7、近五年全国卷分类总汇编——概率统计教师版.doc

合集下载

2019年-2015年五年全国高考解答题专题概率统计-教师用卷

2019年-2015年五年全国高考解答题专题概率统计-教师用卷

2019年-2015年年年年年年年年年年年年概率统计知识点总结:考试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验. 考试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n 次独立重复试验中恰好发生κ次的概率. §11. 概率 知识要点1. 概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.2. 等可能事件的概率:如果一次试验中可能出现的结果有年n 个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是,如果某个事件A 包含的结果有m 个,那么事件A 的概率.3. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A 、B 互斥,那么事件A+B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率和,即P(A+B)=P(A)+P(B),推广:. ②对立事件:两个事件必有一个发生..........的互斥事件.....叫对立事件. 例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件.而抽到“红色牌”与抽到黑色牌“互为对立事件,因为其中一个必发生. 注意:i.对立事件的概率和等于1:. ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A ·B)=P(A)·P(B). 由此,当两个事件同时发生的概率P (AB )等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌(52张)中任抽一张设A :“抽到老K ”;B :“抽到红牌”则 A 应与B 互为独立事件[看上去A 与B 有关系很有可能不是独立事件,但.又事件AB 表示“既抽到老K 对抽到红牌”即“抽到红桃老K 或方块老K ”有,因此有. 推广:若事件相互独立,则. 注意:i. 一般地,如果事件A 与B 相互独立,那么A 与与B ,与也都相互独立. ii. 必然事件与任何事件都是相互独立的.iii. 独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件.④独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的. 如果在一次试验中某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率:.4. 对任何两个事件都有考试内容:抽样方法.总体分布的估计. 总体期望值和方差的估计. 考试要求:(1)了解随机抽样了解分层抽样的意义,会用它们对简单实际问题进行抽样.n1n m P(A)=)P(A )P(A )P(A )A A P(A n 21n 21+++=+++ 1)A P(A )A P(P(A)=+=+261P(B)P(A),215226P(B),131524P(A)=⋅====261522B)P(A ==⋅)B P(A P(B)P(A)⋅=⋅n 21,A ,,A A )P(A )P(A )P(A )A A P(A n 21n 21 ⋅=⋅A B ,A B kn k k n n P)(1P C (k)P --=)()()()(B A P B P A P B A P ⋅-+=+互斥对立(2)会用样本频率分布估计总体分布. (3)会用样本估计总体期望值和方差. 一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则也是一个随机变量.一般地,若ξ是随机变量,是连续函数或单调函数,则也是随机变量.也就是说,随机变量的某些函数也是随机变量. 设离散型随机变量ξ可能取的值为:ξ取每一个值的概率,则表称为随机变量ξ的概率分布,简称ξ的分布列.注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:即可以取0~5之间的一切数,包括整数、小数、无理数.3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:[其中] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作~B (n ·p ),其中n ,p 为参数,并记.⑵二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.4. 几何分布:“”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为,事A 不发生记为,那么.根据相互独立事件的概率乘法分式:于是得到随机变量ξ的概率分布列.我们称ξ服从几何分布,并记,其中5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取件,则其中的次品数ξ是一离散型随机变量,分布列为.〔分子是从M 件次品中取k 件,从N -M 件正品中取n -k 件的取法数,如果规定<时,则k 的范围可以写为k=0,1,…,n.〕⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n ≤a+b ),则次品数ξ的分布列为.b a +=ξη)(x f )(ξf ,,,,21i x x x ),2,1( =i x p x P ==)(ξ121i ]5,0[∈ξξkn k k n qp C k)P(ξ-==p q n k -==1,,,1,0 ξp)n b(k;q p C kn k k n ⋅=-k =ξk A q )P(A ,A k k =)A A A A P(k)P(ξk 1k 21-== ))P(A A P()A )P(A P(k)P(ξk 1k 21-== ),3,2,1(1==-k p q k p q p)g(k,1k -= 3,2,1.1=-=k p q )N n n(1≤≤)M N k n M,0k (0C C C k)P(ξnNk n MN k M -≤-≤≤≤⋅⋅==--m r 0C rm =n.,0,1,k C C C k)P(ξn ba kn bk a =⋅==+-⑶超几何分布与二项分布的关系.设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数的分布列可如下求得:把个产品编号,则抽取n 次共有个可能结果,等可能:含个结果,故,即~.[我们先为k 个次品选定位置,共种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.二、数学期望与方差.则称为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平.2. ⑴随机变量的数学期望: ①当时,,即常数的数学期望就是这个常数本身.②当时,,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和. ③当时,,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积. ⑵单点分布:其分布列为:. ⑶两点分布:,其分布列为:(p + q = 1) ⑷二项分布: 其分布列为~.(P 为发生的概率)⑸几何分布: 其分布列为~.(P 为发生的概率) 3.方差、标准差的定义:当已知随机变量ξ的分布列为时,则称为ξ的方差. 显然,故为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量的方差.(a 、b 均为常数)⑵单点分布: 其分布列为 ⑶两点分布: 其分布列为:(p + q = 1) ⑷二项分布: ⑸几何分布:5. 期望与方差的关系.⑴如果和都存在,则⑵设ξ和是互相独立的两个随机变量,则⑶期望与方差的转化: ⑷(因为为一常数). 三、正态分布.(基本不列入考试范围)1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间内的概率等于它与x 轴.直线与直线所围成的曲边梯形的面积(如图阴影部分)的曲线叫ξ的密度曲线,以其作为ηb a +n b a )(+k)(η=kn k k n b a C -n ,0,1,2,k ,)ba a (1)b a a (C b)(a ba C k)P(ηkn k k n nkn k k n =+-+=+==--η)(b a a n B +⋅k n C k)P(ηk)P(ξ=≈=n n 2211b a +=ξηb aE b a E E +=+=ξξη)(0=a b b E =)(1=a b E b E +=+ξξ)(0=b ξξaE a E =)(c c E =⨯=1ξc P ==)1(ξp p q E =⨯+⨯=10ξ∑=⋅-⋅=-np q p k n k n k E k n k )!(!!ξξ),(p n B ξpE 1=ξξ),(p k q ξ),2,1()( ===k p x P k k ξ +-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ0≥ξD σξξσξ.D =ξD b a +=ξηξξηD a b a D D 2)()(=+=0=ξD p P ==)1(ξpq D =ξnpq D =ξ2p q D =ξξE ηE ηξηξE E E ±=±)(ηηξηξηξξηD D D E E E +=+⋅=)(,)(22)(ξξξE E D -=)()()(ξξξξE E E E E -=-ξE 0=-=ξξE E ),[b a a x =b x =图像的函数叫做ξ的密度函数,由于“” 是必然事件,故密度曲线与x 轴所夹部分面积等于1.2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:. (为常数,且),称ξ服从参数为的正态分布,用~表示.的表达式可简记为,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若~,则ξ的期望与方差分别为:.⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线对称.③当时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线. ④当<时,曲线上升;当>时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近.⑤当一定时,曲线的形状由确定,越大,曲线越“矮胖”.表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中.3. ⑴标准正态分布:如果随机变量ξ的概率函数为,则称ξ服从标准正态分布. 即~有,求出,而P (a <≤b )的计算则是.注意:当标准正态分布的的X 取0时,有当的X 取大于0的数时,有.比如则必然小于0,如图.⑵正态分布与标准正态分布间的关系:若~则ξ的分布函数通常用表示,且有.4.⑴“3”原则.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布.②确定一次试验中的取值是否落入范围.③做出判断:如果,接受统计假设. 如果,由于这是小概率事件,就拒绝统计假设.⑵“3”原则的应用:若随机变量ξ服从正态分布则 ξ落在内的概率为99.7% 亦即落在之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).)(x f ),(+∞-∞∈x 222)(21)(σμσπ--=x ex f σμ,,R x ∈0 σσμ,ξ),(2σμN )(x f ),(2σμN ξ),(2σμN 2,σξμξ==D E μ=x μ=x x μx μμσσσ)(21)(22+∞-∞=-x ex x πϕξ)1,0(N )()(x P x ≤=ξϕ)(1)(x x --=ϕϕξ)()()(a b b a P ϕϕξ-=≤ )(x Φ5.0)(=Φx )(x Φ5.0)( x Φ5.00793.0)5.0(=-Φσμσμ-5.0ξ),(2σμN )(x F )σμx (F(x)x)P(ξ-==≤ϕσ),(2σμN a )3,3(σμσμ+-)3,3(σμσμ+-∈a )3,3(σμσμ+-∉a σ),(2σμN )3,3(σμσμ+-)3,3(σμσμ+-S 阴=0.5S a =0.5+S历年真题:1.(2019年全国I卷第21题)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得−1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得−1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i−1+bp i+cp i+1(i=1,2,…,7),其中a= P(X=−1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1−p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.【答案】(1)解:X的所有可能取值为−1,0,1.P(X=−1)=(1−α)β,P(X=0)=αβ+(1−α)(1−β),P(X=1)=α(1−β),(2)(i)证明:∵α=0.5,β=0.8,∴由(1)得,a=0.4,b=0.5,c=0.1.因此p i=0.4p i−1+0.5p i+0.1p i+1(i=1,2,…,7),故0.1(p i+1−p i)=0.4(p i−p i−1),即(p i+1−p i)=4(p i−p i−1),又∵p1−p0=p1≠0,∴{p i+1−p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列;(ii)解:由(i)可得,p8=(p8−p7)+(p7−p6)+⋯+(p1−p0)+p0=p1(1−48)1−4=48−13P1,∵p8=1,∴p1=348−1,∴P4=(p4−p3)+(p3−p2)+(p2−p1)+(p1−p0)+p0=44−13p1=1257.P4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为P4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理.【解析】本题主要考查数列和函数的应用,考查离散型随机变量的分布列,根据条件推出数列的递推关系是解决本题的关键.综合性较强,有一定的难度.(1)由题意可得X的所有可能取值为−1,0,1,再由相互独立试验的概率求P(X=−1),P(X=0),P(X=1)的值,则X 的分布列可求;(2)(i)由α=0.5,β=0.8结合(1)求得a ,b ,c 的值,代入p i =ap i−1+bp i +cp i+1,得到(p i+1−p i )=4(p i −p i−1),由p 1−p 0=p 1≠0,可得{p i+1−p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列; (ii)由(i)可得,p 8=(p 8−p 7)+(p 7−p 6)+⋯+(p 1−p 0)+p 0,利用等比数列的前n 项和与p 8=1,得p 1=348−1,进一步求得p 4=1257.P 4表示最终认为甲药更有效的概率,结合α=0.5,β=0.8,可得在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为P 4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理.2. (2019年全国II 卷第18题)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P(X =2);(2)求事件“X =4且甲获胜”的概率.【答案】解:(1)设双方10:10平后的第k 个球甲获胜为事件A k (k =1,2,3,…),则P(X =2)=P(A 1A 2)+P(A 1−A 2−)=P(A 1)P(A 2)+P(A 1−)P(A 2−)=0.5×0.4+0.5×0.6=0.5;(2)P(X =4且甲获胜)=P(A 1−A 2A 3A 4)+P(A 1A 2−A 3A 4)=P(A 1−)P(A 2)P(A 3)P(A 4)+P(A 1)P(A 2−)P(A 3)P(A 4)=(0.5×0.4+0.5×0.6)×0.5×0.4=0.1.【解析】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题.(1)设双方10:10平后的第k 个球甲获胜为事件A k (k =1,2,3,…),则P(X =2)=P(A 1A 2)+P(A 1−A 2−)=P(A 1)P(A 2)+P(A 1−)P(A 2−),由此能求出结果;(2)P(X =4且甲获胜)=P(A 1−A 2A 3A 4)+P(A 1A 2−A 3A 4)=P(A 1−)P(A 2)P(A 3)P(A 4)+P(A 1)P(A 2−)P(A 3)P(A 4),由此能求出事件“X =4且甲获胜”的概率.3. (2019年全国III 卷第17题)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A 、B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每组小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】解:(1)C 为事件:“乙离子残留在体内的百分比不低于5.5”, 根据直方图得到P(C)的估计值为0.70.则由频率分布直方图得:{a +0.20+0.15=0.70.05+b +0.15=1−0.7, 解得乙离子残留百分比直方图中a =0.35,b =0.10. (2)估计甲离子残留百分比的平均值为:x 甲−=2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值为:x 乙−=3×0.05+4×0.1+5×0.15+6×0.35+7×0.2+8×0.15=6.【解析】本题主要考查频率、平均值的求法,考查频率分布直方图的性质等基础知识,考查推理能力与计算能力,属于基础题.(1)由频率分布直方图的性质列出方程组,能求出乙离子残留百分比直方图中a ,b .(2)利用频率分布直方图能估计甲离子残留百分比的平均值和乙离子残留百分比的平均值.4. (2018年全国I 卷第20题)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p <1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p 0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 【答案】解:(1)记20件产品中恰有2件不合格品的概率为f(p),则f(p)=C 202p 2(1−p)18,∴f ′(p)=C 202[2p(1−p)18−18p 2(1−p)17]=2C 202p(1−p)17(1−10p),令f ′(p)=0,得p =0.1,当p ∈(0,0.1)时,f ′(p)>0,f(p)单调递增,当p ∈(0.1,1)时,f ′(p)<0,f(p)单调递减, ∴当p =0.1时,f(p)取得极大值,也为最大值,则f(p)的最大值点p 0=0.1. (2)(i)由(1)知p =0.1,令Y 表示余下的180件产品中的不合格品数,依题意知Y ~B(180,0.1), X =20×2+25Y ,即X =40+25Y ,∴E(X)=E(40+25Y)=40+25E(Y)=40+25×180×0.1=490.(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,∵E(X)=490>400,∴应该对余下的产品进行检验.【解析】本题考查概率的求法及应用,考查离散型随机变量的数学期望的求法,考查二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.(1)求出f(p)=C202p2(1−p)18,则f′(p)=C202[2p(1−p)18−18p2(1−p)17]=2C202p(1−p)17(1−10p),利用导数性质能求出f(p)的最大值点p0=0.1.(2)(i)由p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),再由X=20×2+ 25Y,即X=40+25Y,能求出E(X).(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,E(X)=490>400,从而应该对余下的产品进行检验.5.(2018年全国II卷第18题)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:ŷ=−30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:ŷ=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】解:(1)根据模型①:ŷ=−30.4+13.5t,计算t=19时,ŷ=−30.4+13.5×19=226.1;利用这个模型,求出该地区2018年的环境基础设施投资额的预测值是226.1亿元;根据模型②:ŷ=99+17.5t,计算t=9时,ŷ=99+17.5×9=256.5;.利用这个模型,求该地区2018年的环境基础设施投资额的预测值是256.5亿元;(2)模型②得到的预测值更可靠;因为从总体数据看,该地区从2000年到2016年的环境基础设施投资额是逐年上升的,而从2000年到2009年间递增的幅度较小些,从2010年到2016年间递增的幅度较大些,所以,利用模型②的预测值更可靠些.【解析】(1)根据模型①计算t=19时y^的值,根据模型②计算t=9时y^的值即可;(2)从总体数据和2000年到2009年间递增幅度以及2010年到2016年间递增的幅度比较,即可得出模型②的预测值更可靠些.本题考查了线性回归方程的应用问题,是基础题.6.(2018年全国III卷第18题)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),P(K2≥k)0.0500.0100.001k 3.841 6.63510.828【答案】解:(1)根据茎叶图中的数据知,第一种生产方式的工作时间主要集中在72~92之间,第二种生产方式的工作时间主要集中在65~85之间,所以第二种生产方式的工作时间较少些,效率更高;(2)这40名工人完成生产任务所需时间按从小到大的顺序排列后,排在中间的两个数据是79和81,计算它们的中位数为m=79+812=80;由此填写列联表如下:超过m不超过m总计第一种生产方式15520第二种生产方式51520总计202040(3)根据(2)中的列联表,计算K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=40×(15×15−5×5)220×20×20×20=10>6.635,∴能有99%的把握认为两种生产方式的效率有差异.【解析】本题考查了茎叶图、中位数、2×2列联表与独立性检验的应用问题,是基础题.(1)根据茎叶图中的数据判断第二种生产方式的工作时间较少些,效率更高;(2)根据茎叶图中的数据计算它们的中位数,再填写列联表;(3)列联表中的数据计算观测值,对照临界值得出结论.7.(2017年全国I卷第19题)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ−3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ−3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅱ)试说明上述监控生产过程方法的合理性;9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得x=116∑x i16i=1=9.97,s=√116∑(16i=1x i−x)2=√116(∑x i216i=1−16x2)≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数x作为μ的估计值û,用样本标准差s作为σ的估计值σ̂,利用估计值判断是否需对当天的生产过程进行检查?剔除(û−3σ̂,û+3σ̂)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ−3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,√0.008≈0.09.【答案】解:(1)由题可知尺寸落在(μ−3σ,μ+3σ)之内的概率为0.9974,则落在(μ−3σ,μ+3σ)之外的概率为1−0.9974=0.0026,因为P(X=0)=C160×(1−0.9974)0×0.997416≈0.9592,所以P(X≥1)=1−P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)如果生产状态正常,一个零件尺寸在(û−3σ̂,û+3σ̂)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(û−3σ̂,û+3σ̂)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由x=9.97,s≈0.212,得μ的估计值为û=9.97,σ的估计值为σ̂=0.212,由样本数据可以看出一个零件的尺寸在(û−3σ̂,û+3σ̂)之外,因此需对当天的生产过程进行检查.剔除(û−3σ̂,û+3σ̂)之外的数据9.22,剩下的数据的平均数为:1 15(16×9.97−9.22)=10.02,因此μ的估计值为10.02.∑x i216i=1=16×0.2122+16×9.972≈1591.134,剔除(û−3σ̂,û+3σ̂)之外的数据9.22,剩下的数据的样本方差为:115(1591.134−9.222−15×10.022)≈0.008,因此σ的估计值为√0.008≈0.09.【解析】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.(1)通过P(X=0)可求出P(X≥1)=1−P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅱ)由(1)及知落在(μ−3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数x、样本标准差s估计û、σ̂可知(û−3σ̂,û+3σ̂)=(9.334,10.606),进而需剔除(û−3σ̂,û+3σ̂)之外的数据9.22,利用公式计算即得结论.8.(2017年全国II卷第18题)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;附:K2=n(ad−bc)2.(a+b)(c+d)(a+c)(b+d)【答案】解:(1)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,由P(A)=P(BC)=P(B)P(C),则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+ 0.040)×5=0.62,故P(B)的估计值0.62,新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为,则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;∴A发生的概率为0.4092;≈15.705,由15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关;则K2=200(62×66−38×34)2100×100×96×104(3)由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:(0.004+0.020+0.044)×5=0.34,箱产量低于55kg的直方图面积为:(0.004+0.020+0.044+0.068)×5=0.68>0.5,≈52.35(kg),故新养殖法产量的中位数的估计值为:50+0.5−0.340.068新养殖法箱产量的中位数的估计值52.35(kg).【解析】(1)由题意可知:P(A)=P(BC)=P(B)P(C),分布求得发生的频率,即可求得其概率;(2)完成2×2列联表:求得观测值,与参考值比较,即可求得有99%的把握认为箱产量与养殖方法有关:(3)根据频率分布直方图即可求得其中位数.本题考查频率分布直方图的应用,考查独立性检验,考查计算能力,属于中档题.9.(2017年全国III卷第18题)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;。

