河南省天一大联考2017年-2018年高一上学期阶段性测试(一)数学试卷1

合集下载

河南省天一大联考2017-2018学年高二上学期阶段性测试(一)(11月)数学(文)+Word版含解析汇报

河南省天一大联考2017-2018学年高二上学期阶段性测试(一)(11月)数学(文)+Word版含解析汇报

天一大联考2017——2018学年高二年级阶段性测试(一)数学(文科)第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知ABC ∆的内角A,B,C 所对的边长分别为4,5,6,则cos C = A.916 B. 34 C. 18 D.1102.已知正项等差数列{}n a 的前n 项和为n S ,945S =,则5a = A. 9 B. 8 C. 6 D. 53. 若,,a b c R ∈,且a b >,则下列不等式成立的是A. c c a b >B. 20c a b >-C. 22a b >D.2211a bc c >++ 4. 已知ABC ∆的内角A,B,C 的对边分别为,,a b c ,若7,32A a c π===,则该三角形解的情况是A. 无数解B.2解C.1解D.无解5. 已知实数,x y 满足条件2222x x y x y ≤⎧⎪+≥⎨⎪-≥⎩,则y x 的取值范围是A.[]0,1B. 1,12⎡⎤⎢⎥⎣⎦ C. 40,3⎡⎤⎢⎥⎣⎦ D. 1,13⎡⎤⎢⎥⎣⎦6. 已知数列{}n a 满足12123n n a a ++=+,且11a =,则4a =A. 13- B. 79 C. 12 D. 11 7. 若实数,x y 满足约束条件1311x y x y ≤+≤⎧⎨-≤-≤⎩,则3z x y =+的取值范围是A. []0,6B. []1,6C. []1,7D. []0,58. 已知等差数列{}n a 的前n 项和为n S ,343,10a S ==则数列1n S ⎧⎫⎨⎬⎩⎭的前100项的和为 A.200101 B. 100101 C. 1101 D.21019. 2017年9月16日05时,第19号台风“杜苏芮”的中心位于甲地,它以每小时30千米的速度向西偏北60的方向移动,距台风中心t 千米以内的地区都将受到影响。

河南省天一大联考2017 2018高二上学期阶段性测试一11月数学文Word版含解析汇报

河南省天一大联考2017 2018高二上学期阶段性测试一11月数学文Word版含解析汇报

实用文档天一大联考2017——2018学年高二年级阶段性测试(一)数学(文科)第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.?ABCcosC?,则的内角A,B,C所对的边长分别为1.已知4,5,69311 B. A.C. D. 104168??a S?45a?Sn,则的前2.已知正项等差数列,项和为59nn A. 9 B. 8 C. 6 D. 5a,b,c?R a?b,则下列不等式成立的是,且3. 若2cccab220?b?a?? C. B. D. A.?7,a?2A?3,c?ca,b,ABC?,,的内角A,B,C的对边22a?babc?1c?1分别为若则该三角形4. 已知32解的情况是解 D.无解 A. 无数解 B.2解C.1x?2?y?x?y?2y,x,则的取值范围是5. 已知实数满足条件?x?2??y2x?141????????0,0,1,1,1 C. A. B. D. ??????332??????a?21??n?a?1a?a,则 6. 已知数列,且满足14n a?231n?1? B. 79 C. 12 D.11 A. 31?x?y?3?y,x z?3x?y的取值范围是若实数7. ,则满足约束条件??1?x?y?1?????????0,5,70,61,61 A. B. C. D.实用文档??1??a103,S?a?Sn的前100的前项的和为项和为已知等差数列8. ,则数列??43nn S??n20010012 B. C. D. A.1011011011019. 2017年9月16日05时,第19号台风“杜苏芮”的中心位于甲地,它以每小时30千米60t 千米以内的地区都将受到影响。

若距甲地正的速度向西偏北的方向移动,距台风中心t的值分别为日08时恰好受台风影响,则西方向900千米的乙地169079013909190 C. A. B. D.??????ex?|xx?f1x或?0xf,则已知是一元二次函数,不等式的解集是10.??x?ef0的解集是????????ex?x|2x|0?xx|0?x?e?|1x?x?21? A. C. B. D.x,y x?3y?3xy?3?0x?3y的最小值是若正实数,则满足11.A. 1B. 2C. 4D. 5a,b,c ABC?,的对边分别为的三个内角A,B,C的大小依次成等差数列,角A,B,C12. 已知????2??c0,??ax?2fxxABC?并求函数,则的值域是的面积是3333 D. A.B. C. 342二、填空题:本大题共4小题,每小题5分,共20分. ?3,a?2,c?2A?c,ab,ABC?,则,若的三个内角A,B,C13. 已知的对边分别为4sinC? .??a S?a?2a?Sn .,且的前14.设数列项和为,则2018nnnn222a?b?ab?c,ab?43cb,a,ABC?,的对边分别为满足15. 已知,的三个内角A,B,C?ABC的面积为 . 则???????n2ba a?2logb Nan???2?a2?an2,则,数列数列16.满足满足nn2n12nn??a S?n .项和的前nn实用文档. 解答应写出必要的文字说明或推理、验算过程70分.三、解答题:本大题共6小题,共分)17.(本题满分10 2.?aA?45,bc,b,a ABC?的对边分别为的三个内角已知A,B,C,已知2B的大小;(1)求2a??ABC的面积(,求2)若.18.(本题满分12分)????????2.2,a?R1????ax?,a?2?x?20?x关于的解集为的不等式a的值;)求(1????20?aa?x?2cx?c3c?x不等式(2的不等式的解集是集合)若关于A,????A?B0?2?x?x1c的取值范围.的解集是集合B,若,求实数19.(本题满分12分)bsinC??1.c,ab,ABC?,已知的三个内角已知A,B,C的对边分别为a?csinA?sinB A; 1 ()求223a?c?b的取值范围,求2)若(.20.(本题满分12分)??a a?a?a?28a?2a,a的等差中项满足是. ,且已知单调递增等比数列423432n??a的通项公式;(1)求数列n??????n?1???ab??babb?a2?abn122n,项求数列)(2数列满足的前nnn22nn11S. 和n(本题满分21.分)12 98某大理石厂初期花费12万元购买磨大理石刀具,第一年需要各种费用万元,从第二实用文档年起,每年所需费用比上一年增加4万元,该大理石加工厂每年总收入是50万元.(1)到第几年末总利润最大,最大值是多少?(2)到第几年末年平均利润最大,最大值是多少?22.(本题满分12分)????ba20.?10,aa??aa?Sn. 项和为已知等比数列的前,数列满足4213nnn??a的通项公式;)求数??n b b?2n?1Tn.列(1n??b项和)数列的通项公式为的前,求数列2(??nnn a??n实用文档实用文档实用文档实用文档实用文档。

天一大联考2017-2018学年高一年级阶段性测试(二)

天一大联考2017-2018学年高一年级阶段性测试(二)

