新人教版八年级下册数学期中测试卷及答案(北京)

合集下载

人教版八年级下册数学《期中检测试卷》(含答案)

人教版八年级下册数学《期中检测试卷》(含答案)

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x –2<4C. 1x <2D. 4x –3<2y –72. 在△ABC 中,已知CA =CB ,∠A =45°,BC =5,则AB 的长为( ) A. 2 B. 5 C. 52 D. 253. 不等式3x ≥-的解集在数轴上表示为( ) A. B. C. D.4. 到三角形三条边距离都相等的点是这个三角形的( )A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点5. 等腰三角形的一个角是40°,则它的底角是( ) A. 40° B. 40°或70° C. 80°或70° D. 70° 6. 如果a b >,那么下列不等式中正确是( )A 2323a b +>+ B. 55a b < C. 22a b ->- D. 22a b -<- 7. 下列命题的逆命题是假命题的是( )A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除8. 如图,点D 、E 分别在△ABC 的边AC 、BC 上,且DE 垂直平分AC ,若△ABE 的周长为13,AD =5,则△ABC 的周长是( )A. 18B. 23C. 21D. 269. 对于任意实数a 、b ,定义一种运算:a ※b =ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x >2,则不等式的解为( )A. x >1B. x >2C. x <1D. x <210. 如图,△ABC 是等边三角形,AB=12,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,则BE+CF 的长是( )A. 6B. 5C. 12D. 8二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号) 13. 如图,已知OA =OB =OC ,BC ∥AO ,若∠A =36°,则∠B 度数为_____.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.三.解答题15. 解不等式:1﹣3(x ﹣1)<8﹣x .16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.23. 如图,△ABC 中,AB =AC ,D 为BC 边中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示: 品名 厂家批发价(元/个)商场零售价(元/个) 篮球 140180 足球 110140(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个? 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明答案与解析一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x–2<4C. 1x<2 D. 4x–3<2y–7[答案]B[解析][分析]根据一元一次不等式的概念,从未知数的次数、个数及不等式两边的代数式是否为整式的角度来解答.[详解]A、不含未知数,错误;B、符合一元一次不等式的定义,正确;C、分母含未知数,错误;D、含有两个未知数,错误.故选B.2. 在△ABC中,已知CA=CB,∠A=45°,BC=5,则AB的长为( )C. D.[答案]C[解析][分析]根据等腰直角三角形的性质利用特殊角的三角函数值求解即可;[详解]解:∵CA=CB,∠A=45°,∴∠B=∠A=45°,∴∠C=90°,∵BC=5,BC=,故选:C.[点睛]本题主要考查了解直角三角形的应用,准确计算是解题的关键.x≥-的解集在数轴上表示为()3. 不等式3A. B. C. D.[答案]A[解析][分析]根据不等式解集的表示方法即可判断.x≥-的解集在数轴上表示为[详解]3故选A.[点睛]此题主要考查不等式解集的表示,解题的关键是熟知不等式的在数轴上的表示方法.4. 到三角形三条边的距离都相等的点是这个三角形的()A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点[答案]D[解析]分析]根据角的平分线上的点到角的两边的距离相等可得答案.[详解]解:∵角平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.[点睛]该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.5. 等腰三角形的一个角是40°,则它的底角是( )A. 40°B. 40°或70°C. 80°或70°D. 70°[答案]B[解析][分析]分40︒的角为等腰三角形的顶角和40︒的角为等腰三角形的底角两种情况,再根据三角形的内角和定理、等腰三角形的定义即可得.[详解]根据等腰三角形的定义,分以下两种情况:(1)当40︒的角为等腰三角形的顶角时, 则底角18040702;(2)当40︒的角为等腰三角形的底角时,则底角为40︒;综上,它的底角是40︒或70︒,故选:B .[底角]本题考查了等腰三角形的定义、三角形的内角和定理,依据题意,正确分两种情况讨论是解题关键. 6. 如果a b >,那么下列不等式中正确的是( )A. 2323a b +>+B. 55a b <C. 22a b ->-D. 22a b -<- [答案]A[解析][分析]根据不等式性质解答即可;[详解]解:∵a >b∴22a b >∴2323a b +>+,则A 正确∵a >b∴5a >5b ;22a b -<-;22a b ->-故B 、C 、D 错误 故应选A[点睛]本题考查了不等式的性质来,解答关键是注意不等号改变方向的条件.7. 下列命题的逆命题是假命题的是()A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除[答案]C[解析][分析]先写出各命题的逆命题,分析是否为真命题,从而利用排除法得出答案.[详解]解:(1)逆命题为:两条直线被第三条直线所截,如果这两条直线平行,那么同旁内角互补,是真命题;(2)逆命题为:能被2整除的数是偶数,是真命题;(3)逆命题为:如果两个角相等,那么它们是直角,是假命题;(4)逆命题为:如果一个数能被8整除,那么这个数也能被4整除,是真命题.故选C[点睛]此题主要考查了命题的逆命题和命题的真假判断,判断命题的真假关键是要熟悉课本中的性质定理.8. 如图,点D、E分别在△ABC的边AC、BC上,且DE垂直平分AC,若△ABE的周长为13,AD=5,则△ABC 的周长是( )A. 18B. 23C. 21D. 26[答案]B[解析][分析]根据线段垂直平分线性质可得AC=2AD,AE=CE,根据三角形周长得AB+AC=13,故△ABC的周长为AB+BC+AC;[详解]解:∵DE垂直平分AC,AD=5,∴AC=2AD=10,AE=CE,∵△ABE的周长为13,∴AB+BE+AE=AB+CE+BE=AB+AC=13,∴△ABC的周长为AB+BC+AC=13+10=23,故选:B.[点睛]考核知识点:线段垂直平分线.理解线段垂直平分线性质和三角形周长公式是关键.9. 对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x>2,则不等式的解为( )A. x>1B. x>2C. x<1D. x<2[答案]B[解析][分析]根据新定义运算的公式计算即可;[详解]解:∵2※x>2,∴2x﹣2+x﹣2>2,解得x>2,故选:B.[点睛]本题主要考查了新定义运算,准确理解和计算是解题的关键.10. 如图,△ABC是等边三角形,AB=12,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF的长是()A. 6B. 5C. 12D. 8[答案]A[解析][分析]先设BD=x,则CD=20-x,根据△ABC是等边三角形,得出∠B=∠C=60°,再利用三角函数求出BE和CF的长,即可得出BE+CF 的值.[详解]设BD=x ,则CD=20-x ,∵△ABC 是等边三角形,∴∠B=∠C=60°.∴BE=cos60°•BD=2x , 同理可得,CF= 122x -, ∴BE+CF= 12622x x -+=. 故选A .[点睛]本题考查的是等边三角形的性质,及锐角三角函数的知识,难度不大,有利于培养同学们钻研和探索问题的精神.二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.[答案]8x >-.[解析][分析]将不等式两边同时减去6,即可得到答案.[详解]62x +>-,26x ∴>--,即8x >-,故答案为:8x >-.[点睛]本题考查不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号)[答案 [解析][分析]设AC=x,则AB=2x,再根据勾股定理求出x的值,进而得出结论.[详解]解:如图,设AC=x,∵在△ABC中,∠C=90°,∠B=30°,∴AB=2AC=2x,由勾股定理得:AC2+BC2=AB2,即x2+52=(2x)2,解得:x=533,即AB=2×533=1033,故答案为:1033.