1.2. 有理数的大小比较学案

合集下载

初中数学《有理数大小的比较》教案详解

初中数学《有理数大小的比较》教案详解

初中数学《有理数大小的比较》教案详解一、教学目标1.知识目标通过本节课的学习,使学生了解以下知识:(1)了解绝对值的概念和表示方法。

(2)掌握有理数的大小比较方法。

(3)掌握有理数大小比较的基本规律,提高分析思维能力和解决问题的能力。

2.能力目标通过本节课的学习,使学生掌握以下能力:(1)通过比较绝对值的大小来比较有理数的大小。

(2)够运用所学知识解决实际问题。

(3)具备分析问题和解决问题的能力,提高学习自觉性和解决问题的能力。

3.情感目标通过本节课的学习,使学生形成以下情感认识:(1)培养学生热爱数学,认识数学在现实生活中的应用价值。

(2)培养学生团队协作意识,提高学生的沟通和交流能力。

(3)培养学生勇于尝试、敢于探究的好习惯。

二、教学重点和难点教学重点:有理数大小比较的方法、有理数大小比较的基本规律。

教学难点:学生区分有理数大小比较方法中的规律。

三、教学内容及方法1.教学内容(1)绝对值的概念和表示方法。

(2)有理数的大小比较方法。

(3)有理数大小比较的基本规律。

2.教学方法(1)探究引导法:在教师介绍绝对值的概念和表示方法后,引导学生发现绝对值与数轴上点的距离的关系。

(2)讲授法:教师讲解有理数大小比较方法和规律,并通过实例演示让学生感知。

(3)合作学习法:组织学生进行小组讨论,共同解决习题。

(4)巩固训练法:通过大量练习和实战演练,提高学生运用所学知识解决实际问题的能力。

四、教学步骤1.导入环节通过简单的例子让学生对绝对值有一定的了解,引出本节课的话题。

2.理论阐述(1)绝对值的概念和表示方法。

(2)有理数的大小比较方法。

(3)有理数大小比较的基本规律。

3.讲解演示通过多组实例让学生了解有理数的大小比较方法和规律,提高分析思维能力和解决问题的能力。

4.实践演练通过大量练习和实战演练,提高学生运用所学知识解决实际问题的能力。

5.总结点拨通过总结本课所学内容,对学生的表现进行点拨,对学生不足之处进行指导。

有理数的大小比较教案及反思

有理数的大小比较教案及反思

一、教学目标1. 让学生理解有理数的大小比较法则,掌握正数、负数、零之间的大小关系。

2. 培养学生运用有理数的大小比较解决实际问题的能力。

3. 渗透数学思想方法,提高学生的逻辑思维能力。

二、教学内容1. 正数与负数的大小比较2. 整数与分数的大小比较3. 零与正数、负数的大小比较4. 绝对值的概念及应用5. 有理数的混合运算三、教学重点与难点1. 教学重点:掌握有理数的大小比较法则,能运用这些法则解决实际问题。

2. 教学难点:理解绝对值的概念及应用,熟练进行有理数的混合运算。

四、教学方法1. 采用讲授法、问答法、讨论法、练习法等相结合的教学方法。

2. 利用多媒体课件辅助教学,提高学生的学习兴趣。

3. 创设生动活泼的教学情境,引导学生主动参与、积极思考。

五、教学过程1. 导入新课:通过生活中的实例,引导学生思考有理数的大小比较问题。

2. 讲解与演示:讲解正数、负数、零之间的大小比较法则,利用多媒体课件展示实例,让学生直观地理解。

3. 练习与讨论:设计练习题,让学生运用所学知识进行大小比较,分组讨论,交流解题心得。

4. 总结与反思:引导学生总结有理数大小比较的法则,反思自己在学习过程中的收获与不足。

5. 布置作业:设计课后练习题,巩固所学知识,提高学生的应用能力。

6. 课后反思:对本节课的教学效果进行总结,针对学生的掌握情况,调整教学策略。

1. 保持教学内容的连贯性和逻辑性,确保学生能够逐步掌握有理数的大小比较法则。

2. 注重学生的主体地位,鼓励学生积极参与、主动思考,提高学生的课堂参与度。

3. 关注学生的个体差异,针对不同程度的学生,设计不同难度的练习题,让每个学生都能在课堂上得到锻炼和提高。

4. 注重培养学生的数学思维能力,引导学生运用所学知识解决实际问题。

5. 及时进行课后反思,不断提高教学质量,满足学生的学习需求。

六、教学策略1. 案例分析:通过分析具体案例,让学生理解有理数大小比较的应用场景。

有理数的大小比较教案

有理数的大小比较教案

有理数的大小比较教案一、教学目标:1. 让学生理解有理数的大小比较原理,掌握有理数大小比较的方法。

2. 培养学生运用有理数大小比较解决实际问题的能力。

3. 提高学生对数学知识的兴趣,培养学生的逻辑思维能力。

二、教学内容:1. 有理数大小比较的原理2. 有理数大小比较的方法3. 有理数大小比较在实际问题中的应用三、教学重点与难点:1. 教学重点:有理数大小比较的原理和方法。

2. 教学难点:有理数大小比较在实际问题中的应用。

四、教学方法:1. 采用讲授法,讲解有理数大小比较的原理和方法。

2. 采用案例分析法,分析有理数大小比较在实际问题中的应用。

3. 采用小组讨论法,让学生分组讨论,培养学生的合作意识。

五、教学过程:1. 导入:通过生活实例,引导学生思考有理数大小比较的意义。

2. 新课导入:讲解有理数大小比较的原理和方法。

3. 案例分析:分析有理数大小比较在实际问题中的应用。

4. 课堂练习:布置练习题,让学生巩固所学知识。

5. 总结与拓展:总结本节课所学内容,布置课后作业,拓展学生知识。

6. 课堂小结:让学生复述本节课所学内容,检查学习效果。

7. 课后作业:布置适量作业,巩固所学知识。

8. 教学反思:总结课堂教学,针对学生掌握情况,调整教学策略。

六、教学评价:1. 评价学生对有理数大小比较原理的理解程度。

2. 评价学生运用有理数大小比较方法解决实际问题的能力。

3. 评价学生在小组讨论中的表现,包括合作意识和沟通交流能力。

七、教学资源:1. 教案、PPT等教学资料。

2. 练习题及答案。

3. 教学视频或动画资源,用于辅助讲解和演示。

八、教学进度安排:1. 第1周:讲解有理数大小比较的原理。

2. 第2周:讲解有理数大小比较的方法。

3. 第3周:分析有理数大小比较在实际问题中的应用。

4. 第4周:课堂练习与总结。

九、教学反馈与调整:1. 根据学生的学习情况,及时调整教学节奏和难度。

2. 对学生反馈的问题进行解答和指导。

有理数的大小比较教案

有理数的大小比较教案

有理数的大小比较教案第一篇:有理数的大小比较教案有理数的大小比较教案2.4 有理数的大小比较一、教学目标:知识与技能:1、使学生能说出有理数大小的比较法则2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。

