HDB3编码实验报告
ami hdb3码编译码实验报告
ami hdb3码编译码实验报告AMI (Alternate Mark Inversion) 和 HDB3 (High Density Bipolar of Order 3) 码是一种常用的线路编码和解码方式,被广泛应用于数字通信系统中。
本实验报告将详细介绍AMI和HDB3码的编码和解码原理,并通过实验验证其正确性和可靠性。
一、实验目的本实验旨在通过编写AMI和HDB3码的编码和解码程序,加深对这两种编码方式的理解,并验证其在数字通信系统中的应用效果。
二、实验原理1. AMI码编码原理AMI码是一种基本的线路编码方式,它通过对二进制数据进行编码,使得连续的1和0之间交替出现正负电平。
具体编码规则如下:- 将二进制数据0编码为0电平;- 将二进制数据1编码为交替出现的正负电平。
2. AMI码解码原理AMI码的解码过程相对简单,只需要检测电平的正负即可。
具体解码规则如下:- 检测到正电平时,解码为二进制数据1;- 检测到负电平时,解码为二进制数据0。
3. HDB3码编码原理HDB3码是一种高密度双极性码,它通过对连续的0进行编码,实现数据的传输和时钟同步。
具体编码规则如下:- 将连续的0编码为连续的正负电平,其中正电平的个数取决于前一位的编码;- 当连续的0个数达到4个时,需要进行特殊处理,即通过插入一个“违例”来保持编码的高密度。
4. HDB3码解码原理HDB3码的解码过程较为复杂,需要根据前一位的编码和违例的位置进行判断。
具体解码规则如下:- 检测到正电平时,根据前一位的编码和违例的位置判断解码为0或1;- 检测到负电平时,根据前一位的编码和违例的位置判断解码为0或1。
三、实验步骤1. 编写AMI码的编码和解码程序,并进行测试。
首先生成一组随机的二进制数据,然后对其进行编码,并将编码结果输出。
接着将编码结果作为输入,进行解码,并将解码结果与原始数据进行比对,验证解码的正确性。
2. 编写HDB3码的编码和解码程序,并进行测试。
HDB3编译码综合实验
式中:fr一信道码速率;Pe一信道误码率;FrPe-1秒钟内的误码个数;FB:反变换后的码速率;P’e:反变换后的误码率;fBP’e:反变换后1秒钟内的误码个数。
(四)实际应用介绍
目前大量采用型号为CD22103的CMOS大规模集成电路的HDB3编、解码器,它可将编、解码器两大功能电路集成在一个大规模电路里。可将发送来的NRZ码变为HDB3码,也可将接收到的HDB3码还原为NRZ码。
(一)传输码型的选择
在选择传输码型时,要考虑信号的传输信道的特性以及对定时提取的要求等。归结起来,传输码型的选择,要考虑以下几个原则:
1.传输信道低频截止特性的影响
在电缆信道传输时,要求传输码型的频谱中不应含有直流分量,同时低频分量要尽量少。原因是PCM端机,再生中继器与电缆线路相连接时,需要安装变压器,以便实现远端供电(因设置无人站)以及平衡电路与不平衡电路的连接。
3.K1一K8置00000000,测量P12、P22变换AMI码波形,仍然保持全0电平。测量译码P3l,则时钟信号提取不到,CP3为全0。
*4.用频谱仪测量AMI码信号频谱特性。
B、HDB3码实验
K9、K10置HDB3(波形记录20个码元以上)
1.K1一K8置10Ol11OO,测量P12、P22波形,观察HDB3码变换规则,在没有四连0时,P23无四连0检出信号,HDB3与AMI码变换规则相同。但由于要储存计算有无4个连0。故P22输出比输入P12要延时5位码元。其余类同。这一点与老师上课时和书本上的内容有差别。测量译码P3l,CP3时钟提取波形。测量P33检测不到破坏点V码,比较P12与P32,P32无插入B脉冲检出。比较P12与译码PCM码输出。恢复数据与发端相同。
hdb3译码实验报告
hdb3译码实验报告HDB3译码实验报告引言:HDB3(High Density Bipolar of Order 3)是一种常用于数字通信中的编码和解码技术。
在本次实验中,我们将对HDB3译码进行实验,并对实验结果进行分析和讨论。
一、实验背景数字通信中,编码和解码技术起着至关重要的作用。
编码技术可以将数字信号转换为适合传输的信号形式,而解码技术则将接收到的信号重新转换为原始的数字信号。
HDB3编码和解码技术广泛应用于数字通信系统中,具有较高的传输效率和抗干扰能力。
二、实验目的本次实验的目的是通过对HDB3译码的实验,深入理解HDB3编码和解码的原理,并验证其在数字通信中的可行性和有效性。
三、实验原理HDB3编码和解码是基于Bipolar编码的一种技术。
在HDB3编码中,每个二进制位被编码为一个符号,符号可以是正脉冲、负脉冲或零脉冲。
解码过程则是将接收到的符号转换为原始的二进制位。
四、实验步骤1. 准备实验所需材料:计算机、数字信号发生器、示波器等。
2. 设计并生成HDB3编码的测试信号。
3. 将测试信号输入到HDB3译码器中进行解码。
4. 使用示波器观察解码后的信号波形,并记录观察结果。
5. 对比解码结果与原始信号进行分析和比较。
五、实验结果与分析通过实验我们得到了解码后的信号波形,并与原始信号进行了对比。
观察结果显示,HDB3译码器能够准确地将接收到的信号转换为原始的二进制位,且在传输过程中具有较好的抗干扰能力。
这验证了HDB3编码和解码技术在数字通信中的可行性和有效性。
六、实验总结本次实验通过对HDB3译码的实验,我们深入理解了HDB3编码和解码的原理,并验证了其在数字通信中的可行性和有效性。
HDB3编码和解码技术在数字通信中具有重要的应用价值,能够提高传输效率和抗干扰能力。