[点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13. 如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B的度数为_____.[答案]72°[解析][分析]根据OA=OC,得到∠ACO=∠A,又因为BC∥AO,推出∠BCA=∠A,求出∠BCO的度数,再根据OB=OC,得到∠B=∠OCB,即可解决本题.[详解]解:∵OA=OC∴∠ACO=∠A=36°∵BC∥AO∴∠BCA=∠A=36°∴∠BCO=72°∵OB=OC∴∠B=∠OCB=72°故答案为:72°.[点睛]本题主要考查了平行线的性质以及等腰三角形的性质,熟悉平行线以及等腰三角形的性质是解决本题的关键.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.[答案]5[解析][分析]设这个篮球队赢了x场,则最多平(x-1)场,最多输(x-2)场,由该篮球队共打12场比赛,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.[详解]解:设这个篮球队赢了x场,则最多平(x﹣1)场,最多输(x﹣2)场,根据题意得:x+(x﹣1)+(x﹣2)≥12,解得:x≥5.∴这个篮球队最少贏了5场.故答案为:5.[点睛]考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题15. 解不等式:1﹣3(x﹣1)<8﹣x.[答案]x>﹣2[解析][分析]先去括号,移项,再合并同类项,系数化为1,即可求得不等式的解集.[详解]解:1﹣3(x﹣1)<8﹣x去括号得,1﹣3x+3<8﹣x移项得,﹣3x+x<8﹣3﹣1合并同类项得,﹣2x<4系数化为1得,x>﹣2故此不等式的解集为:x>﹣2.[点睛]本题主要考查不等式的解法,熟练不等式的解法以及注意不等号符号的改变是解决本题的关键.16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).[答案]详见解析.[解析][分析]根据过直线外一点作一直直线垂线的方法即可得出结论.[详解]解:如图所示,直线CD即为所求.[点睛]本题考查作图-基本作图,解题关键是熟知线段垂直平分线的作法.17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.[答案]证明见解析[解析][分析]根据OA=OB,得∠A=∠B=60°;根据AB∥DC,得出对应角相等,从而求得∠C=∠D=60°,根据等边三角形的判定就可证得结论.[详解]解:∵OA=OB,∴∠A=∠B=60°,又∵AB∥DC,∴∠A=∠C=60°,∠B=∠D=60°,∴△OCD是等边三角形.[点睛]本题考查等边三角形的判定.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.[答案]见解析[解析][分析]首先假设三角形的一个外角不等于与它不相邻的两个内角的和,根据三角形的内角和等于180°,得到矛盾,所以假设不成立,进而证明三角形的一个外角等于与它不相邻的两个内角的和.[详解]已知:如图,∠1是△ABC的一个外角,求证:∠1=∠A+∠B,证明:假设∠1≠∠A+∠B,△ABC中,∠A+∠B+∠2=180°,如下图所示:∴∠A+∠B=180°﹣∠2,∵∠1+∠2=180°,∴∠1=180°﹣∠2,∴∠1=∠A+∠B,与假设相矛盾,∴假设不成立,∴原命题成立即:∠1=∠A+∠B.[点睛]本题考查了反证法的运用,反证法的一般解题步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围[答案]1a[解析][详解]解:∵4(x+2)-5=3a+2,∴4x+8-5=3a+2∴x=3a-1 4,∴3a-14≤12,∴a≤1.20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.[答案]6cm.[解析]分析]根据含30度角的直角三角形性质求出BC和BD,再相减即可.[详解]∵△ABC中∠ACB=90°,∠A=30°,BC=4cm,∴AB=2BC=8cm,∠B=60°,∵∠BCD=∠A=30°,∴∠B+∠BCD=60°+30°=90°,∴∠CDB=90°,∴BD=12BC=2cm,∴AD=AB-BD=8cm-2cm=6cm.[点睛]此题考查含30度角的直角三角形性质的应用,解题关键在于掌握在直角三角形中,如果有一个角等于30度,那么它所对的直角边等于斜边的一半.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.[答案]9或4[解析][分析]先利用不等式的性质解出不等式,再得出不等式的负整数解,最后将其代入代数式求解即可.[详解]解:不等式去分母得:6+3x+3≥12﹣2x﹣14,移项合并得:5x≥﹣11,解得:x≥﹣2.2,∴不等式的负整数解为﹣2,﹣1,当x=﹣2时,原式=(-2+1)2-4×(-2)=1+8=9;当x=﹣1时,原式=(-1+1)2-4×(-1)=4.故代数式(x+1)2﹣4x的值为9或4.[点睛]本题考查了不等式解法以及求代数式的值,掌握基本运算法则是解题的关键.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.[答案]27[解析][分析]利用已知得出在Rt△BCD中,∠A=30°,DB=4,在直角△DEC中利用勾股定理进而得出EC的长.[详解]如图,∵AD⊥DB,∠A=30°,∴∠1=60°,∵BD平分∠ABC,∴∠3=∠1=60°,∴∠4=30°,又∵∠BCD=90°,DB=4,∴BC=12BD=2,22BD BC3∴∠CDE=∠2+∠4=90°,∵DE=BE,∠1=60°,∴DE=DB =4, ∴EC=22DE CD +=224(23)+=27.[点睛]此题主要考查了勾股定理、含30度角的直角三角形、角平分线的性质等知识点.解题时须注意勾股定理应用的前提条件是在直角三角形中.23. 如图,△ABC 中,AB =AC ,D 为BC 边的中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.[答案](1)见解析;(2)S △ABC =12.[解析][分析](1)根据等腰三角形的性质得到∠DAC =∠DAB ,AD ⊥BC 根据余角的性质即可得到结论;(2)根据三角形的面积公式和三角形的中线把三角形面积分为面积相等的两部分即可得到结论.[详解](1)∵AB =AC ,D 为BC 边的中点∴AD ⊥BC ,12BAD CAD BAC ∠=∠=∠ ∴∠B +∠BAD =90°∵DE ⊥AB∴∠B +∠EDB =90°∴1EDB BAD BAC 2∠=∠=∠ 即∠BAC =2∠EDB(2)∵AB =AC =6,DE =2∴16262ABD S =⨯⨯=∵D为BC边的中点∴S△ADC=S△ADB=6∴S△ABC=12[点睛]本题考查等腰三角形“三线合一”,同角的余角相等.在等腰三角形中,顶角的角平分线,底边的中线,底边的高线,三条线互相重合.熟练掌握这一性质是解决此题的关键.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示:(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个?[答案](1)60只;(2)40个.[解析][分析](1)设采购员购进篮球x个,则足球购进为(100-x)个,根据表格的批发价,列出不等式即可解决本题;(2)设篮球a个,则足球是(100﹣a)个,一个篮球的利润为40元,一个足球的利润为30元,再分别乘对应的数量,相加后大于等于3400,列出不等式,即可解决.[详解]解:(1)设采购员购进篮球x个,根据题意得:140x+110(100﹣x)≤12800解得x≤60所以x的最大值是60.答:采购员最多购进篮球60个;(2)设篮球a个,则足球是(100﹣a)个根据题意得:(180﹣140)a+(140﹣110)(100﹣a)≥3400解得:a≥40则采购员最少可购进篮球40个.答:采购员最少可购进篮球40个.[点睛]本题主要考查了一元一次不等式的应用题,能够读懂题意以及合理的设出未知数是解决本题的关键. 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明[答案](1)详见解析;(2) AC 垂直平分BE[解析][分析](1)证明AC 是∠EAB 的角平分线,根据角平分线的性质即可得到结论;(2)先写出BE 与AC 的关系,再根据题意和图形,利用线段的垂直平分线的判定即可证明.[详解](1)证明:∵AD=CD ,∴∠DAC=∠DCA ,∵AB ∥CD ,∴∠DCA=∠CAB ,∴∠DAC=∠CAB ,∴AC 是∠EAB 的角平分线,∵CE ⊥AE ,CB ⊥AB ,∴CE=CB ;(2)AC 垂直平分BE ,证明:由(1)知,CE=CB ,∵CE ⊥AE ,CB ⊥AB ,∴∠CEA=∠CBA=90°,在Rt △CEA 和Rt △CBA 中,CE CB AC AC =⎧⎨=⎩, ∴Rt △CEA ≌Rt △CBA (HL ),∴AE=AB ,CE=CB ,∴点A 、点C 在线段BE 的垂直平分线上, ∴AC 垂直平分BE .[点睛]本题考查等腰三角形的性质、角平分线的性质、线段垂直平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.。