过程与方法:通过有理数大小比较的探究活动,培养学生观察和动手操作的能力。

情感态度与价值观:通过本课学习使学生感受到有理数大小比较与现实生活密切联系,体会比较数的大小在解决实际问题中的作用。

二、教学重点:运用法则借助数轴比较两个有理数的大小三、教学难点:利用绝对值概念比较两个负数的大小四、教材分析:有理数大小比较的提出是从学生生活熟悉的情境入手,借助于气温的高低及数轴得出有理数的大小比较方法,课本安排了“做一做”等形式的教学活动,让学生通过观察思考和自己动手操作,体验有理数大小比较法则的探索过程。

五、教学方法:情境教学法六、教具:幻灯片七、课时安排:1课时八、教学过程:环节教师活动复习练习,引出课题(幻灯片一)某一天我们4个城市的最低气温.从刚才的图片中你获得了哪些信息?比较这一天下列两个城市间最低气温的高低(填“高于”或“低于”)北京________上海;北京________哈尔滨;武汉________哈尔滨;北京________武汉;上海________哈尔滨;教师适当点拔。

画一画:(1)把上述4个城市最低气温的数表示在数轴上,(2)观察这4个数在数轴上的位置,从中你发现了什么?(3)温度的高低与相应的数在数轴上的位置有什么关系?由小组讨论后,教师归纳得出结论:在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于0,负数都小于0,正数大于一切负数。

练一练:(幻灯片二)师生共同分析例1:解本题应分几步;教师针对学生的答题情况给予评价;最后总结:(1)画数(2)描点(3)有序排列(4)不等号连接教师巡视给予适当指导巩固练习:(课后练习1)做一做(幻灯片三)(1)在数轴上表示-2,-3,并用“”把这两个数连接一起。

最新版初中数学教案《有理数的大小比较》精品教案(2022年创作)

最新版初中数学教案《有理数的大小比较》精品教案(2022年创作)

