务活动.为了解各项目参与情况,该校随机调查了参加志愿服务的部分师生,将调查结果绘制了如下不完整的统计图.(1)本次调查采用的调查方式为______(填写“普查”或“抽样调查”);(2)本次调查的师生共有______人,扇形统计图中n 的值为______;(3)已知参加交通劝导志愿者服务活动30名师生中,有10名教师和20名学生,若从这30名师生中随机抽取1名志愿者参加“共创文明城市,巩固国家卫生县城”主题演讲比赛活动,且每名志愿者被抽到的可能性相同,恰好抽到学生的概率是______;(4)若该校共有师生3000名,请估计有______人参加“文明宣传”志愿者服务活动. 20.数学兴趣小组的成员在观察点A 测得观察点B 在A 的正北方向,古树C 在A 的东北方向,AC =;在B 处测得C 在B 的南偏东63.5︒的方向上,已知D 在C 正北方向上,即CD AB ∥,求古树C ,D 之间的距离.(结果精确到0.1m 1.41≈,sin63.50.89︒≈,cos63.50.45︒≈,tan63.5 2.00︒≈,sin530.80︒≈,cos530.60︒≈,tan53 1.32)︒≈21.如图1,已知四边形ABCD 是矩形,点E 在BA 的延长线上,AE AD EC BD =.与相交于点G ,与AD 相交于点F AF AB =,.(1)求证:BD EC ⊥;(2)若2AD =,求tan E ∠;(3)如图2,连接AG ,请判定EG DG AG ,,三者之间的数量关系并证明.22.如图,抛物线2y ax bx c =++(0a ≠)与x 轴交于A 、B 两点,点A 在点B 的左边,与y 轴交于点C ,点A 的坐标为()2,0-,::1:2:3AO CO BO =.(1)如图1,求抛物线的解析式;(2)如图1,点D 在直线BC 上方的抛物线上运动(不含端点B 、C ),连接DC 、DB ,当四边形ABDC 面积最大时,求出面积最大值和点D 的坐标;(3)如图2,将(1)中的抛物线向右平移,当它恰好经过原点时,设原抛物线与平移后的抛物线交于点E ,连接BE 点M 为原抛物线对称轴上一点,N 为平面内一点,以B 、E 、M 、N 为顶点的四边形是矩形时,直接写出点N 的坐标.。

2023年陕西省中考数学全真模拟试卷(一)及答案解析

2023年陕西省中考数学全真模拟试卷(一)及答案解析

2023年陕西省中考数学全真模拟试卷(一)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.(3分)﹣2023的相反数是()A.2023B.C.D.﹣20232.(3分)中国“二十四节气“已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春“、“谷雨“、“白露“、“大雪”,其中是中心对称图形的是()A.B.C.D.3.(3分)计算()=8a,正确的结果是()A.16a2b2B.4ab2C.(4ab)2D.(2ab)24.(3分)如图,在Rt△ABC中,∠CAB=90°,AD⊥BC于点D,若BD=2,sin C=,则线段AB的长为()A.10B.4C.4D.25.(3分)如图,两个相同的菱形拼接在一起,若∠ADB=15°,则∠BCF的度数为()A.60°B.45°C.30°D.70°6.(3分)已知直线y=3x与y=﹣2x+b的交点坐标为(1,a),则a﹣b的值为()A.8B.2C.﹣2D.﹣17.(3分)如图,A,B,C,D,E均是⊙O上的点,且BE是⊙O的直径,若∠BCD=2∠BAD,则∠DAE的度数是()A.15°B.20°C.25°D.30°8.(3分)如图,物体从点A抛出,物体的高度y(m)与飞行时间t(s)近似满足函数关系式y=,在飞行过程中,若物体在某一个高度时总对应两个不同的时间,则t的取值范围是()A.0<t<6B.0≤t≤6C.0≤t≤6且t≠3D.0<t≤6且t≠3二、填空题(共5小题,每小题3分,计15分)9.(3分)有理数a,b在数轴上的位置如图所示,化简|a﹣b|﹣|a|=.10.(3分)如图所示,已知∠MON=60°,正五边形ABCDE的顶点A、B在射线OM上,顶点E在射线ON上,则∠AEO=度.11.(3分)我国古代数学家赵爽巧妙地用“弦图”证明了勾股定理,标志着中国古代的数学成就.如图,若弦图中四个全等的直角三角形的两条直角边长分别为3和4,则中间小正方形的对角线长为.12.(3分)等边△OAB在平面直角坐标系中的位置如图所示,已知点A(4,0),若一个反比例函数经过边AB的中点,则该反比例函数的表达式为.13.(3分)如图,在矩形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH.若AB=6,BC=10,则GH的长为.三、解答题(共13小题,计81分。