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。

()2. 平行四边形的对角线互相平分。

()3. 正方形的对角线相等且互相垂直。

()4. 圆的半径是圆心到圆上任意一点的距离。

()5. 圆的直径是圆上任意两点之间的距离。

()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。

2. 平行四边形的对角线互相平分,所以它的对角线长度是______。

3. 正方形的四个角都是______度。

4. 圆的半径是圆心到圆上______的距离。

5. 圆的直径是圆上______点之间的距离。

四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述平行四边形的性质。

3. 简述正方形的性质。

4. 简述圆的性质。

5. 简述圆的直径和半径之间的关系。

五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。

2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。

人教数学八年级下册北京市第4中学第二学期初二期中练习及答案

人教数学八年级下册北京市第4中学第二学期初二期中练习及答案

初中数学试卷北京市第154中学2014—2015学年度第二学期初二数学期中练习本试题共5页,共六道大题,满分100分,考试时长90分钟。

题号 一 二 三 四 五 六 总分 得分一、.精心选一选 (每小题3分,共30分)1.在△ABC 中,AB =6,AC =8,BC =10,则该三角形为( )A .锐角三角形B .直角三角形C . 钝角三角形D .等腰直角三角形2.下列命题中,正确的是( ).(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形 (C)一条对角线平分另一条对角线的四边形是平行四边形 (D)两组对边分别相等的四边形是平行四边形3. 菱形的周长为4,一个内角为60°,则较短的对角线长为( )A .2B . 3C .1D .124.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠55.已知一元二次方程 x 2 + x ─ 1 = 0,下列判断正确的是( )A.该方程有两个相等的实数根B.该方程有两个不相等的实数根C.该方程无实数根D.该方程根的情况不确定6.已知反比例函数的图象y =k x过点P (1,3),则该反比例函数图象位于( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限7.如图,矩形ABOC 的面积为3,反比例函数ky x=的图象过点A ,则k =( ) A .3B .5.1-C .3-D .6-8. 如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是( ) A .AB CD =B .AD BC = C .AB BC =D .AC BD =9如图,边长为1的正方形ABCD 绕点A 逆时针旋转45度后得到正方形'''D C AB , 边''C B 与DC 交于点O ,则四边形OD AB '的周长..是 A .22 B .3 C .2 D .21+10. 如图所示,把一长方形纸片沿MN 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AMD ′ =36°,则∠NFD ′ 等于(第9题图)OC 'B 'D 'DC第7题图(A)144°(B)126°(C)108°(D)72°二.细心填一填(每小题2分,共20分)11.在,90,ο=∠∆ACBABCRt中D是AB的中点,CD=4cm,则AB= cm。