第2课时 有理数的大小比较【知识与技能】会利用绝对值比较两个负数的大小.【过程与方法】利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力.【情感态度】结合本课教学特点,激发学生观察、探究、发现数学问题的兴趣,体验运用数学知识解决问题的喜悦.【教学重点】利用绝对值比较两个负数的大小.【教学难点】利用绝对值比较两个异分母负分数的大小.一、情境导入,初步认识情境 假设规定向北走为正,两辆汽车从同一点O 出发,向北分别开出、-15米到达A 、B 两处.提问 ①他们行驶的路线相同吗?②哪辆汽车开出较远?③想一想,-11.5与-15相比,哪个数更大?【教学说明】结合正负数的概念及绝对值的学习,逐步引入新课,将两个负数的大小比较引入到学生面前,使学生对新课有初步的认识.二、思考探究,获取新知思考1 数轴上从左到右的几个数的大小关系.出示一组数:-2,-221,3,1,121,0.画出数轴,在数轴上表示出这些数,并用“<〞把它们连接起来.【归纳结论】在数轴上,左边的点表示的有理数总比右边的点表示的有理数小.即正数大于0,0大于负数,正数大于负数.思考 2 不画数轴表示出数,怎样比较两个负数的大小呢?试比较-55与-54的大小.【归纳结论】学过绝对值后,可以将比较负数的大小转化成比较它们绝对值的大小,即比较两个正数的大小.比较法那么:两个负数,绝对值大的反而小.比较步骤:①分别计算出各数的绝对值;②比较绝对值的大小;③根据“比较法那么〞做出正确的判断.三、典例精析,掌握新知例〔1〕比较以下各组数的大小.〔2〕按从小到大的顺序,用“<〞号把以下各数连接起来.【教学说明】1.比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小.2.异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的绝对值.3.在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小.即:利用数轴来比较有理数的大小.4.教师引导学生做教材第13页练习.四、运用新知,深化理解1.〔1〕绝对值小于3的负整数有 ,绝对值不小于2且不大于5的非负整数有 .〔2〕用“>〞“=〞“<〞填空:①-7 -5;② -0.01;③-|-3.2| -〔-3.2〕;④-|-103| -3.34;⑤-98 -78; ⑥-〔-41〕 0.025; ⑦-π -3.14;⑧-2322 -203202. 〔3〕假设|x+3|=5,那么x= .2.〔1〕以下判断正确的选项是〔 〕A.a>-aB.2a>aC.a>-1aD.|a|≥a〔2〕以下分数中,大于-31而小于-41的数是〔 〕 〔3〕|m|与-5m 的大小关系是〔 〕A.|m|>-5mB.|m|<-5mC.|m|=-5m【教学说明】通过练习稳固新知,教师可先让学生自主思考,然后学生抢答.在师生共同完成的过程中,给学生学习信心与鼓励.【答案】1.〔1〕-1,-22、3、4、5〔2〕①< ②< ③< ④> ⑤> ⑥> ⑦< ⑧>(3)2或-82.〔1〕D 〔2〕B 〔3〕D五、师生互动,课堂小结通过本节课所学的有理数的大小比较你能掌握以下两种方法吗?〔1〕利用数轴,在数轴上把这些数表示出来,然后根据“数轴上左边的数总比右边的数小〞来比较;〔2〕利用比较法那么:“正数大于零,负数小于零,两个负数,绝对值大的反而小〞来进行.1.布置作业:从教材习题1.2中选取.2.完成练习册中本课时的练习.本课时先借助数轴来直观比较有理数的大小,进而由浅入深地通过法那么比较大小.在循序渐进的过程中,培养学生动脑思考的习惯,并体会数形结合的重要思想.教学中,给学生独立思考与合作交流的空间,加深理解,最后通过练习加以稳固.整数指数幂教学目标1.知道负整数指数幂n a =n a1〔a≠0,n 是正整数〕. 2.掌握整数指数幂的运算性质.3.会用科学记数法表示小于1的数.重点难点1.重点:掌握整数指数幂的运算性质.2.难点:会用科学记数法表示小于1的数.3.认知难点与突破方法复习已学过的正整数指数幂的运算性质:〔1〕同底数的幂的乘法:n m n m aa a +=⋅(m ,n 是正整数); 〔2〕幂的乘方:mn n m aa =)((m ,n 是正整数); 〔3〕积的乘方:n n nb a ab =)((n 是正整数);〔4〕同底数的幂的除法:n m n m a a a -=÷( a≠0,m ,n 是正整数,m >n);〔5〕商的乘方:n n n b a b a =)((n 是正整数); 0指数幂,即当a≠0时,10=a . 在学习有理数时,曾经介绍过1纳米=10-9米,即1纳米=9101米.此处出现了负指数幂,也出现了它的另外一种形式是正指数的倒数形式,但是这只是一种简单的介绍知识,而没有讲负指数幂的运算法那么. 学生在已经回忆起以上知识的根底上,一方面由分式的除法约分可知,当a≠0时,53a a ÷=53a a =233a a a ⋅=21a;另一方面,假设把正整数指数幂的运算性质n m n m a a a -=÷(a≠0,m ,n 是正整数,m >n)中的m >n 这个条件去掉,那么53a a ÷=53-a =2-a .于是得到2-a =21a〔a≠0〕,就规定负整数指数幂的运算性质:当n 是正整数时,n a -=n a1〔a≠0〕,也就是把n m n m a a a -=÷的适用范围扩大了,这个运算性质适用于m 、n 可以是全体整数.教学过程一、例、习题的意图分析1.[思考]提出问题,引出本节课的主要内容负整数指数幂的运算性质.2.[思考]是为了引出同底数的幂的乘法:n m n m aa a +=⋅,这条性质适用于m ,n 是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.3.教科书例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这局部知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以到达学生掌握整数指数幂的运算的教学目的.4.教科书中间一段是介绍会用科学记数法表示小于1的数. 用科学记数法表示小于1的数,运用了负整数指数幂的知识. 用科学记数法不仅可以表示小于1的正数,也可以表示一个负数.5.[思考]提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学记数法表示这个数时,10的指数就是负几.6.教科书例10科学记数法表示小于1的数.二、课堂引入1.回忆正整数指数幂的运算性质:〔1〕同底数的幂的乘法:n m n m aa a +=⋅(m ,n 是正整数); 〔2〕幂的乘方:mn n m aa =)((m ,n 是正整数); 〔3〕积的乘方:n n nb a ab =)((n 是正整数);〔4〕同底数的幂的除法:n m n m a a a -=÷( a≠0,m ,n 是正整数,m >n);〔5〕商的乘方:n n n b a b a =)((n 是正整数); 2.回忆0指数幂的规定,即当a≠0时,10=a .3.你还记得1纳米=10-9米,即1纳米=9101米吗? 4.计算当a≠0时,53a a ÷=53a a =233a a a ⋅=21a,再假设正整数指数幂的运算性质n m n m a a a -=÷(a≠0,m ,n 是正整数,m >n)中的m >n 这个条件去掉,那么53a a ÷=53-a =2-a .于是得到2-a =21a 〔a≠0〕,就规定负整数指数幂的运算性质:当n 是正整数时,n a -=n a1〔a≠0〕. 三、例题讲解〔教科书〕例9 计算[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.〔教科书〕例10[分析] 是一个介绍纳米的应用题,是应用科学记数法表示小于1的数.四、随堂练习1. 填空〔1〕-22=〔2〕(-2)2= 〔3〕(-2) 0= 〔4〕20= ( 5〕2 -3= ( 6〕(-2) -3=2. 计算:(1)(x 3y -2)2 〔2〕x 2y -2 ·(x -2y)3 (3)(3x 2y -2) 2 ÷(x -2y)3 五、课后练习1. 用科学记数法表示以下各数:0.000 04, -0.034, 0.000 000 45, 0.003 0092. 计算:(1)(3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3六、答案:四、1.〔1〕-4 〔2〕4 〔3〕1 〔4〕1〔5〕 81 〔6〕81- 2.〔1〕46y x 〔2〕4x y 〔3〕7109yx五、1. 〔1〕4×10-5〔2〕3.4×10-2〔3〕4.5×10-7〔4〕3.009×10-3×10-5〔2〕4×103。