2007-2019年新课标全国卷理——概率统计.doc

2007-2019年新课标全国卷理——概率统计.doc

2007- 2019 年全国课标卷概率统计试题( 2007 宁夏卷)11.甲、乙、丙三名射箭运动员在某次测试中各射箭20 次,三人的测试成绩如下表甲的成绩乙的成绩丙的成绩环数7 8 9 10 环数 7 8 9 10 环数 7 8 9 10 频数5 5 55频数6 4 46频数 46 64s 1, s 2, s 3 分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有()A. s 3 s 1 s 2B. s 2 s 1 s 3C. s 1 s 2 s 3D. s 2 s 3 s 120.(本小题满分 12 分)如图,面积为S 的正方形 ABCD 中有一个不规则的图形 M ,可 DC按下面方法估计 M 的面积:在正方形 ABCD 中随机投掷 n 个点,若 n个点中有 m 个点落入 M 中,则 M 的面积的估计值为mS ,假设正方Mn 形 ABCD 的边长为 2, M 的面积为 1,并向正方形 ABCD 中随机投掷 10000个点,以 X 表示落入 M 中的点的数目.AB( I )求 X 的均值 EX ;( II )求用以上方法估计 M 的面积 时, M 的面积的估计值与 实际值之差在区间( 0.03,内)的概率.k附表: P(k )C 10000t 0.25t 0.7510000 ttk2424 2425 2574 2575 P(k)0.04030.04230.95700.9590( 2008 年宁夏卷)9、甲、乙、丙 3 位志愿者安排在周一至周五的5 天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人, 并要求甲安排在另外两位前面。

不同的安排方法共有 ()A. 20 种B. 30 种C. 40 种D. 60 种 16、从甲、乙两品种的棉花中各抽测了 25 根棉花的纤维长度(单位: mm ),结果如下:由以上数据设计了如下茎叶图:根据以上茎叶图,对甲乙两品种棉花的纤维长度作比较,写出两个统计结论:① __________________________________________________________________________甲品 271 273 280 285 285 287 292 294 295 301 303 303 307 种:308 310 314 319 323 325 325 328 331 334 337 352 乙品284292295304306307312313315315316318 318种:320 322 322 324 327 329 331 333 336 337 343 356②__________________________________________________________________________甲乙3 1 277 5 5 0 28 45 4 2 29 2 58 7 3 3 1 30 4 6 79 4 0 31 2 3 5 5 6 8 88 5 5 3 32 0 2 2 4 7 97 4 1 33 1 3 6 734 32 35 619、(本小分 12 分) A、B 两个投目的利率分随机量X1和 X2。

近五年(2017-2021)高考数学真题分类汇编10 概率与统计

近五年(2017-2021)高考数学真题分类汇编10 概率与统计

近五年(2017-2021)高考数学真题分类汇编十、概率与统计一、单选题1.(2021·全国(文))为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间2.(2021·全国(理))将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.13B.25C.23D.453.(2021·全国(文))将3个1和2个0随机排成一行,则2个0不相邻的概率为()A.0.3 B.0.5 C.0.6 D.0.84.(2021·全国(理))在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A.79B.2332C.932D.295.(2021·全国(文))在区间10,2⎛⎤⎥⎝⎦随机取1个数,则取到的数小于13的概率为()A.34B.23C.13D.166.(2021·全国)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立7.(2020·天津)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[)[)[)[]5.31,5.33,5.33,5.35,,5.45,5.47,5.47,5.49,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A.10 B.18 C.20 D.36 8.(2020·全国(文))设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为()A.0.01 B.0.1 C.1 D.10 9.(2020·全国(文))如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k–j=3且j–i=4,则称a i,a j,a k为原位大三和弦;若k–j=4且j–i=3,则称a i,a j,a k为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5 B.8 C.10 D.1510.(2020·全国(理))在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====11.(2020·全国(文))设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A .15B .25 C .12D .4512.(2020·全国(理))某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+13.(2019·浙江)设01a <<,则随机变量X 的分布列是:则当a 在()0,1内增大时 A .()D X 增大 B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大14.(2019·全国(文))某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生15.(2019·全国(理))演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差16.(2019·全国(理))我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .111617.(2018·浙江)设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,A .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大D .()D ξ先增大后减小18.(2018·全国(理))某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.319.(2018·全国(理))如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p320.(2018·全国(文))某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半21.(2017·全国(理))某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳22.(2017·山东(文))下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为A .5,5B .3,5C .3,7D .5,723.(2017·全国(文))如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8π C .12D .4π 24.(2017·山东(理))为了研究某班学生的脚长x (单位厘米)和身高y (单位厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆy bx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为 A .160B .163C .166D .17025.(2017·全国(理))如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8π C .12D .4π 26.(2017·天津(文))有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45B .35C .25D .1527.(2017·浙江)已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ28.(2011·湖北(理))如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为A .0.960B .0.864C .0.720D .0.576二、多选题29.(2021·全国)有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c =+(1,2,,),i n c =⋅⋅⋅为非零常数,则( )A .两组样本数据的样本平均数相同B .两组样本数据的样本中位数相同C .两组样本数据的样本标准差相同D .两组样数据的样本极差相同30.(2020·海南)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A .这11天复工指数和复产指数均逐日增加;B .这11天期间,复产指数增量大于复工指数的增量;C .第3天至第11天复工复产指数均超过80%;D .第9天至第11天复产指数增量大于复工指数的增量;31.(2020·海南)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.( )A .若n =1,则H (X )=0B .若n =2,则H (X )随着1p 的增大而增大C .若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y )三、解答题32.(2021·全国)某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关. (1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列; (2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.33.(2021·全国(文))甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++34.(2021·全国(理))某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21S 和22S .(1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥否则不认为有显著提高).35.(2020·海南)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO浓度有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,36.(2020·北京)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案二的概率估计值记为0p ,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)37.(2020·海南)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,38.(2020·江苏)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1·q1和p2·q2;(2)求2p n+q n与2p n-1+q n-1的递推关系式和X n的数学期望E(X n)(用n表示) .39.(2020·全国(文))某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,40.(2020·全国(文))某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?41.(2020·全国(理))甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12,(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.42.(2020·全国(理))某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i i y y =-=∑(,201))800ii ix y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.43.(2019·江苏)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n N *==∈令n nn n M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).44.(2019·北京(文))改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(Ⅰ)估计该校学生中上个月A ,B 两种支付方式都使用的人数;(Ⅱ)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.45.(2019·北京(理))改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.46.(2019·全国(理))为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:P C的估计记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()值为0.70.(1)求乙离子残留百分比直方图中,a b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).47.(2019·天津(文))2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A B C D E F .享受情况如下表,其中“”表示享受,“×”表示不享受.现从这6人中,,,,,随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.48.(2019·天津(理))设甲、乙两位同学上学期间,每天7:30之前到校的概率均为2 3 .假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.49.(2019·全国(文))某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.()分别估计这类企业中产值增长率不低于的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.50.(2019·全国(文))某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.51.(2019·全国(理))11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.52.(2019·全国(理))为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.53.(2018·北京(理))电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系. 54.(2018·北京(文))电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)55.(2018·全国(理))某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,56.(2018·全国(文))某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)57.(2018·全国(文))下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5y t =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.58.(2018·天津(理))已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足..的员工人数,求随机变量X 的分布列与数学期望; (ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.59.(2018·全国(理))某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产。