人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,1523. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.5. 关于x一元二次方程x2-kx-6=0根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 57. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB=米,则点到直线AB距离PC为().A. 米B. 3米C. 米D. 米8. 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为( )A. 18B. 20C. 22D. 249. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角四边形是菱形10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二.填空题(每小题3分,共30分)11. 函数x–1的自变量x的取值范围是_____.12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.18. 如图,在正方形ABCD 中,AC=62,E是BC边的中点,F是AB边上一动点,则FB+FE 的最小值为_________.19. 在ABCD 中,AB=10,BC边上的高为6,AC=5则▭ABCD 的面积为_________.20. 如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=5CD=5,则线段AC长度为_________.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程 (1)(3x -1)2=2(3x -1) (2)3x 2-23 x +1=022. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合. (1)画一个面积为10的等腰直角三角形; (2)画一个周长为20,面积为15菱形.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |cd =ad-bc ,上述记号就叫做2阶行列式. (1)若249|x13|x=0,求x 的值; (2)若11|x x +-11|x x -+=6,求x 的值.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC . (1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=34,求EG的长.27. 已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.答案与解析一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)[答案]A[解析][分析]本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.[详解]A.该方程符合一元二次方程的定义,故本选项符合题意;B.x=1x,不是整式方程,故本选项不符合题意;C.x2+3x-2y=0,含有两个未知数,故不是一元二次方程,故本选项错误;D.x2+2=(x-1)(x+2),方程整理后是一元一次方程,故本选项错误;故选:A.[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,152[答案]B[解析][分析]根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.[详解]A、因为32=9,42=16,52=25,92+162≠252,不能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项正确;C、因为(13)2+(14)2(15)2,不故能构成直角三角形,此选项错误.D、因为222111345222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能构成直角三角形,此选项错误.故选:B.[点睛]本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.3. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等[答案]A[解析][分析]根据菱形性质和平行四边形的性质逐一判断即可.[详解]解:A.菱形对角线互相垂直,而平行四边形的对角线不一定垂直,故本选项符合题意;B.菱形和平行四边形的对角线都不一定相等,故本选项不符合题意;C.菱形和平行四边形的对角线都互相平分,故本选项不符合题意;D.菱形和平行四边形的对角都相等,故本选项不符合题意.故选A.[点睛]此题考查的是菱形的性质和平行四边形的性质,掌握菱形的性质和平行四边形的性质是解决此题的关键.4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.[答案]D[解析]根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5. 关于x一元二次方程x2-kx-6=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况[答案]A[解析][分析]先计算△=(-k)2-4×1×(-6)=k2+24>0,即可判断方程根的情况.[详解]∵△=(-k)2-4×1×(-6)=k2+24>0,∴一元二次方程x2-kx-6=0有两个不相等的实数,故选:A.[点睛]本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 5[答案]B[解析][分析]根据勾股定理求出BC,根据三角形中位线定理计算即可.[详解]∵∠C=90°,AC=8,AB=10,∴22AB AC,∵D、E分别为AC、AB中点,∴DE=12BC=3,故选:B.[点睛]本题考查的是三角形中位线定理和勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB =米,则点到直线AB 距离PC 为( ).A. 米B. 3米C. 米D. 米[答案]B [解析] [分析]设点到直线AB 距离PC 为米,根据正切的定义用表示出AC 、BC ,根据题意列出方程,解方程即可. [详解]解:设点到直线AB 距离PC 为米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan 3PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:.[点睛]本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 8. 如图,在矩形ABCD 中,AE 平分∠BAD 交BC 于点E ,ED =5,EC =3,则矩形的周长为( )A. 18B. 20C. 22D. 24 [答案]C[解析][分析]根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.[详解]∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2-CE2=25-9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选:C.[点睛]该题主要考查了矩形的性质及其应用问题;解题的关键是灵活运用矩形的性质.9. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角的四边形是菱形[答案]C[解析][分析]利用平行四边形及特殊的平行四边形的判定方法判定后即可确定正确的选项.[详解]A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故选项A错误;B.两条对角线相等且有一个角是直角的平行四边形是矩形,故选项B错误;C.如图,作AE⊥BC于点E,DF⊥BC交BC的延长线于F,则∠AEB=∠DFC=90°.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠ABE=∠DCF,∴△ABE≌△DCF,∴AE=DF,BE=CF.在Rt△ACE和Rt△BDF中,由勾股定理得,AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.又∵AE2+BE2=AB2,故AC2+BD2=2(AB2+BC2);即平行四边形两条对角线的平方和等于四条边的平方和,正确;D.有两条对角线平分一组对角的四边形是菱形,故选项D错误.故答案为:C[点睛]考查了命题与定理的知识,解题的关键是了解平行四边形的判定及特殊的平行四边形的判定方法,难度不大.10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;②由FH⊥AE,AF=FH,可得:∠HAE=45°;③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;④作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长.[详解]①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.[点睛]解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.二.填空题(每小题3分,共30分)11. 函数–1的自变量x的取值范围是_____.[答案]x≥0[解析]试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.[答案]50°[解析]在四边形ABCD中,AB∥CD,AD∥BC,根据两组对边分别平行的四边形为平行四边形,可得四边形ABCD为平行四边形,根据平行四边形的对角相等即可得∠B=∠D=50°.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.[答案]﹣1.[解析][分析]根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.[详解]解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.[点睛]本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____[答案]16[解析][分析]边AB的长是方程x2-7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.[详解]∵解方程x2-7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.[点睛]本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.[答案]20%[解析][分析]本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.[详解]解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%[点睛]此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________[答案]63[解析]分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行,即AB∥CD,AD∥BC ,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3 ,∴S四边形ABCD=AB×3=BC×3 ,∴AB=BC ,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60∘ ,∴∠BAE=90°−60°=30°,∴AB=2BE ,在△ABE中,AB2=BE2+AE2 ,即AB2=14AB2+32 ,解得AB=23,∴S四边形ABCD=BC⋅AE=23×3=63.