在今后的研究和实践中,我们将进一步探索和应用HDB3编码和解码技术,为数字通信的发展做出更大的贡献。
结束语:通过本次实验,我们对HDB3译码有了更深入的了解,并验证了其在数字通信中的可行性和有效性。
通信原理第一次HDB3码实验报告
通信原理第一次HDB3码实验报告本次实验旨在学习和实践HDB3编码的原理及其应用。
HDB3码是一种高密度双极性3级编码,用于数字通信中的数据传输,其特点是可以减少直流成分,防止信号中断和错误的传输。
本次实验中,我们使用MATLAB软件设计HDB3编码并进行模拟实验,以下为实验报告。
一、实验目的1.了解HDB3编码的工作原理和编码规则;2.掌握HDB3编码技术和MATLAB软件的基本操作;3.理解HDB3编码在数字通信中的应用原理和优势。
二、实验内容3. HDB3编码模拟实验三、实验步骤HDB3码是一种高密度双极性3级编码,它的主要优点在于可以消除直流偏移,减少时钟重锁等问题。
HDB3编码的基本原则是:在数字信号中,若连续4个0或1出现,则在此处插入一个V或B码,这些码用来代替原始的0或1。
V码和B码都是双极性的,它们代表的数字是0。
在V码和B码之间,根据前一段传输信号的正负,可以将两段HDB3码变成相反的极性。
我们编写了一个MATLAB程序,用于模拟HDB3编码的过程。
我们将二进制信号输入,通过程序实现编码和解码。
程序的实现过程如下:(1) 输入二进制信号(2) 对连续的四个0或1替换为B或V码(3) 在HDB3码串中出现连续的0时,判断前一段码的极性,根据正负变换符号。
(4) 解码,将B或V码还原成原来的0或1。
在编码过程中,我们还设计了各种情况的测试数据,包括连续0、连续1、多个数据0后有一个1或多个数据1后有一个0等情况。
通过这些测试数据,我们验证了HDB3编码在数字通信中的稳定性和可靠性。
四、结果分析我们通过实验了解了HDB3编码的原理和应用,编写了MATLAB程序模拟了编码和解码的过程。
通过对各种情况的测试,我们验证了HDB3编码在数字通信中的优越性,包括减少直流成分、防止信号中断和错误的传输等。
五、实验总结。
ami hdb3编译码实验实验报告
ami hdb3编译码实验实验报告Ami HDB3编码解码实验实验报告摘要:本实验旨在通过对Ami HDB3编码解码的实验,掌握Ami HDB3编码解码的原理和方法,以及通过实验验证Ami HDB3编码解码的正确性和可靠性。
实验结果表明,Ami HDB3编码解码在传输数据时具有较高的可靠性和稳定性。
一、实验目的1. 了解Ami HDB3编码解码的原理和方法;2. 掌握Ami HDB3编码解码的实验操作方法;3. 通过实验验证Ami HDB3编码解码的正确性和可靠性。
二、实验原理Ami HDB3编码是一种高密度双极性三零编码,它是一种常用的数字通信编码方式。
在Ami HDB3编码中,每4个零比特用一个编码方式表示,以减少数据传输时的数据量,提高传输效率。
三、实验步骤1. 准备实验设备和材料,包括信号发生器、示波器等;2. 连接实验设备,按照实验指导书中的连接图连接各个设备;3. 设置信号发生器和示波器的参数,根据实验要求进行调整;4. 进行Ami HDB3编码解码实验,记录实验过程中的数据和观察结果;5. 分析实验结果,验证Ami HDB3编码解码的正确性和可靠性。
四、实验结果通过实验观察和数据记录,验证了Ami HDB3编码解码的正确性和可靠性。
在实验过程中,Ami HDB3编码解码能够准确地将数据进行编码和解码,并且传输过程中不会出现数据丢失或错误的情况。
五、实验结论Ami HDB3编码解码在传输数据时具有较高的可靠性和稳定性,能够准确地进行数据编码和解码,适用于数字通信系统中的数据传输。
六、实验意义通过本次实验,我们深入了解了Ami HDB3编码解码的原理和方法,掌握了Ami HDB3编码解码的实验操作技巧,验证了Ami HDB3编码解码的正确性和可靠性,为今后的数字通信系统应用提供了重要的参考和指导。
总之,本次实验对Ami HDB3编码解码的原理和方法进行了深入的探讨和实验验证,为数字通信系统中Ami HDB3编码解码的应用提供了重要的理论和实践基础。
hdb3码型变换实验实验报告
hdb3码型变换实验实验报告
HDB3码型变换实验实验报告
实验目的:
本实验旨在通过实际操作,掌握HDB3码型变换的原理和方法,加深对数字通信中编码技术的理解。
实验内容:
1. 确定HDB3编码规则:根据HDB3编码规则,对给定的数字信号进行编码。
2. 实验设备:使用数字通信实验箱和示波器等设备进行实验。
3. 实验步骤:
a. 将数字信号输入到实验箱中。
b. 根据HDB3编码规则,对数字信号进行编码。
c. 通过示波器观察编码后的信号波形。
实验结果:
经过实验操作,成功实现了HDB3码型变换。
观察示波器上的波形,可以清晰地看到经过编码后的信号波形,符合HDB3编码规则。
通过实验,加深了对HDB3编码的理解,掌握了HDB3码型变换的原理和方法。
实验结论:
本实验通过实际操作,使实验者对HDB3码型变换有了更深入的了解,掌握了HDB3编码的原理和方法。
同时,也加深了对数字通信中编码技术的认识,为今后的学习和实践奠定了基础。
总结:
HDB3码型变换实验是数字通信中重要的实验之一,通过实验操作,能够加深
对HDB3编码的理解,提高实验者对数字通信编码技术的掌握能力。
希望今后能够继续深入学习和实践,不断提高自己的专业技能。
ami hdb3编译码实验报告
ami hdb3编译码实验报告Ami HDB3编码实验报告摘要:本实验旨在通过对Ami HDB3编码的模拟实验,探讨其在数字通信中的应用。
