3数字信号处理器

合集下载

VTX65三通道电子吉他音箱高级数字信号处理器用户指南说明书

VTX65三通道电子吉他音箱高级数字信号处理器用户指南说明书

VTX65Three-Channel Guitar Amplifier with Advanced Digital SignalProcessingUser’s GuideTABLE OF CONTENTS:Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3The T op Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4,5The Bottom Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6The DSP Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Storing Your Own Presets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8Restoring the Factory Presets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8More About The Save/T ap Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8Using the Footswitch for More Presets . . . . . . . . . . . . . . . . . . . . . . . .9DSP Factory Presets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10,11Suggested Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12,13DSP“Fill in the Blanks” (for User Presets) . . . . . . . . . . . . . . . . . . . . .14System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15T echnical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . .back coverThis equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequen-cy energy and, if not installed and used in accordance with the instructions, may cause harmful interfer-ence to radio communications. However, there is no guarantee that interference will not occur in a par-ticular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:• Reorient or relocate the receiving antenna.• Increase the separation between the equipment and the receiver.• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.• Consult the dealer or an experienced radio/TV technician for help.Changes or modifications to this device not expressly approved by SLM Electronics could void the user’s authority to operate the equipment under FCC rules.Declaration of ConformityManufacturer’s Name:SLM ElectronicsCorporate Headquarters:1901 Congressional Drive, St. Louis, Missouri 63146 Primary Production Facility:700 Hwy 202 W, Yellville, Arkansas, 72687Product Type:Audio AmplifierProducts meet the regulations for compliance marking under:ETL standards UL6500, UL60065, or UL813CSA standards E60065 or C22.2 No.1-M90CE safety standard EN60065CE EMC standards EN55103 or EN55013 and EN61000C-tick designation Level 2, ABN #56748810738, ARBN# N222KETI standard K60065 (limited model approval)Compliance Support Contact: SLM Electronics, Attn: R&D Compliance Engineer1901 Congressional Drive, St Louis, Missouri, 63146 • Tel.: 314-569-0141, Fax: 314-569-01754The Top Panel:GAIN LOW MID HIGHRHYTHMSOLORHYTHMMULTICHORUS FLANGEPHASERVIB O T REC SIN1: INPUT:Use this jack to connect your guitar to the amplifier by means of a shielded instrument cable.SOLO/RHYTHM CHANNELS:High gain channels giving you sounds with serious overdrive.2:SOLO LED:This LED illuminates when the Solo channel is selected.3: GAIN:Use this control to adjust the amount of distortion produced by the Solo channel.4: SHAPE:Use this control to “dial in” the tone for the Solo channel. Rotating the control counter-clockwise enhances the mid frequencies, while rotating the control clockwise enhances the low and high frequencies.5:LEVEL:Use this control to adjust the output level of the Solo channel.6: SOLO/RHYTHM: Use this switch to select the Solo or Rhythm channel. When this switch is depressed, the Solo channel is selected. With the switch in the out position, the Rhythm channel is selected. This switch is active only when the Solo/Rhythm/Clean switch (#13) is depressed.7: RHYTHM LED:This LED illuminates when the Rhythm channel is selected.8:GAIN:Use this control to adjust the amount of distortion produced by the Rhythm channel.9: LOW:Use this control to adjust the low frequency level of the Solo/Rhythm channel.10: MID:Use this control to adjust the midrange frequency level of the Solo/Rhythm channel.11: HIGH:Use this control to adjust the high frequency level of the Solo/Rhythm channel.12:LEVEL:Use this control to adjust the output level of the Rhythm channel.13:SOLO/RHYTHM/CLEAN SELECT: Use this switch to select the Clean channel or the Solo and Rhythm channels. With the switch in the out position, the Clean channel is selected. When the switch is depressed, either the Solo or Rhythm channel is selected, depending on the setting of the Solo/Rhythm switch (#6).CLEAN CHANNEL:A normal gain channel designed to give you crystal clean sounds.14: CLEAN LED:This LED illuminates when the Clean channel is selected.15: VOLUME:Use this control to adjust the output level of the Clean channel.16: LOW:Use this control to adjust the low frequency level of the Clean channel.517: MID:Use this control to adjust the midrange frequency level of the Clean channel.18: HIGH:Use this control to adjust the high frequency level of the Clean channel.19:CD INPUT: Use these RCA jacks to connect the output from a CD player or tape deck to the amplifier. The signal at these jacks is combined into a mono signal which is sent to the internal power amp circuit. Use the CD or tape player’s output level control to adjust the signal for the proper mix with your guitar.20: MULTI:Use this control to select one of the fifteen “Multi” digital effects. Complete information about the DSP effects is on page 7.21: DELAY:Use this control to select one of the fifteen Delay digital effects. Complete information about the DSP effects is on page 7.22:SAVE/TAP:Use this pushbutton to set the tempo of many of the effects by tapping the button repeatedly in time with the desired tempo. The Save/Tap button is also used to save DSP presets and to restore the factory default DSP settings. Additional information about the Save/Tap button is on pages 7 and 8.23: SAVE/TAP LED:This LED flashes in time with the tempo set by the Save/Tap button (#22), and serves as a status indicator for certain DSP activities (see page 8).NOTE:For some of the DSP effects, the Save/Tap LED remains illuminated. The Save/Tap LED does not illuminate when the DSP knobs are set to the Bypass position.24. REVERB:Use this control to adjust the amount of digital reverb effect. In its fully counterclock-wise position the signal will be “dry”(without any reverb). As you rotate the control clockwise the amount of reverb increases.25: POWER:Use this switch to turn the amplifier on (top of the switch depressed) and off (bottom of the switch depressed). The switch illuminates when the power is on.NOTE:When the amplifier is turned on, the Save/Tap LED flashes for one second before the amplifier is operational.26: ELECTRONIC TUNER (cabinet top, not shown):The electronic tuner is active whenever the amplifier is turned on, providing constant, “real-time” tuning. The bottom row of LEDs indicate which note (string) is being tuned. The top row of LEDs provides directional queues to facilitate quick and precise tuning of your instrument.The indicated note (string) is properly tuned when only the center LED is illuminated.VOLUME LEVELLOW MID HIGHPOWERCLEANRHYTHM /SOLOCLEANDSPVIBDELAYEFXECHO SINGLETAPEREVERBSAVE / TAP6This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.The Bottom Panel:27: FUSE:The fuse protects the amplifier from damages caused by a faulty AC power source and/or other prob-lems. If the fuse opens, replace it ONLY with the same size and type. If fuses continue to fail, check the AC source – if the source is okay, contact your Crate dealer for service information.28: EXTENSION SPEAKER: Use this jack to connect the amplifier to an external speaker cabinet. This jack is wired in series with the internal speaker(s) which remain active when an extension speaker is connected.29:DSP A/B FOOTSWITCH:Use this jack to connect one of the footswitch cables to the three-button footswitch (supplied). This allows you to select between two presets for each of the three channels. Additional information about the operation of the footswitch is on page 9.30: CLEAN/SOLO/RHYTHM FOOTSWITCH:Use this jack to connect one of the footswitch cables to the three-button footswitch (supplied). This allows you to remotely switch between the Clean and Distortion channels and between the Solo and Rhythm channels. (See page 9.)31: INSERT: Use this jack to connect an external signal processor to the amplifier. Use Crate’s STP201, STP202,or STP203 stereo-to-mono Y-cord or an adapter such as Crate’s YPP117 and two 1/4” mono signal cables to con-nect to the effect as shown below.32: AC LINE CORD (not shown):This grounded power cord is to be plugged into a grounded power outlet, wired to current electrical codes and