2022年江苏省盐城市中考数学全真模拟试卷附解析_1

2022年江苏省盐城市中考数学全真模拟试卷附解析_1

2022年江苏省盐城市中考数学全真模拟试卷 _1学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.生活处处皆学问.如图,眼镜镜片所在的两圆的位置关系是( )A .外离B .外切C .内含D .内切 2.下列多边形一定相似的为( )A .两个矩形B .两个菱形C .两个正方形D .两个平行四边形 3.已知△ABC 的三边长分别为6 cm ,7.5 cm ,9 cm ,△DEF 的一边长为4 cm ,当△DEF 的另两边长是下列哪一组时,这两个三角形相似( )A .2 cm ,3 cmB .4 cm ,5 cmC .5 cm ,6 cmD .6 cm ,7 cm4.下列图中的阴影部分的面积,等于( ) A . B . C . D .5.反比例函数k y x =,当自变量x 的值从 2增加到 3 时,函数值减少了12,则函数的解析式为( )A .4y x =B .2y x =C .3y x =D .4y x =6.如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C ′处,BC ′交AD 于点E ,下列结论中错误的是 ( )A .AE=EC ′B .BE=DEC .C ′B=AD D .∠C ′DE=∠EDB 7.如图,在四边形ABCD 中,AD ∥/BC ,AB ∥DC ,BD=CD ,∠BCE=15°,CE ⊥BD 于E ,则∠A 的度教为( )A . 75°B . 70°C . 65°D . 60°8.为了了解全世界每天婴儿出生的情况,应选择的调查方式是()A.普查B.抽样调查C.普查,抽样调查都可以D.普查,抽样调查都不可以9.某校运动员分组训练,若每组 7入,则余 3人;若每组 8人,则缺 5人,设运动员人数为x人,组数为y组,则可列方程组为()A.7385y xy x+=⎧⎨+=⎩B.7385y xy x-=⎧⎨-=⎩C.7385y xy x=-⎧⎨=+⎩D.7385y xy x=+⎧⎨=-⎩10.如图,沿着图中的线从A走到B,至少要经过的角的个数是()A.2个B.3个C.4个D.5个11.小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为69千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈同坐在跷跷板的一端,这是爸爸的一端仍然着地.后来小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地.小宝体重可能是()A.23.3千克 B.23千克 C.21.1千克 D.19.9千克二、填空题12.一副象棋(共 32 个),全部正面朝下,小明任意模一颗,取到“车”的概率是.13.已知抛物线l1:y=2x2-4x+5,抛物线l2与抛物线l1关于x轴对称,则抛物线l2的解析式为 .y=-2x2+4x-514.写出一个判断角相等的定理: .15.如图,在△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数= .16.如图,数轴上表示的关于x的一元一次不等式组的解集为.17.如图,将△ABC沿CA方向平移CA长,得△EFA,若△ABC的面积为3cm2,则四边形BCEF的面积是__________cm2.18.如图,把长方形ABCD沿AE折叠,使得点D落在BC边上,若∠BAF=50°,则∠DAE= .三、解答题19.如图,有一座塔,在地面上A 点测得其顶点C 的仰角为30°.向塔前进50m 到B 点,又测得C 的仰角为60°.求塔的高度(结果可保留根号).20.如图,某幢大楼顶部有一块广告牌CD ,甲乙两人分别在相距8米的A 、B 两处测得D 点和C 点的仰角分别为45°°和60°,且A 、B 、E 三点在一条直线上,若BE=15米,求这块广告牌的高度.(取3≈1.73,计算结果保留整数)21.若规定两数a ,b 通过“※”运算,得到4ab ,即a ※b =4ab ,例如 2※6=4×2×6 =48.(1)求3※5 的值;(2)求x ※x +2※x -2※4=0中x 的值.22. 已知31x =,31y =,求代数式2222x y x y xy -+的值.A B DC23.△ABC 在平面直角坐标系中的位置如图.(1)请画出△ABC 关于y 轴对称的111A B C ∆;(2)将△ABC 向下平移 3 个单位长度,画出平移后的222A B C ∆.24.