天一大联考2017-2018学年高一年级阶段性测试(二)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知底面半径为2 的圆锥的体积为8π ,则圆锥的高为( ) A .2 B .4 C .6 D .82.若221{211}a a a -∈--+,, ,则a = ( ) A .1- B .0 C .1 D .0 或13.若直线1l :210x y -+= 和直线2l :20x y t -+= ,则t = ( ) A .3- 或3 B .1- 或1 C .3- 或1 D . 1- 或34.函数211()521xf x x ⎛⎫=+- ⎪+⎝⎭一定存在零点的区间是( ) A .(1 2), B .(0 1), C.(23 )--, D .121⎛⎫- ⎪⎝-⎭, 5.已知集合14416x A x⎧⎫=<⎨⎬⎩⎭≤ ,21log 534B x x ⎧⎫⎛⎫=-⎨⎬ ⎪⎝⎭⎩⎭≤ ,则()R C A B = ( )A .33120⎛⎤ ⎥⎝⎦,B .33220⎛⎤- ⎥⎝⎦, C.33120⎡⎫⎪⎢⎣⎭, D .∅6.如图画出的某几何体的三视图,则该几何体的表面积为( )A .80+20πB .9616π+ C.9620π+ D .9624π+ 7.已知幂函数2()(21)a g x a x +=- 的图像过函数2()x b f x +=的图象所经过的定点,则b 的值等于( )A .2-B .1 C.2 D .4 8.函数31()2(31)x x f x x +=--的图象大致为( )A .B . C.D .9.已知过点(20), 且与直线40x y ++= 平行的直线l 与圆C :22450x y y ++-= 交于A ,B 两点,则OAB △ (O 为坐标原点)的面积为( )A .1 BC..10.已知在四棱锥S ABCD - 中,SD ⊥ 平面ABCD ,AB CD ∥ ,AB AD ⊥ ,SB BC ⊥ .若22SA AD == ,2CD AB = ,则AB = ( ) A .1 B2 D11.已知圆1C :22(2)(3)4x y -+-= 与2C :22()(4)16x a y -+-= 相离,过原点O 分别作两个圆的切线1l ,2l ,若1l ,2l 的斜率之积为1- ,则实数a 的值为( ) A .83 B .83- C.6- D .612.已知函数11(01],()221(10]xx x f x x +⎧⎛⎫∈⎪ ⎪=⎨⎝⎭⎪-∈-⎩,,,, 若方程2()0f x x m --= 有且仅有一个实数根,则实数m 的取值范围是( )A .11m -<<B .112m -<-≤ 或1m = C.112m -<-≤D .112m -<<-或1m = 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知Rt ABC △ 的顶点(01)C -, ,斜边AB 所在直线的方程为3210x y -+= ,则AB 边上的高所在直线的方程为 .14.若函数2212322x x f x x x ⎛⎫=+ ⎪++⎝⎭(0x ≠ ),则(2)f = . 15.在四面体ABCD 中,ABD △ 是边长为2 的正三角形,BCD △ 为直角三角形,且AC BC CD ==ABCD 的外接球的体积为 .16已知函数()x f x a = (0a > ,1a ≠ )在[21]-,上的值域为[4]m , ,且函数31()m g x x-= 在(0+)∞, 上是减函数,则m a += . .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知函数()f x =的定义域为A ,集合{|12}B x x =-<< (1)若12a =,求A B ;(2)若A B A =,求实数a 的取值范围.18. 已知函数()f x ,当a b R ∈, 时,恒有2()33a b a b f a f f -+⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭. (1)若(1)2f =- ,求(2)f ,(3)f 的值; (2)判断函数()f x 的奇偶性.19. 如图,在四棱锥P ABCD - 中,PA ⊥ 平面ABCD ,AD BC ∥ ,AD DC ⊥ ,E 为PD 的中点,222BC CD PA AD ====.(1)求证:AE ⊥ 平面PCD ; (2)求三棱锥C BDE - 的体积.20. 已知函数()lg(1)f x ax =- (0a > )(1)当2a =时,求不等式0()lg(1)1f x x <-+< 的解集;(2)设()()log 10f x a g x = ,若函数()g x 在区间312⎡⎤⎢⎥⎣⎦, 上为增函数,且()g x 的最小值为1 ,求实数a 的值.21. 如图,在直三棱柱111ABC A B C - 中,1AA AB BC == , AB BC ⊥,P ,Q 分别为AC , 11B C 的中点.(1)求证:PQ ∥ 平面11AA B B ;(2)求异面直线1AB 与CQ 所成角的余弦值.22.已知圆O :229x y += 上的点P 关于点112⎛⎫- ⎪⎝⎭, 的对称点为Q ,记Q 的轨迹为C .(1)求C 的轨迹方程;(2)设过点(10)-, 的直线l 与C 交于A ,B 两点,试问:是否存在直线l ,使以AB 为直径的圆经过原点?若存在,求出直线l 的方程;若不存在,请说明理由.天一大联考2017-2018学年高一年级阶段性测试(二)数学·答案一、选择题1-5:CBDCA 6-10:BAABA 11、12:CD二、填空题13.2330x y ++= 14.51216.1 三、解答题17.解:由010a x x a -⎧⎨-+⎩≥≥ 得1a x a -≤≤ ,则{|1}A x a x a =-≤≤(1)若12a =,则1122A x x ⎧⎫=-⎨⎬⎩⎭≤≤1122AB x x ⎧⎫=-⎨⎬⎩⎭≤≤(2)由A B A =,得A B ⊆ 由112a a ->-⎧⎨<⎩得02a <<∴实数a 的取值范围是(02), 18.解:(1)在2()33a b a b f a f f -+⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭中,令3a b x -=,23a b y += ,则x y a += ,∴()()()f x y f x f y +=+∵(1)2f =- ∴(2)(11)(1)(1)4f f f f =+=+=- ,(3)(21)(2)(1)6f f f f =+=+=- (2)由(1)知()()()f x y f x f y +=+令0x y == ,得(00)(0)(0)f f f +=+ ,∴(0)0f =令y x =- ,得()()()f x x f x f x -=+- ,即(0)()()0f f x f x =+-= ∴()()f x f x -=- ,故()f x 为奇函数.19.解:(1)∵PA AD = ,E 为PD 的中点,∴AE PD ⊥ ∵PA ⊥ 平面ABCD ,∴PA DC ⊥又∵AE ⊂ 平面PAD ,∴CD AE ⊥又∵PD ,CD 为平面PCD 内两条相交直线,∴AE ⊥ 平面PCD . (2)∵C BDE E BCD V V --= ,E 为PD 的中点,∴12C BDE E BCD P BCD V V V ---==∵PA ⊥ 平面ABCD ,∴1111222132323P BCD V DC BC PA -=⨯⨯⨯⨯=⨯⨯⨯⨯= ,故1123C BDE P BCD V V --==20.解:(1)0()lg(1)1f x x <-+< 等价于0lg(12)lg(1)1x x <--+< 由12010x x ->⎧⎨+>⎩ 得112x -<< ①由120lg(12)lg(1)lg1x x x x -<--+=+ ,得121101xx -<<+ 由10x +> ,得1121010x x x +<-<+ ,解得304x -<< ②由①②得原不等式的解集为304x x ⎧⎫-<<⎨⎬⎩⎭(2)lg(1)()log 10log (1)ax a a g x ax -==-令1t ax =- ,则log a y t = ,∵0a > ,∴函数1t ax =- 为减函数.又∵()g x 在区间312⎡⎤⎢⎥⎣⎦, 上为增函数,∴log a y t = 为减函数,∴01a <<∴312x ⎡⎤∈⎢⎥⎣⎦, 时()t x 的最大值为1a - ,最小值为3102a -> ,由3102a -> ,得23a < ,此时()g x 的最小值为log (1)a a - .又()g x 的最小值为1 ,∴log (1)1a a -= ,∴12a = 21.如图,取AB 的中点R ,连接PR ,1B R∵P ,Q 分别为AC ,11B C 的中点,∴12PR BC ∥∴,则1PQB B 为平行四边形,∴1PQ B R ∥又∵PQ ⊄ 平面11AA B B ,1B R ⊂ 平面11AA B B ,∴PQ ∥平面11AA B B (2)如图,取BC 的中点M ,连接1B M ,AM ,则1B M CQ ∥ ∴1AB M ∠ 或其补角为异面直线1AB 与CQ 所成的角. 设1AA AB BC a ===,则AM =,1AB =,1B M = , 在等腰三角形1A BM中,11112cos AB AB M B M ∠==故异面直线1AB CQ22.解:(1)设Q 的坐标为()x y , ,P 的坐标为00()x y ,则由中点坐标公式,得0012212x x y y +⎧=⎪⎪⎨+⎪=-⎪⎩ ∴0012x x y y =-⎧⎨=--⎩ 将0012x x y y=-⎧⎨=--⎩代入22009x y +=,得22(1)(2)9x y -++= 即C 的轨迹方程为22(1)(2)9x y -++= . (2)设11()A x y ,,22()B x y ,由题意,知OA OB ⊥ ,显然OA ,OB 的斜率均存在,∴1OA OB k k ⋅=- ∴12121y y x x ⋅=-,即12120x x y y += ① 当直线l 的斜率不存在时,可得直线l 的方程为1x =-,则(1)A -,(12)B -,,满足12120x x y y +=, ∴直线l :1x =- ,满足条件.② 当直线l 的斜率存在时,可设直线l 的方程为(1)y k x =+ ,代入22(1)(2)9x y -++=得2222(1)(242)440k x k k x k k +++-++-= ,则21222421k k x x k +-+=-+ ,2122441k k x x k+-=+ 由12120x x y y +=,得21212(1)(1)0x x k x x +++= ,即2221212(1)()0k x x k x x k ++++= ,∴22222244242(1)011k k k k k k k k +-+-+-⋅=++ ,解得1k = ,∴直线l 的方程为1y x =+ . 综上可知,存在满足条件的直线l :1x =- 和l :1y x =+ .。

河南省天一大联考2017-2018学年高一上学期阶段性测试(一)生物试卷

河南省天一大联考2017-2018学年高一上学期阶段性测试(一)生物试卷

河南省天一大联考2017-2018学年高一上学期阶段性测试(一)
生物试卷
一、选择题:本题共20小题,每小题2分,共40分。

在每小题给出的四个选项中,只有一
项是符合题目要求的。

1.下列有关生命和生命系统的说法,错误的是
A.金鱼和金鱼藻具有的生命系统结构层次不完全相同
B.HIV、乳酸菌和草履虫都属于个体层次
C.培养皿中的大肠杆菌菌落属于种群层次
D.人工合成了具有活性的蛋白质,不意味着人工制造了生命
2.下列有关蓝藻和黑藻的比较,错误的是
A.蓝藻细胞内没有染色体,黑藻细胞内有染色体
B.蓝藻细胞内只有一种细胞器,黑藻细胞内有多种细胞器
C.蓝藻细胞内只有一种核酸,黑藻细胞内有两种核酸
D.蓝藻和黑藻都含有叶绿素,都是能进行光合作用的自养生物
3.阿斯巴甜是一种人造甜味剂,其甜度约为蔗糖的200倍。

阿斯巴甜的分子结构式如图中c 所示,其合成所需的主要原料是a和b。

下列说法错误的是
A.用于合成阿斯巴甜的主要原料a和b都属于氨基酸
B.—分子a和一分子b脱水缩合形成的二肽中含有1个氨基、2个羧基
C.阿斯巴甜不属于糖类,可作为糖尿病患者食品的甜味剂
D.将一分子阿斯巴甜的肽键水解,可得到一分子a和一分子 b
4.现有两个临时装片,材料分别取自菜青虫和卷心菜,在显微镜下对这两个装片进行观察。