有理数的大小比较教案

有理数的大小比较教案

有理数的大小比较教案一、教学目标:1. 让学生掌握有理数的定义,理解有理数的大小比较原理。

2. 培养学生运用有理数比较大小的方法解决实际问题的能力。

3. 提高学生对数学知识的兴趣,培养学生的逻辑思维能力。

二、教学内容:1. 有理数的定义及分类。

2. 有理数的大小比较法则:(1)正数都大于0;(2)负数都小于0;(3)正数大于一切负数;(4)两个负数,绝对值大的其值反而小。

三、教学重点与难点:1. 教学重点:有理数的大小比较法则。

2. 教学难点:有理数大小比较的应用。

四、教学方法:1. 采用讲授法,讲解有理数的定义及大小比较法则。

2. 运用案例分析法,分析实际问题,巩固有理数大小比较的知识。

3. 开展小组讨论法,让学生互动交流,提高解题能力。

五、教学步骤:1. 导入新课:复习实数的定义,引出有理数的概念。

2. 讲解有理数的大小比较法则,并通过示例进行分析。

答。

4. 案例分析:选取实际问题,让学生运用有理数大小比较的知识解决问题。

6. 作业布置:布置有关有理数大小比较的练习题,巩固所学知识。

六、教学活动:1. 让学生通过数轴理解有理数的大小比较。

2. 学生能运用数轴表示有理数的大小关系。

七、教学内容:1. 数轴的定义和特点。

2. 有理数在数轴上的表示方法。

3. 利用数轴进行有理数的大小比较。

八、教学重点与难点:1. 教学重点:数轴的定义和特点,有理数在数轴上的表示方法。

2. 教学难点:利用数轴进行有理数的大小比较。

九、教学方法:1. 采用直观教学法,通过数轴模型讲解有理数的大小比较。

2. 运用实践操作法,让学生动手画出有理数在数轴上的位置,进行大小比较。

3. 采用问题驱动法,引导学生思考并解决实际问题。

十、教学步骤:1. 导入新课:回顾上节课的内容,引入数轴的概念。

2. 讲解数轴的定义和特点,并通过示例进行分析。

3. 讲解有理数在数轴上的表示方法,引导学生理解并掌握。

导和解答。

5. 案例分析:选取实际问题,让学生运用数轴和有理数大小比较的知识解决问题。

《有理数的大小比较》教学设计表

《有理数的大小比较》教学设计表

有理数的大小比较一、教学目标1.掌握有理数的大小比较方法和规则;2.学会将有理数进行绝对值大小比较;3.培养学生自主探究、合作学习和解决问题的能力。

二、教学重点和难点1.理解有理数的大小比较方法和规则;2.掌握有理数绝对值大小比较的方法和技巧。

三、教学内容与方法1. 教学内容1.有理数大小比较的规则和方法;2.有理数绝对值大小比较的方法和技巧。

2. 教学方法1.教师讲授 + 学生合作探究;2.个别辅导 + 小组讨论;3.情境教学 + 归纳总结。

四、教学步骤与过程1. 导入新知口头解释题目中的“有理数”,引出本节课学习目标:掌握有理数的大小比较方法和规则,学会将有理数进行绝对值大小比较。

2. 学习有理数的大小比较方法和规则1.介绍有理数的数轴表示法和数轴上正负数的位置;2.讲解有理数的大小比较方法和规则:对于同一符号的有理数,绝对值大的数大;对于异号有理数,正数大于负数;3.通过例题演示有理数的大小比较方法和规则,并巩固学生了解。

3. 掌握有理数的绝对值大小比较方法和技巧1.引入学习绝对值,介绍绝对值的定义;2.讲解有理数绝对值大小比较方法和技巧:比较绝对值大小,符号与绝对值大小无关;3.通过例题演示有理数的绝对值大小比较方法和技巧,并巩固学生了解。

4. 提高教学效果1.教师选择一些较难的题目讲解和引入讨论;2.学生在小组内合作解题、相互讨论,提高解题能力,并从中寻找解题技巧。

5. 课堂作业1.课堂练习;2.教师为学生提供一些难度适宜的习题。

五、教学评估1.课堂练习成绩;2.作业完成情况;3.学生的自主探究、合作学习和解决问题的能力。

六、教学反思与改进1.教师应该注意选取与学生已有知识相符合的例题;2.教师应该适量增加实际问题的演练,让学生更好的掌握有理数的大小比较方法;3.教学过程中,引导学生举一反三,举一类题解一类题,促进学生自主思考和解决问题的能力。

《有理数的大小》 导学案

《有理数的大小》 导学案

《有理数的大小》导学案一、学习目标1、理解有理数大小的比较法则。

2、能够熟练比较两个有理数的大小。

二、学习重点与难点1、重点掌握有理数大小的比较方法。

2、难点两个负数比较大小的方法。

三、知识回顾1、什么是有理数?有理数为整数(正整数、0、负整数)和分数的统称。

2、数轴的三要素是什么?原点、正方向和单位长度。

四、新课导入在日常生活中,我们经常会比较一些数量的大小,比如比较气温的高低、比较物体的重量等等。

在数学中,我们也要学会比较数的大小。

今天,我们就来学习有理数的大小比较。

五、探究有理数大小的比较方法1、正数和 0 的比较正数都大于 0。

例如:5 > 0,10 > 0 。

2、负数和 0 的比较负数都小于 0。

例如:-3 < 0,-5 < 0 。

3、正数和负数的比较正数大于负数。

例如:5 >-2 , 10 >-5 。

4、两个正数的比较两个正数比较大小,绝对值大的数大。

例如:5 < 8 ,因为|5| = 5 ,|8| = 8 ,5 < 8 。

5、两个负数的比较两个负数比较大小,绝对值大的反而小。

例如:-5 >-8 ,因为|-5| = 5 ,|-8| = 8 ,5 < 8 ,所以-5 >-8 。

六、例题讲解例 1:比较下列各数的大小(1)-3 和 5因为正数大于负数,所以 5 >-3 。

(2)-1 和 0因为负数小于 0 ,所以-1 < 0 。

(3)-2 和-5因为|-2| = 2 ,|-5| = 5 ,2 < 5 ,所以-2 >-5 。

例 2:在数轴上表示下列各数,并比较它们的大小-4 ,-1 , 0 , 2 , 3先画出数轴,然后在数轴上标出这些数。

从数轴上可以看出:-4 <-1 < 0 < 2 < 3 。

七、课堂练习1、比较下列各数的大小(1)-7 和-2(2) 0 和-3(3) 4 和-52、在数轴上表示下列各数,并比较它们的大小-3 , 1 ,-2 , 4 , 0八、课堂小结1、有理数大小的比较方法有哪些?(1)正数>0>负数。

七年级数学第一章有理数1.2有理数1.2.4绝对值2第2课时有理数的大小比较导学案

七年级数学第一章有理数1.2有理数1.2.4绝对值2第2课时有理数的大小比较导学案

绝对值一、新课导入1.课题导入:看教材第12页未来一周天气预报图,你能将这一周的温度按从低到高的顺序排列吗?这节课我们学习有理数的大小比较。

2.学习目标:(1)进一步理解绝对值的意义。

(2)会进行有理数的大小比较.3。

学习重、难点:重点:进一步理解绝对值的意义;掌握有理数的大小比较方法.难点:两个负数的大小比较方法。

二、分层学习1。

自学指导:(1)自学内容:教材第12页“思考”到教材第13页第4行的内容.(2)自学时间:8分钟.(3)自学要求:借助数轴来归纳比较两个数大小的方法,看数轴上的点表示的数的大小有什么规律.(4)自学参考提纲:①说出数轴上各点所表示的数的大小顺序。

a。

把温度按从低到高的顺序排列后,在温度计上所对应的点是从下到上的;按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序应该是从左到右的。

b。

数学中规定,在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.②根据数轴上的点表示数的特征(原点右边的数表示正数,原点左边的数表示负数)和上述规定(即左边的数小于右边的数),可得到有理数的大小比较法则一:正数大于0,0大于负数,正数大于负数.对于两个负数,在数轴上的对应点离原点越远,说明这个数的绝对值越大(填“大”或“小”),表示该数的点越往左(填“左"或“右”),因此可以得到有理数的大小比较法则二:两个负数,绝对值大的反而小。

③填空:(填“>”或“<”)—100<0 -50<120<0。

0001④-78和—89这两个负数谁大?怎样来比较?解:∵-|78|<|—89|,∴—78>—89⑤你能总结两个有理数的大小比较的基本思路和方法吗?相互交流一下。