如图,△ABC 中,∠C =90°,∠B =60°,AO =x ,⊙O 的半径为1.问:当x 在什么范围内取值时,直线AC 与⊙O 相离、相切、相交?25.如图,,已知 AD 平分∠CAB ,且DC ⊥AC ,DB ⊥AB ,那么AB 和AC 相等吗?请说明理由.26.在一个不透明的口袋中装有除颜色外一模一样的5个红球,3个蓝球和2•个黑球,它们已在口袋中被搅匀了,请判断以下事件是不确定事件、不可能事件、还是必然事件?(1)从口袋中任意取出一个球,是白球;(2)从口袋中一次任取两个球,全是蓝球;(3)从口袋中一次任取5个球,只有蓝球和黑球,没有红球;(4)从口袋中一次任意取出6个球,恰好红、蓝、黑三种颜色的球都齐了.27.如图所示,表示出阴影部分的面积.2(2)(2)224a x b x ab ax bx x --=--+28.已知32131a a x x x x +⋅⋅=,求a 的值.29.某班全体同学在“献爱心”活动中都捐了图书,捐书的情况如下表: 每人捐书的册数 5 10 15 20相应的捐书人数 17 22 42 根据题目中所给条件回答下列问题:(1)该班学生共有 名.(2)全班一共捐了 册图书.(3)若该班所捐图书拟按图所示比例分送给山区学校,本市兄弟学校和本校其它班级,则送给山区学校的书比送给本市兄弟学校的书多 册.30.下图是某省近年来全省港口吞吐量的统计图.(1)根据统计图中的数据制作折线统计图;(2)从上面条形统计图和你绘制的折线统计图中,你可以得到哪些信息?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.C4.B5.C6.D7.A8.B9.C10.B11.C二、填空题12.1813. 14.全等三角形的对应角相等;在一个三角形中,等边对等角等等15.36°16.13x -<≤ 17.918.20°三、解答题19.解:如图,依题意,有∠A =30°,∠CBD =60°,AB =50m .因为∠CBD =∠A +∠ACB ,所以∠ACB =∠CBD -∠A =60°-30°=30°=∠A . 因此BC =AB =50m .在Rt △CDB 中,CD =CB sin60°=3252350=⨯(m), 所以塔高为325m . 20.解:∵AB =8,BE =15,∴AE =23,在Rt △AED 中,∠DAE =45°∴DE =AE =23.在Rt △BEC 中,∠CBE =60°,∴CE =BE ·tan60°=∴CD =CE -DE =23≈2.95≈3即这块广告牌的高度约为3米.21.(1) 60 (2)12x =,24x =-22.23.略24.解:作OD⊥AC于D,在Rt△ABC,∠C=90°∠B=60°,∴∠A=30°∴OD=12AO=12x(1)当12x>1,即x>2时,AC与⊙O相离;(2)当12x=1,即x=2时,AC与⊙O相切;(3)0≤12x<1,即0≤x<2时,AC与⊙O相交.25.AB =AC,理由略26.(1)不可能事件;(2)不确定事件;(3)不确定事件;(4)不确定事件27.2(2)(2)224a xb x ab ax bx x--=--+28.a=929.(1)45 (2)405 (3)16230.略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学全真模拟试卷1
一、选择题(12×2分,在给出的四个选项中,只有一项是符合题目要求的)
1.在实数范围内,下列各数没有平方根的是()
A.0 B. (-2)-1 C.–(-2)3 D. (-2005)0
2.下列运算中,正确的是 ( )
A. (-a3)2=a5
B. a3+a4=a7
C. (a+b)2=a2+b2
D. 9x y2÷(-3xy)=-3y
3. 如果a+b<0,且b>0,那么a、b、一a、一b的大小关系为().
A.a<b<-a<b;
B.-b<a<-a<b;
C.a<-b<-a<b;
D.a<-b<b<-a
4.函数
中,自变量的取值范围为 ( )
A. x>3
B. x≥3
C. x≠3
D. x<3
5.空气的体积质量是0.001239克/厘米3,此数保留三个有效数字的近似数用科学记数法表示为 ( )
A.1.239×10-3 B. 1.23×10-3 C. 1.24×10-3 D. 1.24×103
6.某商品经过两次降价,由原来每件100元调至81元,则平均每次降价的百分率是( )
A.8.5%
B.9%
C.9.5%
D.10%
7.下列命题正确的是 ( )
A.对角线相等且平分的四边形是菱形;
B.对角线相等且垂直的四边形是菱形;
C.对角线相等且平分的四边形是矩形;
D.以对角线相等的四边形四边中点为顶点的四边形是矩形。