compatible with the voltage, power, and frequency requirements stated on the bot-tom panel. Do not attempt to defeat the safety ground connection.7effects is given below. The Multi control selects the “pitch modified” and wah effects.Many of these effects have their speed controlled by the Save/Tap button. The Delay MULTIDSP CHORUS FLANGE PHASERVIBO T R DELAY EFX ECHO SINGLETAPE REVERBSAVE / TAPMULTI:NAME DESCRIPTION SAVE/TAP BUTTON CONTROLS:Chorus LO Chorus w/low depth speed: 1 cycle/tap - tap period: .05–1 second Chorus MID Chorus w/medium depth speed: 1 cycle/tap - tap period: .05–1 second Chorus HI Chorus w/high depth speed: 1 cycle/tap - tap period: .05–1 second Flange LO Flanger w/low depth speed: 4 cycle/tap - tap period: .05–1 second Flange MID Flanger w/medium depth speed: 4 cycle/tap - tap period: .05–1 second Flange HI Flanger w/high depth speed: 4 cycle/tap - tap period: .05–1 second Phaser LO Phaser w/low feedback speed: 2 cycle/tap - tap period: .05–1 second Phaser MID Phaser w/medium feedback speed: 2 cycle/tap - tap period: .05–1 second Phaser HI Phaser w/high feedback speed: 2 cycle/tap - tap period: .05–1 second Vibrato LO Vibrato w/low depth speed: 1 cycle/tap - tap period: .05–1 second Vibrato MID Vibrato w/medium depth speed: 1 cycle/tap - tap period: .05–1 second Vibrato HI Vibrato w/high depthspeed: 1 cycle/tap - tap period: .05–1 second Octave Down Adds signal one octave lower n/a Touch Wah Touch-sensitive wah-wah n/a Reverse Wah Inverted wah-wah n/a BypassDry signal - no effectn/aDELAY:NAME DESCRIPTIONSAVE/TAP BUTTON CONTROLS:Single LO Single delay w/low level time: .05–1 second Single MID Single delay w/medium level time: .05–1 second Single HI Single delay w/high leveltime: .05–1 second Single MAX Single delay w/maximum level time: .05–1 second Echo LO Echo w/low level time: .05–1 second Echo MID Echo w/medium level time: .05–1 second Echo HI Echo w/high leveltime: .05–1 second Echo MAX Echo w/maximum level time: .05–1 second Tape LO Tape echo w/low level time: .05–1 second Tape MID Tape echo w/medium level time: .05–1 second Tape HI Tape echo w/high leveltime: .05–1 second Tape MAX Tape echo w/maximum leveltime: .05–1 second Echo FX LO Echo w/low level, before multi effect time: .05–1 second Echo FX MID Echo w/medium level, before multi effect time: .05–1 second Echo FX HI Echo w/high level, before multi effect time: .05–1 second BypassDry signal - no effectn/aSIGNAL PATH FOR ECHO LO, MID & HI EFFECTS:DELAYSIGNAL PATH FOR ALL OTHER EFFECTS:MULTIMULTIDELAY8Storing Your Own Presets:Each channel of the VTX65 has two factory assigned DSP presets, as shown on pages 10 and 11. No matter what the settings of the DSP controls, the preset is recalled when a channel is selected. You may change the DSP settings by rotating the DSP con-trols - these changes will remain active until a different channel is selected, but will not be there for later use unless they are saved. To save a new DSP preset to a channel,first make the desired DSP changes. Then press and hold the Save/Tap button for about three seconds. The Save/Tap LED will flash through three quick sequences, indicating the preset was saved. The new preset is stored for that channel and will remain in mem-ory until a new preset is stored for that channel or the factory presets are restored.We recommend making copies of page 14 of this guide for the purpose of writing down your own presets.Restoring the Factory Presets:The factory assigned DSP presets may be restored, erasing any changes you have made. Turn the amplifier off. Press and hold the Save/Tap button as you turn the amplifi-er on. The Save/Tap LED will flash through two quick sequences, indicating the factory presets have been restored.More About the Save/Tap Button:The Save/Tap button is used to set the tempo of an effect by pressing it twice within a one second time frame. The time between the two taps sets the timing of the effect. If the Save/tap button is pressed an odd number of times (once, three times, etc.), the tim-ing will default to the maximum one second time period.The Multi effects and the Delay effects may each have a different tap speed. The default “target” for the Save/Tap button is the Delay control. To select the Multi control as the tap button’s target, rotate the Multi control. The Save/Tap tempo function will auto-matically revert back to the Delay control 16 seconds after the Multi control is rotated, or when the tap speed was last changed for the Multi effect.NOTE: In most cases, it is usually more pleasing to the ear to set a slower tap speed for the HI effects and a faster tap speed for the LO effects.MULTIDSPDELAYREVERB SAVE / TAPMULTIDSPDELAYREVERB SAVE / TAPMULTIDSPDELAYREVERBSAVE / TAP3 SECONDSUsing the Footswitch for More Presets:The Crate three-button footswitch supplied with the VTX65 allows access to an addi-tional DSP preset for each channel of the amplifier. When the footswitch is connected to the amplifier as shown below, the “original” DSP presets are active for each channel when the #3 footswitch LED is illuminated. These are referred to as “DSP Bank ‘A’.”When the #3 button is switched and the LED is out, a second DSP preset may be stored and recalled for each channel - “DSP Bank ‘B’.”NOTE: DSP Bank “B” presets are only accessible when the footswitch is connected to the amplifier. When the footswitch is not connected, only DSP Bank “A”is accessable.Switch #1: LED on = SOLO CH. LED off = RHTYHM CH. Only when Switch #2 is activated (LED lit)!Switch #2:LED on = SOLO/RHYTHM CH.LED off = CLEANCH.Switch #3:LED on = DSPBANK "A"LED off = DSPBANK "B"321910DSP Factory Presets:Factory Preset 1: Clean w/Chorus, Delay,ReverbMULTIDSPCHORUS FLANGEPHASERVIB OT RDELAYEFXECHO SINGLE TAPEREVERBSAVE / TAPMULTIDSPCHORUS FLANGEPHASERVIB OT RDELAYEFXECHO SINGLE TAPEREVERBSAVE / TAPMULTIDSPCHORUS FLANGEPHASERVIB OT RDELAYEFXECHO SINGLE TAPEREVERBSAVE / TAPThe VTX65 Factory Presets for the DSP section are as follows:11DSP Factory Presets:Factory Preset 4: Clean w/ReverbFactory Preset 6: Solo w/ReverbMULTIDSPCHORUS FLANGEPHASERVIB OT RDELAYEFXECHO SINGLE TAPEREVERBSAVE / TAPMULTIDSPCHORUS FLANGEPHASERVIB OT RDELAYEFXECHO SINGLE TAPEREVERBSAVE / TAPMULTIDSPCHORUS FLANGEPHASERVIB OT RDELAYEFXECHO SINGLE TAPEREVERBSAVE / TAPThe VTX65 Factory Presets for the DSP section are as follows:12VOLUME GAINLOWMIDHIGH LEVELLOW RHYTHMMULTIDSPDELAYREVERBVOLUME GAINLOWMIDHIGH LEVELLOW RHYTHMMULTIDSPDELAYREVERBVOLUME GAINLOWMIDHIGH LEVELLOW RHYTHMMULTIDSPDELAYREVERB13VOLUME GAINLOWMIDHIGH LEVELLOW RHYTHMMULTIDSPDELAYREVERBVOLUME GAINLOWMIDHIGH LEVELLOW RHYTHMMULTIDSPDELAYREVERBVOLUME GAINLOWMIDHIGH LEVELLOW RHYTHMMULTIDSPDELAYREVERB14DSP “Fill in the Blanks ”(User Settings):MULTIDSPCHORUS FLANGEPHASERVIB OT RDELAYEFXECHO SINGLE TAPEREVERBSAVE / TAPMULTIDSPCHORUS FLANGEPHASERVIB OT RDELAYEFXECHO SINGLE TAPEREVERBSAVE / TAPMULTIDSPCHORUS FLANGEPHASERVIB OT RDELAYEFXECHO SINGLE TAPEREVERBSAVE / TAPUser Preset: _________________________________CHANNEL:BANK:SOLO RHYTHM CLEAN "A""B"CHANNEL:BANK:SOLO RHYTHM CLEAN "A""B"CHANNEL:BANK:SOLO RHYTHM CLEAN "A""B"User Preset: _________________________________User Preset: _________________________________Copy this page to fill in your own DSP Presets!15System Block Diagram:INPUTBUFFERMIX AMPCLEANDAMPING CIRCUITPOWER AMPSPEAKERSPEAKERINSERTSWITCHING RHYTHMSOLORHYTHMTUNERA BC D EF GVTX65TECHNICAL SPECIFICATIONS:Output Power Rating65W RMS @5% THD, 8Ω, 120 VACSpeaker Size and Rating(1) Custom Design 12”, 8ΩInput Impedance470kΩTotal System Gain Solo Ch110dB, all controls @10Rhythm Ch88dB, all controls @10Clean Ch58dB, all controls @10CD Input29dBMaximum Input Signal Accepted7 volts peak-to-peakSolo Channel Shape Control Proprietary CircuitRhythm Channel Low Control20dB range @ 80HzMid Control15dB range @ 1kHzHigh Control20dB range @ 10kHzClean Channel Low Control36dB range @ 80HzMid Control15dB range @ 800HzHigh Control40dB range @ 10kHzPower Requirements120 VAC, 60Hz, 90VA100/115VAC, 50/60Hz, 90VA;230VAC, 50/60Hz, 90VASize and Weight19-1/4” H x 21” W x 10-1/4”D, 34 lbs.The VTX65 is covered with a durable Tolex material: wipe it clean with a lint-free cloth.Never spray cleaning agents onto the cabinet. Avoid abrasive cleansers which would damage the finish.Crate continually develops new products, as well as improves existing ones. For this reason, the specificationsand information in this manual are subject to change without notice.©2004 SLM Electronics, a division of St. Louis Music, Inc • 1400 Ferguson Avenue • St. Louis, MO 6313347-639-01 • 092104。