2。

自学:同学们可结合自学指导进行自学和交流探讨.3.助学:(1)师助生:①明了学情:巡视课堂、关注学生的自学过程,了解学生的学习方法和进度,收集自学中存在的问题。

②差异指导:a。

指导部分未找到有理数的大小比较方法的学生观察数轴上两个点表示的数的位置与它们的大小关系。

有理数的大小比较教案

有理数的大小比较教案

有理数的大小比较教案一、教学目标1. 让学生掌握有理数的大小比较方法。

2. 能够运用有理数的大小比较解决实际问题。

3. 培养学生的逻辑思维能力和运算能力。

二、教学内容1. 有理数的大小比较方法。

2. 有理数大小比较在实际问题中的应用。

三、教学重点与难点1. 教学重点:有理数的大小比较方法,有理数大小比较在实际问题中的应用。

2. 教学难点:有理数大小比较的推理过程,实际问题中的运用。

四、教学方法1. 采用讲授法,讲解有理数的大小比较方法。

2. 采用案例分析法,分析有理数大小比较在实际问题中的应用。

3. 采用小组讨论法,让学生分组讨论,培养学生的合作能力。

五、教学过程1. 导入:通过生活实例,引导学生思考有理数的大小比较。

2. 新课导入:讲解有理数的大小比较方法,包括:①正数都大于0,负数都小于0;②正数大于一切负数;③两个负数,绝对值大的其值反而小。

3. 案例分析:分析有理数大小比较在实际问题中的应用,如:比较两种商品的性价比、判断考试成绩的优劣等。

4. 课堂练习:布置练习题,让学生运用有理数的大小比较方法解决问题。

5. 小组讨论:让学生分组讨论,分享各自解决问题的过程和心得。

7. 课后作业:布置课后作业,巩固所学内容。

六、教学评价1. 评价目标:检验学生对有理数大小比较方法的掌握程度以及实际应用能力。

2. 评价方法:课堂练习:观察学生在练习题中的解题过程和答案,评估其对有理数大小比较方法的掌握。

小组讨论:评估学生在讨论中的参与程度、合作能力和问题解决能力。

课后作业:检查作业完成质量,评估学生对课堂所学知识的巩固程度。

七、教学拓展1. 拓展内容:无理数的大小比较。

2. 教学方法:通过对比有理数和无理数的性质,引导学生理解无理数的大小比较方法。

3. 教学过程:导入:通过实例引导学生思考无理数的大小比较问题。

新课导入:讲解无理数的大小比较方法,强调无理数比较的间接性和近似性。

案例分析:分析无理数大小比较在实际问题中的应用,如计算物理常数、估算曲线与坐标轴的交点等。

七年级上册数学学案设计1.2.4第2课时有理数大小的比较

七年级上册数学学案设计1.2.4第2课时有理数大小的比较

第一章 有理数1.2 有理数 1.2.4 绝对值第2课时 有理数的大小比较 学习目标1、理解有理数的绝对值与该数的关系,把握绝对值的代数意义2、会利用绝对值比较2 个负数的大小,理解其中的转化思想[比较负数→比较正数 学习难点绝对值与相反数意义的理解,数形结合的思想 教学过程 【情景创设】1、说出绝对值的几何含义2、互为相反数的2个数在数轴上有什么位置关系3、书本第23页,根据绝对值与相反数的意义填空。

(做在书上)二、思考问题:一个数的绝对值与这个数本身、或与它的相反数之间有什么关系? 用符号表示为 |a|= 三.问题:求下列各数的绝对值+6, -3, -2.7, 0, -2/3, 4.3, -8 四.议一议:互为相反数的两个数的绝对值有什么关系? 五.随堂练习①一个数的绝对值是它本身,这个数是( ) A 、正数 B 、0 C 、非负数 D 、非正数②一个数的绝对值是它的相反数,这个数是 ( ) A 、负数 B 、0 C 、非负数 D 、非正数③什么数的绝对值比它本身大?什么数的绝对值比它本身小? ④ 绝对值是4的数有几个?各是什么? 绝对值是0的数有几个?各是什么? 有没有绝对值是-1的数?为什么?六.讨论 :两个数比较大小,绝对值大的那个数一定大吗? 七.做一做分别找出到原点的距离为3和5的数,并比较它们的大小 。

【知识巩固】 一、 选择题1、 如果|a|=-a ,那么 ( ) A a 〉0 B a <0 C a ≥0 D 0≤a2、下列各数中,一定互为相反数的是 ( )A -(-5)和-|-5|B |-5|和|+5|C -(-5)和|-5|D |a|和|-a| 3、若一个数大于它的相反数,则这个数是 ( ) A 正数 B 负数 C 非负数 D 非正数 4、下列判断中:(1)负数没有绝对值;(2)绝对值最小的有理数是0;(3)任何数的绝对值都是非负数;(4)互为相反数的两个数的绝对值相等,其中正确的个数有( ) A 1个 B 2个 C 3个 D 4个 二、填空题1.(1)-3_______-0.5; (2)+(-0.5)_______+|-0.5| (3)-8_______-12 (4)-5/6______-2/3 (5) -|-2.7|______-(-3.32)2、有理数a、b在数轴上如图,用 > 、= 或 < 填空(1)a____b , (2) |a|___|b| ,(3)–a___-b, (4)|a|___a ,(5) |b|____b3、如果|x|=|-2.5|,则x=______4、绝对值小于3的整数有____个,其中最小的一个是____5、|-3|的相反数是 ;若|x|=8,则x= .6、的相反数等于它本身,的绝对值等于它本身.7、绝对值小于3的非负整数是.8、-3.5的绝对值的相反数是.-0.5的相反数的绝对值是.9、|-3|-|-4|= - = .10、在-37,-0.42,-0.43,-194中,最大的一个数是.三、解答题11、比较-32与-23的大小,并说明理由.12、用“〈”将-4,12,324,-|-3|连接起来,并说明理由.13、已知a、b、c在数轴上的位置如图所示,试求|a|+|c-3|+|b|的值.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.下列图形中,∠1和∠2互为余角的是( )A.B.C. D.2.下列各组图形中都是平面图形的是( ) A .三角形、圆、球、圆锥 B .点、线段、棱锥、棱柱 C .角、三角形、正方形、圆D .点、角、线段、长方体3.如果一个角α的度数为13°14',那么关于x 的方程21803x x α-=︒-的解为( ) A.76°46'B.76°86'C.86°56'D.166°46'4.在如图所示的2018年1月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( )A .23B .51C .65D .755.如果4x 2-2m=7是关于x 的一元一次方程,那么m 的值是( )A.-12 B.12C.0D.16.已知4321x k x +=-,则满足k 为整数的所有整数x 的和是( ). A.-1B.0C.1D.27.若多项式5x 2y |m|14-(m+1)y 2﹣3是三次三项式,则m 等于( ) A.﹣1B.0C.1D.28.如图,将一张正三角形纸片剪成四个全等的正三角形,得到4个小正三角形,称为第一次操作;然后,将其中的一个正三角形再剪成四个小正三角形,共得到7个小正三角形,称为第二次操作;再将其中的一个正三角形再剪成四个小正三角形,共得到10个小正三角形,称为第三次操作;……,以上操作n 次后,共得到49个小正三角形,则n 的值为()A .13n =B .14n =C .15n =D .16n =9.下列代数式中:①3x 2-1;②xyz ;③12b ;④32x y +,单项式的是( ) A .①B .②C .③D .④10.一个有理数的平方等于它本身,那么这个有理数是( ) A .0 B .1 C .±1 D.0或1 11.12的相反数是( ) A.﹣2B.﹣12C.12D.212.计算(﹣6)+(﹣3)的结果等于( )A .-9B .9C .-3D .3 二、填空题13.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =_______.14.如图,点A 在数轴上,点A 表示的数为-10,点M 以每秒2个单位长度的速度从点A 出发沿数轴向右运动。