实验结果表明,Ami HDB3编码在数字通信中具有较好的性能表现,能够有效地减少传输中的噪声干扰,提高数据传输的可靠性和稳定性。
引言:Ami HDB3编码是一种常用的数字通信编码方式,广泛应用于数字通信系统中。
它通过对数据进行特定的编码处理,能够有效地减少传输中的噪声干扰,提高数据传输的可靠性和稳定性。
本实验旨在通过对Ami HDB3编码的模拟实验,探讨其在数字通信中的应用。
实验目的:1. 了解Ami HDB3编码的基本原理和编码规则;2. 通过实验验证Ami HDB3编码在数字通信中的性能表现;3. 探讨Ami HDB3编码在数字通信中的应用前景。
实验内容:1. 搭建Ami HDB3编码实验平台;2. 对不同数据进行Ami HDB3编码处理;3. 分析编码后的数据传输性能;4. 探讨Ami HDB3编码在数字通信中的应用前景。
实验步骤:1. 搭建Ami HDB3编码实验平台,包括信号发生器、编码器、解码器和示波器等设备;2. 对不同数据进行Ami HDB3编码处理,观察编码后的波形特征;3. 分析编码后数据的传输性能,包括抗干扰能力、传输速率和误码率等指标;4. 探讨Ami HDB3编码在数字通信中的应用前景,包括其在通信系统中的优势和局限性。
实验结果:经过实验验证,Ami HDB3编码在数字通信中具有较好的性能表现。
它能够有效地减少传输中的噪声干扰,提高数据传输的可靠性和稳定性。
与其他编码方式相比,Ami HDB3编码具有更高的抗干扰能力和更低的误码率,适用于高速数据传输和长距离通信。
结论:Ami HDB3编码在数字通信中具有重要的应用价值,能够提高数据传输的可靠性和稳定性。
通过对Ami HDB3编码的模拟实验,我们深入了解了其基本原理和性能特点,为其在实际应用中提供了参考和指导。
HDB3编解码器设计实验报告
清华大学电子工程系数字逻辑与处理器基础实验报告实验六HDB3编解码器设计实验报告班级无010学号201001009姓名苏永晖实验日期2012/ 5/24交报告日期2012/6/ 20一、实验目的本实验主要希望大家通过实际编程,了解HDB3编解码的流程,对通信系统的数据传输方式有更加深入的了解。
二、实验原理HDB3是一种伪三进制归零码,如图1给出了一种归零码(RZ)和非归零码(NRZ)的示意图。
HDB3码的三个状态可用B+、B-和0表示。
二进制信号中的空号(0)在HDB3中仍编为0;但是对4个连空号应用特殊规则。
二进制信号中的传号(1)在HDB3信号中应交替为B+和B-(交替翻转)。
因此HDB3编码输出包含正端码和负端码。
在编4个连空号时引入交替翻转的“破坏点”。
4个连0被000V或者B00V取代。
V 表示破坏点,选取原则是:使任意两个V脉冲间的B脉冲数目为奇数。
这样,相邻V脉冲的极性也满足交替规则,因而整个信号保持无直流分量。
图2所示为HDB3编码的对应表和波形示意,其中B码和V码都是归零码,为宽度为半个时钟周期的脉冲。
编码流程是记住上一次B码编码的极性(B+,B-)以及从上一次极性翻转码V出现以来B的个数的奇偶性。
如果当前的NRZ码输入是1,则直接编码为B码,如果当前的NRZ码输入是0,则要分两种情况处理:如果已经连续输入了4个0,则回溯到最前面的那个码对应的HDB3编码结果,将它编为B码,同时将当前NRZ码编为V码。
HDB3解码器不能做到实时解码,在出现V码时需要进行长度为4的回溯,将这四个码重新解码为0。
回溯的实现方案是采用长度为5的移位寄存器实现。
当前的解码结果从最高位存入,当前解码的输出从最低位输出。
高4位是回溯区域。
具体的解码流程是:记住上一次B码的极性(B+,B-),判断当前HDB3码是V码、B 码或者0码,如果是V码,则进行长度为4的回溯,将它们全部重新编码为0000,如果是B码,则从移位寄存器的最高位存入1;如果是0码,则从移位寄存器的最高位存入0。
HDB3编译码综合码实验
(一)HDB3码变换原理
HDB3变换方框图
该方框图由4个部分组成:连零检测、破坏点产生、取代节判决和 单双变换。
(二)HDB3编码器电路原理:
四 连 零 检 测
破 坏 点 产 生
连零检测电路:当4个0依 次存入四级移位寄存器 JC1—JC4时,JC11输出 低电平控制信号。 单双变换电路的作用是: 将单极性不归零码变换 成双极性不归零码,它 破坏点产生电路:由JC5、 由JCl6、JCl7、JCl5、 JC7和JC13组成,当遇到 JCl8、BGl、BG2及脉 B00V时,JC13为0,当取代 冲变压器组成。 节为000V时,JC13为1
按实验板标示电压调准电源,注意本次实验的电源只需要正极电源,非双 电源供电。 画图时要以P12或P22为基准,否则难以看出同组中各个波形的相位关系。 P33点为检测正极性V码的信号测量点,并非检测信号中的所有V码。 P32点信号并非B码检测点,凡是出现1或者B码的地方P32点均为高电平。
七、实验波形图范例
(一)AMI码变换原理
只需要让PCM输出的NRZ码通过一个双极性变换电路即可得到AMI码。
(二)单双极性变换电路原理:
VT1截止 截止 VT1导通 导通 VT1截止 截止
01 1
0 1 0 1 0
0 1 1
1 0 0
× ×
输出0 输出 输出+1 输出-1 输出 输出
0 1
1 0 0
××
VY2导通 导通 VY2截止 截止 VY2截止 截止
三、HDB3定义及实验原理