(做)全国卷历年高考概率与统计及解排列组合真题

(做)全国卷历年高考概率与统计及解排列组合真题

(做)全国卷历年高考概率与统计及解排列组合真题在全国卷历年高考中,概率与统计以及排列组合是常见的考试题型。

掌握这些知识点对于高考非常重要。

本文将为您提供一些关于概率与统计以及排列组合真题的解题方法与技巧。

概率与统计概率概率是描述事件发生可能性的一种数值表示方法。

在高考中,常见的概率问题有:- 确定事件发生的可能性;- 计算事件的概率;- 利用概率性质解决问题。

解题方法:1. 确定样本空间:在概率问题中,首先要确定所有可能的结果组成的集合,即样本空间。

2. 确定事件:确定要求解概率的事件。

3. 计算概率:通过计算事件发生的可能性与总事件数之比,得到事件的概率。

统计统计是通过收集、整理和分析数据以得出结论的方法。

在高考中,常见的统计问题有:- 数据的整理与呈现;- 描述性统计;- 探索性数据分析;- 统计推断。

解题方法:1. 理解题目要求:确保正确理解题目中的统计问题要求。

2. 整理数据:对给定的数据进行整理和分类。

3. 进行计算:根据题目要求使用适当的统计方法进行计算和分析。

4. 得出结论:根据计算结果进行结论推断,并确保符合统计学原则。

排列组合排列组合是指在给定条件下,对元素的排列或组合的不同情况进行计数。

在高考中,常见的排列组合问题有:- 计算排列数;- 计算组合数;- 利用排列组合解决问题。

解题方法:1. 确定问题类型:确定是排列问题还是组合问题。

2. 确定条件:根据题目所给条件,确定元素的范围和约束条件。

3. 应用公式:根据排列和组合的定义和公式进行计算。

4. 解决问题:根据计算结果回答题目要求或解决相关问题。

在备考高考时,熟练掌握概率与统计以及排列组合的知识点,并熟练运用解题方法,可以提高解答概率与统计和排列组合题目的准确性和效率。

以上是关于全国卷历年高考概率与统计以及解排列组合真题的简要介绍。

希望对您备考高考有所帮助!。

全国各地高考数学试题分类汇编11概率与统计文

全国各地高考数学试题分类汇编11概率与统计文

全国各地高考文科数学试题分类汇编11:概率与统计一、选择题 1 .( 高考安徽(文))若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被 录用的概率为 ( )A .23B .25C .35D .910【答案】D 2 .( 高考重庆卷(文))下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[20,30)内的概率为( )A .B .0.4C .D . 【答案】B 3 .( 高考湖南(文))已知事件“在矩形ABCD 的边CD 上随机取一点P,使△APB 的最大边是AB”发生的概率为.21,则ADAB=____ ( )A .12B .14C .32D .74【答案】D 4 .( 高考江西卷(文))集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的概率是( )A .23B .13C .12D .16【答案】C 5 .( 高考湖南(文))某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=___ D .____ ( ) A .9 B .10 C .12 D .13 【答案】D 6 .( 高考山东卷(文))将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为 ( )A .1169B .367 C .36D 677【答案】B 7 .( 高考四川卷(文))某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),,[30,35),[35,40]时,所作的频率分布直方图是0.04组距频率0.05组距频率0.04组距频率0.04组距频率0.010.020.030.010.020.030.040.010.020.030.010.020.03(B)(A)(C)(D)【答案】A8 .( 高考课标Ⅰ卷(文))从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )8 7 79 4 0 1 0 9 1xA.B.Error! Cannot insert return character.C.1 4D.1 6【答案】B9 .(高考陕西卷(文))对一批产品的长度(单位: mm)进行抽样检测, 下图喂检测结果的频率分布直方图.根据标准, 产品长度在区间[20,25)上的为一等品, 在区间[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品. 用频率估计概率, 现从该批产品中随机抽取一件, 则其为二等品的概率为()A.B.0.20 C.D.【答案】D10.(高考江西卷(文))总体编号为01,02,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08 B.07 C.02 D.01【答案】D11.(高考辽宁卷(文))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100,若低于60分的人数是15人,则该班的学生人数是()A.45B.50C.55D.60【答案】B12.四名同学根据各自的样本数据研究变量,x y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y与x负相关且 2.347 6.423y x=-; ② y与x负相关且 3.476 5.648y x=-+;③ y与x正相关且 5.4378.493y x=+; ④ y与x正相关且 4.326 4.578y x=--.其中一定不正确...的结论的序号是 A.①② B.②③ C.③④D. ①④【答案】D13.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为a x b yˆˆˆ+=.若某同学根据上表中前两组数据)0,1(和)2,2(求得的直线方程为a x b y '+'=,则以下结论正确的是( )A.a a b b'>'>ˆ,ˆ B.a a b b '<'>ˆ,ˆ C.a a b b '>'<ˆ,ˆ D.a a b b '<'<ˆ,ˆ 【答案】C二、填空题 14.( 高考浙江卷(文))从三男三女6名学生中任选2名(每名同学被选中的机会相等),则2名都是女同学的概率等于_________.【答案】1515.( 高考湖北卷(文))在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m =__________. 【答案】316.( 高考福建卷(文))利用计算机产生1~0之间的均匀随机数a ,则事件“013<-a ”发生的概率为_______【答案】3117.( 高考重庆卷(文))若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为____________.【答案】2318.( 高考辽宁卷(文))为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为____________. 【答案】10 19.( 上海高考数学试题(文科))某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为________. 【答案】78 20.( 高考湖北卷(文))某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4 则(Ⅰ)平均命中环数为__________; (Ⅱ)命中环数的标准差为__________.【答案】(Ⅰ)7 (Ⅱ)2 21.( 高考课标Ⅱ卷(文))从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.【答案】1522.( 上海高考数学试题(文科))盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是_______(结果用最简分数表示). x 1 2 3 4 5 6 y21334【答案】57三、解答题 23.( 高考江西卷(文))小波已游戏方式决定是去打球、唱歌还是去下棋.游戏规则为以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6(如图)这6个点中任取两点分别为终点得到两个向量,记住这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.(1) 写出数量积X 的所有可能取值 (2) 分别求小波去下棋的概率和不.去唱歌的概率 【答案】解:(1) x 的所有可能取值为-2 ,-1 ,0, 1. (2)数量积为-2的只有25OA OA •一种数量积为-1的有15OA OA •,1624263435,,,,OA OA OA OA OA OA OA OA OA OA •••••六种 数量积为0的有13143646,,,OA OA OA OA OA OA OA OA ••••四种 数量积为1的有12234556,,,OA OA OA OA OA OA OA OA ••••四种 故所有可能的情况共有15种. 所以小波去下棋的概率为1715p = 因为去唱歌的概率为2415p =,所以小波不去唱歌的概率2411111515p p =-=-= 24.( 高考陕西卷(文))有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, 组别 ABCDE人数5010015015050干评委, 其中从组中抽取了6人. 请将其余各组抽取的人数填入下表.组别 ABCDE人数 50 100 150 150 50 抽取人数61号歌手, 现从这两组被抽到的评委中分别任选1人, 求这2人都支持1号歌手的概率. 【答案】解: (Ⅰ) 按相同的比例从不同的组中抽取人数.从B 组100人中抽取6人,即从50人中抽取3人,从100人中抽取6人,从100人中抽取9人. (Ⅱ) A 组抽取的3人中有2人支持1号歌手,则从3人中任选1人,支持支持1号歌手的概率为32· B 组抽取的6人中有2人支持1号歌手,则从6人中任选1人,支持支持1号歌手的概率为62· 现从抽样评委A 组3人,B 组6人中各自任选一人,则这2人都支持1号歌手的概率926232=⋅=P .所以,从A,B 两组抽样评委中,各自任选一人,则这2人都支持1号歌手的概率为92.25.( 高考四川卷(文))某算法的程序框图如图所示,其中输入的变量x 在24,,3,2,1 这24个整数中等可能随机产生. (Ⅰ)分别求出按程序框图正确编程运行时输出y 的值为i 的概率(1,2,3)i P i =;(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为(1,2,3)i i =的频数.以下是甲、乙所作频数统计表的部分数据.当2100n =时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.【答案】解:(Ⅰ)变量x 是在24,,3,2,1 这24个整数中等可能随机产生的一个数,共有24种可能. 当x 从23,21,19,17,15,13,11,9,7,5,3,1这12个数中产生时,输出y 的值为1,故211=P ; 当x 从22,20,16,14,10,8,4,2这8个数中产生时,输出y 的值为2,故312=P ; 当x 从24,18,12,6这4个数中产生时,输出y 的值为3,故613=P . 所以输出y 的值为1的概率为21,输出y 的值为2的概率为31,输出y 的值为3的概率为61. (Ⅱ)当2100n =时,甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率如下,比较频率趋势与概率,可得乙同学所编写程序符合算法要求的可能性较大.26.( 高考辽宁卷(文))现有6道题,其中4道甲类题,2道乙类题,张同学从中任取3道题解答.试求:(I)所取的2道题都是甲类题的概率; (II)所取的2道题不是同一类题的概率.【答案】27.( 高考天津卷(文))某产品的三个质量指标分别为x , y , z , 用综合指标S = x + y + z 评价该产品的等级. 若S ≤4, 则该产品为一等品. 先从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列产品编号A 1 A 2 A 3 A 4 A 5输出y 的值为1的频率 输出y 的值为2的频率 输出y 的值为3的频率甲 21001027 2100376 2100697乙 21001051 2100696 2100353质量指标(x, y, z) (1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1) 产品编号A6A7A8A9A10质量指标(x, y, z) (1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2)(Ⅱ) 在该样品的一等品中, 随机抽取两件产品,(⒈) 用产品编号列出所有可能的结果;(⒉) 设事件B为“在取出的2件产品中, 每件产品的综合指标S都等于4”, 求事件B发生的概率.【答案】28.(高考湖南(文))某人在如图3所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米. (Ⅰ)完成下表,并求所种作物的平均年收获量;(Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为48kg 的概率. 【答案】解: (Ⅰ) 由图知,三角形中共有15个格点,与周围格点的距离不超过1米的格点数都是1个的格点有2个,坐标分别为(4,0),(0,4). 与周围格点的距离不超过1米的格点数都是2个的格点有4个,坐标分别为(0,0), (1,3), (2,2),(3,1). 与周围格点的距离不超过1米的格点数都是3个的格点有6个,坐标分别为(1,0), (2,0), (3,0),(0,1,) ,(0,2),(0,3,).与周围格点的距离不超过1米的格点数都是4个的格点有3个,坐标分别为(1,1), (1,2), (2,1).如下表所示:Y 51 48 45 42 频数2463平均年收获量4615==u .(Ⅱ)在15株中,年收获量至少为48kg 的作物共有2+4=6个. 所以,15株中任选一个,它的年收获量至少为48k 的概率P=4.0156=. 29.( 高考安徽(文)) 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下: 甲 乙 7 4 55 3 3 2 5 3 3 85 5 4 3 3 3 1 0 06 0 6 9 1 1 2 2 3 3 5 8 6 6 2 2 1 1 0 07 0 0 2 2 2 3 3 6 6 9 7 5 4 4 28 1 1 5 5 8 2 09 0(Ⅰ)若甲校高三年级每位学生被抽取的概率为,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12,x x ,估计12x x -的值.【答案】解:(1)30300.056000.05n n =⇒== 255306p == (2)174013504246092670922805290230x +++⨯++⨯++⨯++⨯++⨯==208430254014503176010337010208059030x +++⨯++⨯++⨯++⨯+==2069302120842069150.5303030x x ===--30.( 高考课标Ⅱ卷(文))经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如右图所示.经销商为下一个销售季度购进了130t 该农产品.以X(单位:t≤100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57000元的概率.【答案】31.( 高考广东卷(文))从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量) [80,85)[85,90)[90,95)[95,100)频数(个)5102015(1) 根据频数分布表计算苹果的重量在[90,95)的频率; /频率组距0.0100.0150.0200.0250.030100110120130140150需求量/x t(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率. 【答案】(1)重量在[)90,95的频率200.450==; (2)若采用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,则重量在[)80,85的个数541515=⨯=+; (3)设在[)80,85中抽取的一个苹果为x ,在[)95,100中抽取的三个苹果分别为,,a b c ,从抽出的4个苹果中,任取2个共有(,),(,),(,),(,),(,),(,)x a x b x c a b a c b c 6种情况,其中符合“重量在[)80,85和[)95,100中各有一个”的情况共有(,),(,),(,)x a x b x c 种;设“抽出的4个苹果中,任取2个,求重量在[)80,85和[)95,100中各有一个”为事件A ,则事件A 的概率31()62P A ==;32.( 高考山东卷(文))某小组共有A B C D E 、、、、五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2) 如下表所示:A B C D E 身高 体重指标(Ⅰ)从该小组身高低于的同学中任选2人,求选到的2人身高都在以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在以上且体重指标都在[,中的概率 【答案】33.(高考北京卷(文))下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【答案】解:(I)在3月1日至3月13日这13天中,1日.2日.3日.7日.12日.13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(II)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气质量重度污染的概率为413.(III)从3月5日开始连续三天的空气质量指数方差最大.34.(高考福建卷(文))某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附表:【答案】解:(Ⅰ)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名 所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有600.053⨯=(人), 记为1A ,2A ,3A ;25周岁以下组工人有400.052⨯=(人),记为1B ,2B 从中随机抽取2名工人,所有可能的结果共有10种,他们是:12(,)A A ,13(,)A A ,23(,)A A ,11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B 其中,至少有名“25周岁以下组”工人的可能结果共有7种,它们是:11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B .故所求的概率:710P =(Ⅱ)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手:生产能手 非生产能手 合计25周岁以上组 15 45 60 25周岁以下组 15 25 40合计30 70 100 所以得:222()100(15251545)251.79()()()()6040307014n ad bc K a b c d a c b d -⨯⨯-⨯===≈++++⨯⨯⨯因为1.79 2.706<,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”35.( 高考大纲卷(文))甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I)求第4局甲当裁判的概率;(II)求前4局中乙恰好当1次裁判概率. 【答案】(Ⅰ)记1A 表示事件“第2局结果为甲胜”,2A 表示事件“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则12=A A A •.12121()=P()()()4P A A A P A P A •==. (Ⅱ)记1B 表示事件“第1局结果为乙胜”,2B 表示事件“第2局乙参加比赛时,结果为乙胜”,3B 表示事件“第3局乙参加比赛时,结果为乙胜”,B 表示事件“前4局中恰好当1次裁判”. 则1312312B B B B B B B B =•+••+•.1312312()()P B P B B B B B B B =•+••+• 1312312()()()P B B P B B B P B B =•+••+•1312312()()()()()()()P B P B P B P B P B P B P B =•+••+•111484=++ 58=. 36.( 高考课标Ⅰ卷(文))(本小题满分共12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ),试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间: 0.6 2.5服用B 药的20位患者日平均增加的睡眠时间:3.2 1.6(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (3)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【答案】(本小题满分共12分)(1) 设A 药观测数据的平均数为 ,B 药观测数据的平均数为 ,又观测结果可得120x=++++++++++++++++++=, 1(0.50.50.60.80.9 1.1 1.2 1.2 1.3 1.4 1.6 1.7 1.8 1.9 2.1202.4 2.5 2.6 2.73.2 1.6y =+++++++++++++++++++= 由以上计算结果可得x >y,因此可看出A 药的疗效更好(2)由观测结果可绘制如下茎叶图: A 药 B 药 6 0. 5 5 6 8 9 8 5 5 2 21. 1 2 2 3 4 6 7 8 9 9 8 7 7 6 5 4 3 3 22. 1 4 5 6 7 5 2 1 03.2从以上茎叶图可以看出,A 药疗效的试验结果有的叶集中在茎上,而B 药疗效的试验结果有10的叶集中在茎0,1上,由此可看出A 药的疗效更好.37.(本小题满分13分,(Ⅰ)小问9分,(Ⅱ)、(Ⅲ)小问各2分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y (单位:千元)的数据资料,算得10180ii x==∑,10120i i y ==∑,101184i i i x y ==∑,1021720i i x ==∑.(Ⅰ)求家庭的月储蓄y 对月收入x 的线性回归方程y bx a =+; (Ⅱ)判断变量x 与y 之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y bx a =+中,1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-,其中x ,y 为样本平均值,线性回归方程也可写为y bx a =+.。