故答案是:63.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.[答案]210[解析][分析]过G作GM⊥AB于M,连接AE,则MG=AD=AB,根据折叠的性质得到AE⊥GF,根据全等三角形的性质得到MF=BE=2,根据勾股定理即可得到结论.[详解]过G作GM⊥AB于M,连接AE,则MG=AD=AB,∵将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,∴AE⊥GF,∴∠FAE+∠AFG=∠AFG+∠MGF ,∴∠BAE=∠MGF ,在△ABE 与△MGF 中B GMF AB GMMGF BAM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABE ≌△GMF ,∴MF=BE=2,∵MG=AD=BC=6,∴FG=22=210FM MG +, 故答案为:210.[点睛]此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.18. 如图,在正方形ABCD 中,AC =62,E 是BC 边的中点,F 是AB 边上一动点,则FB +FE 的最小值为_________.[答案]35[解析][分析]首先确定ED=EF+FD=EF+BF 的值最小.然后根据勾股定理计算.[详解]连接BD ,ED 交AC 于O ,F ,连接BF ,此时EF+BF= EF+FD =ED 的值最小.在正方形ABCD 中,AC =62, ∴BC=CD=6, ∵E 是BC 边的中点,∴CE=3在Rt △CDE 中,根据勾股定理可得DE=2263635CE CD +=+=. ∴FB +FE 的最小值为35故答案为:35.[点睛]此题考查了线路最短的问题,确定动点F 的位置时,使EC+ED 的值最小是关键. 19. 在ABCD 中,AB =10,BC 边上的高为6,AC =35,则▭ABCD的面积为_________.[答案]66[解析][分析]解直角三角形得到BC 的长,根据平行四边形的面积计算公式可得到结论.[详解]如图,∵AE ⊥BC ,在Rt △ABE 中,∵AB=10,AE=6,∴22AB AE -=8,在Rt △AEC 中,∵AC=35,AE=6,∴CE=22AC AE -=3,∴BC=BE+CE=11,∴平行四边形ABCD 的面积=11×6=66, 故答案为:66.[点睛]本题考查了平行四边形的面积,勾股定理,熟练掌握平行四边形的性质是解题的关键.20. 如图,在△ABC 中,∠ABC =90°,D 为AB 边上一点(BD <BC ),AE ⊥AB ,AE =BD ,连接DE 交AC 于F ,若∠AFE =45°,AD =35,CD =5,则线段AC 的长度为_________.[答案]10[解析][分析]延长BC 到G ,使BG=AD ,连接DG 、EG ,证明ACGE 是平行四边形,可得CG=AE=BD ,在直角三角形DBC 中运用勾股定理求出BD 、BC 的长,最后运用勾股定理求出AC 的长即可.[详解]延长BC 到G ,使BG=AD ,连接DG 、EG ,90,ABC AE AB ︒∠=⊥90EAD DBG ∴∠=∠=︒180EAD DBG ∴∠+∠=︒90AED ADE ∠+∠=︒//AE BG ∴,AE BD AD BG ==()AED BDG SAS ∴≅∆,DE DG AED BDG ∴=∠=∠90ADE BDG ∴∠+∠=︒1809090EDG ︒∴-︒∠==︒DEG ∴是等腰直角三角形,45DEG ∴∠=︒45AFE =︒∠AFE FEG ∴∠=∠AC EG ∴//∴四边形ACGE 是平行四边形,AE CG ∴=∵AE=BDBD CG ∴=∵AD =∴设BD=x ,则,在Rt △BCD 中,∵CD=5,∴222CD BD BC =+,即2225=)x x +,解得,1x =,2x当x =,即BD =此时BC =,BD BC >, 不合题意,∴x =即∴在直角三角形ABC 中,10==故答案为:10.[点睛]此题主要考查了平行四边形的判定与性质,以及勾股定理,作辅助线构造平行四边形以及证明CG=AE=BD 是解题的关键.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程(1)(3x -1)2=2(3x -1)(2)3x 2-x +1=0[答案](1)113x =,21x =;(2)12x x == [解析][分析](1)原方程移项后进行因式分解,变形为两个一元一次方程求出方程的解即可;(2)原方程运用公式法求解即可.[详解](1)(3x -1)2=2(3x -1)(3x -1)2-2(3x -1)=0(3x -1)[(3x -1)-2]=0(3x -1)(3x -3)=0∴3x -1=0,3x -3=0解得,113x =,21x =;(2)3x 2-x +1=0这里a=3,b=-c=1∴△=b 2-4ac=(-2-4×3×1=0∴x ==∴12x x ==. [点睛]此题主要考查了解一元二次方程的方法灵活运用,熟练掌握解一元二次方程的方法是解题的关键.22. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合.(1)画一个面积为10的等腰直角三角形;(2)画一个周长为20,面积为15的菱形.[答案](1)见解析;(2)见解析[解析]分析](1)利用数形结合的思想画出直角边为25的等腰三角形即可.(2)利用数形结合的思想画出边长5,高为3的菱形即可.[详解](1)如图1中,平行四边形ABCD即为所求.(2)如图2中,菱形ABCD即为所求.[点睛]本题考查作图-应用与设计,等腰直角三角形的判定,菱形的判定等知识,解题的关键是学会利用数形结合的思想思考问题.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |c d =ad-bc ,上述记号就叫做2阶行列式.(1)若249|x13|x =0,求x 的值; (2)若11|x x +- 11|x x -+=6,求x 的值.[答案](1)1x =2x =(2)1x =,2x =[解析][分析] (1)根据2阶行列式公式列出方程26490x -=,运用直接开平方法即可求得答案;(2)根据2阶行列式公式列出方程2(1)(1)(1)6x x x +---=,即可求得答案.[详解](1)由题意可得:26490x -=∴26=49x 249=6x∴1x =2x = (2)由题意可得:2(1)(1)(1)6x x x +---=,整理得,22x =,解得,1x =,2x =.[点睛]考查了解一元二次方程-直接开平方法,本题根据2阶行列式的公式来解一元二次方程,比较简单,容易掌握.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.[答案](1)证明见解析;(2)S△ABC,S四边形ABDE,S矩形ADCE[解析][分析](1)首先得到四边形ADCE是平行四边形,然后利用有一个角是直角的平行四边形是矩形判断矩形即可;(2)根据四边形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到结论.[详解](1)证明:∵点D、点O别是BC、AC的中点,∴OD∥AB,∴DE∥AB,又∵AE∥BD,∴四边形ABDE是平行四边形,∵点D是BC的中点,∴AE平行且等于DC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.[点睛]本题考查了矩形判定和性质,平行线的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? [答案](1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克[解析][分析](1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.[详解](1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.[点睛]本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,求EG的长.[答案](1)证明见解析;(2)证明见解析;(3)7105[解析][分析](1)如图1中,证明Rt△CBE≌△Rt△DCF(HL),即可解决问题.(2)如图2中,连接OC.想办法证明△OBE≌△OCF(SAS),即可解决问题.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,首先证明△OMN是等腰直角三角形,利用勾股定理求出a即可解决问题.[详解](1)如图1中,∵四边形ABCD是正方形,∴BC=CD,∠B=∠DCF=90°,∵DE=CE,∴Rt△CBE≌△Rt△DCF(HL),∴BE=CF,∠ECB=∠CDF,∵∠ECB+∠DCE=90°,∴∠CDF+∠DCE=90°,∴∠CGD=90°,∴EC⊥DF.(2)如图2中,连接OC.∵CB=CD,∠BCD=90°,OB=OD,∴OC=OB=OD,OC⊥BD,∴∠OCB=45°,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠OBE=∠OCF,∵BE=CF,OB=OC,∴△OBE≌△OCF(SAS),∴OE=OF,∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△EOF是等腰直角三角形.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,∵BE=BM,CF=CN,BE=CF,∴BM=CN,∵OB=OC,∠OBM=∠OCN=135°,BM=CN,∴△OBM≌△OCN(SAS),∴∠BOM=∠COM,∴∠MON=∠BOC=90°,∴△MON是等腰直角三角形,∵34∴MN=217, 在Rt △MBN 中,a 2+16a 2=68,∴a=2(负根已经舍弃),BE=2,BC=6,EC=210,∵△CGF ∽△CBE ,CG CF CB CE∴=, 26210CG ∴=, 3105CG ∴=, 31071021055EG EC CG ∴=-=-=. [点睛]本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.27. 已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.[答案](1)证明见解析;(2)BE=AF+3DF ;(3)31[解析][分析](1)利用等角的补角判断出∠DCE=∠E即可;(2)先判断出四边形CFDN是矩形,再判断出CN=NE=FD,即可得出结论;(3)先判断出∠ABG=∠BGC,进而得出四边形BCFM是正方形,即可判断出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出结论.AD BC AB DC[详解](1)∵//,//四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵▱ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α, ∵∠MBC=90°,∴∠MBA=90°-2α,∴∠KBA=90°-α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,=15,∴AD=BC=BM=15,∴AF=AD-DF=15-8=7,∴BE=AF+3DF=7+3×8=31.[点睛]此题是四边形综合题,主要考查了平行四边形的性质,矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理,解本题的关键是(2)判断出四边形CFDN是矩形,(3)求出AB=17.。