HDB3码:三阶高密度双极性码。 HDB3码与二进制序列的关系: (1)二进制信号序列中的“0”码在HDB3码中仍编为“0”码,二进制信号中 “1”码,在HDB3码中应交替地成+1和-1码,但序列中出现四个连“0”码 时应按特殊规律编码(引入传号交替反转码的“破坏点”V码); (2)二进制序列中四个连“0”按以下规则编码:信码中出现四个连“0”码时, 要将这四个连“0”码用000V或B00V取代节来代替(B和V也是“1”码,可 正、可负)。这两个取代节选取原则是,使任意两个相邻v脉冲间的传号数 为奇数时选用000V取代节,偶数时则选用B00V取代节。 0 0 0 0 0 0 HDB3V+.-1 0
hdb3编译码实验报告
hdb3编译码实验报告HDB3编码解码实验报告引言:在通信领域中,编码和解码是非常重要的技术之一。
HDB3编码是一种高密度双极性三零编码,常用于数字通信中。
本实验旨在通过实际操作,深入理解HDB3编码的原理和实现方法,并通过编码解码实验验证其正确性和可靠性。
一、实验目的1. 了解HDB3编码的原理和特点;2. 掌握HDB3编码的实现方法;3. 熟悉HDB3解码的过程;4. 验证HDB3编码解码的正确性和可靠性。
二、实验原理HDB3编码是一种基于替代零的编码技术,它通过将连续的零位转换为特定的极性和非零位,以提高传输效率和抗干扰能力。
HDB3编码的原理如下:1. 连续的零位转换:将连续的四个零位编码为一个非零位,以避免传输线上出现过长的零序列,减少时钟同步问题。
2. 替代零:将连续的零位替换为特定的极性,使得传输线上始终存在正负极性的变化,减少直流偏移。
三、实验步骤1. 实现HDB3编码器:根据HDB3编码规则,编写编码器程序,将输入的二进制数据流转换为HDB3编码序列。
2. 实现HDB3解码器:编写解码器程序,将HDB3编码序列还原为原始的二进制数据流。
3. 编码解码实验:将一组二进制数据输入编码器,得到对应的HDB3编码序列,然后将该编码序列输入解码器,还原为原始的二进制数据流。
4. 验证结果:比较解码器输出的二进制数据流与输入的原始数据流是否相同,以验证编码解码的正确性和可靠性。
四、实验结果与分析经过多次实验,编码解码结果均正确,验证了HDB3编码解码的正确性和可靠性。
HDB3编码在传输过程中有效地减少了零序列的出现,提高了传输效率和抗干扰能力。
同时,由于替代零的引入,HDB3编码能够保持传输线上的正负极性变化,减少了直流偏移的问题。
五、实验总结通过本次实验,我深入理解了HDB3编码的原理和实现方法。
HDB3编码是一种常用的编码技术,能够有效地提高数字通信的可靠性和传输效率。
在实际应用中,我们可以根据通信系统的需求选择合适的编码方式,以满足不同的传输要求。
HDB3编码实验报告
HDB3编码与译码实验一、实验前准备工作(1)预习本实验的相关内容(2)熟悉实验箱面板分布及测试孔位置,定义本实验相关模块的跳线状态。
(3)实验前重点掌握的内容:HDB 3 编码和解码原理、定时提取原理(4)思考 HDB 3输出波形应该什么样、编码输入和解码输出波形相位应该相同吗、本实验用到哪几个模块及每个模块的主要作用是什么。
二、实验目的(1)掌握HDB3编码规则,编码和解码原理。
(2)了解锁相环的工作原理和定时提取原理。
(3)了解输入信号对定时提取的影响。
(4)了解信号的传输延时。
(5)了解HDB3编译码集成芯片CD22103。
三、实验仪器(1)ZH5001A通信原理综合实验系统一台(2)(2)20MHZ双踪示波器一台四、基本原理1.HDB3编译码电路在通信原理综合试验箱中,采用了CD22103专用芯片(UD01)实现HDB3码的编译码实验。
在该电路模块下,没有采用复杂的线圈耦合的方法来实现HDB3码字的转换,而是采用运算放大器(UD02)完成对HDB3输出进行电平变换。
变换输出为双极性码或单极性码。
HDB3编译码系统组成如图一:CD22013集成电路进行HDB3编译码。
当它第三脚接+5V时为HDB3编译码器。
编码时,需要输入NRZ码及时钟信号,CD22103编码输出两路并行信号+HDB3out(15脚TPD03)和-HDB3out(14脚TPD04),它们都是半占空比的正弦冲信号,分别与HDB3码的正极信号及负极信号相对应,这两路信号通过一个差分放大器(UD02A)后,得到HDB3。
通过由运算放大器的相加器(UD02B),输出HDB3码的单极性码输出。
译码时,需将HDB3码变换成两路单极性信号分别送到CD22103的第11、13脚,此任务由双/单变换电路来完成。
通常译码之后TPD07与TPD01的波形应一致,但由于当前的输出HDB3码字可能与前四个码字有关,因此HDB3的编译码时延较大。
在实用的HDB3编译码电路中,发端的单/双极性变换器一般由变压器完成;收端的的双/单极性变换器一般由变压器、比较器完成。
实验02 HDB3 编码实验
实验二 HDB3 编码实验1. 实验目的与实验原理z了解线路编码的码型选择原则;z掌握HDB3码的编码规则及其特性;z掌握HDB3接口变换与反变换的实现方法;z进一步掌握伪随机信号产生电路的实现方法;HDB3码编码规则是:HDB3码在编码时,连“0”个数被限制为≦3。
HDB3编码方法是,当信息中出现连“0”个数≦3时,HDB3码即是AMI码;当信息中出现4个(或以上)连“0”时,就用特定码组来取代,这种特定码组称为取代节。
例如,信码为:10 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 若前一个破坏点为V- ,且它至第一个连“0”串前有奇数个B,则HDB3码为: B+ 0 B- B+ 0 0 0 V+ 0 0 0 B- B+ B- 0 0 V- 0 0 B+若前一个破坏点为V+ ,且它至第一个连“0”串前有偶数个B,则HDB3码为: B+ 0 B- B+ B- 0 0 V- 0 0 0 B+ B- B+ 0 0 V+ 0 0 B-HDB3码有两种取代节:“B00V”和“000V”。