近五年全国卷计数原理、概率统计考点与真题明细

近五年全国卷计数原理、概率统计考点与真题明细
2012-2017全国课标卷计数原理、概率统计试题考点分析(理科)
内容 考纲要求
12年 13年 13年 14年 14年2 15年 15年 1卷 2卷 1卷 1卷 2卷 卷
计数 理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利 原理 用两个原理解决一些简单的实际问题 排列 选修 组合 理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题 理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题 2 2 9 5 5 13 13 13 10 10 15
理科)
16年1 16年2 16年3 17年1 17年 17年 2卷 3卷 卷 卷 卷 卷
5 5 14 6 6
6 6 4 4
4
10
2
19
18
4
18
3
18
19
19
19 19 18 19
13
18
18
5
随机 了解随机数的意义,能运用模拟方法估计概率 数与 几何 概型 了解几何概型的意义 随机 抽样 理解随机抽样的必要性和重要性 会用简单随机抽样的方法从总体中抽取样本;了解分层抽样和系统抽样方法 了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶 图,体会它们的特点 用样 必修 本估 统计式定 会利用二项式定理解决与二项展开式有关的简单问题 理 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及概率与频率的 事件 区别 与概 率 了解两个互斥事件的概率加法公式 必修 古典 概率 概型 理解古典概型及其概率计算公式 会计算一些随机事件所含的基本事件数及事件发生的概率
14
理解样本数据标准差的意义和作用,会计算数据标准差 用样 必修 本估 能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理解释 统计 计总 体 会用样本的频率分布估计总体分布,会用样本的数字特征估计总体的数字特征,理 解用样本估计总体的思想 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题 变量 会做两个有关联变量的数据散点图,并利用散点图认识变量间的相关关 的相 关性 了解最小二乘法的思想,能根据给出的线性回归方程系数建立线性回归方程(线性 回归方程系数公式不要求记忆) 理解取有限个值的离散型随机变量及其分布列的概念,认识分布列刻画随机变量现 象的重要性,会求某些取有限个值的离散型随机变量的分布列 了解超几何分布,并能进行简单应用 选修概率 了解条件概率的概念,了解两个事件相互独立的概念;理解n次独立重复试验模型 及二项分布,并能解决一些简单问题 理解取有限个值的离散型随机变量的均值、方差的概念,会求简单离散型随机变量 的均值、方差,并能利用离散型随机变量的均值、方差概念解决一些实际问题 借助直观直方图认识正态分布曲线的特点及曲线所表示的意义 选修统计 了解回归分析的思想、方法及其简单应用 了解独立性检验的思想、方法及其初步应用 15 18 15 19 19 19 18 18 19 5 4 19 19 19

历年(2020-2023)全国高考数学真题分类(概率统计)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(概率统计)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(概率统计)汇编【2023年真题】1.(2023·新课标II 卷 第3题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同的抽样结果共有 A. 4515400200C C ⋅种B. 2040400200C C ⋅种C. 3030400200C C ⋅种D. 4020400200C C ⋅种2. (2023·新课标I 卷 第9题)(多选)一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则( ) A. 2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数 B. 2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数 C. 2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差 D. 2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差3.(2023·新课标II 卷 第12题)(多选)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1;α-发送1时,收到0的概率为(01)ββ<<,收到1的概率为1.β-考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次;三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A. 采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为2(1)(1)αβ--B. 采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-C. 采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-D. 当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率4. (2023·新课标I 卷 第21题)甲乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8,由抽签确定第1次投篮的人选,第一次投篮的人是甲,乙的概率各为0.5.(1)求第2次投篮的人是乙的概率. (2)求第i 次投篮的人是甲的概率.(3)已知:若随机变量i X 服从两点分布,且111(1)1(0)P X P X q ==-==,1i =,2, ,n ,则11().nni i i i E X q ===∑∑记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求().E Y5.(2023·新课标II 卷 第19题)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为().q c 假设数据在组内均匀分布.以事件发生的频率作为相应事件发生的概率.(1)当漏诊率()0.5%p c =时,求临界值c 和误诊率()q c ;(2)设函数()()().f c p c q c =+当[95,105]c ∈时,求()f c 的解析式,并求()f c 在区间[95,105]的最小值.【2022年真题】6.(2022·新高考I 卷 第5题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A.16B.13C.12D.237.(2022·新高考II 卷 第13题)随机变量X 服从正态分布2(2,)N σ,若(2 2.5)0.36P x <=…,则( 2.5)P X >=__________.8.(2022·新高考I 卷 第20题)一支医疗团队研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好 病例组 40 60 对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”,(|)(|)P B A P B A 与(|)(|)P B A P B A 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为.R()i 证明:(|)(|.;(|)(|)P A B P A B R P A B P A B =()ii 利用该调查数据,给出(|)P A B ,(|)P A B 的估计值,并利用()i 的结果给出R 的估计值.附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k …0.050 0.010 0.001 k 3.8416.63510.8289.(2022·新高考II 卷 第19题)在某地区进行某种疾病调查,随机调查了100位这种疾病患者的年龄,得到如下样本数据频率分布直方图.(1)估计该地区这种疾病患者的平均年龄;(同一组数据用该区间的中点值作代表) (2)估计该地区以为这种疾病患者年龄位于区间[20,70)的概率;(3)已知该地区这种疾病患者的患病率为0.1%,该地区年龄位于区间[40,50)的人口数占该地区总人口数的16%,从该地区选出1人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率(精确到0.0001).【2021年真题】10.(2021·新高考I 卷 第8题)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球、甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立11.(2021·新高考II 卷 第6题)某物理量的测量结果服从正态分布,下列结论中不正确的是( )A. σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B. σ越小,该物理量在一次测量中大于10的概率为0.5C. σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D. σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等12.(2021·新高考I 卷 第9题)(多选)有一组样本数据12,,,n x x x ,由这组数据得到新样本数据12,,,n y y y ,其中(1,2,,)i i y x c i n =+= ,c 为非零常数,则A. 两组样本数据的样本平均数相同B. 两组样本数据的样本中位数相同C. 两组样本数据的样本标准差相同D. 两组样本数据的样本极差相同13.(2021·新高考II 卷 第9题)(多选)下列统计量中,能度量样本12,,,n x x x 的离散程度的是( ) A. 样本12,,,n x x x 的标准差 B. 样本12,,,n x x x 的中位数 C. 样本12,,,n x x x 的极差D. 样本12,,,n x x x 的平均数14.(2021·新高考I 卷 第18题)某学校组织“一带一路”知识竞赛,有A ,B 两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分。

统计、概率-全国各地文科数学高考试题汇总 知识点总结(近5年)

统计、概率-全国各地文科数学高考试题汇总 知识点总结(近5年)

全国各地文科数学(统计、概率)高考试题汇总(近5年)知识点归纳1 事件的定义:随机事件;必然事件;不可能事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率mn总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3、等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件,其事件A 的概率()mP A n=4、互斥事件的概念:不可能同时发生的个事件叫做互斥事件 A 、B 互斥,即事件A 、B 不可能同时发生,这时P(A •B)=0)P(A+B)=P (A )+ P(B)。

若事件A 与B 不是互斥,运用P (A+B )=1-P (A B •)进行计算5、对立事件的概念:事件A和事件B 必有一个发生的互斥事件 A 、B 对立,即事件A 、B 不可能同时发生,但A 、B 中必然有一个发生,()()A P A p -=1 6、事件的和的意义:事件A 、B 的和记作A +B ,表示事件A 、B 至少有一个发生 当A 、B 为互斥事件时,事件A +B 是由“A 发生而B 不发生”以及“B 发生而A 不发生”构成的, 因此当A 和B 互斥时,事件A +B 的概率满足加法公式:P (A +B )=P (A )+P (B )(A 、B 互斥),且有P (A +A )=P (A )+P (A )=17、相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅8、独立重复试验的定义:在同样条件下进行的各次之间相互独立的一种试验独立重复试验的概率公式:如果在一次试验中某事件发生的概率是p,那么在n 次独立重复试验中这个事恰好发生K 次的概率n k k n n P P C k P --=)1()( 表示事件A在n 次独立重复试验中恰好发生了.....k .次.的概率 9、解答概率问题的三个步骤:(1)确定事件的性质:事件是等可能,互斥,独立还是重复独立事件; (2)判断事件的运算:所求事件是由哪些基本事件通过怎样运算而得;(3)运用公式计算其事件的概率:等可能事件:()mP A n=,独立事件:()()()P A B P A P B ⋅=⋅互斥事件: P (A +B )=P (A )+P (B ),对立事件:P (A )=1-P (A )2011山东18.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女。

2024全国卷高考数学真题分类汇编学生版6.概率统计

2024全国卷高考数学真题分类汇编学生版6.概率统计

6.概率统计1.(2024年新课标全国Ⅰ卷)为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈) A .(2)0.2P X >> B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><2.(2024年新课标全国Ⅰ卷)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为 . 3.(2024年新课标全国Ⅱ卷)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表据表中数据,结论中正确的是( )A .100块稻田亩产量的中位数小于1050kgB .100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C .100块稻田亩产量的极差介于200kg 至300kg 之间D .100块稻田亩产量的平均值介于900kg 至1000kg 之间4.(2024年新课标全国Ⅱ卷)在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 .5.(2024年高考全国甲卷数学(理))1013x⎛⎫+⎪⎝⎭的展开式中,各项系数的最大值是.6.(2024年高考全国甲卷数学(理))有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m为前两次取出的球上数字的平均值,n为取出的三个球上数字的平均值,则m与n差的绝对值不超过12的概率是.7.(2024年高考全国甲卷数学(理))某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:(1)填写如下列联表:能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++8.(2024年新课标全国Ⅱ卷)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛? (ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?。