数字信号处理(第三版)第1章习题答案

数字信号处理(第三版)第1章习题答案

第 1 章 时域离散信号和时域离散系统
1.1.1
(1) 信号: 模拟信号、 时域离散信号、 数字信号三 者之间的区别; 常用的时域离散信号; 如何判断信号是周期 性的, 其周期如何计算等。
(2) 系统: 什么是系统的线性、 时不变性以及因果 性、 稳定性; 线性、 时不变系统输入和输出之 间的关系; 求解线性卷积的图解法(列表法)、 解析法, 以及用MATLAB工具箱函数求解; 线性常系数差分方程的递
x(n-n0)=x(n)*δ(n-n0)
(3)
Xˆ n ( j )
Байду номын сангаас
1 T
X a ( j
k
jks )
这是关于采样定理的重要公式, 根据该公式要求对
信号的采样频率要大于等于该信号的最高频率的两倍以上,
才能得到不失真的采样信号。
xa
(t
)
n
xa
(nt
)
sin[π(t nT ) / T π(t nT ) / T
第 1 章 时域离散信号和时域离散系统
第1章 时域离散信号和时域离散系统
1.1 学习要点与重要公式 1.2 解线性卷积的方法 1.3 例题 1.4 习题与上机题解答
第 1 章 时域离散信号和时域离散系统
1.1 学习要点与重要公式
本章内容是全书的基础。 学生从学习模拟信号分析与处 理到学习数字信号处理, 要建立许多新的概念。 数字信号 和数字系统与原来的模拟信号和模拟系统不同, 尤其是处理 方法上有本质的区别。 模拟系统用许多模拟器件实现, 数 字系统则通过运算方法实现。 如果读者对本章关于时域离散 信号与系统的若干基本概念不清楚, 则学到数字滤波器时, 会感到“数字信号处理”这门课不好掌握, 总觉得学习的不 踏实。 因此学好本章是极其重要的。

sinc3滤波器原理

sinc3滤波器原理

Sinc滤波器是一种常见的数字信号处理滤波器,它的原理基于理想低通滤波器的频域表示。

Sinc函数是一个以零为中心的无限长脉冲响应函数,其频域表示为一个矩形函数。

Sinc滤波器的原理可以简单概括为以下几个步骤:
1. 理想低通滤波器:首先,我们定义一个理想低通滤波器的频域响应,它在截止频率之外完全消除频率成分,而在截止频率之内保留全部频率成分。