初中数学:2022-2023学年北京市东城区十一学校八年级(下)期中数学试卷(含参考答案)

初中数学:2022-2023学年北京市东城区十一学校八年级(下)期中数学试卷(含参考答案)

2022-2023学年北京市东城区十一学校八年级(下)期中数学试卷一、选择题(每小题3分,本题共24分)第1-8题均有四个选项,符合题意的选项只有一个。

1.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.2.(3分)将直线y=x﹣1向下平移3个单位长度得到直线l,则直线l的解析式为()A.B.C.D.3.(3分)如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABD=∠BDC,OA=OCB.∠ABC=∠ADC,AB=CDC.∠ABC=∠ADC,AD∥BCD.∠ABD=∠BDC,∠BAD=∠DCB4.(3分)下列说法中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.矩形的对角线互相平分且相等D.菱形的对角线互相垂直且相等5.(3分)把化简得()A.B.C.D.6.(3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形(如图1)拼成的一个大正方形(如图2).设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则图2中EF的长为()A.3B.4C.D.7.(3分)如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.4B.5C.6D.108.(3分)如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点,设PC=x,PE+PB=y,图②是y关于x的函数图象,且图象上最低点Q的坐标为(m,),则正方形ABCD的边长为()A.B.2C.4D.5二、填空题(本题共30分,每小题3分)9.(3分)函数的自变量x的取值范围是.10.(3分)如图,矩形ABCD的边AB在数轴上,其中点A,B分别表示数﹣1,2,BC=2,以点B为圆心,BD长为半径作弧交数轴于点P,则点P表示的数为.11.(3分)如图,在▱ABCD中,AB=8,BC=5,AE平分∠BAD交边CD于点E,BF平分∠ABC交边CD于点F,且AE、BF交于▱ABCD内部点G,则线段EF=.12.(3分)如图,在△ABC中,∠ACB=90°,∠A=22.5°,CD⊥AB于点D,点E为AB 的中点,连接CE,若AB=6,则CD的长为.13.(3分)如图,在▱ABCD中,按以下步骤作图:①以点A为圆心,AB的长为半径作弧,交AD于点F;②分别以点F、B为圆心,大于的长为半径作弧,两弧在∠DAB内交于点G;③作射线AG,交边BC于点E,连接EF.若AB=5,BF=8,则四边形ABEF的面积为.14.(3分)如图所示的边长为1的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,则点A到边BC的距离等于.15.(3分)如图,在矩形ABCD中,AB=4,BC=3,点P是对角线AC上一个动点(点P 与点A,C不重合),过点P分别作PE⊥AD于点E,PF∥BC交CD于点F,连接EF,则EF的最小值为.16.(3分)如图,在平面直角坐标系xOy中,▱ABCD的顶点A(2,1),C(6,5),将直线l:y=﹣2x沿x轴水平向右平行移动.当直线l将▱ABCD的面积平分时,此时其解析式为.17.(3分)如图,点A是y轴正半轴上的动点,点B在x轴的正半轴上,AB=6,以AB为边在第一象限作正方形ABCD,连接OC,则OC的最大值为.18.(3分)已知一次函数y=kx﹣2k+1(k≠0),当系数k取不同的值时,会得到不同的直线,这些直线都经过一个定点C,此定点C的坐标为;若坐标系中两点A(﹣3,﹣1),B(﹣1,2),一次函数y=kx﹣2k+1(k≠0)的图象与线段AB有交点,则k的取值范围是.三、解答题(本题共46分)解答应写出文字说明、演算步骤或证明过程。