其中B表示符合极性交替规则的传号,V表示破坏极性交替规则的传号,称为“破坏点”。
这两种取代节的选取规则是:使任意两个V脉冲间的B脉冲数目为奇数。
这样,相邻V脉冲的极性也满足交替变化规律,达到整个信号保持无直流分量的目的。
HDB3码的波形不是唯一的,它与出现四连“0”码之前的状态有关。
下图中 虚线框内为HDB3编码电路框图。
HDB3编码电路的框图一个完整的二次群HDB3编码实验电路包括以下4部分:(1) 8M时钟信号输入(2) 大于5级NRZ码产生器(3) 用FPGA实现HDB3编码电路(4) 单-双极性输出合成电路2、在MAXPLUS II设计平台下进行电路设计(1)目录路径: TX \ HDB3_all\HDB3A在计算机上建一实验目录(用英文)文件名: hdb3a.gdf , ( 或 hdb3a1.gdf )(2)完成HDB3编码电路设计,或打开实验光盘提供的实验电路,并进行分析。
通信原理实验四HDB3编解码实验
七、思考题
• 1、 结合HDB3码的编码规则说说 HDB3码的波形为什么不是唯一 • 2、 结合实验波形指出破坏HDB3码 极性交替规律的正脉冲或负脉冲,即 在TPA05上标注0、B-、B+、V-、 V+等符号
• +1-1+1-1+1-1 0000 +1-1 00 • 000V• +1-1+1-1+1-1 0000 -1+1 00 • B+00V+ • -1+1-1+1-1+1 0000 +1-1 00 • B00V-
四、实验原理知识点3: HDBn码
• n阶高密度双极性码 HDBn
• 使用这种码型的目的是解决信息码中出现连 0 串时所带来的问题。 • HDBn的1也是交替的+1和-1半占空归零码表示, 但允许的连0个数被限制为小于或等于n。 • 简单地说, HDBn 码是采用在连 0 码中插入 1 码 的方式破坏连 0 状态。这种“插入”实际上是 用一种特定码组取代n+1位连0码,特定码组被 称 为 取 代 节 。 HDBn 码 的 取 代 节 有 两 种 : B00...0V和00...V,每种取代节都是n+1位码
四、实验原理知识点3:HDBn码
• 应用最广泛的是HDB3码。在HDB3中,n=3, 所以连“0”个数不能大于 3? 。每当出现4个连 0时,就用取代节B00V或000V代替,其中B表 示符合极性交替变化规律的传号,V表示破坏 极性交替规律的传号,也称为破坏点。当两个 相邻V脉冲之间的传号数(1的个数): • 为奇数时,采用000V取代节; • 为偶数时,采用B00V取代节。
• 三、AMI码的特点:
AMI码
HDB3码型变换实验报告
HDB3码型变换实验报告实验报告:HDB3码型变换实验摘要:本实验通过使用HDB3编码技术实现了二进制数据的高密度编码和解码。
通过此实验,我们了解了HDB3编码的原理和过程,并验证了其在数据传输中的有效性和稳定性。
一、引言HDB3码型(High Density Bipolar Three Zero)是一种高密度双极三零编码方法,主要用于在数字通信系统中将二进制串转换为双极信号传输。
HDB3码型通过对数据串进行特定规则的编码,使得传输的信号中没有长时间的直流成分,从而提高了信号的稳定性和抗干扰性。
本实验通过编写程序,模拟HDB3编码过程,并通过软件实现数据的编码和解码。
二、实验原理1.编码过程HDB3编码过程中,每四个连续的0通过特定规则映射为一个与前面信号相反的双极信号,并在此信号的前后分别插入额外的零信号。
具体编码规则如下:-如果输入数据位为1,则保持信号不变。
-如果输入数据位为0,并且前面连续的0的个数为偶数,则将该输入数据位变换为与前面信号相反的双极信号。
-如果输入数据位为0,并且前面连续的0的个数为奇数,则将该输入数据位变换为与前面信号相同的双极信号,并在这个信号的前后分别插入额外的零信号。
2.解码过程HDB3解码过程中,根据出现的信号序列对双极信号进行解码,并还原为二进制数据串。
具体解码规则如下:-如果连续出现的双极信号为0,则输出0。
-如果连续出现的双极信号为正或负信号,则输出1,并通过观察插入的零信号个数来判断是否需要进行数据位反转。
三、实验步骤1.编写HDB3编码程序,实现编码过程。
2.编写HDB3解码程序,实现解码过程。
3.设计测试数据,包括正常数据和噪声数据,用于验证编码和解码的有效性和稳定性。
4.运行编码程序,将测试数据进行编码,并输出编码结果。
5.运行解码程序,将编码结果进行解码,并输出解码结果。
6.对比解码结果与原始数据,验证编码和解码的正确性。
四、实验结果经过实验,我们得到了准确的编码和解码结果,与原始数据完全一致。
hdb3码型变换实验报告
hdb3码型变换实验报告HDB3码型变换实验报告引言:HDB3码型是一种高密度双极性三零码,广泛应用于数字通信系统中的信号编码。
本实验旨在通过对HDB3码型的变换过程进行实际操作,深入理解其原理和应用。
一、实验目的本实验的主要目的是通过实际操作,掌握HDB3码型的变换过程,并了解其在数字通信系统中的应用。
二、实验原理HDB3码型是一种基于双极性三零码的信号编码方式。
它的原理是通过对信号进行特定规则的变换,将原始数据转换为HDB3码型。
在HDB3码型中,每个数据位通过特定规则的变换后,可以表示为正脉冲、负脉冲或无脉冲。