下列观察结果和对应的判断,错误的有
①若发现细胞中含有叶绿体,可判断该细胞来自卷心菜
②若发现细胞中不含叶绿体,可判断该细胞来自菜靑虫。

河南省天一大联考2017-2018学年高一上学期阶段性测试(一)数学试卷

河南省天一大联考2017-2018学年高一上学期阶段性测试(一)数学试卷

九年级第二学期阶段性测试数学试卷(一)天一大联考2017-2018学年高一年级阶段性测试(一)数学1. 已知集合,,设,则集合C的非空子集的个数为A. 8B. 7C. 4D. 32. 函数的定义域为A. B. C. D.3. 函数的零点位于区间A. B. C. D .4.已知函数,则A. 4B. 3C. 2D.15.若定义在R上的奇函数在上单调递减,则不等式的解集是A. B.C. D.6.函数且的图像恒过点P,则下列函数中图像不经过点P的是A. B.C. D.7.已知集合,若,则a的取值范围是A. B. C. D.8.若幂函数没有零点,则的图像A. 关于原点对称B. 关于x轴对称C. 关于y轴对称D. 不具有对称性9.若函数为奇函数,则m=A. 2B. 1C.-1D. -210.函数的图像大致为11.已知且,且,则m =A. 14B. 7C. 4D.212.已知函数若不等式恒成立,则实数m的取值范围是A. B. C. D.2、填空题:本题4小题,每小题5分,共20分。

13.函数的值域是 .14.若,则x= .15.函数在区间上最大值为5,最小值为4,则t的取值范围为 .16.已知方程有唯一实数根,则实数t的取值范围是 .三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)计算下列各式:(1)(2)18.(12分)已知集合(1)若时,求(2)若求实际a的取值范围.19.(12分)已知是上的奇函数,且当时,(1)求函数的解析式;(2)补全的图像(图中小正方形的边长为1),并根据图像写出的单调区间.20.(12分)已知函数(1)当时,函数的图象在x轴的下方,求实数t的取值范围;(2)若函数在上不单调,求实数t的取值范围.21.(12分)某家用电器公司生产一新款热水器,首先每年需要固定投入200万元,其次每生产1百台,需再投入0.9万元,假设该公司生产的该款热水器当年能全部售出,但每销售1百台需另付运输费0.1万元,根据以往的经验,年销售总额(万元)关于年产量x(百台)的函数为(1)将年利润表示为年产量x的函数;(2)求该公司生产的该款热水器的最大年利润及相应的年产量。

河南省天一大联考2017年-2018年高一上学期阶段性测试(一)数学试卷1

河南省天一大联考2017年-2018年高一上学期阶段性测试(一)数学试卷1

=-)]2([f f 绝密☆启前用天一大联考2017-2018学年高一年级阶段性测试(一)数 学考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条码粘贴在答题卡上的制定位置。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合}41{≤≤-∈=x Z x A ,}9,8,4,12{--=,B ,设B A C ⋂=,则集合C 的非空子集的个数为A. 8B. 7C. 4D. 32. 函数xx x -+-=41)3lg()(f 的定义域为 A. [0,1] B. (3,4] C. (3,4) D.[3,4)3. 函数x x x f 29)(3++-=的零点位于区间A. )(1,0B. )21(,C. )(3,2 D .)(4,3 4.已知函数⎩⎨⎧<≥=0log 0,2)(,2x x x f x ,则A. 4B. 3C. 2D.15.若定义在R 上的奇函数)(x f y =在[)+∞,0上单调递减,则不等式)1()(log 3-<f x f 的解集是 A. ⎪⎭⎫ ⎝⎛∞+⋃⎪⎭⎫ ⎝⎛-∞-,,3131 B. ⎪⎭⎫ ⎝⎛∞+,31C. ⎪⎭⎫ ⎝⎛-3131, D. ⎪⎭⎫ ⎝⎛310, 6.函数0(3)3(log )(>++=t x x f t 且)1≠t 的图像恒过点P ,则下列函数中图像不经过点P 的是A. 1-=x yB. )42(log 2+=x yC. 52+=x yD.12-=-x y7.已知集合}{⎭⎬⎫⎪⎩⎪⎨⎧<<=+≤≤=+31)31(271,133121x x B a x a x A ,若B A ⊆,则a 的取值范围是A. )(0,2-B. )(1,0 C. []1,0 D. ()∞+,1 8.若幂函数322)562()(-+-=m x m m x f 没有零点,则)(x f 的图像A. 关于原点对称B. 关于x 轴对称C. 关于y 轴对称D. 不具有对称性9.若函数)1ln()1ln()(x m x x f ++-=为奇函数,则m=A. 2B. 1C.-1D. -210.函数13)1(log 10)(22++=x x x f 的图像大致为11.已知0(2749>==m m y x 且)1≠m ,且211=+yx ,则m = A. 14 B. 7 C. 4 D.212.已知函数⎩⎨⎧≤<-≤=,21),1ln(,1,2)(x x x x f x 若不等式mx x f -≤4)(恒成立,则实数m 的取值范围是A. [)∞+,2 B. [)0,2- C. []2,2- D. []2,0 二、填空题:本题4小题,每小题5分,共20分。

河南省天一大联考20172018高二上学期阶段性测试(一)(11月)数学(文)+Word版含解析

河南省天一大联考20172018高二上学期阶段性测试(一)(11月)数学(文)+Word版含解析

河南省天一大联考20172018高二上学期阶段性测试(一)(11月)数学(文)+Word版含解析————————————————————————————————作者:————————————————————————————————日期:天一大联考2017——2018学年高二年级阶段性测试(一)数学(文科)第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知ABC ∆的内角A,B,C 所对的边长分别为4,5,6,则cos C =A. 916B. 34C. 18D.1102.已知正项等差数列{}n a 的前n 项和为n S ,945S =,则5a =A. 9B. 8C. 6D. 53. 若,,a b c R ∈,且a b >,则下列不等式成立的是A. c c a b >B. 20c a b >-C. 22a b >D.2211a bc c >++4. 已知ABC ∆的内角A,B,C 的对边分别为,,a b c ,若7,23,32A a c π===,则该三角形解的情况是A. 无数解B.2解C.1解D.无解5. 已知实数,x y 满足条件2222x x y x y ≤⎧⎪+≥⎨⎪-≥⎩,则y x 的取值范围是A.[]0,1B.1,12⎡⎤⎢⎥⎣⎦ C.40,3⎡⎤⎢⎥⎣⎦ D.1,13⎡⎤⎢⎥⎣⎦6. 已知数列{}na满足12123nnaa++=+,且11a=,则4a=A.13-B. 79C. 12D. 117. 若实数,x y满足约束条件1311x yx y≤+≤⎧⎨-≤-≤⎩,则3z x y=+的取值范围是A. []0,6B.[]1,6C.[]1,7D.[]0,58. 已知等差数列{}na的前n项和为nS,343,10a S==则数列1nS⎧⎫⎨⎬⎩⎭的前100项的和为A. 200101 B.100101 C.1101 D.21019. 2017年9月16日05时,第19号台风“杜苏芮”的中心位于甲地,它以每小时30千米的速度向西偏北60o的方向移动,距台风中心t千米以内的地区都将受到影响。

河南天一大联考2017-2018学年高一年级阶段测试三生

河南天一大联考2017-2018学年高一年级阶段测试三生

河南省天一大联考2017-2018学年高一年级阶段测试三生物试卷一、选择题:本题共20小题,每小题2分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.受精作用的实质是A.精子和卵细胞的识别B.精子的细胞膜和卵细胞的细胞膜融合C.精子的细胞核和卵细胞的细胞核融合D.受精卵中的遗传物质大部分来自卵细胞2.对下图的有关分析,错误的是A.图中C是含氨碱基B.图中D是核糖核苷酸C.图中F是DNAD.图中G是蛋白质3.卵细胞形成过程中不会发生的是A.同源染色体分离B.细胞质均等分裂C.染色体数目减半D.卵细胞变形4.下列关于蓝藻的说法,正确的是A.DNA复制是半保留复制B.遗传物质主要是DNAC.遗传遵循孟德尔定律D.能进行减数分裂5.对豌豆的高茎和矮茎这一相对性状来说,纯合子杂交和杂合子自交的子代情况为A.二者的子代都是杂合子B.二者的子代都是纯合子C.二者的子代都有杂合子D.前者皆高茎,后者皆为矮茎6.下列关于I2噬菌体侵染细菌实验的叙述,正确的是A.T2噬菌体的蛋白质外壳中只含有S元素8.T2噬菌体侵染细菌时利用细菌的DNA作为模板进行DNA复制C.35S标记的T2噬菌体侵染细菌后,沉淀物中含有少量放射性可能是因为35S进入了宿主细胞D.32P标记的T2噬菌体侵染细菌后,释放的大量子代T2噬菌体中含32P的个体所占的比例很小7.如图所示为某雄果蝇一条X染色体上的部分基因的位置分布。