2. 频域采样:为了实现理想低通滤波器,我们需要对其频域响应进行采样。

这可以通过在频域上进行采样,然后进行逆傅里叶变换得到时域响应。

3. 时域响应:采样后的频域响应将得到一个无限长的时域响应,即Sinc函数。

Sinc函数在零点处有一个主瓣,其宽度与截止频率有关,同时还存在一系列的副瓣。

4. 截断:为了得到有限长度的滤波器响应,我们需要对Sinc 函数进行截断。

截断的长度决定了滤波器的时间分辨率和频率分辨率。

总结起来,Sinc滤波器的原理是通过理想低通滤波器的频域响应进行频域采样,然后通过逆傅里叶变换得到时域响应,最后对时域响应进行截断得到有限长度的滤波器响应。

Sinc 滤波器在频域上具有良好的截止特性,但在时域上存在一定的副瓣效应。

dp通讯闪断解决办法 (3)

dp通讯闪断解决办法 (3)

DP通讯闪断解决办法1. 问题描述和背景在使用数字信号处理器(Digital Signal Processor,简称DSP)进行通讯时,由于各种原因可能导致通讯线路闪断,即通信信号断断续续。

这种通讯闪断的现象会给系统的数据传输和处理带来很大的影响,影响系统的稳定性和性能。

本文将介绍一些常见的DP通讯闪断的原因,并提供解决这些问题的一些办法。

2. 通讯闪断原因分析本节将介绍几种常见的DP通讯闪断的原因。

2.1 硬件故障硬件故障是导致通讯闪断的主要原因之一。

例如,通讯线路的接触不良、电缆损坏或断开等问题会导致信号无法正常传输,从而导致通讯闪断。

2.2 信号干扰信号干扰也是通讯闪断的一个常见原因。

主要包括电磁干扰、电源干扰和其他无线电频率的干扰等。

这些干扰会导致信号质量下降,从而引起通讯闪断。

2.3 软件问题软件问题也是导致通讯闪断的一个重要原因。

例如,通讯协议实现不正确、缓冲区溢出、程序死锁等问题,都有可能导致通讯闪断的发生。

3. 解决办法3.1 检查硬件连接当出现通讯闪断问题时,首先需要检查硬件连接。

确保通讯线路的连接良好,接触良好,并且没有断开或损坏的情况。

可以使用万用表或示波器等工具进行测试,在检查时要注意检查地线和电源线的连接情况。

3.2 使用防干扰措施为了解决信号干扰引起的通讯闪断问题,可以采取一些防干扰措施。

例如,可以使用屏蔽电缆来减少电磁干扰,使用滤波器来降低电源干扰,使用隔离器来隔绝其他无线电频率的干扰。

3.3 优化通讯协议参数在解决通讯闪断问题时,还可以考虑优化通讯协议的参数。

例如,可以调整发送和接收数据的超时时间,增加重传机制的次数等。

通过优化通讯协议参数,可以提高系统对通讯闪断的容错能力。

3.4 做好软件调试和测试最后,对于由软件问题引起的通讯闪断,需要做好软件调试和测试工作。

通过检查代码和日志,查找并修复软件问题。

可以使用调试工具进行在线调试,或者使用仿真器进行离线调试。

4. 总结DP通讯闪断是数字信号处理器通讯中经常遇到的问题之一,可能由硬件故障、信号干扰和软件问题等原因导致。

东大22年春学期《数字信号处理器原理及应用》在线平时作业3【参考答案】

东大22年春学期《数字信号处理器原理及应用》在线平时作业3【参考答案】

《数字信号处理器原理及应用》在线平时作业3-00001
试卷总分:100 得分:100
一、单选题 (共 10 道试题,共 50 分)
1.PWM 单元主要有两个方面的应用,控制电机和()
A.数模转换
B.检测电机
C.捕捉信号
D.通信校验
正确答案:A
2.采用PWM控制方式可以为电机绕组提供良好的谐波电压和电流,避免因为环境变化产生的电磁扰动,并且能够显著的提高系统的
A.功率因数
B.散热效率
C.可靠性
D.执行精度
正确答案:A
3.如果定时器处于连续递增计数模式,当TxCMPR中的值为0时,通用的定时器比较输出
A.在整个周期有效
B.在整个周期无效
C.前半个周期有效
D.在后半个周期有效
正确答案:A
4.看门狗复位需要采用正确时序向写入数据
A.WDKEY
B.WDCNTR
C.WDCR
D.SCSR
正确答案:A
5.FIFO中的发送字发送到发送移位寄存器的速率有种
A.129
B.129
C.257
D.512
正确答案:C
6.当传输完特定的位数后,接收到的数据被发送到SPIRXBUF寄存器,以备CPU读取。

数据在SPIRXBUF寄存器中,采用的方式存储。

A.左对齐
B.右对齐。

DSP原理与应用 第三版

DSP原理与应用 第三版

运算速度 以上。TMS320C6201执行1024点复数FFT运算时间只有66uS。
高度集成化
集滤波、A/D、D/A、ROM、RAM和DSP内核于一体的
运算精度和动态范围
模拟混合式DSP芯片已有较大的发展和应用。 DSP字长从8位已增到64位,累加器长度也增到40位,
开发工具
提高了运算精度。同时,采用超长字指令字(VLIW)结构和
2. TMS320C55x概况
目前C55x系列芯片主要有:
C5501/2(主频300MHz, McBSP,HPI接口), C5503/6/7/9A (主频200MHz, McBSP, HPI,
优点:成本低廉 缺点:性能差、
速度慢
DSP处理器
优点:速度高、大规模生产成本低; 缺点:开发成本高、通用性差。
针对数字信号处理的要求而设计,是数 字信号处理系统设计中采用的主流芯片。 优点:灵活、高速、便于嵌入式应用
7
1.2 DSP芯片简介
1.2.1 DSP芯片的发展历史、现状和趋势 1.2.2 DSP芯片的特点 1.2.3 DSP芯片的分类 1.2.4 DSP芯片的应用领域 1.2.5 选择DSP芯片考虑的因素
可同时进行取指令和多个数据存取操作,使CPU
在一个机器周期内可多次对程序空间和数据空
采用哈佛结构 间进行访问, 大大地提高了DSP的运行速度。
采用多总线结构
T1
T2
T3
T4
时钟
采用流水线结构
取指令
N
N+1
N+2
N+3
指令译码
N-1
N
N+1
N+2
配有专用的硬件乘法-累加器 取操作数 N-2