8.已知点P是半径为5的圆O内一定点,且OP=4,则过点P的所有弦中,弦长可能取的整
数有 ( )个。

A.2 B. 3 C. 4 D. 5
9.甲.乙两同学参加创建全国文明城市知识竞赛,共有10道不同的题,其中选择题6个,判断题4个。

甲.乙两人先后各抽一题(不放回),则甲抽到选择题的概率,乙抽到判断题的概率分别是 ( )
A.3
5
,
2
5
B.
3
5
,
4
9
C.
2
5
,
2
3
D.
4
9
,
3
5
10.两圆的圆心坐标分别是,0)和(0,1),它们的半径分别是3和5,则这两个圆的位
置关系是 ( )
A.相离 B.相交 C. 外切 D.内切
11.已知扇形的圆心角为120°,面积为300πcm2,若用该扇形围成一个圆锥,则该圆锥底面圆的半径为()cm.
A、7.5
B、 10
C、15
D、20
12.抛物线y=ax2+bx+c的对称轴是直线x=1,且方程a x2+bx+c=0的一个实数根x1满足2<x2<3,则该方程的另一个实数根x2取值范围是()
A、-3<x2<-2
B、-2<x2<-1
C、-1<x2<0
D、0<x2<1
二、填空:(本题4×3分)
13. 今年3月某天的最高气温为8℃,最低气温为2℃,则这天气温t℃的t 的取值范围是
________________。

14. 在Rt△ABC 中,∠C=90°,AB =5,AC =4,则sinA 的值为_________。

15. 如果等腰三角形的顶角为800,那么它的一个底角为______度.
16.实数x 、y 满足(x 2+y 2)(x 2-1+y 2)-12=0,则x 2+y 2的值是 ;
三、解答题:(4×6分,解答时应写出必要的文字说明,证明过程或演算步骤)
17.计算:20-(-
2
1)2+2-2-327-. 解:原式=
2218.,2,2a b a b a b a b b a ab ++÷==---⎛⎫ ⎪ ⎪⎝⎭
先化简,再求值其中解:原式=
19.如图,A 、D 、F 、B 在同一直线上,AD=BF,AE=BC, 且 AE∥BC.
求证:(1)△AEF≌△BCD;(2) EF∥CD.
证明:
B F D A E
20(大连市)已知关于x 的方程x 2+kx -2=0的一个解与方程31
1=-+x x 解相同。