下列说法正确的是A.据图分析可知染色体是基因的主要载体B.该染色体上的棒眼基因主要由DNA和蛋白质组成C.该果蝇的另一条性染色体上一定有白眼基因或其等位基因D.该染色体上的基因在不同细胞中的表达情况不一定相同8.下列有关伴性遗传的说法,正确的是A.色盲男孩的色盲基因来自其父亲B.果蝇的X染色体比丫染色体短C.人群中男性红绿色盲患者比女性少D.所有高等生物都有性染色体9.下列关于人体内细胞减数分裂的叙述,正确的是A.减数第一次分裂前期,配对的染色体的形态和大小一定相同B.减数第一次分裂后期,着丝点分裂导致染色体数目加倍C.减数第二次分裂中期,同源染色体成对排列在赤道板上D.减数第二次分裂后期,不会发生非同源染色体自由组合10.下列有关孟德尔一对相对性状的豌豆杂交实验的叙述,错误的是A.豌豆在自然状态下一般是纯合子,可使杂交实验结果更可靠B.进行人工杂交时,必须在碗豆花未成熟前除尽母本的雄蕊C.对实验数据的分析采用统计学的方法,找出遗传的规律性D.根据子代中不同个体的表现型来判断子代是否纯合11.孟德尔在探索遗传定律时运用了假说一演绎法。

天一大联考2017—2018学年高一年级阶段性测试

天一大联考2017—2018学年高一年级阶段性测试

绝密★启用前天一大联考2017—2018学年高一年级阶段性测试(一)英语考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答題卡上的指定位置。

2.回答选择題时,埠出每小题答案后,用铅笔把答题卡对应題目的答案标号涂黑。

如需改动,用橡皮檫干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

录音内容结束后,你将有2分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,满分15分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时&来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £19.15.B. £9. 18.C. £9.15.答案是C。

1.What will the woman do first?A. Buy a new computer.B.Surf some websites.C. Walk the dog.2.What is the weather like during the weekend?A.Cold.B.Warm.C. Hot.3.What are the speakers doing?A.Visiting a zoo.B.Making a film.C. Watching TV.4.What does the woman think the man should listen to?A.Study tapes.B.Music.C. News.5. What are the speakers mainly talking about?A.Where to eat.B.When to eat.C. Whom to eat with.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

(解析版)河南省天一大联考2017-2018学年高一阶段测试

(解析版)河南省天一大联考2017-2018学年高一阶段测试

河南省天一大联考2017-2018学年高一年级阶段测试四生物试卷―、选择题1.1.下列关于受精作用的叙述,错误的是A. 精子与卵细胞之间的相互识别离不开细胞膜内侧的糖蛋白B. 受精卵中来自卵细胞的染色体有50%,而DNA多于50%C. 精子与卵细胞的融合体现了细胞膜具有流动性的特点D. 同一双亲的后代呈现多样性与精子和卵细胞结合的随机性有关【答案】A【解析】【分析】受精作用是精子和卵细胞相互识别、融合成为受精卵的过程。

精子的头部进入卵细胞,尾部留在外面,不久精子的细胞核就和卵细胞的细胞核融合,使受精卵中染色体的数目又恢复到提细胞的数目,其中有一半来自精子有一半来自卵细胞。

【详解】精子与卵细胞之间的相互识别离不开细胞膜外侧的糖蛋白,A错误;受精卵中的染色体一半来自卵细胞,一半来自精子;受精卵中的细胞核DNA一半来自精子,一半来自卵细胞,而细胞质DNA几乎都来自卵细胞,因此受精卵中来自卵细胞的染色体有50%,而DNA多于50%,B正确;精子进入卵细胞会发生细胞膜的融合,体现了细胞膜具有一定的流动性的特点,C正确;受精作用过程精卵随机结合,这有利于使同一双亲的后代呈现多样性,D正确。

【点睛】本题考查受精作用的相关知识,要求考生识记受精作用的概念、过程及意义,能结合所学的知识准确判断各选项,属于考纲识记层次的考查。

2.2.下列对减数分裂过程中出现的现象,叙述较为合理的是A. 细胞质进行均等分裂时,该细胞为初级精母细胞或次级精母细胞B. 一个精原细胞经减数分裂最多可产生4个基因组成不同的精细胞C. 一个卵原细胞经减数分裂最多可产生2个基因组成相同的卵细胞D. 染色体结构变异和染色体数目变异均出现在减数第一次分裂时期【答案】B【解析】【分析】精细胞与卵细胞产生过程的异同点:主要有三方面: 1、在减数分裂第一次和第二次的后期,精细胞形成过程中细胞质是均等分裂的,而在卵细胞形成过程中,细胞质是不均等分裂的,只有第一极体细胞质是均等分裂的。

河南省天一大联考高一上学期第一次阶段性测试数学试题(解析版)

河南省天一大联考高一上学期第一次阶段性测试数学试题(解析版)