数字信号处理的基础知识

数字信号处理的基础知识

数字信号处理的基础知识数字信号处理(Digital Signal Processing,简称DSP)是指用数字技术对模拟信号进行处理和分析的一种信号处理方式。

它广泛应用于通信、音频处理、图像处理、雷达信号处理等领域。

本文将介绍数字信号处理的基础知识,包括离散信号和离散时间的概念、采样和量化、数字滤波器以及离散傅立叶变换等内容。

一、离散信号和离散时间在数字信号处理中,信号被看作是在特定时间点上取得离散值的序列,这样的信号称为离散信号。

离散时间则是指在一系列有限时间点上取样的时间。

采样是将连续信号转化为离散信号的过程,通过在一定时间间隔内对模拟信号进行采样,得到离散的信号值。

在采样过程中,采样频率的选择需要根据信号频率的特点来确定,以避免信息的损失。

采样后的信号经过量化,将离散信号的幅度近似表示为有限数量的离散值。

二、数字滤波器数字滤波器是数字信号处理的重要组成部分,用于通过增强或减弱信号的某些频率分量来处理信号。

常见的数字滤波器包括无限脉冲响应滤波器(Infinite Impulse Response,简称IIR)和有限脉冲响应滤波器(Finite Impulse Response,简称FIR)。

无限脉冲响应滤波器是一种反馈滤波器,其输出和输入之间存在无限多个时刻的依赖关系;有限脉冲响应滤波器则是一种前馈滤波器,其输出仅依赖于有限个时刻的输入。

数字滤波器的设计和参数选择需要根据应用的需求和信号特性进行。

三、离散傅立叶变换离散傅立叶变换(Discrete Fourier Transform,简称DFT)是数字信号处理中常用的分析工具。

它将离散信号变换为复数序列,反映了信号在不同频率上的成分。

DFT的快速计算算法即快速傅立叶变换(Fast Fourier Transform,简称FFT),通过巧妙的运算方法大幅度降低了计算复杂度,使得实时处理大规模信号的应用成为可能。

离散傅立叶变换广泛应用于信号滤波、频谱分析、编码压缩等领域。

第三代移动通信系统中的软件无线电技术

第三代移动通信系统中的软件无线电技术

第三代移动通信系统中的软件无线电技术摘要:由于通信技术的迅速发展,各种通信体制层出不穷,软件无线电是第3代移动通信新技术的一个重要研究方向。

本文在介绍软件无线电技术概念的基础上,对其在三代移动通信系统中的应用和实现进行了分析。

关键词:三代移动通信系统软件无线电技术应用一、软件无线电的概念软件无线电通常指采用固定不变的硬件平台而通过软件的改变实现灵活性的无线电系统通信功能。

换言之:同样的无线电系统硬件可在不同的时候完成不同的功能。

无线电系统能够接收完全可编程的业务和控制信号,并且支持大范围的频率、空中接口和应用软件。

用户可快速从一种空中接口切换到另一种空中接口。

软件无线电只需要改变软件就可以变换系统的功能和标准,从而使得天线体制具有更好的通用性、灵活性,并使系统互连和升级变得方便。

软件无线电要求在尽可能靠近天线处进行信号的数字化,从而在数字域获得完全的灵活性,或者可用灵活的射频前端处理大范围的载频和调制方式。

二、软件无线电在3g中的应用分析及实现1、软件无线电在3g中的应用由于3g标准不统一,在现阶段甚至较长的时间内,2g与3g多标准共存,最关键的问题是解决基站的共站共址问题,即存在多频多模多业务的基站问题,软件无线电是解决基站问题的关键所在,软件无线电技术在3g中的应用体现在以下几个方面:(1)为3g手机与基站提供一个开放的、模块化的体系结构;(2)智能天线结构的实现,空间特征矢量包括doa(来波方向)估计的获得、每射频通道权重的计算和天线波束赋形;(3)名种信号处理软件的实现,包括各类无线信令规则与处理软件、信号流变换软件、调制解调算法软件、信道纠错编码软件、信源编码软件算法等。

开放的、模块化的体系结构是软件无线电技术的核心,对于3g是非常重要的。

软件无线电为3g提供了通用的系统结构,功能实现灵活,系统改进与升级方便;利用统一的硬件平台,可实现不同标准问的互操作与切换;体系结构的一致性便于实现模块的通用性,可在不同的系统及升级中复用;由于系统功能主要由软件实现,实现的智能天线更能满足2g与3g共址共站的需要,解决多频多模问题。

三阶cic滤波器微分输出表达式

三阶cic滤波器微分输出表达式

三阶CIC滤波器微分输出表达式
在数字信号处理中,三阶CIC(Cascaded Integrator Comb)滤波器是一种常用的滤波器结构。

它由多个积分器和梳状滤波器级联组成,具有线性相位和简单的实现结构。

本文将推导三阶CIC滤波器的微分输出表达式。

首先,假设我们有一个三阶CIC滤波器的冲激响应为:
h(nT) = 1 - 2ζωnT + ζ²ω²n²T²
其中,T是采样周期,ω是滤波器的角频率,ζ是滤波器的阻尼因子。

对于一个连续时间信号x(t),其离散时间形式可以表示为:
x[n] = x(nT)
将x[n]与h(nT)进行卷积,可以得到滤波器的输出:
y[n] = ∑_{k=0}^{n} x[k] * h[n-k]
为了得到微分输出表达式,我们对y[n]进行差分:
y'[n] = Δ y[n] = y[n] - y[n-1]
将y[n]的表达式代入,得到:
y'[n] = x[n] - 2ζωx[n-1] + ζ²ω²x[n-2] - x[n-3]
这就是三阶CIC滤波器的微分输出表达式。

可以看出,微分输出与输入信号的当前值、前两个值和后三个值有关。

通过调整阻尼因子ζ和角频率ω,可以改变滤波器的性能。

数字信号处理 pdf (3)

数字信号处理 pdf (3)