这种编码方式可以有效地降低传输线上的直流成分,并提高传输效率。
三、实验步骤1. 准备实验设备:计算机、信号发生器、示波器等。
2. 连接信号发生器和示波器,并设置合适的参数。
3. 打开计算机上的信号发生器软件,并选择HDB3码型。
4. 输入原始数据,并观察示波器上的信号波形。
5. 分析示波器上的波形,观察HDB3码型的变换规律。
6. 记录实验数据,并进行数据分析。
四、实验结果与分析通过实验操作,我们成功地将原始数据转换为HDB3码型,并观察到了信号波形的变化。
根据实验数据和示波器上的波形,我们可以得出以下结论:1. HDB3码型的变换规律:根据HDB3码型的规则,连续两个零位之间的脉冲数目不能超过三个。
当连续两个零位之间的脉冲数目为偶数时,HDB3码型中会插入一个反向脉冲,以保持脉冲数目为偶数;当连续两个零位之间的脉冲数目为奇数时,HDB3码型中会插入一个反向脉冲,并使其后的一个脉冲变为无脉冲,以保持脉冲数目为偶数。
2. HDB3码型的优点:HDB3码型通过特定的编码规则,使得信号波形中的直流成分降低,从而提高了传输效率。
同时,HDB3码型具有较好的抗噪声性能,能够有效地减少传输过程中的误码率。
3. HDB3码型的应用:HDB3码型广泛应用于数字通信系统中,特别是在高速传输环境下。
它可以用于数字电话网络、数字广播、数字电视等领域,有效地提高信号传输的可靠性和稳定性。
hdb3实验报告
hdb3实验报告HDB3实验报告引言:HDB3(High Density Bipolar 3-Zero)是一种常用的数字传输编码技术,广泛应用于数字通信领域。
本实验旨在通过对HDB3编码的实验研究,深入了解其原理和应用。
一、HDB3编码原理HDB3编码是一种基于替代零和双零的编码技术。
在传输数据时,将数据位流转换为电压信号,通过特定规则将0替换为正负电平的交替信号,从而实现数据的传输和解码。
二、实验设备与方法本次实验所需设备包括信号发生器、示波器和编码解码器。
首先,通过信号发生器产生待编码的数据位流,并将其输入到编码器中。
然后,将编码后的信号通过示波器进行观测和分析。
最后,将编码后的信号输入到解码器中,通过解码器输出解码后的数据。
三、实验过程与结果1. 编码过程在实验中,我们选择了一个8位的二进制数据位流进行编码。
首先,将数据位流输入到编码器中,编码器根据HDB3编码规则将0替换为正负电平的交替信号。
通过示波器观测编码后的信号波形,可以清晰地看到替代零和双零的出现。
2. 解码过程将编码后的信号输入到解码器中,解码器根据HDB3解码规则将正负电平的交替信号还原为原始的数据位流。
通过示波器观测解码后的信号波形,可以验证解码器的正确性。
3. 实验结果分析通过对编码和解码过程的观测与分析,我们可以得出以下结论:a. HDB3编码可以有效地将数据位流转换为电压信号进行传输,提高传输效率和可靠性。
b. HDB3编码规则中的替代零和双零可以保持信号的直流平衡,减小传输中的直流漂移。
c. 解码器能够正确还原编码后的信号,保证数据的准确传输。
四、HDB3编码的应用HDB3编码在数字通信领域有着广泛的应用。
其主要优点包括:1. 高密度传输:HDB3编码可以有效地提高传输速率,实现高密度的数据传输。
2. 抗干扰能力强:HDB3编码规则中的替代零和双零可以提高抗干扰能力,减小传输中的误码率。
3. 保持直流平衡:HDB3编码规则可以保持信号的直流平衡,减小传输中的直流漂移,提高传输质量。
hdb3编译码实验报告
hdb3编译码实验报告HDB3编码实验报告摘要:本实验旨在通过使用HDB3编码技术来传输数字信号,并对其进行解码,以验证HDB3编码的可靠性和有效性。
实验结果表明,HDB3编码能够有效地传输数字信号,并且在存在噪声和干扰的情况下具有较强的抗干扰能力。
引言:HDB3(High Density Bipolar of order 3)编码是一种常用的数字信号编码方式,它可以有效地将数字信号转换为传输线路上的模拟信号,并且具有较强的抗干扰能力。
本实验将通过对HDB3编码的实验来验证其可靠性和有效性。
实验设计与方法:本实验首先使用数字信号发生器产生一个包含多个1和0的数字信号序列,然后将该数字信号序列通过HDB3编码器进行编码,得到对应的模拟信号。
接着,将这个模拟信号通过传输线路传输,并在接收端使用HDB3解码器对其进行解码,最终得到解码后的数字信号序列。
实验过程中,我们将分别在传输线路中引入不同程度的噪声和干扰,以观察HDB3编码在不同环境下的传输效果。
实验结果与分析:经过一系列实验操作后,我们得到了HDB3编码在不同环境下的传输效果。
实验结果表明,HDB3编码在无噪声和干扰的情况下能够准确地传输数字信号,并且在存在噪声和干扰的情况下,仍然能够有效地保持信号的完整性和准确性。
这表明HDB3编码具有较强的抗干扰能力,能够在复杂的传输环境下保证信号的可靠传输。
结论:通过本实验,我们验证了HDB3编码在数字信号传输中的可靠性和有效性。
HDB3编码不仅能够有效地将数字信号转换为模拟信号进行传输,而且在存在噪声和干扰的情况下具有较强的抗干扰能力,能够保证信号的可靠传输。
因此,HDB3编码在数字通信领域具有重要的应用价值。
HDB3码型变换实验
HDB3码型变换实验HDB3码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征和作用。
2、掌握 HDB3码的编译规则。
3、了解滤波法位同步在的码变换过程中的作用。