河南省天一大联考高一上学期第一次阶段性测试数学试题一、单选题1.已知集合{1,0,1,2,3,4},{|3}A B x x =-=<,则A B ⋂=( ) A .{1,0,1,2}- B .{1,0,1}- C .{0,1,2} D .{|3}x x <【答案】A【解析】根据集合的交运算,结合已知,进行求解. 【详解】由集合的交运算,可得{}1,0,1,2A B ⋂=-.故选:A. 【点睛】本题考查集合的交运算,属基础题.2.已知22,0,()log ,0x x f x a x x ⎧≤=⎨+>⎩,若()(2)1f f -=-,则实数a 的值为( )A .2-B .2C .0D .1【答案】D【解析】由已知条件,利用分段函数性质,先求出1(2)4f -=,再算出14f ⎛⎫⎪⎝⎭,即可求出a . 【详解】 由题意得:已知函数22,0,()log ,0,x x f x a x x ⎧≤=⎨+>⎩所以1(2)4f -=,则()1(2)214f f f a ⎛⎫-==-=- ⎪⎝⎭得1a =, 故选:D. 【点睛】本题考查分段函数的概念,还涉及函数的性质和函数值的求法,同时考查运算能力.3.函数1()lg f x x=+ ) A .(],2-∞- B .(]0,2C .()(]0,11,2D .(]1,2-【答案】C【解析】由函数解析式可知,根据对数真数大于0,分母不为0和二次根式的被开方数大于等于0,即可求出定义域. 【详解】由题意可得0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,化简得02x <≤且1x ≠,即()(]0,11,2x ∈⋃.故选:C. 【点睛】本题考查求具体函数的定义域的方法,注意函数的定义域是函数各个部分的定义域的交集.4.若()y f x =的定义域为R ,值域为[1,2],则(1)1y f x =-+的值域为( ) A .[2,3] B .[0,1] C .[1,2] D .[1,1]-【答案】A【解析】根据函数的平移规则,结合原函数的值域求解. 【详解】因为(1)1y f x =-+是将原函数()f x ,向右平移1个单位, 再向上平移1个单位得到,但是左右平移不改变值域, 故(1)1y f x =-+的值域为[]2,3. 故选:A. 【点睛】本题考查函数图像的上下平移和左右平移对函数值域的影响. 5.函数21()log 1xf x e x=--的零点所在的区间是( ) A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .(1,2)【答案】C【解析】将选项中区间左右端点代入函数解析式,若发现两端函数值异号,则零点就在该区间. 【详解】因为1202f ⎛⎫=<⎪⎝⎭,而()110f e =-> 则()1102f f ⎛⎫⋅<⎪⎝⎭,根据零点存在性定理可知 函数零点所在区间为:1,12⎛⎫ ⎪⎝⎭.故选:C. 【点睛】本题考查函数零点所在区间的确定,判断依据是零点存在性定理.6.设0.20.343,log 0.4,log 0.2a b c ===,则,,a b c 的大小关系是( ) A .a b c << B .c b a << C .c a b << D .b c a <<【答案】B【解析】将,,a b c 与1和0进行比较,从而得出结果. 【详解】0.20331a =>=,0.30.3log 0.4log 0.31?b =<=且0b >, 44log 0.2log 10c =<=,故a b c >>, 故选:B. 【点睛】本题考查指数式和对数式大小的比较,一般地,先与1和0进行比较,即可区分. 7.设m R ∈,幂函数1()(22)m f x m x +=+,且(1)(2)f a f a +>-,则a 的取值范围为( ) A .1,2⎛⎫+∞⎪⎝⎭B .1,22⎛⎤⎥⎝⎦C .(1,2]-D .[2,)+∞【答案】B【解析】由()f x 是幂函数,求得参数的值,再求解不等式即可. 【详解】因为1()(22)m f x m x+=+是幂函数,故221m +=,解得12m =-, 则()f x x =,其在[)0,+∞为单调增函数,则不等式(1)(2)f a f a +>-等价于102012a a a a+≥⎧⎪-≥⎨⎪+>-⎩,解得1,22a ⎛⎤∈ ⎥⎝⎦.故选:B. 【点睛】本题考查幂函数解析式的求解,以及利用函数单调性求解不等式. 8.函数|1|1()10x f x -=的图象大致为( ) A . B .C .D .【答案】A【解析】根据函数的定义域,以及单调性,结合选项进行选择. 【详解】 因为|1|1()10x f x -=定义域为R ,故排除C 、D 选项; 又1101x ->,故()()0,1f x ∈,故排除B . 故选:A. 【点睛】本题考查由函数的解析式,选择函数的图像.一般地,要从定义域、值域、单调性、特殊点出发进行选择.9.已知函数()22()log 2f x x x a =-+的最小值为3,则a =( ) A .6 B .7C .8D .9【答案】D【解析】判断函数的单调性,找到最小值点对应的自变量,代值计算即可. 【详解】若220x x a -+>在R 上恒成立, 则根据复合函数的单调性可知,()f x 区间(),1-∞单调递减,则()1,+∞单调递增,故()()()21log 13min f x f a ==-=,解得9a =,此时满足2290x x -+>在R 上恒成立, 若220x x a -+>在R 上不恒成立,则该函数没有最值. 综上所述:9a =. 故选:D. 【点睛】本题考查对数型复合函数的单调性的判断,遵循同增异减的原则.10.常见的三阶魔方约有194.310⨯种不同的状态,将这个数记为A ,二阶魔方有85603⨯种不同的状态,将这个数记为B ,则下列各数与AB最接近的是( )(参考数据:43 4.3log 10 2.1,0.63560-≈≈⨯) A .280.63-⨯ B .280.610⨯ C .280.63⨯ D .320.63⨯【答案】C【解析】根据题意,结合参考数据,应用对数运算法则,对数据进行估算. 【详解】由题可知:A B =1984.3105603⨯两边取对数可得1933384.310log log log 5603A B =+4198333333log log log 3log 10log 35A B -≈++- 333log log 419 2.185A B -≈-+⨯-35log 27.93A B ⨯≈故27.9533A B ≈⨯ 解得:27.90.63A B ≈⨯,故与之最接近的为280.63⨯. 故选:C. 【点睛】本题考查对数的运算,涉及数据的估算;要结合参考数据进行处理,是解决本题的重要思路.11.已知函数2()x x x xe e xf x e e--++=+的最大值为M ,最小值为m ,则M m +=( ) A .1 B .2C .211e e ++ D .221ee ++ 【答案】B【解析】对()f x 分离参数,构造一个奇函数,再进行求解. 【详解】因为2()x x x xe e xf x e e--++=+=1+2x x x e e -+ 不妨令()2x xxh x e e-=+,显然()h x 为奇函数, 故()()max 0min h x h x +=,则()()()()max 22max min min f x f x h x h x +=++=. 故选:B. 【点睛】本题考查函数的奇偶性与函数最值之间的关系,本题的难点在于分离常数,构造奇函数.12.设函数222,2,()54, 2.x a x f x x ax a x ⎧-<=⎨-+⎩若()f x 有两个零点,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2(2,)2⎡⎫⋃+∞⎪⎢⎣⎭C .1,2[4,)2⎡⎫⋃+∞⎪⎢⎣⎭D .1,2(4,)2⎡⎫⋃+∞⎪⎢⎣⎭【答案】C【解析】分段考虑函数的零点,结合一元二次方程根的分布,对参数进行讨论. 【详解】为方便说明,不妨令()22?(2)?h x a x =-<,()()22542g x x ax ax =-+≥因为()h x 是单调函数,故其在定义域上的零点个数可以是0或1; 对()g x ,因为290a =≥,故其可以在定义域有1个零点,或2个零点;故当()f x 有两个零点,只有下面两种可能: ①当()40,4a -∈时,即()0,4a ∈时,()h x 在其定义域内有1个零点,此时只要保证()g x 在其定义域1个零点即可,等价于方程22540x ax a -+=有1个根在区间[)2,+∞, 只需()20g <,即:241040a a -+<,解得1,22a ⎛⎫∈ ⎪⎝⎭或()20g =且522a <,解得12a =, 故1,22a ⎡⎫∈⎪⎢⎣⎭②当()40,4a -∉,即(][),04,a ∈-∞⋃+∞时,()h x 在其定义域内没有零点,此时只要保证()g x 在其定义域2个零点即可等价于方程22540x ax a -+=有2个根在区间[)2,+∞,只需()52220ag ⎧>⎪⎨⎪≥⎩,解得[)4,a ∈+∞综上所述:[)1,24,2a ⎡⎫∈⋃+∞⎪⎢⎣⎭. 故选:C. 【点睛】本题考查根据函数的零点个数求参数的范围,涉及二次方程根的分布,其难点是对参数进行分类讨论.二、填空题13.已知函数2(0,1)x y a a a =+>≠且的图象恒过点M ,则M 的坐标为________. 【答案】(0,3)【解析】根据函数平移,结合指数函数恒过定点()0,1即可求得. 【详解】因为xy a =恒过定点()0,1,又函数2x y a =+是由xy a =向上平移2个单位得到, 故2xy a =+恒过定点()0,3.故答案为:()0,3. 【点睛】本题考查指数型函数恒过定点的问题,其一般思路为,根据函数图像变换进行求解. 14.已知集合{}20,,32A m m m =-+,且2A ∈,则实数m 的值为___________. 【答案】3【解析】由集合A 的元素,以及2A ∈,分类讨论,结合集合元素互异性,即可得出实数m 的值. 【详解】由题可得,若2m =,则2320m m -+=,不满足集合元素的互异性,舍去; 若2322m m -+=,解得3m =或0m =,其中0m =不满足集合元素的互异性,舍去, 所以3m =. 故答案为:3. 【点睛】本题考查集合元素的互异性,结合元素与集合关系以及通过对集合中元素构成的特点求参数值.15.已知函数()log (0,1)a f x x b a a =+>≠的定义域、值域都是[1,2],则a b +=__________.【答案】52或3. 【解析】分析:分类讨论a 的取值范围,得到函数的单调性,代入数据即可求解. 