人教版八年级下册数学《期中测试卷》含答案

人教版八年级下册数学《期中测试卷》含答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有1项是符合题目要求的.1. 在下列性质中,平行四边形不一定具有的是( )A. 对边相等B. 对角互补C. 对边平行D. 对角相等2. 平行四边形的一个内角是70°,则其他三个角是( ) A. 70°,130°,130°B. 110°,70°,120°C. 110°,70°,110°D. 70°,120°,120° 3. 下列计算正确的是( ) A. 3242=122⋅ B. (9)(4)946-⨯-=-⨯-= C. 2223(3)633-=-⨯= D. 221312(1312)(1312)5-=+-= 4. 如右图要测量池塘两侧的两点A 、B 之间的距离,可以取一个能直接到达A 、B 的点C ,连结CA 、CB ,分别在线段CA 、CB 上取中点D 、E ,连结DE ,测得DE=35m ,则可得A 、B 之间的距离为( )A. 30 mB. 70 mC. 105mD. 140m5. 下列线段不能组成直角三角形的是( )A. a =3,b =4,c =5B. a =1,b 2,c 3C. a =2,b =3,c =4D. a =7,b =24,c =256. 直角三角形两直角边的长度分别为6和8,则斜边上的高为( )A. 10B. 5C. 9.6D. 4.87. 顺次连结对角线互相垂直的四边形各边中点所构成的四边形一定是( )A. 矩形B. 菱形C. 正方形D. 不确定8. 如图,在△ABC 中, 5AB =,6BC =,BC 边上的中线4=AD ,那么AC 的长是( )A. B. C. 34 D. 2139. 如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形是( )A. AC=BDB. AB ⊥BCC. ∠1=∠2D. ∠ABC=∠BCD10. 如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ).A. 线段EF 的长逐渐增大B. 线段EF 的长逐渐减少C. 线段EF 的长不变D. 线段EF 的长不能确定二、填空题:本大题共10小题,共30分.11. 1x -,则x 的取值范围是_______.12. 在实数范围内因式分解:23x -=________.13. 比较大小:31314. 在ABCD 中,如果∠A+∠C=140°,那么∠B=__度.15. 如图,菱形ABCD 的周长为20,点A 的坐标是(4,0),则点B 的坐标为_______.16. 在△ABC 中,∠C=90°,AC=1,BC=2,则AB 边上的中线CD=______. 17. 矩形两条对角线夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____. 18. 如图所示,图中所有三角形都是直角三角形,所有四边形都是正方形,123916144S ===,S ,S ,则4S =_____.19. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.20. 如图,△ABC 的周长为16,D , E ,F 分别为AB , BC ,AC 的中点,M ,N ,P 分别为DE , EF ,DF 的中点,则△MNP 的周长为____;如果△ABC ,△DEF ,△MNP 分别为第1个,第2个,第3个三角形,按照上述方法继续做三角形,那么第n 个三角形的周长是___.三、解答题:本大题共6小题,共40分.21. 计算:(1)12-38+218;(2)21351136⋅÷.22. 如图,□ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F .(1)求证:BF=DE;(2)如果∠ABC=75°, ∠DBC=30°,BC=2,求BD的长.23. 如图,在平行四边形ABCD中,E、F为对角线BD上的三等分点.求证:四边形AFCE是平行四边形.24. 如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB中点,试判断△ABC的形状,并说明理由.25. 如图,矩形ABCD中,AB=8,AD=10.(1)E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处.求DE的长;(2)点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长;(3)M是AD上的动点,在DC 上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T处,请直接写出线段CT长度的最大值与最小值.26. 对于正数,用符号表示的整数部分,例如:[0.1]0=,[2.5]2=,[3]3=.点(,)A a b 在第一象限内,以A 为对角线的交点画一个矩形,使它的边分别与两坐标轴垂直. 其中垂直于轴的边长为,垂直于轴的边长为[]1b +,那么,把这个矩形覆盖的区域叫做点A 的矩形域.例如:点3(3,)2的矩形域是一个以3(3,)2为对角线交点,长为3,宽为2的矩形所覆盖的区域,如图1所示,它的面积是6.图1 图2根据上面的定义,回答下列问题:(1)在图2所示的坐标系中画出点 的矩形域,该矩形域的面积是 ;(2)点77(2)()(0)22P Q a a >,,,的矩形域重叠部分面积为1,求的值; (3)已知点(,)(0)B m n m >在直线1y x =+上, 且点B 的矩形域的面积满足45S <<,那么的取值范围是 .(直接写出结果)四、附加题:(第1题4分,第2题6分,共10分)27. 如图,菱形ABCD 的周长为20,对角线AC 长为45,点E 、F 分别为AC 、BC 边上的动点.(1)直接写出菱形ABCD 的面积:_______;(2)直接写出BE+EF 最小值_______;并在图中作出此时的点E 和点F .∠+∠=︒28. 如图,菱形ABCD中,E为AB边上的一点,F为BC延长线上的一点,且BED F180求证:DE=DF.答案与解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有1项是符合题目要求的.1. 在下列性质中,平行四边形不一定具有的是()A. 对边相等B. 对角互补C. 对边平行D. 对角相等[答案]B[解析][分析]根据平行四边形的性质逐项排除即可.[详解]解:∵平行四边形的对边平行、对角相等、对边相等,∴选项B不正确;故答案为B.[点睛]本题考查平行四边形的性质,熟练掌握平行四边形的性质是解答本题的关键.2. 平行四边形的一个内角是70°,则其他三个角是()A. 70°,130°,130°B. 110°,70°,120°C. 110°,70°,110°D. 70°,120°,120°[答案]C[解析][分析]根据平行四边形的对角相等,邻角互补的性质确定出其他角即可.[详解]解:∵平行四边形的一个角为70°,∴邻角为110°,对角为70°,即其他三个角分别为:110°,70°,110°.故答案为C.[点睛]本题考查了平行四边形的角的性质,掌握并灵活运用平行四边形的性质是解答本题的关键.3. 下列计算正确的是( )A. 3242=122⋅B. (9)(4)946-⨯-=-⨯-=C. 2223(3)633-=-⨯=D. 221312(1312)(1312)5-=+-=[答案]D[解析][分析]根据二次根式的性质和运算法则进行排除即可.[详解]解:A. 3242=24,故A 选项错误;B. (9)(4)366 , 故B 选项错误;;; C. 22233633,故C 选项错误; D. 221312(1312)(1312)5-=+-= ,正确;故答案为D .[点睛]本题考查了二次根式的性质和运算法则,掌握二次根式的相关知识是解答本题的关键. 4. 如右图要测量池塘两侧的两点A 、B 之间的距离,可以取一个能直接到达A 、B 的点C ,连结CA 、CB ,分别在线段CA 、CB 上取中点D 、E ,连结DE ,测得DE=35m ,则可得A 、B 之间的距离为( )A. 30 mB. 70 mC. 105mD. 140m[答案]B[解析][分析] 先说明DE 是三角形的中位线,然后根据三角形的中位线定理即可解答.