排列组合与概率统计(教师版详)-新高考卷概率与统计热门考题汇编

排列组合与概率统计(教师版详)-新高考卷概率与统计热门考题汇编

2023届新高考卷概率与统计热门考题汇编第一部分:基本原理和重要概念一、分类加法计数原理和分步乘法计数原理分类加法计数原理分步乘法计数原理相同点用来计算完成一件事的方法种类不同点分类完成,类类相加分步完成,步步相乘每类方案中的每一种方法都能独立完成这件事每步依次完成才算完成这件事(每步中的一种方法不能独立完成这件事)注意点类类独立,不重不漏步步相依,步骤完整二、常见的一些排列问题及其解决方法直接法把符合条件的排列数直接列式计算优先法优先安排特殊元素或特殊位置捆绑法把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中定序问题除法处理对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列间接法正难则反,等价转化的方法三、分组分配问题(1)分组问题属于“组合”问题,常见的分组问题有三种:①完全均匀分组,每组的元素个数均相等;②部分均匀分组,应注意不要重复,有n组均匀,最后必须除以n!;③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以分组后再分配.四、二项式定理(1)一般地,对于任意正整数,都有:(a+b)n=C0n a n+C1n a n-1b+⋯+C r n a n-r b r+⋯+C n n b n(n∈N∗),这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做的二项展开式.式中的C r n a n-r b r做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:T r+1=C r n a n-r b r,其中的系数C rn (r =0,1,2,⋯,n )叫做二项式系数,2.(2)两个常用的二项展开式:①(a -b )n =C 0n a n +C 1n a n -1b +L +-1 r C r n a n -r b r +L +-1 n C n n b n (n ∈N ∗),②1+x n =1+C 1n x +C 2n x 2+L +C r n x r +L +x n(3)二项式系数的性质(杨辉三角形)①每一行两端都是1,即C 0n =C n n ;其余每个数都等于它“肩上”两个数的和,即C m n +1=C m -1n +C m n .②对称性每一行中,与首末两端“等距离”的两个二项式系数相等,即C m n =C n -m n .③二项式系数和令a =b =1,则二项式系数的和为C 0n +C 1n +C 2n +⋯+C r n +⋯+C n n =2n ,变形式C 1n +C 2n +⋯+C r n +⋯+C n n =2n -1.④奇数项的二项式系数和等于偶数项的二项式系数和在二项式定理中,令a =1,b =-1,则C 0n -C 1n +C 2n -C 3n +⋯+(-1)n C n n =(1-1)n =0,从而得到:C 0n +C 2n +C 4n ⋅⋅⋅+C 2r n +⋅⋅⋅=C 1n +C 3n +⋯+C 2r +1n +⋅⋅⋅=12⋅2n =2n -1.⑤最大值:如果二项式的幂指数n 是偶数,则中间一项T n 2+1的二项式系数C n 2n 最大;如果二项式的幂指数n 是奇数,则中间两项T n +12,T n +12+1的二项式系数C n -12n ,C n +12n相等且最大.⑥求(a +bx )n 展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别为A 1,A 2,⋅⋅⋅,A n +1,设第r +1项系数最大,应有A r +1≥A rA r +1≥A r +2 ,从而解出r 来.(4)二项式系数和的计算与赋值五、二项分布1.n 重伯努利试验的概念只包含两个可能结果的试验叫做伯努利试验,将一个伯努利试验独立地重复进行n 次所组成的随机试验称为n 重伯努利试验.2.n 重伯努利试验具有如下共同特征(1)同一个伯努利试验重复做n 次;(2)各次试验的结果相互独立.3.二项分布一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为:P (X =k )=C k n p k(1−p )n −k ,k =0,1,2,⋅⋅⋅n ,如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从二项分布,记作X ~B (n ,p )4.一般地,可以证明:如果X ~B (n ,p ),那么EX =np ,DX =np (1−p ).六、超几何分布1.超几何分布模型是一种不放回抽样,一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=C k M C n -kN -MC nN,k =m ,m +1,m +2,⋯,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max {0,n -N +M },r =min {n ,M }.如果随机变量X 的分布列具有上式的形式,那么称随机变量X 服从超几何分布.2.超几何分布的期望E (X )==np (p 为N 件产品的次品率).七、二项分布与超几何分布的区别1.看总体数是否给出,未给出或给出总体数较大一般考查二项分布,此时往往会出现重要的题眼“将频率视为概率”.2.看一次抽取抽中“次品”概率是否给出,若给出或可求出一般考查二项分布.3.看一次抽取的结果是否只有两个结果,若只有两个对立的结果A 或A ,一般考查二项分布.4.看抽样方法,如果是有放回抽样,一定是二项分布;若是无放回抽样,需要考虑总体数再确定.5.看每一次抽样试验中,事件是否独立,事件发生概率是否不变,若事件独立且概率不变,一定考查二项分布,这也是判断二项分布的最根本依据.6.把握住超几何分布与二项分布在定义叙述中的区别,超几何分布多与分层抽样结合,出现“先抽,再抽”的题干信息.7.二项分布一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为:P (X =k )=C k n p k(1−p )n −k ,k =0,1,2,⋅⋅⋅n ,如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从二项分布,记作X ~B (n ,p )8.一般地,可以证明:如果X ~B (n ,p ),那么EX =np ,DX =np (1−p ).八、二项分布的两类最值(1)当p 给定时,可得到函数f (k )=C k n p k (1−p )n −k ,k =0,1,2,⋅⋅⋅n ,这个是数列的最值问题.p kp k −1=C n k p k (1−p )n −k C k −1n p k −1(1−p )n −k +1=(n −k +1)p k (1−p )=k (1−p )+(n +1)p −k k (1−p )=1+(n +1)p −k k (1−p ).分析:当k <(n +1)p 时,p k >p k −1,p k 随k 值的增加而增加;当k >(n +1)p 时,p k <p k −1,p k 随k 值的增加而减少.如果(n +1)p 为正整数,当k =(n +1)p 时,p k =p k −1,此时这两项概率均为最大值.如果(n +1)p 为非整数,而k 取(n +1)p 的整数部分,则p k 是唯一的最大值.注:在二项分布中,若数学期望为整数,则当随机变量k 等于期望时,概率最大.(2)当k 给定时,可得到函数f (p )=C k n p k(1−p )n −k ,p ∈(0,1),这个是函数的最值问题,这可以用导数求函数最值与最值点.分析:f '(p )=C k n kp k −1(1−p )n −k −p k (n −k )(1−p )n −k −1=C k n p k −1(1−p )n −k −1k (1−p )−(n −k )p =C k n p k −1(1−p )n −k −1(k −np ).当k =1,2,⋯,n −1时,由于当p <k n 时,f '(p )>0,f (p )单调递增,当p >kn时,f '(p )<0,f (p )单调递减,故当p =k n 时,f (p )取得最大值,f (p )max =f kn.又当p →0,f (p )→1,当p →0时,f (p )→0,从而f (p )无最小值.九、复杂概率计算(1)善于引入变量表示事件:可用“字母+变量角标”的形式表示事件“第几局胜利”,例如:A i 表示“第i 局比赛胜利”,则A i表示“第i 局比赛失败”.(2)理解事件中常见词语的含义:A ,B 中至少有一个发生的事件为A ∪B ;A ,B 都发生的事件为AB ;A ,B 都不发生的事件为;A ,B 恰有一个发生的事件为A ∪B ;A ,B 至多一个发生的事件为A ∪B ∪.(3)善于“正难则反”求概率:若所求事件含情况较多,可以考虑求对立事件的概率,再用P A =1-P A解出所求事件概率.十、条件概率1.条件概率定义一般地,设A ,B 为两个随机事件,且P (A )>0,我们称P (B |A )=P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率,简称条件概率.可以看到,P (B |A )的计算,亦可理解为在样本空间A 中,计算AB 的概率. 于是就得到计算条件概率的第二种途,即P (B |A )=n (AB )n (A )=n AB n Ω n A n Ω=P ABP A.特别地,当P (B |A )=P (B )时,即A ,B 相互独立,则P (AB )=P (A )P (B ).2.条件概率的性质设P (A )>0,全样本空间定义为Ω,则(1)P Ω|A =1;(2)如果B 与C 是两个互斥事件,则P ((B ∪C )|A )=P B |A +P C |A ;(3)设事件A 和B 互为对立事件,则P (B∣A )=1-P (B ∣A ).十一、全概率公式与贝叶斯公式1.在全概率的实际问题中我们经常会碰到一些较为复杂的概率计算,这时,我们可以用“化整为零”的思想将它们分解为一些较为容易的情况分别进行考虑一般地,设A 1,A 2,⋯,A n 是一组两两互斥的事件,A 1∪A 2∪⋯∪A n =Ω,且P A i >0,i =1,2,⋯,n ,则对任意的事件B ⊆Ω,有P (B )=ni =1P A i P B ∣A i .我们称上面的公式为全概率公式,全概率公式是概率论中最基本的公式之一.2.贝叶斯公式设A 1,A 2,⋯,A n 是一组两两互斥的事件,A 1∪A 2∪⋯∪A n =Ω,且P A i >0,i =1,2,⋯,n ,则对任意事件B ⊆Ω,P B >0,有P A i ∣B =P A i P B ∣A iP (B )=P A i P B ∣A ink =1P A k P B ∣A k,i =1,2,⋯,n .在贝叶斯公式中,P A i 和P A i |B 分别称为先验概率和后验概率.十二、一维随机游走与马尔科夫链1.转移概率:对于有限状态集合S ,定义:P i ⋅j =P X n +1=j X n =i 为从状态i 到状态j 的转移概率.2.马尔可夫链:若P X n +1=i X n =i ,X n -1=i n -1,⋅⋅⋅,X 0=i 0=P X n +1=j X n =i =P ij ,即未来状态X n +1只受当前状态X n 的影响,与之前的X n -1,X n -2,⋅⋅⋅,X 0无关.3.一维随机游走模型.设数轴上一个点,它的位置只能位于整点处,在时刻t =0时,位于点x =i i ∈N + ,下一个时刻,它将以概率α或者βα∈0,1 ,α+β=1 向左或者向右平移一个单位. 若记状态X t =i 表示:在时刻t 该点位于位置x =i i ∈N + ,那么由全概率公式可得:P X t +1=i =P X t =i -1 ⋅P X t +1=i X t =i -1 +P X t =i +1 ⋅P X t +1=i X t =i +1 另一方面,由于P X t +1=i X t =i -1 =β,P X t +1=i X t =i +1 =α,代入上式可得:P i =α⋅P i +1+β⋅P i -1进一步,我们假设在x =0与x =m m >0,m ∈N + 处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,P 0=0,P m =1随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a ,原地不动,其概率为b ,向右平移一个单位,其概率为c ,那么根据全概率公式可得:P i =a ⋅P i +1+b ⋅P i +c ⋅P i -1有了这样的理论分析,下面我们看全概率公式及以为随机游走模型在2019年全国1卷中的应用.十三、统计1.线性回归方程与最小二乘法(1)回归直线方程过样本点的中心(x ,y ),是回归直线方程最常用的一个特征(2)我们将y =b x +a称为Y 关于x 的线性回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线.这种求经验回归方程的方法叫做最小二乘法,求得的b ,a叫做b ,a 的最小二乘估计(leastsquaresestimate ),其中b =ni =1x i -xy i -y n i =1x i -x 2 =ni =1x i y i -nx ⋅y ni =1x 2i -nx2a =y -b x .(3)残差的概念对于响应变量Y ,通过观测得到的数据称为观测值,通过经验回归方程得到的y称为预测值,观测值减去预测值称为残差.残差是随机误差的估计结果,通过残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据等,这方面工作称为残差分析.(4)刻画回归效果的方式(i )残差图法:作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图.若残差点比较均匀地落在水平的带状区域内,带状区域越窄,则说明拟合效果越好.(ii )残差平方和法:残差平方和ni =1y i -y i 2 ,残差平方和越小,模型拟合效果越好,残差平方和越大,模型拟合效果越差.(iii )利用R 2刻画回归效果:决定系数R 2是度量模型拟合效果的一种指标,在线性模型中,它代表解释变量客立预报变量的能力.R 2=1ni =1y i -yi 2ni =1y i -y2,R 2越大,即拟合效果越好,R 2越小,模型拟合效果越差.第二部分.试题汇编一、单选题2.(福建省福州市普通高中2023届高三毕业班质量检测(二检))若二项式3x 2+1x2n展开式中存在常数项,则正整数n 可以是()A.3B.5C.6D.7【详解】二项式3x 2+1x2n展开式的通项为T r +1=C r n(3x 2)n -r1x 2r =3n -r C r n x 2n -4r,令2n -4r =0,解得:r =n2,又因为0≤r ≤n 且r 为整数,所以n 为2的倍数,所以n =6,故选:C .3.(福建省福州市普通高中2023届高三毕业班质量检测(二检))为培养学生“爱读书、读好书、普读书”的良好习惯,某校创建了人文社科类、文学类、自然科学类三个读书社团.甲、乙两位同学各自参加其中一个社团,每位同学参加各个社团的可能性相同,则这两位同学恰好参加同一个社团的概率为()A.13B.12C.23D.34【详解】记人文社科类、文学类、自然科学类三个读书社团分别为a ,b ,c ,则甲、乙两位同学各自参加其中一个社团的基本事件有a ,a ,a ,b ,a ,c ,b ,a ,b ,b ,b ,c ,c ,a ,c ,b ,c ,c 共9种,而这两位同学恰好参加同一个社团包含的基本事件有a ,a ,b ,b ,c ,c 共3种,故这两位同学恰好参加同一个社团的概率P =39=13.故选:A 4.(福建省厦门市2023届高三下学期第二次质量检测)ax +y 5的展开式中x 2y 3项的系数等于80,则实数a =()A.2B.±2C.22D.±22【详解】展开式的通项公式是T r +1=C r 5⋅ax 5-r ⋅y r ,当r =3时,x 2y 3项的系数为C 35⋅a 2=80,解得:a =±2 2.故选:D5.(福建省厦门市2023届高三下学期第二次质量检测)厦门山海健康步道云海线全长约23公里,起于东渡邮轮广场,终于观音山沙滩,沿线申联贸鸟湖、狐尾山、仙岳山、园山、薛岭山、虎头山、金山、湖边水库、五缘湾、虎仔山、观音山等“八山三水”.市民甲计划从“八山三水”这11个景点中随机选取相邻的3个游览,则选取的景点中有“水”的概率为()A.13B.49C.59D.109165【详解】11个景点随机选取相邻的3个游览,共有9种情况,选取景点中有“水”的对立事件是在狐尾山、仙岳山、园山、薛岭山、虎头山、金山中选取3个相邻的,共有4种情况,则其概率P =49,则11个景点中随机选取相邻的3个游览,则选取的景点中有“水”的概率P =1-49=59.故选:C 6.(广东省2023届高考一模)如图,在两行三列的网格中放入标有数字1,2,3,4,5,6的六张卡片,每格只放一张卡片,则“只有中间一列两个数字之和为5”的不同的排法有()A.96种B.64种C.32种D.16种【详解】根据题意,分3步进行,第一步,要求“只有中间一列两个数字之和为5”,则中间的数字只能为两组数1,4或2,3中的一组,共有2A 22=4种排法;第二步,排第一步中剩余的一组数,共有A 14A 12=8种排法;第三步,排数字5和6,共有A 22=2种排法;由分步计数原理知,共有不同的排法种数为4×8×2=64.