二、实验步骤实验项目一:HDB3编译码(256KHz归零码实验)1、用示波器分别观测编码输入的数据TH3和编码输出的数据TH1(HDB3输出):输入数据TH3位于上方,编码为:110101111…输出数据TH1位于下方,从4bit位开始为:+1 -1 0 +1 0 -1 +1 -1 此处采用了HDB3的归零码编码,符合编码规则,延迟4bit。
2、保持示波器测量编码输入数据TH3的通道不变,另一通道中间测试点TP2(HDB3-A1):以上图和TH3的对比可以知道,在延迟4bit后,可以得到在TH3的奇数位为1信号,那么得到变换波形为1(码元占空比50%),否则为0。
3、保持示波器测量编码输入数据TH3的通道不变,另一通道中间测试点TP3(HDB3-B1):以上图和TH3的对比可以知道,在延迟4bit后,可以得到在TH3的偶数位为1信号,那么得到变换波形为1(码元占空比50%),否则为0。
4、用示波器分别观测模块8的TP2(HDB3-A1)和TP3(HDB3-B1):通过3,4的分析,从上图中可以看出TP2与TP3的减法可以得到HDB3码,说明是通过这样的方法来得到HDB3码的。
5、用示波器对比观测编码输入的数据和译码输出的数据:从上图可以看出,输入与输出的数据形状是相同的,但是输出滞后了8bit.6、用示波器分别观测TP4(HDB3-A2)和TP8(HDB3-B2):从图中可以看出,在经过点评变换后,TP1与编码后的HDB3-A1相同,即奇数码元变换波形;TP1与编码后的HDB3-A2相同,即偶数码元变换波形。
7、用示波器菲苾观测模块8的TH7(HDB3输入)和TH6(单极性码):从图中可以看出,HDB3码与单极性码在同一时间的1、0信号位置相同,不同的是双极性的是+1,-1交替出现。
hdb3编译码实验报告总结
hdb3编译码实验报告总结
hdb3编译码实验报告总结如下:
采用了UAOI(SC22103专用芯片)实现HDB3的编译码实验,在该电路模块中,没有采用复杂的线圈偶合的方法来实现HDB3码字的调试加是采用UA02A(TL084)对HDB3的输出进行变换。
输入的码由UA01的1脚在2脚时钟信号的推动下输入,HDB3与AMI由KA01选择。
编码之后结果在UA01的14、15脚输出。
而后在电路上直接由UAO1的11、13脚返回,再由UA03进行译码。
正确译码之后TPA01与TPA08的波形应一致,但由于HDB3的编译码规则较复杂,当前的输出HDB3的码字可能与前4个码字有关,因而HDB3的编译码时延较大AMI与HDB3的选择可通过KAO1设置,当KAO1设置在1-2状态时UAO1完成HDB3编译码过程;当KA02、KA03设置在2-3状态时,UA01完成AMI编译码过程。
实验一--HDB3码型变换实验
实验一 HDB3码型变换实验一、实验目的1.了解二进制单极性码变换为HDB3码的编码规则,掌握它的工作原理和实现方法。
2. 通过测试电路,熟悉并掌握分析电路的一般规律与方法,学会分析电路工作原理,画出关键部位的工作波形。
3.了解关于分层数字接口脉冲的国际规定,掌握严格按技术指标研制电路的实验方法。
二、实验内容本实验可完成以下实验内容:1.调测HDB3编、译码电路。
2.调测位定时提取电路及信码再生电路。
各部分的输出信号应达到技术指标的要求,同时做到编、解码无误。
三、基本原理在数字通信系统中,有时不经过数字基带信号与信道信号之间的变换,只由终端设备进行信息与数字基带信号之间的变换,然后直接传输数字基带信号。
数字基带信号的形式有许多种,在基带传输中经常采用AMI码(符号交替反转码)和HDB3码(三阶高密度双极性码)。
1.传输码型在数字复用设备中,内部电路多为一端接地,输出的信码一般是单极性不归零信码。
当这种码在电缆上长距离转输时,为了防止引进干扰信号,电缆的两根线都不能接地(即对地是平衡的),这里就要选用一种适合线路上传输的码型,通常有以下几点考虑:(1).在选用的码型的频谱中应该没有直流分量,低频分量也应尽量少。
这是因为终端机输出电路或再生中继器都是经过变压器与电缆相连接的,而变压器是不能通过直流分量和低频分量的。
(2).传输码型的频谱中高频分量要尽量少。
这是因为电缆中信号线之间的串话在高频部分更为严重,当码型频谱中高频分量较大时,就限制了信码的传输距离或传输质量。
(3).码型应便于再生定时电路从码流中恢复位定时。
若信号中连“0”较长,则等效于一段时间没有收脉冲,恢复位定时就困难,所以应该使变换后的码型中连“0”较少。
(4).设备简单,码型变换容易实现。
(5).选用的码型应使误码率较低。
双极性基带信号波形的误码率比单极性信号的低。
根据这些原则,在传输线路上通常采用AMI码和HDB3码。
2.AMI码我们用“0”和“1”代表传号和空号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HDB3编码与译码实验
一、实验前准备工作
(1)预习本实验的相关容
(2)熟悉实验箱面板分布及测试孔位置,定义本实验相关模块的跳线状态。
(3)实验前重点掌握的容:HDB 3编码和解码原理、定时提取原理
(4)思考HDB 3输出波形应该什么样、编码输入和解码输出波形相位应该相同吗、本实验用到哪几个模块及每个模块的主要作用是什么。
二、实验目的
(1)掌握HDB;编码规则,编码和解码原理。
(2)了解锁相环的工作原理和定时提取原理。
(3)了解输入信号对定时提取的影响。
(4)了解信号的传输延时。
(5)了解HDB;编译码集成芯片CD22103
三、实验仪器
(1)ZH5001A通信原理综合实验系统一台
(2)(2)20MHZ双踪示波器一台
四、基本原理
1.HDB3编译码电路