详解:当01a <<时,易知函数()f x 为减函数,由题意有()()122log 21a fb f b ===+=,解得:1,22a b ==,符合题意,此时52a b +=; 当1a >时,易知函数()f x 为增函数,由题意有()()112log 22a fb f b ===+=,解得2,1a b ==,符合题意,此时3a b +=.综上可得:+a b 的值为52或3. 故答案为:52或3. 点睛:在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为{x |x >0}.对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.16.已知()f x 是定义在R 上的奇函数,且当0x 时,2log (1),01,()31,1,x x f x x x +<⎧=⎨--⎩则方程1()2f x =的所有实根之和为________. 21【解析】画出分段函数的图像,根据图像,结合解析式,进行求解. 【详解】根据分段函数的解析式,以及函数为奇函数,作图如下:由图容易知,因为31y x =--在区间[)1,+∞上,关于3x =对称, 且31y x =---+在区间(],1-∞上,关于3x =-对称, 故其与直线12y =的所有交点的横坐标之和为0. 故1()2f x =所有根之和,即为当()0,1x ∈时的根, 此时()21log 12x +=,解得21x =.21. 【点睛】本题考查函数图像的交点,涉及函数图像的绘制,函数奇偶性的应用,属函数综合题.三、解答题17.计算(1)142110.2542216--⎛⎫⎛⎫⨯--÷- ⎪ ⎪⎝⎭⎝⎭ (2)()()3334839322log 2log log 8log 3log 3log 2log 29-+-++ 【答案】(1)4-(2)34【解析】(1)根据指数运算法则,直接计算即可得出结果; (2)根据对数运算法则,直接计算即可得出结果. 【详解】解:(1)原式14421242444⎛⎫-⨯- ⎪⎝⎭=⨯--=--22=-4(2)原式232233log 2log 3log 328log log 2322329⨯⎛⎫⎛⎫=-++ ⎪⎪⎝⎭⎝⎭323111533log 9log 3log 212232624⎛⎫⎛⎫=-⨯+⨯⨯+=-⨯= ⎪ ⎪⎝⎭⎝⎭.【点睛】本题主要考查指数运算以及对数运算,熟记运算法则即可,属于基础题型.18.已知集合{}2{|32},|log 3,{|13}A x x B x x C x m x m =-<<=<=-<<+. (1)求R A C B ⋂;(2)若()C A B ⊆,求实数m 的取值范围.【答案】(1){|30}x x -<(2)(,4]-∞【解析】(1)求解对数不等式,再求补集和交集即可;(2)先求并集,对集合C 是否为空集进行讨论,分别求解.【详解】(1)∵函数2log y x =在(0,)+∞上单调递增,∴由2log 3x <得08x <<,∴{|08}B x x =<<.∴{|08}R B x x x =或.∴(){|30}R A B x x ⋂=-<.(2){|38}A B x x ⋃=-<<.若C =∅,则13m m -+,解得1m -.若C ≠∅,则13,13,38,m m m m -<+⎧⎪--⎨⎪+≤⎩,解得14m -<.∴实数m 的取值范围为(,4]-∞.【点睛】本题考查集合的运算,以及集合之间的包含关系,涉及对数不等式的求解.19.已知函数21()2x x f x a-=+的图象经过点11,3⎛⎫-- ⎪⎝⎭. (1)求a 的值;(2)求函数()f x 的定义域和值域;(3)判断函数()f x 的奇偶性并证明.【答案】(1)1;(2)定义域为R ,值域为(1,1)-;(3)()f x 是奇函数,证明见详解.【解析】(1)将函数过的点的坐标代入函数解析式,求解参数;(2)利用分母不为零求定义域,采用不等式法求函数值域;(3)先判断函数的定义域是否关于原点对称,再判断()f x 与()f x -之间的关系.【详解】(1)由题意知11112112(1)1232f a a -----===-++, 解得1a =.(2)因为212()12121x x x f x -==-++. ∵20x >,∴211x +>,∴()f x 的定义域为R .∵2(0,)x ∈+∞,∴2(0,2)21x ∈+, ∴()f x 的值域为(1,1)-.(3)函数()f x 是奇函数.证明如下:∵()f x 的定义域为R ,关于原点对称, 且2112()()2112x x x xf x f x -----===-++, ∴()f x 是奇函数,即证.【点睛】本题考查函数解析式,定义域和值域的求解,以及函数奇偶性的证明,涉及指数运算,属函数综合基础题.20.某投资公司计划在甲、乙两个互联网创新项目上共投资1200万元,每个项目至少要投资300万元.根据市场分析预测:甲项目的收益P 与投入a满足30P =-,乙项目的收益Q 与投入a 满足1505Q a =+.设甲项目的投入为x . (1)求两个项目的总收益关于x 的函数()F x .(2)如何安排甲、乙两个项目的投资,才能使总收益最大?最大总收益为多少?(注:收益与投入的单位都为“万元”)【答案】(1)1()260,3009005F x x x =-+≤≤;(2)甲项目投资500万元,乙项目投资700万元;360万元【解析】(1)由题意得,分别代入甲和乙的收益函数即可得出两个项目的总收益关于x 的函数()F x ;(2)利用换元法,令t x =,则103,30t ⎡⎤∈⎣⎦,得出关于t 的二次函数,根据已知区间内的二次函数即可求出最大值以及对于的x 值,即可得出答案.【详解】(1)由题知,甲项目投资x 万元,乙项目投资1200x -万元.所以11()4530(1200)504526055F x x x x x =-+-+=-++ 依题意得3001200300x x ≥⎧⎨-≥⎩解得300900x ≤≤. 故1()45260,3009005F x x x x =-++≤≤ (2)令t x =,则103,30t ⎡⎤∈⎣⎦.221145260(105)36055y t t t =-++=--+ 当105t =,即500x =,y 的最大值为360.所以当甲项目投资500万元,乙项目投资700万元时,总收益最大,最大总收益为360万元.【点睛】本题考查函数模型的应用以及二次函数的性质,利用换元法及二次函数求最值. 21.已知函数2()22f x x kx =-+.(1)若函数(1)f x -是偶函数.求k 的值,并在坐标系中画出()y f x =的大致图象; (2)若当[]1,2x ∈-时,()4f x ≥-恒成立,求k 的取值范围.【答案】(1)4k =-,图像见解析;(2)8,43⎡-⎣【解析】(1)根据(1)f x -是偶函数,得出()f x 的对称轴,结合二次函数对称轴,求出k ,便可以得出()f x 解析式,即可画出二次函数图像;(2)由条件,得出min ()4f x ≥-,分类讨论对称轴和所给区间比较,结合单调性,分别求出每种情况的最小值,分析加以排除,即可得出k 的取值范围.【详解】(1)由题得,函数(1)f x -是偶函数,可得函数()f x 的图象关于1x =-对称, 即14k =-,得4k =- 则2()242y f x x x ==++的大致图象如图所示.(2)因为当[]1,2x ∈-时,()4f x ≥-恒成立,所以min ()4f x ≥-.由题可知()f x 的对称轴为4k x =. 当14k ≤-,即4k ≤-时,()f x 在[]1,2-上单调递增, 此时min ()(1)224f x f k =-=++≥-,得8k ≥-,所以84k -≤≤-; 当24k ≥,即8k ≥时,()f x 在[]1,2-上单调递减, 此时min ()(2)8224f x f k ==-+≥-,得7k ≤,不符合条件; 当124k -<<,即48k -<<时,()f x 在(1,)4k -上单调递减,在,24k ⎛⎫ ⎪⎝⎭上单调递增, 此时22min()()24484k k k f x f ==-+≥-,得4343k -≤≤443k -<≤综上所述,k 的取值范围是8,43⎡-⎣.【点睛】本题考查二次函数的图像与性质,利用偶函数性质以及二次函数的对称轴、单调性、最值,同时还考查二次函数图像的画法和分类讨论思想,以及数形结合思想.22.设a R ∈,函数 ()1,11ln ,1ax x f x x a x x +⎧<⎪=-⎨⎪-≥⎩,且()()3f f e -=()1求()f x 的最大值()2若方程()()0f x f x --=在区间[)(),1k k k Z +∈上存在实根,求出所有可能的k 值【答案】(1)3;(2)3,0,2-【解析】(1)由(3)()f f e -=求得a ,分段考查函数值的取值范围可得最大值.(2)由()31,113ln ,1x x f x x x x +⎧<⎪=-⎨⎪-≥⎩,分类讨论,分11x -<<,1x ≥和1x ≤-三类讨论其零点,其中1x ≤-可由1x ≥得出,主要是()()0f x f x --=的解都是成对出现的.【详解】(1)由()()3f f e -=得31131a a -+=---,解得3a = 当1x <时,()3143311x f x x x +==+<-- 当1x ≥时,()3ln f x x =-单调递减,()()13f x f ≤=所以()f x 的最大值为3(2)由(1)知()31,113ln ,1x x f x x x x +⎧<⎪=-⎨⎪-≥⎩ 当11x -<<时,11x -<-<由()()0f x f x --=得3131011x x x x +-+-=---,解得0x =,因为[)00,1∈,故可取0k = 当1x >时,1x -<-,由()()0f x f x --=得313ln 01x x x -+--=--,整理得4ln 01x x -=+ 设()()4ln 11g x x x x =-≥+,易知()g x 在[)1,+∞上单调递减 又因为()()42ln 20,31ln 303g g =->=-<,所以()g x 在[)2,3上存在唯- -点, 从而原方程在[)2,3,上有且仅有一个实根.故可取2k =当非零实数0x 满足()()000f x f x --=时,0x -也满足()()000f x f x --=,即原方程的非零实根总是成对出现,所以在[)3,2--上也仅有一个实根,故可取3k =-. 综上所述,k 的值可以为3,0,2-.【点睛】本题考查对数型复合函数的最值,考查函数的零点问题.通过零点存在定理可确定函数零点所在区间.对分段函数一般需要分类讨论.。