数字信号处理 PDF1. 引言数字信号处理是处理和分析数字信号的技术与方法的总称。

随着计算机和电子技术的发展,数字信号处理在多个领域中得到广泛应用,如通信、音频、图像等领域。

为了更好地理解和掌握数字信号处理的基本概念和技术,本文将介绍数字信号处理的基本原理,并提供一份数字信号处理的PDF文档供读者参考学习。

2. 数字信号处理的基本概念数字信号处理是用数值计算方法对信号进行处理和分析的过程。

它包括信号采集、离散化、数字滤波、频谱分析、数据压缩等技术和方法。

数字信号处理的基本概念主要有以下几点:•采样:将连续信号转换为离散信号的过程。

采样频率决定了信号的频带宽度,低于采样定理要求的采样频率可能导致采样信号中出现混叠现象。

•量化:将连续信号的幅度离散化为有限个数值的过程。

量化级数越大,表示幅度的精度越高,但也会增加数据存储和处理的复杂性。

•离散化:将连续信号的时间离散化为一系列离散时间点的过程。

离散信号的时间间隔决定了信号的频率分辨率。

•数字滤波:利用数字滤波器对离散信号进行滤波处理,包括滤波器设计、滤波器特性分析等。

常见的数字滤波器有低通滤波器、高通滤波器、带通滤波器等。

•频谱分析:对信号进行频域分析,得到信号的频谱特性,如功率谱密度、相位谱、幅度谱等。

频谱分析通常采用傅里叶变换或者快速傅里叶变换等算法。

•数据压缩:利用压缩算法对信号进行压缩,减少数据存储和传输的需求。

常用的压缩算法有无损压缩算法和有损压缩算法。

3. 数字信号处理的应用领域数字信号处理在多个领域中得到广泛应用,例如:•通信领域:数字信号处理在通信系统中起到重要的作用,如信号调制、误码控制、信道编码等。

•音频处理:数字信号处理在音频处理中应用广泛,如音频编解码、音频增强、音频合成等。

•图像处理:数字信号处理在图像处理中有很多应用,如图像压缩、图像增强、图像识别等。

•生物医学:数字信号处理在生物医学领域中有着重要的应用,如生理信号处理、医学图像处理等。

数字信号处理第三版西科大课后答案第3和4章

数字信号处理第三版西科大课后答案第3和4章
生物医学信号处理
采用数字信号处理技术对生物医学信号进行分析与处理,如心电图、 脑电图等信号的处理与识别。
04
重点难点总结与复习指导
第三章重点难点总结
离散时间信号与系统的时域分析
掌握离散时间信号的定义、性质及分类,理解离散时间系统的描述方式,掌握卷积和的计 算方法。
离散时间信号的频域分析
理解周期信号的傅里叶级数展开,掌握离散时间信号的傅里叶变换及其性质,了解频域采 样理论。
内部奇点的留数和。这种方法适用于X(z)在复平面上有奇点的情况。
系统函数H(z)求解方法
直接法
根据系统差分方程,直接写出系统函 数H(z)的表达式。这种方法简单直接, 但需要注意差分方程的初始条件和边 界条件。
间接法
先求出系统的单位冲激响应h(n),然 后根据h(n)求出H(z)。这种方法需要 先确定系统的单位冲激响应,计算量 相对较大。
课后习题解答与技巧
熟练掌握z变换的定义和性质,能够灵活运用这些 性质进行信号处理和系统分析。
理解系统函数H(z)的物理意义,掌握其求解方法 ,并能够根据H(z)分析系统的稳定性和频率响应 特性。
掌握z反变换的计算方法,能够根据具体情况选择 合适的方法进行求解。
在解答课后习题时,注意审题和理解题意,明确 题目要求和已知条件,选择合适的公式和方法进 行求解。同时,注意计算过程和结果的准确性, 避免出现计算错误或遗漏重要步骤的情况。
时不变性质
系统对输入信号的响应不随时间推移而改变,即 输入信号延迟或提前一定时间后,输出信号也相 应延迟或提前相同的时间。
稳定性判定
系统对任意有界输入信号的响应也是有界的,即 输出信号的幅度不会无限制地增长。
课后习题解答与技巧

精品课件-数字信号处理(第三版) 刘顺兰-第9章

精品课件-数字信号处理(第三版) 刘顺兰-第9章

第9章 MATLAB程序设计语言在信号处理中的应用
例9-1 在工作空间产生一个3×3矩阵A可用MATLAB语言 描述如下:
A=[1 2 3; 4 5 6; 7 8 9]

A=[1 2 3
456
7 8 9]
A= 123
456 789
第9章 MATLAB程序设计语言在信号处理中的应用
2) 对于特殊的矩阵可直接调用MATLAB的函数生成。 用函数zeros生成全0矩阵:格式 B=zeros(m,n)生成m×n 的全0阵。 用函数ones生成全1矩阵:格式 B=ones(m,n)生成m×n的 全1阵。 用函数eye生成单位阵:格式 B=eye(m,n)生成m×n矩阵, 其中对角线元素全为1,其他元素为0。
第9章 MATLAB程序设计语言在信号处理中的应用
9.2.2 1. 变量命名规则 MATLAB中对变量的命名应遵循以下规则:
(1) 变量名可以由字母、 数字和下划线混合组成, 但 必须以字母开头。
(2) 字符长度不能大于31。 (3) 变量命名区分大小写。
第9章 MATLAB程序设计语言在信号处理中的应用
运行结果:
a=
1.0000 0.2000
0.5000
0.3333
0.5000 0.1667
0.3333
0.2500
0.3333 0.1429
0.2500
0.2000
0.2500 0.1250
0.2000
0.1667
0.2000 0.1111
0.1667
0.1429
0.2500 0.2000 0.1667 0.1429 0.1250
第9章 MATLAB程序设计语言在信号处理中的应用

《数字信号处理》第三版课后习题答案

《数字信号处理》第三版课后习题答案

数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n 及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n nn n n n nnn n 2. 给定信号:25,41()6,040,nnx n n其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列;(3)令1()2(2)x n x n ,试画出1()x n 波形;(4)令2()2(2)x n x n ,试画出2()x n 波形;(5)令3()2(2)x n x n ,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n nnnn n n n n n (3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()78x n A n,A 是常数;(2)1()8()j n x n e 。

解:(1)3214,73w w ,这是有理数,因此是周期序列,周期是T=14;(2)12,168ww,这是无理数,因此是非周期序列。

5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

(1)()()2(1)3(2)y n x n x n x n;(3)0()()y n x n n ,0n 为整常数;(5)2()()y n x n ;(7)0()()n m y n x m 。