在通信原理综合试验箱中,采用了CD22103专用芯片(UD01实现HDB3 码的编译码实验。
在该电路模块下,没有采用复杂的线圈耦合的方法来实现HDB;码字的转换,而是采用运算放大器(UD02完成对HDB3输出进行电平
变换。
变换输出为双极性码或单极性码。
HDB3编译码系统组成如图一: 代闆,TTtXM TF1W3
|割1 H[用1期律码樓块甜辰幣麗
CD22013集成电路进行HDB3编译码。
当它第三脚接+5V时为HDB3编译码器。
编码时,需要输入NRZ码及时钟信号,CD22103编码输出两路并行信号
+HDB3out(15脚TPD03和-HDB3out( 14脚TPD04,它们都是半占空比的正弦冲信号,分别与HDB3码的正极信号及负极信号相对应,这两路信号通过一个差分放大器(UD02A后,得到HDB3通过由运算放大器的相加器
(UD02B,输出HDB3码的单极性码输出。
译码时,需将HDB3码变换成两路单极性信号分别送到CD22103的第11、13脚,此任务由双/单变换电路来完成。
通常译码之后TPD07与TPD01的波形应一致,但由于当前的输出HDB3 码字可能与前四个码字有关,因此HDB3勺编译码时延较大。
在实用的HDB3编译码电路中,发端的单/双极性变换器一般由变压器完成;收端的的双/单极性变换器一般由变压器、比较器完成。
本实验目的是掌握HDB3编码规则及位同步提取方法,故对单双,双单极性变换电路作了减缓处理,不一定符合实用要求。
2.位定时提取电路
位定时提取电路采用锁相环方法。
在系统中锁相环将接收端的256kHz 时钟锁定在发端的256kHz时钟上,来获得系统的同步时钟,如HDB 3接收的同步时钟及后续电路同步时钟。
该锁相环模块主要由锁相环UP01(MC4046 、数字分频器UP02
(74LS161 、D触发器UP04 (74LS74 、环路滤波器和输入端的带通
滤波器(UP03B组成。
UP01部由一个振荡器与一个高速鉴相器组成。
该锁相环模块如图二:
TPPtH TPk)2 MkMt
512kHz IPPtH TPPll? 1PP06
帕2娥郴n;fn应机阳
输入端的带通滤波器是由运算放大器(TEL2702及阻容器件构成的有源带通滤波器,中心频率为256kHz,滤出256kHz时钟信号,输出的信号是一个幅度和周期都不恒定的准正弦信号。
对此信号进行限幅放大(UP03A 处理后得到幅度恒定、周期变化的脉冲信号,但仍不能将此信号作为译码器
的位同步信号。
经UP04A和UP04B两个除二分频器(共四分频)变为64kHz 信号,进入UP01鉴相输入A脚;VCO输出的512kHz输出信号经UP02进行八分频变为64kHz信号,送入UP01的鉴相输入B脚。
经UP01部鉴相器鉴相之后的误差控制信号经环路滤波器滤波送入UP01的压控振荡器输入端。
正常时,VCO锁定在外来
的256kHz频率上。
五、实验容
1.H DB3码变换规则验证
首先将输入信号选择跳线开关KD01设置在M位置(右端)、单/双极性码输出选择开关设置KD02设置在2_3位置(右端:单极性)、HDB3编码开关KD03设置在HDB;位置(左端),使该模块工作在HDB3码方式。
(1)通过CMI编码模块的m序列类型选择跳线开关KX02的设置,产生7位周期m序列。
用示波器同时观测输入数据TPD01和AMI输出双极性编码数据TPD05波形及单极性编码数据TPD08的波形,观测是用TPD01同步。
分析观测输入数据与输出数据关系是否满足AMI编码关系,画下一个m序列周期的测试波形。
(2)使输入数据端口悬空产生全1码。
(3)使输入数据为全0码,分别画下一个周期的测试波形。
2.HDB3码译码和时延测量
首先将输入信号选择跳线开关KD01设置在M位置(右端);将CMI编码模块的m序列类型选择跳线开关KX02设置在1_2位置(左端)产生15位周期m序列;将锁相环模块输入信号选择跳线开关KP02设置在HDB竝置(左端)。
用示波器同时观测输入数据TPD01和HDB;译码输出数据TPD07波形,观测时用TPD01同步。
分析观测HDB3编码输入数据与HDB3译码输出数据是否满足HDB3编译码系统要求。
3.HDB3编码信号中同步时钟分量定性观测
将输入数据选择跳线开关KD01设置在M位置(右端);将锁相环模块输入
信号选择跳线开关KP02设置在HDB3&置(左端)。
(1)将极性码输出选择跳线开关KD02设置在2_3位置(右端)产生单极性码输出,用示波器测量模拟锁相环模块TPP01 TPP02波形;然后将跳线开关KD02设置在1_2位置(左端)产生双极性码输出,观测TPP01 TPP02 波形变化。
(2)将极性码输出选择跳线开关KD02设置在2_3位置(右端)产生单极性码输出,使输入数据为全1码,测试模拟锁相环模块TPP01点的同步时钟分量波形步骤,记录并分析测试结果。
(3)使输入数据为全0码,重复上述步骤,记录测试结果。
六、实验结论分析
1. HDB3码变换规则验证
(1)输入方波单极性:
(2)输入方波双极性
通信原理实验
(3)全1输入双极性
(4)全0输入双极性2匸h”化IOOMH I
t f
l4
n
Cl.00U Ti *日-W*r
2.HDB3码译码和时延测量
3.HDB3编码信号中同步时钟分量定性观测
(1)单极性:ime 10-wv
GOL STOP
(2)双极性
(3)全1单极性
(4)全0单极性
通信原理实验
七、思考题
(3)编码输入和解码输出的时延是如何产生的?
编码输入和解码输出延时是因为信号在经过CD22103芯片产生延时,查芯片手册可知编码和解码的延时都是4个时钟周期。
-10。