2017-2018学年河南省天一大联考高三(上)10月段考数学试卷(理科)

2017-2018学年河南省天一大联考高三(上)10月段考数学试卷(理科)

2017-2018学年河南省天一大联考高三(上)10月段考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)已知向量,若,则m=()A.﹣4 B.4 C.﹣3 D.32.(5分)函数f(x)=x+lnx﹣3的零点位于区间()A.(0,1) B.(1,2) C.(2,3) D.(3,4)3.(5分)已知等比数列{a n}的前n项和为S n,若a5=3,S6=28S3,则a3=()A.B.C.3 D.94.(5分)将函数f(x)=3sin(5x+φ)的图象向右平移个单位后关于y轴对称,则φ的值可以是()A. B.C. D.5.(5分)已知m>n>0,则下列说法错误的是()A. B.C.D.6.(5分)已知等差数列{a n}的前n项和为S n,若S6=4a2,a3=3,则a10=()A.﹣3 B.3 C.﹣6 D.67.(5分)已知函数,若a<﹣2,b>2,则“f(a)>f(b)”是“a+b<0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(5分)已知函数f(x)=,若关于x的方程f(x)﹣k(x+2)=0有3个实数根,则实数k的取值范围是()A.(0,)B.(0,)C.(0,1) D.(0,)9.(5分)已知sinα=﹣(α∈[,2π]),若=2,则tan(α+β)=()A.B.C.﹣D.﹣10.(5分)已知实数x,y满足,若z=mx+y的最大值为10,则m=()A.1 B.2 C.3 D.411.(5分)已知数列{a n}满足a1=﹣1,a n+1=|1﹣a n|+2a n+1,其前n项和为S n,则下列说法正确的个数为()①数列{a n}是等差数列;②a n=3n﹣2;③S n=.A.0 B.1 C.2 D.312.(5分)已知m,n∈(0,+∞).若m=+2.则当+2n2﹣﹣取得最小值时,m+n=()A.2 B.4 C.6 D.8二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)不等式2x2﹣9x+9>0的解集为.14.(5分)已知实数a∈(﹣3,1),b∈(,),则的取值范围是.15.(5分)若函数在(1,+∞)上单调递增,则实数m的取值范围是.16.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,若,且,记h为AC边上的高,则h的取值范围为.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)已知数列{a n}的首项为a1=1,且a n+1=2(a n+1)(n∈N*).(1)求数列{a n}的通项公式;(2)若,求数列的前n项和T n.18.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且a=4,D在线段AC上,∠DBC=.(1)若△BCD的面积为24,求CD的长;(2)若,且c=12,求CD的长.19.(12分)已知向量.(1)若m=4,求函数f(x)=的单调递减区间;(2)若向量满足,求m的值.20.(12分)已知等比数列{a n}的前n项和为,等差数列{b n}的前5项和为30,b7=14.(1)求数列{a n},{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.21.(12分)已知函数.(1)讨论函数f(x)的单调性;(2)已知点M(1,0),曲线Y=f(x)在点P(x0,y0)(﹣1≤x0≤1)处的切线l与直线x=1交于点N,求△OMN(O为坐标原点)的面积最小时x0的值,并求出面积的最小值.22.(12分)已知函数.(1)若m=1,求曲线y=f(x)在(2,f(2))处的切线方程;(2)探究函数F(x)=xf(x)的极值点的情况,并说明理由.2017-2018学年河南省天一大联考高三(上)10月段考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)已知向量,若,则m=()A.﹣4 B.4 C.﹣3 D.3【解答】解:根据题意,向量,若,则•=2×(﹣6)+(﹣3)m=0,解可得m=﹣4,故选:A.2.(5分)函数f(x)=x+lnx﹣3的零点位于区间()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【解答】解:函数f(x)=x+lnx﹣3,(x>0)∴f′(x)=1+,可得f′(x)>0,f(x)为增函数,f(1)=1+0﹣3=﹣2<0,f(2)=2+ln2﹣3=ln2﹣1<0,f(3)=3+ln3﹣3=ln3>0,∵f(2)f(3)<0,所以f(x)的零点所在区间为(2,3),故选B;3.(5分)已知等比数列{a n}的前n项和为S n,若a5=3,S6=28S3,则a3=()A.B.C.3 D.9【解答】解:若q=1时,a5=3,∴a1=3,∴6a1=28a1,显然不成立,∴q≠1,由a5=3,S6=28S3,可得,解得q=3,a1=,∴a3=×9=,故选:B4.(5分)将函数f(x)=3sin(5x+φ)的图象向右平移个单位后关于y轴对称,则φ的值可以是()A. B.C. D.【解答】解:将函数f(x)=3sin(5x+φ)的图象向右平移个单位,得到:y=3sin[5(x﹣)+φ]=3sin(5x﹣+φ),得到的图象关于y轴对称,则:φ﹣=k(k∈Z),解得:φ=k(k∈Z),当k=﹣2时,φ=﹣.故选:D.5.(5分)已知m>n>0,则下列说法错误的是()A. B.C.D.【解答】解:根据对数函数的单调性可得A正确,∵m>n>0,∴m+1>n+1∴m(m+1)>n(n+1),∴>,故B正确,根据幂函数的单调性可得C正确,对于D,﹣==,∵1﹣mn与0无法比较大小,故D错误,故选:D.6.(5分)已知等差数列{a n}的前n项和为S n,若S6=4a2,a3=3,则a10=()A.﹣3 B.3 C.﹣6 D.6【解答】解:设等差数列{a n}的公差为d,∵S6=4a2,a3=3,∴6a1+d=4(a1+d),a1+2d=3,解得a1=,d=﹣.则a10=﹣×9=﹣3.故选:A.7.(5分)已知函数,若a<﹣2,b>2,则“f(a)>f(b)”是“a+b<0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由2|x|﹣4>0,解得x>2或x<﹣2,关于原点对称.又f(﹣x)=f(x).可得函数f(x)在定义域内为偶函数.x>2时,f(x)=5x﹣在(2,+∞)上单调递增.∴a+b<0⇔2<b<﹣a⇔f(b)<f(﹣a)=f(a),∴“f(a)>f(b)”是“a+b<0”的充要条件.故选:C.8.(5分)已知函数f(x)=,若关于x的方程f(x)﹣k(x+2)=0有3个实数根,则实数k的取值范围是()A.(0,)B.(0,)C.(0,1) D.(0,)【解答】解:在同一坐标系中画出分段函数y=f(x)的图象与y=k(x+2)的图象,由图可知:当k∈(0,k AQ)时,分段函数f(x)的图象与y=k(x+2)的图象有三个交点,A(0,1),Q(﹣2,0),k AQ==,实数k的取值范围是(0,).故选:D.9.(5分)已知sinα=﹣(α∈[,2π]),若=2,则tan(α+β)=()A.B.C.﹣D.﹣【解答】解:∵sinα=﹣(α∈[,2π]),∴cosα==,∴tanα==﹣,∵==sinα+cosα•tanβ═﹣+tanβ=2,∴tanβ=,则tan(α+β)===,故选:A.10.(5分)已知实数x,y满足,若z=mx+y的最大值为10,则m=()A.1 B.2 C.3 D.4【解答】解:由实数x,y满足,作出可行域如图,易知A(3,1),B(3,4),C(0,1).化目标函数z=mx+y为y=﹣mx+z,当直线z=mx+y经过B点时,取得最大值10;∴10=3m+4,解得m=2.故选:B.11.(5分)已知数列{a n}满足a1=﹣1,a n+1=|1﹣a n|+2a n+1,其前n项和为S n,则下列说法正确的个数为()①数列{a n}是等差数列;②a n=3n﹣2;③S n=.A.0 B.1 C.2 D.3【解答】解:数列{a n}满足a1=﹣1,a n+1=|1﹣a n|+2a n+1,可得a2=|1﹣a1|+2a1+1=2﹣2+1=1,a3=|1﹣a2|+2a2+1=0+2+1=3,a4=|1﹣a3|+2a3+1=2+6+1=9,则a4﹣a3=6,a3﹣a2=2,即有a4﹣a3≠a3﹣a2,则数列{a n}不是等差数列,故①不正确;a n=3n﹣2,不满足a1=﹣1,故②不正确;若S n=满足n=1时,a1=S1=﹣1,但n=2时,a2=S2﹣S1=﹣(﹣1)=1,当n≥2时,a n=S n﹣S n﹣1=﹣=3n﹣2,n≥2,n∈N*.=|1﹣a n|+2a n+1,代入a n+1左边=3n﹣1,右边=3n﹣2﹣1+2•3n﹣2+1=3n﹣1,=|1﹣a n|+2a n+1恒成立.则a n+1故③正确.故选:B.12.(5分)已知m,n∈(0,+∞).若m=+2.则当+2n2﹣﹣取得最小值时,m+n=()A.2 B.4 C.6 D.8【解答】解:m,n∈(0,+∞).若m=+2.则m=>0,解得n>1.则+2n2﹣﹣=+2n2﹣﹣=+2n2=f(n).f′(n)==,令f′(n)≥0,解得n≥2,可得n=2,m=4时,f(n)取得最小值时,m+n=6.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)不等式2x2﹣9x+9>0的解集为(﹣∞,)∪(3,+∞).【解答】解:不等式2x2﹣9x+9>0,即为(x﹣3)(2x﹣3)>0,解得x>3或x<,解集为(﹣∞,)∪(3,+∞).故答案为:(﹣∞,)∪(3,+∞).14.(5分)已知实数a∈(﹣3,1),b∈(,),则的取值范围是(﹣12,8).【解答】解:∵b∈(,),∴∈(4,8),∵a∈(﹣3,1),∴∈(﹣12,8).故答案为:(﹣12,8).15.(5分)若函数在(1,+∞)上单调递增,则实数m的取值范围是[,+∞).【解答】解:∵函数在(1,+∞)上单调递增,∴≥0在(1,+∞)上恒成立,即m≥在(1,+∞)上恒成立,令g(x)=,则g′(x)=,当x∈(1,)时,g′(x)>0,当x∈(,+∞)时,g′(x)<0,故当x=时,g(x)取最大值,故实数m的取值范围是[,+∞),故答案为:[,+∞).16.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,若,且,记h为AC边上的高,则h的取值范围为(0,] .【解答】解:∵,∴sinBcosC=2sinAcosB﹣sinCcosB,即sinBcosC+sinCcosB=2sinAcosB,∴sin(B+C)=2sinAcosB,即sinA=2sinAcosB,∴cosB=,∴B=.=acsinB=bh,∵S△ABC∴h=,由余弦定理可得cosB==,∴a2+c2=ac+3≥2ac,∴0<ac≤3.∴0<h≤.故答案为:(0,].三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)已知数列{a n}的首项为a1=1,且a n+1=2(a n+1)(n∈N*).(1)求数列{a n}的通项公式;(2)若,求数列的前n项和T n.【解答】解:(1)数列{a n}的首项为a1=1,且a n+1=2(a n+1)(n∈N*).+2=2(a n+2),则:a n+1所以:{a n+2}是以3为首项,2为公比的等比数列.则:,解得:.(2)由于=n,则:=,所以:+…+,解得:.18.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且a=4,D在线段AC上,∠DBC=.(1)若△BCD的面积为24,求CD的长;(2)若,且c=12,求CD的长.【解答】解:(1)由S=•BD•BC•=24,△BCD解得:BD=12,在△BCD中,CD2=BC2+BD2﹣2BC•BD•cos45°,即CD2=32+BD2﹣8BD,故CD2=32+144﹣8×12,解得:CD=4;(2)∵tanA=,且A∈(0,π),故sinA=,cosA=,由题意得=,即=,解得:sinC=,∵C∈(0,),∴cosC=,∴sin∠BDC=sin(C+)=,在△BCD中,由正弦定理得=,解得:CD=2.19.(12分)已知向量.(1)若m=4,求函数f(x)=的单调递减区间;(2)若向量满足,求m的值.【解答】解:(1)向量.∴函数f(x)==4sinxcosx+msin2x=2sin2x﹣当m=4时,可得f(x)=2sin2x﹣2cos2x+2=2sin(2x﹣)+2.由≤2x﹣,得:≤x≤+kπ.∴函数f(x)=的单调递减区间为[,],k∈Z.(2)由=(),即,∵x∈(0,)由sin2x+cos2x=1可得sinx=,cosx=.那么m=sin2x=.20.(12分)已知等比数列{a n}的前n项和为,等差数列{b n}的前5项和为30,b7=14.(1)求数列{a n},{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.【解答】解:(1)等比数列{a n}的前n项和为,∴n≥2时,a n=S n﹣S n=﹣=3n﹣1,﹣1n=1时,a1=S1=1对于上式也成立.∴a n=3n﹣1.设等差数列{b n}的公差为d,∵前5项和为30,b7=14.∴5b1+=30,b1+6d=14,联立解得:b1=d=2.∴b n=2+2(n﹣1)=2n.(2)a n b n=2n•3n﹣1.∴T n=2(1+2×3+3×32+…+n•3n﹣1),3T n=2[3+2×32+…+(n﹣1)•3n﹣1+n•3n],﹣2T n=2(1+3+32+…+3n﹣1)﹣2n•3n=﹣2n•3n,解得:T n=+.21.(12分)已知函数.(1)讨论函数f(x)的单调性;(2)已知点M(1,0),曲线Y=f(x)在点P(x0,y0)(﹣1≤x0≤1)处的切线l与直线x=1交于点N,求△OMN(O为坐标原点)的面积最小时x0的值,并求出面积的最小值.【解答】解:(1)由题意得:f′(x)=e x﹣x,令m(x)=e x﹣x,故m′(x)=e x﹣1,令m′(x)=0,解得:x=0,故m(x)在(﹣∞,0)递减,在(0,+∞)递增,故[m(x)]min=m(0)=1,故e x﹣x>0,即f′(x)>0,故函数f(x)在R递增;(2)由题意,切线l的斜率为f′(x0)=﹣x0,由此得切线l的方程为y=(﹣)=(﹣x0)(x﹣x0),令x=1,得y=(2﹣x0)(﹣x0),=|OM|•|y|=|(1﹣x0)(﹣x0)|,x0∈[﹣1,1],∴S△MON设g(x)=(1﹣x)(e x﹣x),x∈[﹣1,1],则g′(x)=﹣(x﹣1)(e x﹣1),令g′(x)=0,解得:x=0或x=1,故g(x)在(﹣1,0)递减,在(0,1)递增,故g(x)min=g(0)=1,即x0=1时,△MON的面积有最小值1.22.(12分)已知函数.(1)若m=1,求曲线y=f(x)在(2,f(2))处的切线方程;(2)探究函数F(x)=xf(x)的极值点的情况,并说明理由.【解答】解:(1)由题意,f′(x)=+1,故f′(2)=2,由f(2)=3,故所求切线方程为:y﹣3=2(x﹣2),即2x﹣y﹣1=0,∴曲线y=f(x)在(2,f(2))处的切线方程2x﹣y﹣1=0;(2)F(x)=xf(x)=xln(x﹣1)+x2+mx,F′(x)=ln(x﹣1)++2x+m,记g(x)=F′(x)﹣m,g′(x)=﹣+2=,令g′(x)=0,则x=,当x∈(1+,)时,g′(x)<0,当x∈(,e+1)时,g′(x)>0,∴当x=时,g(x)取的极小值6﹣ln2,由g(+1)=e++2,g(e+1)=2e++4,F′(x)=0,则g(x)=﹣m,①当﹣m≤6﹣ln2,即m≥ln2﹣6,F′(x)≥0恒成立,函数F(x)在(+1,e+1)上无极值点,②当6﹣ln2<﹣m<e++2,即﹣e﹣﹣2<m<ln2﹣6,F′(x)有两个不同解,函数F(x)在区间(+1,e+1)有两个极值点;③当e++2≤﹣m<2e++4,即﹣2e﹣﹣4<m<﹣e﹣﹣2时,F′(x)有一个解,函数F(x)在区间(+1,e+1)有一个极值点;④当﹣m≥2e++4,即m≤﹣2e﹣﹣4,F′(x)≤0,函数F(x)在区间(+1,e+1)上无极值点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=-)]2([f f 绝密☆启前用
天一大联考
2017-2018学年高一年级阶段性测试(一)
数 学
考生注意:
1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条码粘贴在答题卡上的制定位置。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知集合}41{≤≤-∈=x Z x A ,}9,8,4,12{--=,B ,设B A C ⋂=,则集合C 的非空子集的个数为
A. 8
B. 7
C. 4
D. 3
2. 函数x
x x -+-=41)3lg()(f 的定义域为 A. [0,1] B. (3,4] C. (3,4) D.[3,4)
3. 函数x x x f 29)(3++-=的零点位于区间
A. )(1,0
B. )21(,
C. )(3,2 D .)
(4,3 4.已知函数⎩⎨⎧<≥=0log 0,2)(,2x x x f x ,则
A. 4
B. 3
C. 2
D.1
5.若定义在R 上的奇函数)(x f y =在[)+∞,0上单调递减,则不等式
)1()(log 3-<f x f 的解集是 A. ⎪⎭⎫ ⎝⎛∞+⋃⎪⎭⎫ ⎝⎛-∞-,,3131 B. ⎪⎭
⎫ ⎝⎛∞+,31
C. ⎪⎭⎫ ⎝⎛-313
1, D. ⎪⎭
⎫ ⎝⎛310, 6.函数0(3)3(log )(>++=t x x f t 且)1≠t 的图像恒过点P ,则下列函数中图像不经过点P 的是
A. 1-=x y
B. )42(log 2+=x y
C. 52+=x y
D.12-=-x y
7.已知集合}{⎭⎬⎫⎪⎩
⎪⎨⎧<<=+≤≤=+31)31(271,133121x x B a x a x A ,若B A ⊆,则a 的取值范围是
A. )(0,2-
B. )
(1,0 C. []1,0 D. ()∞+,1 8.若幂函数322)562()(-+-=m x m m x f 没有零点,则)(x f 的图像
A. 关于原点对称
B. 关于x 轴对称
C. 关于y 轴对称
D. 不具有对称性
9.若函数)1ln()1ln()(x m x x f ++-=为奇函数,则m=
A. 2
B. 1
C.-1
D. -2
10.函数1
3)1(log 10)(22++=x x x f 的图像大致为
11.已知0(2749>==m m y x 且)1≠m ,且211=+y
x ,则m = A. 14 B. 7 C. 4 D.2
12.已知函数⎩
⎨⎧≤<-≤=,21),1ln(,1,2)(x x x x f x 若不等式mx x f -≤4)(恒成立,则实数m 的取值范围是
A. [)∞+,
2 B. [)0,2- C. []2,2- D. []2,0 二、填空题:本题4小题,每小题5分,共20分。