1.2有理数-比较有理数的大小(教案)

1.2有理数-比较有理数的大小(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数大小比较在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
五、教学反思
在今天的教学过程中,我注意到学生在比较有理数大小这一知识点上存在一些困惑。在引入新课时,通过日常生活中的例子来激发学生的兴趣,这个方法似乎效果不错,大家都能够积极参与进来。但在理论讲解部分,我发现有些学生对负数的绝对值大小关系理解不够透彻,需要我通过数轴和具体例子反复解释。
在新课讲授中,我尽量用简洁明了的语言解释有理数大小比较的规则,并通过案例分析让学生看到这些规则在实际中的应用。我觉得这个环节做得还可以,但可能需要更多的互动来帮助学生加深理解。在接下来的实践活动中,分组讨论和实验操作让学生们动手动脑,增强了他们对知识点的掌握。看到他们在讨论中积极思考,我感到很欣慰。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数的基本概念。有理数是可以表示为两个整数比的数,包括正整数、负整数和分数。它们在数轴上有着特定的位置和性质。了解有理数的大小关系对于解决实际问题非常重要。
2.案例分析:接下来,我们来看一个具体的案例。比较两个有理数的大小,如3和-3,我们可以借助数轴来直观地理解它们的相对位置,从而得出结论。
通过今天的课堂教学,我深刻认识到作为一名教师,要时刻关注学生的学习状况,善于发现问题,及时调整教学策略。只有这样,才能让每一个学生都能在课堂上收获知识,提高能力。在今后的教学工作中,我会继续努力,为学生的成长付出更多的心血。

《有理数的大小比较》优秀教案

《有理数的大小比较》优秀教案

《有理数的大小比较》优秀教案《有理数的大小比较》优秀教案教学目标:1、知识与技能会比较两个(或几个)有理数的大小。

2、过程与方法通过具体实例,抽象出比较两个有理数大小的方法。

利用数轴,会比较几个有理数的大小,进一步培养学生数形结合的数学思想方法,提高学生学习兴趣。

重点、难点:1、重点:掌握有理数大小的比较法则。

2、难点:比较两个负数的大小。

教学过程:一、创设情景,导入新课1、数轴包括哪几个要素?怎么画?2、大于0的数在数轴上位于原点的哪一侧?小于0的数呢?3、问:如何比较两个正数的大小?(1)珠穆朗玛峰与吐鲁番盆地,问:哪个地方高?(2)温度计示意图:-3℃与5℃哪个温度高?上述两个问题,实际是比较8844.43与-155的大小,以及5与-3的大小,像这样的问题实际上是比较两个有理数在大小(板书课题)。

二、合作交流,解读探究1、(出示两个不同温度的温度计挂图)在温度计上显示的两个温度,上边的温度总比下边的温度高,例如,5℃在-2℃上边,5℃高于-2℃;-1℃在-4℃上边,-1℃高于-4℃。

下面的结论引导学生把温度计与数轴类比,自己归纳出来:(1)在数轴上表示的两个数,右边的数总比左边的`数大.(2)正数都大于零,负数都小于零,正数大于负数。

例1、在数轴上画出表示下列各数的点,并用把它们连接起来。

4.5,6,-3,0,-2.5,-4通过此例引导学生总结出正数都大于0,负数都小于0,正数大于一切负数的规律.要提醒学生,用连接两个以上数时,小数在前,大数在后,不能出现54这样的式子.2、利用数轴我们已经会比较有理数的大小。

由上面数轴,我们可以知道-40.43,其中-4,-3都是负数,它们的绝对值哪个大?显然 3|引导学生得出结论:两个正数比较,绝对值大的数大;两个负数比较,绝对值大的反而小。

这样以后在比较负数大小时就不必每次再画数轴了三、应用迁移,巩固提高例2(P16例)、比较下列每一结数的大小1、-100与0.01;2、-100与-33、与。

有理数的比较大小教案

有理数的比较大小教案

有理数的比较大小教案教学目标1.1知识目标:了解有理数的大小比较规则,学会比较有理数的大小。

1.2能力目标:能够正确使用有理数大小比较规则比较大小。

1.3情感目标:培养学生爱好数学,完成数学学习任务的积极性。

二、教学内容2.1有理数有理数(rational number)是指能表示成两个整数比的数,或者是可以表示成整数、正小数或负小数的数字。

我们可以用有理数表示地球的直径、全国人口等等。

3.2有理数的大小比较在小学的学习中,我们知道了任意两个正整数都可以比较大小,而对于两个负整数,我们只要比较绝对值的大小,更大的数即为较小的数。

那么在有理数中,如何进行大小比较呢?(1)同号1.当两个正数比较大小时,它们的大小关系和它们的数值大小关系一致,即越大的数表示的量越多。

2.当两个负数比较大小时,它们的大小关系和它们的绝对值的大小关系相反,即绝对值较小的数表示的量越多。

(2)异号1.正数和负数比较大小时,正数大于负数,即越靠近正数轴的数表示的量越多。

2.负数和正数比较大小时,负数小于正数,即越靠近负数轴的数表示的量越多。

三、教学过程3.1导入口算题:-3 ÷ 4 = (-1) ÷ (-2) =接着让学生说一说这两道题,看看它们有哪些相似之处。

4.2讲授有理数的大小比较原则:1.正数比较大小,数值大的较大。

2.负数比较大小,数值小的较大。

3.正数和负数相比较,正数大。

4.负数和正数相比较,正数大。

让同学们自己举例和解答问题,区分不同的情况,建立数值的大小关系,这对于让学生建立一个准确的数值比较的认知是至关重要的。

5.3巩固练习:比较大小1.(-5) ÷ (-3) , (-4) ÷ (-2)2.-2, -4 ÷ (-3)3.--1 , 3 ÷ (-2)4.--6, -(-12)5.(-6) ÷ 2 , 6 ÷ (-3)6.4归纳学过古代数学家大括弧法,也许你也有自己的小技巧,这类技巧可以加快对有理数比较的判断,但准确性无法确保,更好的方式更草根一点,就是多比较,多练习,依据有理数的大小关系,在生活和教学练习中找到其中的经验和规律,加强运用。