故选:B .7.(广东省佛山市2023届高三教学质量检测(一))已知事件A ,B ,C 的概率均不为0,则P A =P B的充要条件是()A.P A ∪B =P A +P BB.P A ∪C =P B ∪CC.P AB =P ABD.P AC =P BC【详解】解:对于A :因为P A ∪B =P A +P B -P A ∩B ,由P A ∪B =P A +P B ,只能得到P A ∩B =0,并不能得到P A =P B ,故A 错误;对于B :因为P A ∪C =P A +P C -P A ∩C ,P B ∪C =P B +P C -P B ∩C ,由P A ∪C =P B ∪C ,只能得到P A -P A ∩C =P B -P B ∩C ,由于不能确定A ,B ,C 是否相互独立,故无法确定P A =P B ,故B 错误;对于C :因为P AB =P A -P AB ,P AB =P B -P AB ,又P AB =P AB ,所以P A =P B ,故C 正确;对于D :由于不能确定A ,B ,C 是否相互独立,若A ,B ,C 相互独立,则P AC =P A P C ,P BC =P B P C ,则由P AC =P BC 可得P A =P B ,故由P AC =P BC 无法确定P A =P B ,故D 错误;故选:C8.(广东省广州市2023届高三综合测试(一))“回文”是古今中外都有的一种修辞手法,如“我为人人,人人为我”等,数学上具有这样特征的一类数称为“回文数”、“回文数”是指从左到右与从右到左读都一样的正整数,如121,241142等,在所有五位正整数中,有且仅有两位数字是奇数的“回文数”共有()A.100个B.125个C.225个D.250个【详解】依题意,五位正整数中的“回文数”具有:万位与个位数字相同,且不能为0;千位与十位数字相同,求有且仅有两位数字是奇数的“回文数”的个数有两类办法:最多1个0,取奇数字有A15种,取能重复的偶数字有A14种,它们排入数位有A22种,取偶数字占百位有A15种,不同“回文数”的个数是A15A14A22A15=200个,最少2个0,取奇数字有A15种,占万位和个位,两个0占位有1种,取偶数字占百位有A15种,不同“回文数”的个数是A15A15=25个,由分类加法计算原理知,在所有五位正整数中,有且仅有两位数字是奇数的“回文数”共有200+25=225个.故选:C9.(广东省深圳市2023届高三第一次调研)安排5名大学生到三家企业实习,每名大学生只去一家企业,每家企业至少安排1名大学生,则大学生甲、乙到同一家企业实习的概率为()A.15B.310C.325D.625【详解】5名大学生分三组,每组至少一人,有两种情形,分别为2,2,1人或3,1,1人;当分为3,1,1人时,有C35A33=60种实习方案,当分为2,2,1人时,有C25C23A22⋅A33=90种实习方案,即共有60+90=150种实习方案,其中甲、乙到同一家企业实习的情况有C13A33+C23A33=36种,故大学生甲、乙到同一家企业实习的概率为36150=625,故选:D.10.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)一组数据按照从小到大的顺序排列为1,2,3,5,6,8,记这组数据的上四分位数为n,则二项式2x-1xn展开式的常数项为()A.-160B.60C.120D.240【详解】因为6×75%=4.5,所以n=6,所以2x-1 x6展开式的通项为:T r+1=C r62x6-r-1 xr=C r6⋅26-r⋅-1 r⋅x6-32r,令6-32r=0得:r=4,所以展开式的常数项为C46×22×-14=60,故选:B.11.(江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模)已知x3+2x2n的展开式中各项系数和为243,则展开式中常数项为()A.60B.80C.100D.120【详解】当x=1时,3n=243,解得n=5,则x3+2 x2n的展开式第r+1项T r+1=C r5(x3)5-r2x2 r=C r5 x15-3r2r x-2r=C r52r x15-5r,令15-5r=0,解得r=3,所以C3523=10×8=80,故选:B12.(江苏省南京市、盐城市2023届高三下学期一模)某种品牌手机的电池使用寿命X(单位:年)服从正态分布N 4,σ2 σ>0 ,且使用寿命不少于2年的概率为0.9,则该品牌手机电池至少使用6年的概率为()A.0.9B.0.7C.0.3D.0.1【详解】由题得:P x ≥2 =0.9,故P x <2 =0.1,因为6+22=4,所以根据对称性得:P x ≥6 =P x <2 =0.1.故选:D .13.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一))“绿水青山,就是金山银山”,随着我国的生态环境越来越好,外出旅游的人越来越多.现有两位游客慕名来江苏旅游,他们分别从“太湖鼋头渚、苏州拙政园、镇江金山寺、常州恐龙园、南京夫子庙、扬州瘦西湖”这6个景点中随机选择1个景点游玩.记事件A 为“两位游客中至少有一人选择太湖鼋头渚”,事件B 为“两位游客选择的景点不同”,则P B A =()A.79B.89C.911D.1011【详解】由题可得P A =6×6-5×56×6=1136,P AB =2×56×6=518,所以P B A =P ABP A=5181136=1011.故选:D .14.(2023年湖北省八市高三(3月)联考)甲、乙、丙、丁、戊5名志愿者参加新冠疫情防控志愿者活动,现有A ,B ,C 三个小区可供选择,每个志愿者只能选其中一个小区.则每个小区至少有一名志愿者,且甲不在A 小区的概率为()A.193243B.100243C.23D.59【详解】首先求所有可能情况,5个人去3个地方,共有35=243种情况,再计算5个人去3个地方,且每个地方至少有一个人去,5人被分为3,1,1或2,2,1当5人被分为3,1,1时,情况数为C 35×A 33=60;当5人被分为2,2,1时,情况数为C 15×C 24A 22×A 33=90;所以共有60+90=150.由于所求甲不去A ,情况数较多,反向思考,求甲去A 的情况数,最后用总数减即可,当5人被分为3,1,1时,且甲去A ,甲若为1,则C 34×A 22=8,甲若为3,则C 24×A 22=12,共计8+12=20种,当5人被分为2,2,1时,且甲去A ,甲若为1,则C 24A 22×A 22=6,甲若为2,则C 14×C 13×A 22=24,共计6+24=30种,所以甲不在A 小区的概率为150-20+30 243=100243,故选:B .15.(山东省济南市2023届高三下学期3月一模)从正六边形的6个顶点中任取3个构成三角形,则所得三角形是直角三角形的概率为()A.310B.12C.35D.910【详解】以点A为例,以点A为其中一个顶点的三角形有△ABC,△ABD,△ABE,△ABF,△ACD,△ACE,△ACF,△ADE,△ADF,△AEF,共10个,其中直角三角形为△ABD,△ABE,△ACD,△ACF,△ADE,△ADF,共6个,故所得三角形是直角三角形的概率为610=35.故选:C16.(山东省青岛市2023届高三下学期第一次适应性检测)某次考试共有4道单选题,某学生对其中3道题有思路,1道题完全没有思路.有思路的题目每道做对的概率为0.8,没有思路的题目,只好任意猜一个答案,猜对的概率为0.25.若从这4道题中任选2道,则这个学生2道题全做对的概率为()A.0.34B.0.37C.0.42D.0.43【详解】设事件A表示“两道题全做对”,若两个题目都有思路,则P1=C23C24×0.82=0.32,若两个题目中一个有思路一个没有思路,则P2=C11C13C24×0.8×0.25=0.1,故P(A)=P1+P2=0.32+0.1=0.42,故选:C17.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)已知随机变量X服从正态分布N2,σ2,且P(X>3)=16,则P(X<1)=()A.13B.23C.16D.56【详解】随机变量X服从正态分布N2,σ2,显然对称轴X=2,所以由对称性知P(x<1)=P(x>3)=16,故选:C.18.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)(1+x)n展开式中二项式系数最大的是C5n,则n不可能是()A.8B.9C.10D.11【详解】当n=9时,C59是最大的二项式系数,符合要求,当n=10时,C510是最大的二项式系数,符合要求,当n =11时,C 511=C 611是最大的二项式系数,符合要求,当n =8时,显然C 58<C 48,不满足,故选:A .19.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)一枚质地均匀的骰子,其六个面的点数分别为1,2,3,4,5,6.现将此骰子任意抛掷2次,正面向上的点数分别为X 1,X 2.设Y 1=X 1,X 1≥X 2X 2,X 1<X 2 ,设Y 2=X 1,X 1≤X 2X 2,X 1>X 2 ,记事件A =“Y 1=5”,B =“Y 2=3”,则P B ∣A =()A.19B.29C.15D.211【详解】将此骰子任意抛掷2次,则基本事件的方法总数为36种,显然Y 1是取大函数,所以A =“Y 1=5”,则X 1,X 2中有一个数字是5,另一个数字小于等于5,有5×2-1=9种;显然Y 2是取小函数,所以A =“Y 1=5”,B =“Y 2=3”同时发生,则有3,5 和5,3 ;所以P A =936=14,P BA =236,所以P B ∣A =P BA P A=29.故选:B .二、多选题20.(福建省厦门市2023届高三下学期第二次质量检测)李明每天7:00从家里出发去学校,有时坐公交车,有时骑自行车.他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到:坐公交车平均用时30分钟,样本方差为36;自行车平均用时34分钟,样本方差为4.假设坐公交车用时X 和骑自行车用时Y 都服从正态分布,则()A.P (X >32)>P (Y >32)B.P (X ≤36)=P (Y ≤36)C.李明计划7:34前到校,应选择坐公交车D.李明计划7:40前到校,应选择骑自行车【详解】A .由条件可知X ∼N 30,62 ,Y ∼N 34,22 ,根据对称性可知P Y >32 >0.5>P X >32 ,故A 错误;B .P X ≤36 =P X ≤μ+σ , P Y ≤36 =P Y ≤μ+σ ,所以P X ≤36 =P Y ≤36 ,故B 正确;C . P X ≤34 >0.5=P Y ≤34 ,所以P X ≤34 >P Y ≤34 ,故C 正确;D . P X ≤40 <P X <42 =P X <μ+2σ ,P Y ≤40 =P Y ≤μ+3σ ,所以P X ≤40 <P Y ≤40 ,故D 正确.故选:BCD21.(广东省佛山市2023届高三教学质量检测(一))中国共产党第二十次全国代表大会的报告中,一组组数据折射出新时代十年的非凡成就,数字的背后是无数的付出,更是开启新征程的希望.二十大首场新闻发布会指出近十年我国居民生活水平进一步提高,其中2017年全国居民恩格尔系数为29.39%,这是历史上中国恩格尔系数首次跌破30%.恩格尔系数是由德国统计学家恩斯特·恩格尔提出的,计算公式是“恩格尔系数=食物支出金额总支出金额×100%”.恩格尔系数是国际上通用的衡量居民生活水平高低的一项重要指标,一般随居民家庭收入和生活水平的提高而下降,恩格尔系数达60%以上为贫困,50%~60%为温饱,40%~50%为小康,30%~40%为富裕,低于30%为最富裕.如图是近十年我国农村与城镇居民的恩格尔系数折线图,由图可知()A.城镇居民2015年开始进入“最富裕”水平B.农村居民恩格尔系数的平均数低于32%C.城镇居民恩格尔系数的第45百分位数高于29%D.全国居民恩格尔系数等于农村居民恩格尔系数和城镇居民恩格尔系数的平均数【详解】对于A:从折线统计图可知2015年开始城镇居民的恩格尔系数均低于30%,即从2015年开始进入“最富裕”水平,故A正确;对于B:农村居民恩格尔系数只有2017、2018、2019这三年在30%∼32%之间,其余年份均大于32%,且2012、2013这两年大于(等于)34%,故农村居民恩格尔系数的平均数高于32%,故B错误;对于C:城镇居民恩格尔系数从小到大排列(所对应的年份)前5位分别为2019、2018、2017、2021、2020,因为10×45%=4.5,所以第45百分位数为第5位,即2020年的恩格尔系数,由图可知2020年的恩格尔系数高于29%,故C正确;对于D:由于无法确定农村居民与城镇居民的比例,显然农村居民占比要大于50%,故不能用农村居民恩格尔系数和城镇居民恩格尔系数的平均数作为全国居民恩格尔系数,故D错误;故选:AC22.(广东省广州市2023届高三综合测试(一))某校随机抽取了100名学生测量体重,经统计,这些学生的体重数据(单位:kg)全部介于45至70之间,将数据整理得到如图所示的频率分布直方图,则()A.频率分布直方图中a 的值为0.07B.这100名学生中体重低于60kg 的人数为60C.据此可以估计该校学生体重的第78百分位数约为62D.据此可以估计该校学生体重的平均数约为62.5【详解】对于A 项,因为5×(0.01+a +0.06+0.04+0.02)=1,解得:a =0.07,故A 项正确;对于B 项,(0.01+0.07+0.06)×5×100=70人,故B 项错误;对于C 项,因为0.01×5+0.07×5+0.06×5=0.7,0.01×5+0.07×5+0.06×5+0.04×5=0.9,0.7<0.78<0.9,所以第78百分位数位于[60,65)之间,设第78百分位数为x ,则0.01×5+0.07×5+0.06×5+(x -60)×0.04=0.78,解得:x =62,故C 项正确;对于D 项,因为0.01×5×47.5+0.07×5×52.5+0.06×5×57.5+0.04×5×62.5+0.02×5×67.5=57.25,即:估计该校学生体重的平均数约为57.25,故D 项错误.故选:AC .23.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)下列命题中正确的是()A.若样本数据x 1,x 2,⋯,x 20的样本方差为3,则数据2x 1+1,2x 2+1,⋯,2x 20+1的方差为7B.经验回归方程为y=0.3-0.7x 时,变量x 和y 负相关C.对于随机事件A 与B ,P A >0,P B >0,若P A B =P A ,则事件A 与B 相互独立D.若X ∼B 7,12,则P X =k 取最大值时k =4【详解】对于A ,数据2x 1+1,2x 2+1,⋯,2x 20+1的方差为22×3=12,所以A 错误;对于B ,回归方程的直线斜率为负数,所以变量x 与y 呈负的线性相关关系,所以B 正确;对于C ,由P A B =P ABP B=P A ,得P AB =P A ⋅P B ,所以事件A 与事件B 独立,所以C正确;对于D ,由P X =k ≥P X =k +1P X =k ≥PX =k -1,即C k 712 7≥C k +17127C k 712 7≥Ck -17127,解得k =3或k =4,所以D 错误.故选:BC .24.(湖北省武汉市2023届高三下学期二月调研)在一次全市视力达标测试后,该市甲乙两所学校统计本校理科和文科学生视力达标率结果得到下表:甲校理科生甲校文科生乙校理科生乙校文科生达标率60%70%65%75%定义总达标率为理科与文科学生达标人数之和与文理科学生总人数的比,则下列说法中正确的有()A.乙校的理科生达标率和文科生达标率都分别高于甲校B.两校的文科生达标率都分别高于其理科生达标率C.若甲校理科生和文科生达标人数相同,则甲校总达标率为65%D.甲校的总达标率可能高于乙校的总达标率【详解】由表中数据可得甲校理科生达标率为60%,文科生达标率为70%,乙校理科生达标率为65%,文科生达标率为75%,故选项AB 正确;设甲校理科生有x 人,文科生有y 人,若0.6x =0.7y ,即6x =7y ,则甲校总达标率为0.6x +0.7yx +y=4265,选项C 错误;由总达标率的计算公式可知当学校理科生文科生的人数相差较大时,所占的权重不同,总达标率会接近理科生达标率或文科生达标率,当甲校文科生多于理科生,乙校文科生少于理科生时,甲校的总达标率可能高于乙校的总达标率,选项D 正确;故选:ABD25.(湖北省武汉市2023届高三下学期二月调研)已知离散型随机变量X 服从二项分布B n ,p ,其中n ∈N ∗,0<p <1,记X 为奇数的概率为a ,X 为偶数的概率为b ,则下列说法中正确的有()A.a +b =1 B.p =12时,a =b C.0<p <12时,a 随着n 的增大而增大 D.12<p <1时,a 随着n 的增大而减小【详解】对于A 选项,由概率的基本性质可知,a +b =1,故A 正确,对于B 选项,由p =12时,离散型随机变量X 服从二项分布B n ,12 ,则P =X =k =C kn12k1-12n -kk =0,1,2,3,⋯,n ,所以a =12nC 1n +C 3n +C 5n +⋯⋯ =12n×2n -1=12,b =12nC 0n+C 2n+C 4n+⋯⋯ =12n×2n -1=12,所以a =b ,故B 正确,。