13.函数[]4,1,12)(∈++=x x x f x 的值域是.
14.若}{32,5,372+++∈x x x ,则x=.
15.函数52)(2+-=x x x f 在区间[]10+t ,上最大值为5,最小值为4,则t 的取值范围为.
16.已知方程)0(2
1)2·(log )14(log 44>+-=+t x t t x x 有唯一实数根,则实数t 的取值范围是.
三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.
17.(10分)
计算下列各式:
(1);3
1636472932-⎪⎭
⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛ (2)5lg 21lg 2)2lg 1()2(lg 22•--+
18.(12分) 已知集合.2112123,212211⎪⎩
⎪⎨⎧⎩⎨⎧⎭⎬⎫<-<-=⎭⎬⎫-≤<-=x x N a x a x M (1)若4=a 时,求;M N C R ⋃)(
(2)若,M N M =⋂求实际a 的取值范围.
19.(12分)
已知)(x f 是()22,
-上的奇函数,且当02≤<-x 时,.1)2(log )(2-+=x x f (1)求函数)(x f 的解析式;
(2)补全)(x f 的图像(图中小正方形的边长为1),并根据图像写出)(x f 的单调区间.
20.(12分)
已知函数.22)(2+-=tx x x f
(1)当[]2,4--∈x 时,函数)(x f 的图象在x 轴的下方,求实数t 的取值范围;
(2)若函数)(x f 在[]43,21++t t 上不单调,求实数t 的取值范围.
21.(12分)
某家用电器公司生产一新款热水器,首先每年需要固定投入200万元,其次每生产1百台,需再投入0.9万元,假设该公司生产的该款热水器当年能全部售出,但每销售1百台需另付运输费0.1万元,根据以往的经验,年销售总额)(x g (万
元)关于年产量x (百台)的函数为⎪⎩⎪⎨⎧>≤≤-=.
400,800,4000,20014)(2x x x x x g (1)将年利润)(x f 表示为年产量x 的函数;
(2)求该公司生产的该款热水器的最大年利润及相应的年产量。

22.(12分)
已知函数)(x f q
p x x
+-=+122的定义域为R ,且)(x xf y =是偶函数. (1)求实数q p ,的值;
(2)证明:函数)(x f 在R 上是减函数;
(3)当32
1≤≤x 时,0)23()1(2>-++-x f x mx f 恒成立,求实数m 的取值范围.。

相关文档
最新文档