初中数学七年级上册有理数大小的比较导学案

初中数学七年级上册有理数大小的比较导学案

第一章有理数1.2 有理数1.2.4 有理数第2课时有理数大小的比较学习目标:1.掌握有理数大小的比较法则.2.能利用数轴及绝对值的知识,比较两个有理数的大小.重点:掌握有理数大小的比较法则.难点:比较有理数的大小.一、知识链接1.比较大小:5.2_______8,21_________32,0.3_________0.2.把有理数-3、2、5、-4在数轴上表示出来.3.求下列各数的绝对值.-3、1、3.14、0、-0.27.二、新知预习观察与思考下面是我国5座城市某天的最低温度:武汉-5 ℃北京-10℃上海0℃哈尔滨-20℃广州10℃(1)将这5座城市这一天的最低气温按照由低到高的顺序排列出来.(2)这5座城市这一天的最低气温在温度计上对应的位置有什么规律?(3)将这5座城市这一天的最低气温在数轴上表示出来,这些数的大小与它们在数轴上所表示的点的位置有什么关系?【自主归纳】在数轴上表示的两个数,右边的数总比左边的数 .正数 0,0 负数,正数负数.(4)比较下列两座城市之间最低气温的高低(填“高于”或“低于”)北京__________武汉;北京__________哈尔滨.(5)求出下列各数的绝对值:-5 -10 -20,并比较它们绝对值的大小.(6)由上你发现了什么?【自主归纳】两个负数,绝对值大的反而 .三、自学自测比较下列各组数的大小:四、我的疑惑________________________________________________________________________________ ______________________________________________________________________一、要点探究探究点1:借助数轴比较有理数的大小有理数大小的比较方法1:数轴比较法:.(1)0与-6;(2)3和-4.4;(3)和.34-45-想一想:有没有最大的有理数?有没有最小的有理数?为什么?探究点2:运用法则比较有理数的大小问题:对于正数、0、负数这三类数,它们之间有什么大小关系?两个负数之间如何比较大小?结论:(1)正数大于0,负数小于0,正数大于负数;(2)两个负数,绝对值大的反而小.例如,1>0,0> -1,1>-1,-1>-2.例1:在数轴上表示数-3,-5,4,0,并比较它们的大小,将它们按从小到大的顺序用“<”号连接.例2. 比较下列各数的大小.(1)-(-3)和-(+2);(2)-3524和-75;(3)|-65|和-(-0.83)例3. 下列判断,正确的是( )A .若a >b ,则│a │>│b │B .若│a │>│b │,则a >bC .若a <b<0,则│a │<│b │D .若a>b>0,则│a │>│b │1.如图,数轴上A ,B ,C 三点表示的数分别为a ,b ,c ,则它们的大小关系是 ( )A.a >b >cB.b >c >aC.c >a >bD.b >a >c2.下列各式中,正确的是( ) A. -|-16|>0 B. |0.2|>|-0.2|C.|-47|>-|-57| D. |-6|<0二、课堂小结比较有理数大小的方法.方法①:数轴上表示的两个数,右边的总比左边的大. 方法②:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.1.在有理数0,│-(-313)│,-│+1000│,-(-5)中最大的数是( ) A .0 B .-(-5) C .-│+1000│ D .│-(-313)│ 2.比较下列各对数的大小:(1)-(-1) -(+2); (2) 218-73-; (3)3.0(--31; (4) 2-- -(-2). 3.将下列这些数用“<”连接.0,-3,|5|,-(-4),-|-5|.0 -1 15.如果a是有理数,试比较|a|与-2a的大小.。

有理数的大小比较教案

有理数的大小比较教案

有理数的大小比较教案教案主题:有理数的大小比较教学目标:1.学生能够正确地比较有理数的大小;2.学生能够运用适当的方法来比较不同形式的有理数。

教学重点:1.学生能够正确地比较有理数的大小;2.学生能够灵活运用不同的方法来比较不同形式的有理数。

教学难点:学生能够熟练运用不同的方法来比较不同形式的有理数。

教学准备:1.教师准备有理数大小比较的实例,包括小数、分数和整数;2.教师准备课件、黑板和白板等教学工具。

教学步骤:Step 1:引入话题(10分钟)1.教师通过示例引入有理数的大小比较的话题,如:1.5和1.2,我们应该怎么判断它们的大小呢?2.学生进行讨论,尝试给出一种方法来比较这两个数。

Step 2:整数的大小比较(15分钟)1.教师将两个整数写在黑板上,如:-3和5,要求学生判断它们的大小。

2.学生讨论并给出答案,然后教师讲解如何比较两个整数的大小:a)如果两个整数同号,则绝对值大的数较大;b)如果两个整数异号,则正整数较大。

3.教师给出一些例子,让学生进行比较练习。

例如:-7和-2、-5和3等。

Step 3:小数的大小比较(20分钟)1.教师将两个小数写在黑板上,如:0.5和0.12,要求学生判断它们的大小。

2.学生讨论并给出答案,然后教师讲解如何比较两个小数的大小:a)将小数转化为分数形式,比较分数大小;b)比较小数的整数部分,整数部分相同时,比较小数部分;c)小数化为百分数或千分数后进行比较。

3.教师给出一些例子,让学生进行比较练习。

例如:0.3和0.6、1.25和1.5等。

Step 4:分数的大小比较(20分钟)1.教师将两个分数写在黑板上,如:3/4和2/5,要求学生判断它们的大小。

2.学生讨论并给出答案,然后教师讲解如何比较两个分数的大小:a)如果分数的分母相同,则比较分子的大小;b)如果分数的分母不同,则通分后比较大小;c)如果分数的分母不同,且不能直接通分,可以转化为小数进行比较。