射频工作原理

射频工作原理

射频工作原理射频工作原理射频(Radio Frequency,简称RF)是指在30kHz-300GHz范围内的电磁波信号。

射频技术广泛应用于通信、雷达、导航、遥感等领域。

下面将介绍射频工作的基本原理。

1. 电磁波的特性电磁波是由电场和磁场相互作用形成的一种能量传输方式。

它具有以下特性:(1)传播速度:电磁波在真空中传播速度为光速,即3×10^8 m/s。

(2)频率和波长:电磁波的频率和波长呈反比例关系,即频率越高,波长越短。

(3)极化方式:电磁波可以沿着不同方向进行振动,分为水平极化、垂直极化和圆极化等形式。

2. 射频信号的产生射频信号可以通过多种方式产生,如:(1)振荡器:使用谐振回路产生正弦振荡信号,常见的有晶体振荡器、LC振荡器等。

(2)放大器:将低功率信号放大到一定功率级别,常见的有B级放大器、C级放大器等。

(3)混频器:将两个不同频率的信号混合在一起,产生新的频率信号,常用于频率转换。

3. 射频信号的调制射频信号可以通过调制方式来携带信息。

常见的调制方式有:(1)幅度调制(AM):通过改变射频信号的幅度来携带信息,常用于广播电台等领域。

(2)频率调制(FM):通过改变射频信号的频率来携带信息,常用于音乐播放等领域。

(3)相位调制(PM):通过改变射频信号的相位来携带信息,常用于数字通信等领域。

4. 射频信号的传输射频信号可以通过空气、导线、光纤等介质进行传输。

其中空气是最常见的传输介质。

在传输过程中,射频信号会受到衰减、多径效应、干扰等影响,需要采取相应措施进行抵抗和补偿。

5. 射频系统的组成一个典型的射频系统由以下组成部分构成:(1)天线:将电磁波转换为电流或电压信号,并将其发送或接收。

(2)射频前端:对信号进行放大、滤波、混频等处理。

(3)数字信号处理器:对接收到的信号进行解调、解码等数字信号处理操作。

(4)功率放大器:将信号放大到足够的功率级别,以便传输或驱动其他设备。

数字信号处理(第三版)课后答案及学习指导(高西全_丁玉美)第二章

数字信号处理(第三版)课后答案及学习指导(高西全_丁玉美)第二章
(2) 系统因果稳定的条件是所有极点全在单位圆内, 所以a和b
0≤|a|<1, 0≤|b|<1
2021/4/21
25
第2章 时域离散信号和系统的频域分析
[例2.4.5] x(t) cos(2πf1 t) cos(2πf2 t) , f1=10 Hz, f2=25 Hz, 用理想采样频率Fs=40 Hz对其进行采样得到 xˆ (t)。
(9) 若x(n)=a|n|, 则
X
(z)
(1
1 a2 az)(1
az 1 )
a z a 1
x(n)=a|n|是数字信号处理中很典型的双边序列, 一些测试题都是用它演变出来的。
2021/4/21
12
第2章 时域离散信号和系统的频域分析
2.2 FT和ZT
(1) FT的逆变换为
x(n) 1 π X (e j )e jnd 2π -π
三种变换互有联系, 但又不同。 表征一个信号和系统 的频域特性是用傅里叶变换。 Z变换是傅里叶变换的一种推 广, 单位圆上的Z变换就是傅里叶变换。
2021/4/21
2
第2章 时域离散信号和系统的频域分析
在z域进行分析问题会感到既灵活又方便。 离散傅里叶 变换是离散化的傅里叶变换, 因此用计算机分析和处理信 号时, 全用离散傅里叶变换进行。 离散傅里叶变换具有快 速算法FFT, 使离散傅里叶变换在应用中更加方便与广泛。 但是离散傅里叶变换不同于傅里叶变换和Z变换, 它将信号 的时域和频域, 都进行了离散化, 这是它的优点。 但更 有它自己的特点, 只有掌握了这些特点, 才能合理正确地 使用DFT。 本章只学习前两种变换, 离散傅里叶变换及其 FFT将在下一章学习。
列, 常用以求序列的xe(n)和xo(n)。

DSP--TMS320F240芯片引脚与功能

DSP--TMS320F240芯片引脚与功能

DSP第二次大作业一、详细描述F240,F2812芯片引脚的符号与功能。

1、TMS320F240芯片引脚与功能TMS320F240为TI公司所出品的定点式数字信号处理器芯片,具有强大的外围(64k I/O space、10 bit A/D Converter、Digital I/O peripheral) ,芯片内部采用了加强型哈佛架构(Enhanced Harvard Architecture),由三个平行处理的总线─程序地址总线(PAB)、数据读出地址总线(DRAB)及数据写入地址总线(DWAB),使其能进入多个内存空间。

由于总线之操作各自独立,因此可同时进入程序及数据存储器空间,而两内存间的数据亦可互相交换,使得其具有快速的运算速度,几乎所有的指令皆可在50ns 周期时间内执行完毕,内部的程控以管线式的方式操作(Pipeline operation),且使用内存映像的方式,使其整体的效能可到达20MIPS,因此非常适用于实时运转控制,而对于速度较慢的外围亦提供了wait-states 的功能。

其引脚及功能如下所示:2、TMS320F2812芯片引脚与功能德州仪器所生产的TMS320F2812 数字讯号处理器是针对数字控制所设计的DSP,整合了DSP 及微控制器的最正确特性,主要使用在嵌入式控制应用,如数字电机控制(digital motor control, DMC)、资料撷取及I/O 控制(data acquisition and control, DAQ)等领域。

针对应用最正确化,并有效缩短产品开发周期,F28x 核心支持全新CCS环境的C compiler,提供C 语言中直接嵌入汇编语言的程序开发介面,可在C语言的环境中搭配汇编语言来撰写程序。