(1)求k 的值;(2)求方程x 2+kx -2=0的另一个解。

解:
四、解答题:(3×8分,解答时应写出必要的文字说明,证明过程或演算步骤)
21. 甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时
间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具? 解:
22. 四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上。

(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是_____________;
(2)规定游戏规则如下:
若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负。

你认为这个游戏是否公平?请说明理由。

解:
O A x y B C
23.(成都)如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC 就是格点三角形。

在建立平面直角坐标系后,点B 的坐标为(-1,-1)。

(1)把△ABC 向左平移8格后得到△A 1B 1C 1,画出△A 1B 1C 1的图形并写出点B 1的坐标: .
(2)把△ABC 绕点C 按顺时针方向旋转90°后得到△A 2B 2C ,画出△A 1B 1C 的图形并写出点B 2的坐标: .
(3)把△ABC 以点A 为位似中心放大,使放大前后对应边长的比为1:2,画出△AB 3C 3,△AB 3C 3的面积是△ABC 的面积的 倍.
五、解答题:(4×9分,解答时应写出必要的文字说明,证明过程或演算步骤)
24.如图,正方形ABCD 和正方形EFGH 的边长分别为22和2,对角线BD 、FH 都在直线l 上.O 1、O 2分别是正方形的中心,线段O 1O 2的长叫做两个正方形的中心距.当中心O 2在直线l 上平移时,正方形EFGH 也随之平移,在平移时正方形EFGH 的形状、大小没有改变.
⑴ 计算:O 1D = ,O 2F = ;
⑵ 当中心O 2在直线l 上平移到两个正方形只有一个公共点时,中心距O 1O 2= ; ⑶ 随着中心O 2在直线l 上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程).
解:(3)
25.阅读下面材料,再回答问题。

(本题满分10分)
一般地,如果函数y=f(x)对于自变量取值范围内的任意x ,都有f(-x)=f(x)。

那么y=f(x)就叫偶函数。

如果函数y=f(x)对于自变量取值范围内的任意x ,都有f(-x)= - f(x)。

那么y=f(x)就叫奇函数。

例如:4f(x)=x
当x 取任意实数时,444()()()()()f x x x f x f x f x x -=-=∴-=∴=是偶函数。

又如:3()2f x x x =-.
当x 取任意实数时,333()2()()2(2)f x x x x x x x -=---=-+=--
3()()()2f x f x f x x x ∴-=-∴=-是奇函数。

问题1:下列函数中:
①2
1y x =+;②35y x =;③y =1y x x
=+;⑤22y x x -=-是奇函数的有 ;是偶函数的有 (填序号)
问题2:仿照例证明:函数④或⑤是奇函数还是偶函数(选择其中之一)
26.如图,已知:Rt△ABC 中,∠C=90°,AC=BC=2,将一块三角尺的直角顶点与斜边AB 的中点M 重合,当三角尺绕着点M 旋转时,两直角边始终保持分别与边BC 、AC 交于D ,E 两点(D 、E 不与B 、A 重合).
(1)求证:MD=ME ;
(2)求四边形MDCE 的面积: (3)为“BC=a,AC=b 请你探究:MD 和ME 还相等吗?请证明;如果不相等,请求出MD∶ME
27.在平面直角坐标系中,坐标原点O ,A 点坐标为(-8,0)B 点坐标为(2,0)以AB 的中点P 为圆心,AB 为直径作⊙P 与Y 轴的负半轴交于点C.
(1)求图象经过A 、B 、C 三点的抛物线的函数关系式. (2)设M 为(1)中抛物线的顶点,求直线MC 的关系式.
(3)试说明直线MC 与⊙P 的位置关系,并证明你的结论.
解:
x B C P A N y O。

相关文档
最新文档