专题16 概率与统计综合 (教师版)2010-2020高考试题分类汇编

专题16 概率与统计综合    (教师版)2010-2020高考试题分类汇编

专题16 概率与统计综合【2020年】1.(2020·新课标Ⅰ)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12, (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率. 【答案】(1)116;(2)34;(3)716. 【解析】(1)记事件M 甲连胜四场,则()411216P M ⎛⎫== ⎪⎝⎭;(2)记事件A 为甲输,事件B 为乙输,事件C 为丙输, 则四局内结束比赛的概率为()()()()411424P P ABAB P ACAC P BCBC P BABA ⎛⎫'=+++=⨯= ⎪⎝⎭,所以,需要进行第五场比赛的概率为314P P '=-=; (3)记事件A 为甲输,事件B 为乙输,事件C 为丙输, 记事件M 甲赢,记事件N 丙赢,则甲赢的基本事件包括:BCBC 、ABCBC 、ACBCB 、BABCC 、BACBC 、BCACB 、BCABC 、BCBAC ,所以,甲赢的概率为()4511972232P M ⎛⎫⎛⎫=+⨯=⎪ ⎪⎝⎭⎝⎭. 由对称性可知,乙赢的概率和甲赢的概率相等,所以丙赢的概率为()97123216P N =-⨯=. 2.(2020·新课标Ⅱ)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i i y y =-=∑(,201))800ii ix y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r 12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((2=1.414.【答案】(1)12000;(2)0.94;(3)详见解析 【解析】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯= (2)样本(,)i i x y 的相关系数为20120202211()()220.943809000()()iii iii i x x y y r x x y y ===--===≈⨯--∑∑∑(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.3.(2020·新课标Ⅲ)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200] (200,400] (400,600]1(优) 2 16 252(良) 5 10 123(轻度污染) 6 7 84(中度污染)7 2 0(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.828 【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析. 【解析】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤ 人次400> 空气质量不好 33 37 空气质量好228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.4.(2020·北京卷)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持 支持 不支持 方案一 200人 400人 300人 100人 方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p ,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)【答案】(Ⅰ)该校男生支持方案一的概率为13,该校女生支持方案一的概率为34; (Ⅱ)1336,(Ⅲ)01p p < 【解析】(Ⅰ)该校男生支持方案一的概率为2001200+4003=,该校女生支持方案一的概率为3003300+1004=; (Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3人中恰有2人支持方案一概率为:2121311313()(1)()(1)3433436C -+-=; (Ⅲ)01p p <5.(2020·江苏卷)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n . (1)求p 1·q 1和p 2·q 2; (2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示) . 【答案】(1)112212716,,332727p q p q ====;;(2)()111222+33n n n n p q p q --+=+ 【解析】(1)11131232,333333p q ⨯⨯====⨯⨯, 211131211227++3333333927p p q ⨯⨯=⨯⨯=⨯⨯=⨯⨯,211231122222516+0+3333333927q p q ⨯⨯+⨯=⨯⨯+=⨯⨯=⨯⨯.(2)1111131212++333339n n n n n p p q p q ----⨯⨯=⨯⨯=⨯⨯,111112*********+(1)+33333393n n n n n n q p q p q q -----⨯⨯+⨯⨯=⨯⨯+--⨯=-⨯⨯⨯, 因此112122+333n n n n p q p q --+=+,从而11111212(2+),21(2+1)333n n n n n n n n p q p q p q p q ----+=+∴+-=-,即1111121(2+1),2133n n n n n n p q p q p q -+-=-∴+=+.又n X 的分布列为 n X12P1n n p q -- n q n p故()213n n n nE X p q =+=+. 6.(2020·山东卷)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表: 2SOPM2.5[0,50] (50,150] (150,475][0,35]32 18 4 (35,75] 6812(75,115]3 7 10(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表: 2SOPM2.5[0,150] (150,475][0,75](75,115](3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥0.050 0.010 0.001 k3.8416.635 10.828【答案】(1)0.64;(2)答案见解析;(3)有. 【解析】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:2SO2.5PM[]0,150(]150,475合计[]0,75641680(]75,11510 10 20 合计7426100(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>,因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 【2019年】1.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1)a=0.35,b=0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00.【解析】(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.2.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.【答案】(1)0.5;(2)0.1.【解析】(1)X =2就是10∶10平后,两人又打了2个球该局比赛结束, 则这2个球均由甲得分,或者均由乙得分. 因此P (X =2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束, 且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分. 因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1. 3.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立. (1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 【答案】(1)分布列见解析,()2E X =;(2)20243. 【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333k k kP X k k -===. 所以,随机变量X 的分布列为X 0 1 2 3P127 29 49 827随机变量X 的数学期望()323E X =⨯=. (2)设乙同学上学期间的三天中7:30之前到校的天数为Y , 则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y =====. 由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立, 从而由(1)知()({3,1}{2,0})P M P X Y X Y =====(3,1)(2,0)P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=. 4.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下: 支付金额(元)支付方式 (0,1000](1000,2000]大于2000仅使用A 18人 9人 3人 仅使用B10人14人1人(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率; (2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由. 【答案】(1)0.4;(2)分布列见解析,E (X )=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====. 所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD ==()()()()P C P D P C P D =+ 0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为X 0 1 2 P0.240.520.24故X 的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化, 则由上个月的样本数据得33011()C 4060P E ==. 答案示例1:可以认为有变化. 理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下: 事件E 是随机事件,P (E )比较小,一般不容易发生, 但还是有可能发生的,所以无法确定有没有变化.5.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【答案】(1)分布列见解析;(2)(i)证明见解析,(ii) 45 127p =,解释见解析. 【解析】X 的所有可能取值为1,0,1-.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--, (1)(1)P X αβ==-,所以X 的分布列为X 1- 01P(1)αβ-(1)(1)αβαβ+--(1)αβ-(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此110.40.5 0.1i i i i p p p p -+=++,故110.1()0.4()i i i i p p p p +--=-, 即114()i i i i p p p p +--=-. 又因为1010p p p -=≠, 所以1{}(0,1,2,,7)i i p p i +-=为公比为4,首项为1p 的等比数列.(ii )由(i )可得88776100p p p p p p p p =-+-++-+877610()()()p p p p p p =-+-++-81413p -=.由于8=1p ,故18341p =-, 所以44433221101( 411()327)(5())p p p p p p p p p p -=-+-+-+=-=. 4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时, 认为甲药更有效的概率为410.0039257p =≈, 此时得出错误结论的概率非常小,说明这种试验方案合理. 【2018年】1. (2018年天津卷) 已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查. (I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足..的员工人数,求随机变量X 的分布列与数学期望; (ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.【答案】(Ⅰ)从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i )答案见解析;(ii ).【解析】(Ⅰ)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2, 由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人. (Ⅱ)(i )随机变量X 的所有可能取值为0,1,2,3. P (X =k )=(k =0,1,2,3).所以,随机变量X 的分布列为X0 1 2 3P随机变量X的数学期望.(ii)设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥,由(i)知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=.所以,事件A发生的概率为.2. (2018年北京卷)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数140 50 300 200 800 510好评率0.4 0.2 0.15 0.25 0.2 0.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k类电影得到人们喜欢,“”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差,,,,,的大小关系.【答案】(1) 概率为0.025(2) 概率估计为0.35(3) >>=>>【解析】(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,第四类电影中获得好评的电影部数是200×0.25=50.故所求概率为.(Ⅱ)设事件A为“从第四类电影中随机选出的电影获得好评”,事件B为“从第五类电影中随机选出的电影获得好评”.故所求概率为P()=P()+P()=P(A)(1–P(B))+(1–P(A))P(B).由题意知:P(A)估计为0.25,P(B)估计为0.2.故所求概率估计为0.25×0.8+0.75×0.2=0.35.(Ⅲ)>>=>>.3. (2018年全国I卷理数)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求; (ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【答案】(1).(2) (i)490.(ii)应该对余下的产品作检验.【解析】(1)20件产品中恰有2件不合格品的概率为.因此.令,得.当时,;当时,.所以的最大值点为.(2)由(1)知,.(i)令表示余下的180件产品中的不合格品件数,依题意知,,即.所以.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于,故应该对余下的产品作检验.4. (2018年全国Ⅲ卷理数)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过m 不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,【答案】(1)第二种生产方式的效率更高. 理由见解析(2)80(3)能【解析】(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知.列联表如下:超过m 不超过m第一种生产方式15 5第二种生产方式 5 15(3)由于,所以有99%的把握认为两种生产方式的效率有差异.5. (2018年全国Ⅱ卷理数)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)利用模型①预测值为226.1,利用模型②预测值为256.5,(2)利用模型②得到的预测值更可靠.【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii )从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 【2017年】1.【2017山东,理18】(本小题满分12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示. (I )求接受甲种心理暗示的志愿者中包含A 1但不包含1B 的频率。

(2017-2019)高考理数真题分类汇编专题14 概率与统计(选择题、填空题)(教师版)

(2017-2019)高考理数真题分类汇编专题14 概率与统计(选择题、填空题)(教师版)