《有理数比较大小》学案

《有理数比较大小》学案

《有理数比较大小》学案
一、课前准备
1、通过复习《有理数加减法》课程,回顾有理数的定义和基本性质;
2、学习本节课主要内容——比较两个有理数的大小;
3、准备一张有理数比较大小的表格,便于实际计算;
4、阅读课本40页相关知识点,掌握有理数比较大小的原理及其操作方法。

二、课堂学习
1、有理数的比较
有理数比较大小,指的是比较某两个有理数的大小,要求出谁大,谁小,或者是相等
的情况。

当我们对有理数的比较时,可以分为两类:
(1)比较两个正数的大小。

这类有理数的比较,我们可以使用“数值比较法”,即用它们的数值来比较,如果数
值越大,那么有理数越大。

这个情况比较复杂,我们需要将正数和负数分情况讨论,首先,负数的绝对值总大于
正数;其次,两个负数之间,相反数越大,其数值越小;再次,两个正数之间,数值越大,有理数越大;最后,一个正数一个负数时,正数一定大于负数。

要比较两个正数的大小,我们需要将它们的数值比较一下,比如我们要比较正数4和
正数7,很明显,7的数值大于4,因此,7大于4。

三、课后检测
一、选择题
()1、以下有理数哪个最大:
A. 2
B. -2
C. 0
A. 2
C. 5
二、计算题
1、(-5)─(-10)的值是多少?
答:5。

有理数的大小比较 学案

有理数的大小比较 学案

. :(有理数的大小比较 学案教学目标:1、掌握有理数大小的比较法则:的数大,数轴上表示的两个有理数,右边的数总比左边的 数大;正数都大于零,负数都小于零;两个正数比较大小,绝对值大的数大;两个负数比较 大小,绝对值大的数反而小。

2、会比较有理数的大小,并能正确地使用“>”或“<”号连结.3、初步会进行有理数大小比较的推理和书写.教学重、难点:教学重点:有理数的大小比较法则.教学难点:1、两个负数比较大小的绝对值法则.2、例 2 第(3)题中两个负分数比较大小的推理过程.教学设计过程:一、创设情境:(多媒体演示)下面是一组图片,表示某一天我国 5 个城市的最低气温(见 P 17 图 1-10) 比较这一天下列两个城市间最低气温的高低(填“高于”或“低于”) 广州(10℃) 上海(0℃); 上海(0℃) 北京(-10℃); 武汉(5℃) 广 州(10℃); 哈尔滨(-20℃) 武汉(5℃); 北京(-10℃) 哈尔滨(-20℃).同学们的答案是否正确呢?这就需要数学知识“有理数的大小比较” 点出课题).二、探究新知:把表示上述 5 个城市最低气温的数表示在数轴上.观察这 5 个数在数轴上的位置,你发 现了什么?温度的高低与相应的数在数轴上的位置有什么关系?(教师与学生一起合作完 成)。

(结论:在数轴表示的数的位置与气温的高低有关.气温越高,在数轴上表示的数就越 靠右.)一般地,我们有:在数轴上表示的两个数,右边的数总比左边的数大.(教师板书,学生记忆)例 1 在数轴上表示数 5,0,-4,-1,并比较它们大小,将它们按从小到大的顺序 用“<”号连接.(师生合作完成)解:如图, -4 -1 0 1 5将它们按从小到大的顺序排列为:-4<-1<0<5.我们知道:有理数可分为正数、负数和零三类,(教师提出问题)那么两个有理数的大 小比较有哪几种情况呢?(两个有理数的大小比较有如下几种情况:一正一零;一负一零;两负;一正一负;两正.)结合例 1,请同学们观察数轴思考一下:正数、零和负数三者的大小关系如何?正数大于零,负数小于零,正数大于负数.(教师板书,学生记忆)那么,同号(同正或同负)的两数的大小关系又如何呢?(3)∵-3-3(若学生有困难,则提示:求例1中同号(同正或同负)各数的绝对值,并比较它们的大小,然后说明它们的大小与它们的绝对值的大小有什么关系?)引导学生归纳得出:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.(教师板书,学生记忆)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.4 有理数的大小比较
学习目标:
1、使学生进一步巩固绝对值的概念。

2、使学生会利用绝对值比较两个负数的大小。

学习过程
一、学而不思则罔
1、自学课本13,借助数轴来比较有理数的大小
总结:(1)在数轴上, 边的数总比 边的数大;
(2) 大于0,0大于一切 , 数大于一切 数。

2、做一做
( 1 )在数轴上表示下列各数,并用“<”将它们连接起来:
- 1.5 , - 3 , - 1 , - 5
( 2 ) 求出(1)中各数的绝对值,并比用“<”将它们连接起来:
( 3 )你发现了什么?
总结:两个负数比较大小,绝对值 的反而 。

比一比:1 0, 0 -1, 1 -1, -1 -2。

二.思而不学则殆
自学例题,完成下题
(1) 2--与0;
先 ,因为 ,所以 ,即 。

(2)比较两个负数43-和32-的大小:
① 先分别求出它们的绝对值:43-= = ,32-= =
② 比较绝对值的大小:∵128129> ∴
3243>
③ 得出结论:
(3)—(-1)与—(-0.01)
先 ,因为 ,所以 。

说明:要求严格按此格式书写,训练逻辑推理能力;
① 注意符号“∵”、“∴”的写法、读法和用法;
③对于两个负数的大小比较可以不必再借助于数轴而直接进行;
④异分母分数比较大小时要先 将分母化为相同。

⑤有理数的多重符号要先 后进行比较。

⑥异号两数比较大小,要考虑它们的 ;同号两数比较大小,要考虑它们的 。

练习:比较大小
(1)-3和-5 (2)-2.5和25.2--
三.三人行必有我师
1、比较下列各数的大小
(1)-1和 – 5; (2)- 5.6 和- 2.7
(3)-0.3与31-; (4)⎪⎪⎭⎫ ⎝⎛--91与101--
2、用“>”连接下列个数: 2.6,―4.5,101,0,―23
2
四.日知其所无
你学到了哪些比较有理数大小的方法?
五.如切如磋,如琢如磨
1.比较有理数的大小:(1)72______73-- (2))3
22(_______432---
2.有理数x,y在数轴上的对应点如图所示:
(1)在数轴上表示-x,-y.
(2)试把x,y,0,-x,-y这五个数从大到小用“>”连接.。

相关文档
最新文档