值得一提的是,F28xDSP核心支持特殊的IQ-math 函式库,系统开发人员可以使用廉价的定点数DSP 来开展所需的浮点运算算法。

F28x 系列DSP预计开展至400MHz,目前已开展至150MHz的Flash型式。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Words and Expressionsfollow v.遵循memory n.存储器register n.寄存器access v.访问overlap v. 重叠pipelining n. 流水线操作multiplier n. 乘法器accumulator n. 累加器shifter n.移位器reference n. 寻址mantissa n.尾数exponent n. 指数cycle n. 机器周期customize v.定制,用户化package v.封装digital signal processor 数字信号处理器von Neumann architecture 冯·诺伊曼结构shared single memory 单一共享存储器program instruction 程序指令harvard architecture 哈佛结构fetch from 从…获取circular buffer 循环缓冲区,环形缓冲区address generator 地址产生器fixed point 定点floating point 浮点binary point 二进制小数点available precision 可用精度dynamic range 动态范围scale range 量程smallest Resolvable Difference 最小分辨率scientific notation 科学计数法assembly language 汇编语言multi-function instructions 多功能指令parallel architecture 并行结构looping scheme 循环机制sampling frequency 采样频率on-chip memory 片内存储器well-matched 非常匹配software tools 软件开发工具low level programming language 低级编程语言high level programming language 高级编程语言third party software 第三方软件board level product 板级产品data register 数据寄存器ALU=Arithmetic Logical Unit 运算逻辑单元program sequencer 程序定序器peripheral sections 外设single integrated circuit 单片集成电路cellular telephone 蜂窝电话printed circuit board 印刷电路板licensing agreement 专利使用权转让协定custom devices 定制器件extra memory 附加存储器stand alone 单机third party developer 第三方开发商multimedia operations 多媒体操作merged into 融合calculation-intensive algorithm运算密集型算法Unit 5 Digital Signal ProcessorsDigital signal processing tasks can be performed by all processors. Specialized digital signal processors(DSPs), however, perform these tasks most efficiently and most quickly. While traditional processors follow the Von Neumann architecture[]1model, which assumes a shared single memory to be used for both program instructions and data, DSPs use the Harvard or modified Harvard architecture []2, which includes multiple program and data memories, along with multiple buses to access them. This arrangement means that much less waiting is required when instructions or numbers are fetched from memory. In fact at least one of each can be fetched simultaneously. Such overlapping of tasks is called pipelining. In addition to multiple memories and buses, all DSPs have fast multipliers, accumulators, and shifters, and many have hardware support for circular buffers. Address generators can speed up accesses to memory locations referenced by registers.DSPs are available in two major classes: fixed point and floating point. The fixed point class represents real numbers in a fixed number of bits. The position of the binary point (similar to the decimal point) can be controlled by the programmer, and determines the range of numbers that can be represented. As the range increases, though, the available precision goes down, since fewer bits lie to the right of the binary point. In 16 bits, the formats 16.0, 15.1, 14.2, 13.3, 12.4, 11.5, 10.6, 9.7, 8.8, 7.9, 6.10, 5.11, 4.12, 3.13, 2.14, and 1.15 are possible. The dynamic range, calculated as 20log (Full Scale Range/Smallest2= 96.3 dB.Resolvable Difference), remains the same for all 16-bit formats, 20log16Figure 6.3 Van Neumann architectureFigure 6.4 Harvard architectureFloating point DSPs represent real numbers using a mantissa and an exponent , similar to scientific notation : Many combine mantissa and exponent into a 32-bit number. The dynamic range for floating point devices is calculated from the largest and smallest multipliers E 2, where E is the exponent. Thus, for a representation that uses 24 bits for the mantissa and 8 bits for the signed exponent, the dynamic range is 20 log (1281272/2-) = 1535.3 dB. A large dynamic range means the system has great power to represent a wide range of input signals, from very small to very large.Assembly language is the command language for DSPs. DSPs often have specialized instructions that make programming for common DSP tasks more convenient and more efficient. For example, most DSPs offer multi-function instructions that exploit their parallel architecture . Other constructs that are frequently offered are efficient looping schemes , since so many DSP operations involve a great deal of repetition.Choosing a DSP for a particular application is not always easy. The first decision is on whether tochoose a fixed point or a floating point device []3. Generally, fixed point devices are cheaper and quicker,but floating point devices are more convenient to program and more suited to calculation-intensive algorithms . Second, the data width of the DSP determines how accurately it can represent numbers. Speed is another issue, not only how many cycles occur in each second, but also how many instructions execute in each cycle and how much work each of these instructions accomplishes. One way to assess the minimum requirements for the DSP is to estimate how many instructions must be executed for each received sample. When this number is multiplied by the sampling frequency , the minimum required number of instructions per second is obtained.The specific hardware and software features offered by a particular DSP can make one choice betterthan another, as can the amount of on-chip memory available []4. Sometimes DSPs are chosen becausewell-matched supporting hardware, particularly A/D and D/A converters, is obtainable. Frequently, the quality and convenience of the software tools, for both low level and high level programming languages, are also major factors, as is the availability of third party software. As always, cost is a factor. In fact, quite often, the DSP that is fastest and offers the most features, but also fits the budget, is the one selected.DSPs can be purchased in three forms, as a core, as a processor, and as a board level product. In DSP, the term "core" refers to the section of the processor where the key tasks are carried out, including the data registers, multiplier, ALU, address generator, and program sequencer. A complete processor requires combining the core with memory and interfaces to the outside world. While the core and these peripheral sections are designed separately, they will be fabricated on the same piece of silicon, making the processor a single integrated circuit.Suppose you build cellular telephones and want to include a DSP in the design. You will probably want to purchase the DSP as a processor, that is, an integrated circuit that contains the core, memory and other internal features. To incorporate this IC in your product, you have to design a printed circuit board where it will be soldered in next to your other electronics. This is the most common way that DSPs are used.Now, suppose the company you work for manufactures its own integrated circuits. In this case, you might not want the entire processor, just the design of the core. After completing the appropriate licensing agreement, you can start making chips that are highly customized to your particular application. This gives you the flexibility of selecting how much memory is included, how the chip receives and transmits data, how it is packaged, and so on.Custom devices of this type are an increasingly important segment of the DSP marketplace.There are several dozen companies that will sell you DSPs already mounted on a printed circuit board. These have such features as extra memory, A/D and D/A converters, EPROM sockets, multiple processors on the same board, and so on. While some of these boards are intended to be used as stand alone computers, most are configured to be plugged into a host, such as a personal computer. Companies that make these types of boards are called Third Party Developers. The best way to find them is to ask the manufacturer of the DSP you want to use. Look at the DSP manufacturer's website; if you don't find a list there, send them an e-mail. They will be more than happy to tell you who are using their products and how to contact them.Keep in mind that the distinction between DSPs and other microprocessors is not always a clear line. For instance, look at how Intel describes the MMX technology addition to its Pentium processor: "Intel engineers have added 57 powerful new instructions specifically designed to manipulate and process video, audio and graphical data efficiently. These instructions are oriented to the highly parallel, repetitivesequences often found in multimedia operations . "In the future, we will undoubtedly see more DSP-like functions merged into traditional microprocessors and microcontrollers. The Internet and other multimedia applications are a strong driving force for these changes. These applications are expanding so rapidly, in twenty years it is very possible that the Digital Signal Processor may be the "traditional" microprocessor.Notes1. “冯·诺伊曼结构”取名字美国杰出的数学家—约翰·冯·诺伊曼(John Von Neumann,1903~1957)。

相关文档
最新文档