专题14 概率与统计(选择题、填空题)1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差 【答案】A【解析】设9位评委评分按从小到大排列为123489x x x x x x <<<<<L .则①原始中位数为5x ,去掉最低分1x ,最高分9x 后剩余2348x x x x <<<<L ,中位数仍为5x ,A 正确; ②原始平均数1234891()9x x x x x x x =<<<<<L ,后平均数23481()7x x x x x '=<<<L ,平均数受极端值影响较大,x 与x '不一定相同,B 不正确; ③2222111[()()()]9q S x x x x x x =-+-++-L ,22222381[()()()]7s x x x x x x '=-'+-'++-'L ,由②易知,C 不正确;④原极差91x x =-,后极差82x x =-,显然极差变小,D 不正确.故选A . 3.【2019年高考浙江卷】设0<a <1,则随机变量的分布列是则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大【答案】D【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【解析】方法1:由分布列得1()3aE X +=, 则2222111111211()(0)()(1)()333333926a a a D X a a +++=-⨯+-⨯+-⨯=-+, 则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .方法2:则222221(1)222213()()()0[()]3399924a a a a D X E X E X a +-+=-=++-==-+,则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.4.【2018年高考全国Ⅱ卷理数】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112 B .114 C .115D .118【答案】C【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C 102=45种方法,因为7231119131730+=+=+=,所以随机选取两个不同的数,其和等于30的有3种方法,故所求概率为31=4515,故选C . 【名师点睛】古典概型中基本事件数的探求方法:(1)列举法;(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法;(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化;(4)排列组合法:适用于限制条件较多且元素数目较多的题目.5.【2018年高考全国Ⅰ卷理数】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A【解析】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入为0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确;新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%+28%=58%>50%,所以超过了经济收入的一半,所以D 正确;故选A .6.【2018年高考全国Ⅲ卷理数】某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,(4)(6)P X P X =<=,则p = A .0.7B .0.6C .0.4D .0.3【答案】B【解析】∵()(1)D X np p =-,∴0.4p =或0.6p =,4466641010(4)C (1)(6)C (1)P X p p P X p p ==-<==-Q ,22(1)p p ∴-<,可知0.5p >,故0.6p =.故选B .7.【2018年高考浙江卷】设01p <<,随机变量ξ的分布列是则当p 在(0,1)内增大时, A .D (ξ)减小 B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小【答案】D【解析】∵E(ξ)=0×1−p 2+1×12+2×p 2=p +12,∴D(ξ)=1−p 2(0−p −12)2+12(1−p −12)2+p2(2−p −12)2=−p 2+p +14,∵12∈(0,1),∴D(ξ)先增大后减小,故选D . 8.【2018年高考全国Ⅰ卷理数】下图自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3【答案】A【解析】设AC =b ,AB =c ,BC =a ,则有b 2+c 2=a 2,从而可以求得ΔABC 的面积为S 1=12bc ,黑色部分的面积为22221π()π()[π()]2222c b a S bc =⋅+⋅-⋅-2222221π()π44424c b a c b a bc +-=+-+=⋅+1122bc bc =,其余部分的面积为2231π1π()2242a a S bc bc =⋅-=-,所以有12S S =, 根据面积型几何概型的概率公式,可以得到p 1=p 2,故选A .9.【2017年高考全国Ⅲ卷理数】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】观察折线图,每年7月到8月折线图呈下降趋势,月接待游客量减少,选项A 说法错误; 折线图整体呈现出增长的趋势,年接待游客量逐年增加,选项B 说法正确;每年的接待游客量7,8月份达到最高点,即各年的月接待游客量高峰期大致在7,8月,选项C 说法正确;每年1月至6月的月折线图平稳,月接待游客量波动性更小,7月至12月折线图不平稳,月接待游客量波动性大,选项D 说法正确. 故选A .【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起就得到一条折线,我们称这条折线为本组数据的频率分布折线图,频率分布折线图的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,它们比频率分布表更直观、形象地反映了样本的分布规律. 10.【2017年高考全国Ⅰ卷理数】如图,正方形ABCD 内的图形自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8 C .12D .π4【答案】B【解析】设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,故选B . 【秒杀解】由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B . 【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 11.【2017年高考山东卷理数】从分别标有,,,的张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 A .B .C .D .【答案】C【解析】标有1,2,,9L 的9张卡片中,标奇数的有5张,标偶数的有4张,所以抽到的2张卡片上的数奇偶性不同的概率是11542C C 5989=⨯,故选C .1299518495979【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题. 12.【2017年高考浙江卷】已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1–p i ,i =1,2.若0<p 1<p 2<12,则A .1()E ξ<2()E ξ,1()D ξ<2()D ξB .1()E ξ<2()E ξ,1()D ξ>2()D ξC .1()E ξ>2()E ξ,1()D ξ<2()D ξD .1()E ξ>2()E ξ,1()D ξ>2()D ξ【答案】A【解析】∵1122(),()E p E p ξξ==,∴12()()E E ξξ<,∵111222()(1),()(1)D p p D p p ξξ=-=-,∴121212()()()(1)0D D p p p p ξξ-=---<,故选A . 【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量i ξ服从两点分布,由两点分布数学期望与方差的公式可得A 正确.13.【2017年高考山东卷理数】为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为.已知,,.该班某学生的脚长为24,据此估计其身高为A .B .C .D .【答案】C【解析】由已知得22.5,160,x y ==则$160422.570,a=-⨯= 当24x =时,ˆ42470y=⨯+166=,故选C . 【名师点睛】判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数的公式求出,然后根据的大小进行判断.求线性回归方程时,在严格按照公式求解时,一定要注意计算的准确性.14.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________.ˆˆˆybx a =+101225i i x ==∑1011600i i y ==∑ˆ4b =160163166170r r r【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 15.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.16.【2019年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________. 【答案】0.18【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯=前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯=综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算. 17.【2018年高考江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为______________.【答案】90【解析】由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91, 故平均数为8989909191905++++=.18.【2018年高考江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为______________. 【答案】310【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种, 因此所求概率为310. 19.【2017年高考全国Ⅱ卷理数】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =______________. 【答案】1.96【解析】由题意可得,抽到二等品的件数符合二项分布,即~(100,0.02)X B ,由二项分布的期望公式可得(1)1000.020.98 1.96DX np p =-=⨯⨯=.【名师点睛】判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()C (1)k k n kn P X k p p -==-表示在独立重复试验中,事件A 恰好发生次的概率.20.【2017年高考江苏卷】记函数()f x =D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是______________.【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,根据几何概型的概率计算公式得x D∈的概率是3(2)55(4)9--=--.21.【2017年高考江苏卷】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取______________件. 【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.。

专题七统计与概率数学全国卷地区专用精品文档

专题七统计与概率数学全国卷地区专用精品文档
全国卷地区专用
课件编辑说明
本课件是由精确校对的word书稿制作的“逐字编辑”课 件,如需要修改课件,请双击对应内容,进入可编辑状态。
如果有的公式双击后无法进入可编辑状态,请单击选中此 公式,点击右键、“切换域代码”,即可进入编辑状态。修 改后再点击右键、“切换域代码”,即可退出编辑状态。
专题七 概率与统计
考 向
利用概率公式求解.

.

返回目录
第16讲 统计
变式题 为了了解 2013 年某校高三学生的视力情况,随
机抽查了一部分学生视力,将调查结果分组,分组区间为
(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得

-2),(4,3)为顶点的三角形,而符合要求的平面区域是以

点(-6,-2),(2,-2),(2,2)为顶点的三角形,所以所求
概率 P=1212××54××180=1265.
返回目录
第16讲 统计
方法指导 17.几何概型的分类求法 对于几何概型,当基本事件只受一个连续的变量控制时,
这类几何概型是线型的;当基本事件受两个连续的变量控
b2=176a2,故ba=
7 4.
件、等可能性,如 ③④.
返回目录
第16讲 统计
核 心
—— 体验高考 ——
——主干知识 ——
知 识 聚
5.[2013·安徽卷改编] 若某公司从
⇒ 互斥事件
五位大学毕业生甲、乙、丙、丁、戊中 的概率
焦 录用三人,这五人被录用的机会均等,
则 甲或乙被录用的概率⑤ 为________. 关键词:互斥事件、
目录
第16讲 概率 第17讲 统计与统计案例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实用标准7 、近五年全国卷分类汇编——概率统计(教师版)一、概率与排列组合1 、(2013 全国 1 卷.理 3 )为了解某地区的中小考生视力情况,拟从该地区的中小考生中抽取部分考生进行调查,事先已了解到该地区小学、初中、高中三个学段考生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A 、简单随机抽样B、按性别分层抽样错误!未找到引用源。

C、按学段分层抽样 D 、系统抽样解析:不同的学段在视力状况上有所差异,所以应该按照学段分层抽样.故选 C2 .(2014全国1卷.理5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()1 3C、5 7A 、B、8 D 、8 8 8解析: 4 位同学各自在周六、周日两天中任选一天参加公益活动共有24 16 种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有C41 A21 8 种;②每天2 人有C42 6种,则周六、周日都有同学参加公益活动的概率为8 6 7位同学都在周六或周日参加16;或间接解法: 4816 2 7公益活动有 2 种,则周六、周日都有同学参加公益活动的概率为16故选 D 83 、( 2015 全国 1 卷.理4 )投篮测试中,每人投 3 次,至少投中 2 次才能通过测试。

已知某同学每次投篮投中的概率为0.6 ,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A 、 0.648 B、 0.432 C、 0.36 D 、 0.312解析:根据独立重复试验公式得,该同学通过测试的概率为C32 0.62 0.4 0.63 =0.648 故选 A4. (2016 全国 1 卷 .理 4 )某公司的班车在7:00 , 8:00 , 8:30 发车,小明在7:50 至 8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是()1 1C、2 3A 、B、3 D 、3 2 4解析:如图所示,画出时间轴:7:30 7:40 7:50 8:00 8:10 8:20 8:30A C D B小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或 DB 时,才能保证他等车的时间不超过10 分钟,根据几何概型,所求概率10 10 1P .故选 B.40 25 .( 2017 全国 1 卷 .理 2 )如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A .1B .π481πC .D .24解析:设正方形边长为 a ,则圆的半径为a,则正方形的面积为 a 2 ,圆的面积为a 2 .由图形的对称性可24知,太极图中黑白部分面积相等,即各占圆面积的一半 .由几何概型概率的计算公式得,此点取自黑色部分1 a 2的概率是248 ,选 B.a 2二、二项式定理1 、(2013全国 1 卷 .理 9)设 m 为正整数, ( xy)2m 展开式的二项式系数的最大值为a , ( x y)2 m 1 展开式的二项式系数的最大值为 b ,若 13 a =7 b ,则 m = ()A 、 5B 、 6C 、 7D 、 8m m 1mm 113 (2 m)! 7 (2 m 1)!解析:由题知 a = C 2m , b = C 2m 1 ,∴13C 2 m =7 C 2m 1 ,即=(m 1)! m! ,m!m!解得 m =6 ,故选 B.2 、( 2014 全国 1 卷 .理 13 ) xy x y 8的展开式中 x 2 y 7 的系数为 ________(.用数字填写答案)解析: ( x y)8展开式的通项为 T r 1C 8 x y(r 0,1, ,8),∴r8r rLT 8C 87 xy 7 8xy 7 T 7 C 86 x 2 y 6 28x 2 y 6∴(xy)( x y)8 的展开式中 x 2 y 7 的项为 xg8xy 7 yg28 x 2 y 6 20x 2 y 7 ,故系数为 20 。

3 、(2015全国 1 卷 .理 10 ) ( x 2 x y)5 的展开式中, x 5 y 2的系数为 ()A 、 10B 、 20C 、 30D 、 60解析:在 ( x 2 xy)5 的 5 个因式中, 2 个取因式中 x 2 剩余的 3个因式中 1 个取 x ,其余因式取 y,故 x 5 y2的系数为 C 52 C 31C 22 =30 ,故选 C4 、( 2016 全国 1 卷 理14 ) (2x x )5 的展开式中,x 3的系数是.(用数字填写答案).5 kkk解析:设展开式的第 k 1 项为 T k 1 , k0,1,2,3,4,5∴T k 1 C 5kx52xC 5k25 kx 2 .,k4当 53 时, k 4510x3故答案为 10 .,即 T 5 C 5425 4x22,5 .(2017 全国 1 卷 .理6 ) (11)(1 x)6 展开式中 x 2 的系数为()x 2A 、 15B 、 20C 、 30D 、 35解析:因为 (112 )(1 x)61 (1 x)612 (1 x) 6 ,则 (1 x)6 展开式中含 x 2 的项为 1 C 62 x 2 15 x 2 ,x1x62的项为4 x 42215 30 。

故选 C12 (1 x) 展开式中含 xx 2 C615 x ,故 x 前系数为 15x三、解答题1 、( 2013 全国 1 卷.理 19 )一批产品需要进行质量检验,检验方案是:先从这批产品中任取4 件作检验,这 4 件产品中优质品的件数记为n 。

如果 n=3 ,再从这批产品中任取 4 件作检验,若都为优质品,则这批产品通过检验;如果n=4 ,再从这批产品中任取 1 件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验。

假设这批产品的优质品率为50% ,即取出的产品是优 质品的概率都为,且各件产品是否为优质品相互独立( 1 )求这批产品通过检验的概率;( 2 )已知每件产品检验费用为 100 元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为 X (单位:元),求 X 的分布列及数学期望。

解:( 1)设第一次取出的4 件产品中恰有 3 件优质品为事件 A 1 。

第一次取出的 4 件产品全是优质品为事件 A 2 ,第二次取出的 4 件产品都是优质品为事件 B 1 ,第一次取出的 1 件产品为事件 B 2 ,这批产品通过检验为事件 A ,由题意有 A= ( A 1 B 1 )与 A 2 B 2 ,且 A 1B 1 与 A 2B 2 互斥,所以 P( A) P A 1B 1 P A 2 B 2P( A 1 )P( B 1 A 1 ) P( B 2 A 2 ) 4 1111616 16 2364( 2 )X 的可能取值为 400 、500 、 800 ;41 111 1 P( X 400) 116 16, P( X 500), P( X 800)16 164,则 X 的分布列为X 400500 800P11 1 11616 4EX400 11 500 1 800 1506.2516 16 42 、(2014全国1卷.理18)从某企业生产的某种产品中抽取500 件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:( I)求这 500 件产品质量指标值的样本平均值x 和样本方差 s2(同一组的数据用该组区间的中点值作代表);( II )由直方图可以认为,这种产品的质量指标Z 服从正态分布 N , 2 ,其中近似为样本平均数x ,2近似为样本方差 s2 .( i)利用该正态分布,求P 187.8 Z 212.2 ;( ii )某用户从该企业购买了100 件这种产品,记X 表示这100 件产品中质量指标值位于区间187.8,212.2 的产品件数 .利用( i )的结果,求EX .附: 150 12.2若 Z ~ N , 2 则 P Z 0.6826, P 2 Z 20.9544。

解:( I)抽取产品的质量指标值的样本平均数x 和样本方差 s2分别为x 170 0.02 180 0.09 190 0.22 200 0.33210 0.24 220 0.08 230 0.02=200s2 ( 30)2 0.02 ( 20)2 0.09 ( 10) 2 0.220 0.33 102 0.24 202 0.08 302 0.02150.(II )( i)由( I)知,Z ~ N (200,150),从而P(187.8 Z 212.2)=P(200 12.2 Z 200 12.2) 0.6826.( ii )由( i)知,一件产品的质量指标值位于区间(187.8,212.2 )的概率为0.682 6 ,依题意知 X-B(100 , 0.682 6) ,所以EX 100 0.6826 68.26.3 、( 2015 全国 1 卷 .理 19 )某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量 y (单位: t )和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i( i =1,2,,·8)数据作了初步处理,得到下面的散点图及一些统计量的值.ur ur 888 8r yw( x ix)2(w i w)2( x i x)( y i y)(w i w)( y i y)xi 1i 1i1i 146. 56. 6.289.81.6 1469108.8638表中 w ix iur 1, w =88 w ii 1(Ⅰ)根据散点 判断, y=a + bx 与 y = c + d x 哪一个适宜作 年 售量 y 关于年宣 x 的回 方程 型?( 出判断即可,不必 明理由)(Ⅱ)根据(Ⅰ)的判断 果及表中数据,建立y 关于 x 的回 方程;(Ⅲ)已知 种 品的年利率z 与 x, y 的关系 z0.2 y x .根据(Ⅱ)的 果回答下列 :( ⅰ)年宣x =49 ,年 售量及年利 的 是多少? ( ⅱ)年宣 x 何 ,年利率的 最大?附: 于一 数据(u 1, v 1 ) , (u 2 , v 2 ) ,⋯⋯, (u n , v n ) ,其回 vu 的斜率和截距的最小二乘估 分n^i(u i u)( v i v)1,v u 。

n(u i u) 2i 1解:( I )由散点 可以判断, y c d x 适宜作 年 售量y 关于年宣x 的回 方程 型。

相关文档
最新文档