[详解]解:∵D 、E 分别是AC 、BC 的中点,∴DE 是△ABC 的中位线,∴AB=2DE=70m.故选B.[点睛]本题考查了三角形中位线定理的运用;确定三角形中位线并正确运用中位线定理是解答本题的关键.5. 下列线段不能组成直角三角形的是()A. a=3,b=4,c=5B. a=1,b,cC. a=2,b=3,c=4D. a=7,b=24,c=25[答案]C[解析][分析]根据勾股定理的逆定理对四个选项逐一分析即可解答.[详解]解:A、32+42=52,.能组成直角三角形;B、12+)2=)2,能组成直角三角形;C、22+32≠42:不能组成直角三角形;D、72+242=252,:能组成直角三角形.故答案为C.[点睛]本题考查的是勾股定理的逆定理的应用,掌握运用勾股定理逆定理判定三角形是否为直角三角形是解答本题的关键.6. 直角三角形两直角边的长度分别为6和8,则斜边上的高为()A. 10B. 5C. 9.6D. 4.8[答案]D[解析][分析]先根据勾股定理求出斜边的长,再运用面积法求出斜边上的高即可.[详解]解:设斜边长为c,斜边上的高为h.由勾股定理可得:c2=62+82,解得c=10,直角三角形面积S=12×6×8=12×10h,解得h=4.8.故答案为D .[点睛]本题考查了利用勾股定理的应用和利用面积法求直角三角形的高,掌握等面积法是解答本题的关键. 7. 顺次连结对角线互相垂直的四边形各边中点所构成的四边形一定是( )A. 矩形B. 菱形C. 正方形D. 不确定 [答案]A[解析][分析]根据四边形对角线互相垂直以及三角形中位线平行于第三边说明四个角都是直角即可求解.[详解]解:如图:E 、F 、G 、H 分别为各边中点∵EF ∥GH ∥DB ,EF=GH=12BD EH ∥FG ∥AC ,EH=FG=12AC , ∵DB ⊥AC.∴EF ⊥EH ,EF ⊥FG, HG ⊥EH∴四边形EFGH 是矩形故选答案为A .[点睛]本题考查的是三角形中位线定理的应用和矩形的判定,其中掌握三角形的中位线定理是解答本题的关键.8. 如图,在△ABC 中, 5AB =,6BC =,BC 边上的中线4=AD ,那么AC 的长是( )A.B. C. 34 D. 213[答案]A[解析] ∵6BC =,AD BC 是边上的中线,∴BD=3.222345+= ,222BD AD AB ∴+=∴△ABD 是直角三角形,∴AD ⊥BC ,∴AC =AB =5,故选A.9. 如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A. AC=BDB. AB ⊥BCC. ∠1=∠2D. ∠ABC=∠BCD[答案]C[解析][分析]根据矩形的判定定理逐项排除即可解答. [详解]解:由对角线相等的平行四边形是矩形,可得当AC=BD 时,能判定口ABCD 是矩形;由有一个角是直角的平行四边形是矩形,可得当AB ⊥BC 时,能判定口ABCD 是矩形;由平行四边形四边形对边平行,可得AD//BC ,即可得∠1=∠2,所以当∠1=∠2时,不能判定口ABCD 是矩形;由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD时,能判定口ABCD是矩形.故选答案为C.[点睛]本题考查了平行四边形是矩形的判定方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线互相平分且相等的四边形是矩形.10. 如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B 向点C移动而点R不动时,那么下列结论成立的是().A. 线段EF的长逐渐增大B. 线段EF的长逐渐减少C. 线段EF的长不变D. 线段EF的长不能确定[答案]C[解析][分析]因为R不动,所以AR不变.根据三角形中位线定理可得EF= 12AR,因此线段EF的长不变.[详解]如图,连接AR,∵E、F分别是AP、RP的中点,∴EF为△APR的中位线,∴EF= 12AR,为定值.∴线段EF的长不改变.故选:C.[点睛]本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.二、填空题:本大题共10小题,共30分.11. ,则x的取值范围是_______.x≥[答案]1[解析]先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:,∴x-1≥0,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于0.12. 在实数范围内因式分解:23x-=________.[答案][解析][分析]运用平方差在实数范围内因式分解即可.详解]解:23x-=.故答案为.[点睛]本题考查了平方差公式法的因式分解,掌握并灵活运用平方差公式是解答本题的特点.13. 比较大小:[答案]<[解析]试题解析:∵∴14. 在ABCD中,如果∠A+∠C=140°,那么∠B=__度.[答案]110.[解析]根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.解:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°.故答案110.15. 如图,菱形ABCD的周长为20,点A的坐标是(4,0),则点B的坐标为_______.[答案](0,3)[解析][分析]先根据菱形的性质确定菱形的长度,再设B点的坐标为(0,y),最后根据两点之间的距离公式即可求得B点的坐标.[详解]解:设B点的坐标为(0,y),根据菱形的性质,得AB=20÷4=5;22(0-4)(y-0)5(y>0),解得y=3所以B点坐标为(0,3).故答案为(0,3).[点睛]本题考查了菱形的性质和两点间的距离公式,掌握菱形的性质和两点间的距离公式是解答本题的关键.16. 在△ABC中,∠C=90°,AC=1,BC=2,则AB边上的中线CD=______.[答案 [解析][分析] 先运用勾股定理求出斜边AB ,然后再利用直角三角形斜边上的中线等于斜边的一半解答即可.详解]解:由勾股定理得,∵∠C=90°,CD 为AB 边上的中线,∴CD=12 ,. [点睛]本题考查的是勾股定理和直角三角形的性质,掌握直角三角形斜边上的中线是斜边的一半是解答本题的关键.17. 矩形两条对角线的夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____. [答案]10[解析][分析]首先根据题意画出图形,然后再根据矩形两条对角线的夹角为60°,证得△AOB 是等边三角形,即可解答本题.[详解]解:如图:∵四边形ABCD 是矩形,∴OA=12AC ,OB=12BD ,AC=BD ∴OA=OB ,∵∠A0B=60°,∴△AOB 是等边三角形,∴OA=OB=AB=5,∴AC=2OA=10,即矩形对角线的长为10.故答案为:10.[点睛]本题考查了矩形的性质以及等边三角形的判定与性质,弄清题意、画出图形是解答本题的关键. 18. 如图所示,图中所有三角形都是直角三角形,所有四边形都是正方形,123916144S ===,S ,S ,则4S =_____.[答案]169[解析][分析]利用正方形的基本性质和勾股定理的定义进行解答即可.[详解]解:S 1=9,S 2=16,S 3=144,∴所对应各边为:3,4,12.∴中间未命名的正方形边长为5.∴最大的直角三角形的面积4S =52+122=169.故答案为169.[点睛]本题考查了勾股定理的定义和正方形的基本性质,分析图形得到正方形和勾股定理的联系是解答本题的关键.19. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.[答案]13cm 119cm[解析][分析]设直角三角形的第三条边为c,分c为斜边和12cm为斜边两类进行讨论,根据勾股定理计算即可.[详解]解:设直角三角形的第三条边为c,当c为斜边时,2251213c=+=;当12cm为斜边时,22125119c=-=.故答案为:13cm或119cm[点睛]本题考查了勾股定理和直角三角形分类讨论思想.由于条件没有指明直角边和斜边,故要分类讨论,同时要注意直角三角形斜边最长,5cm不可能为斜边,故分两类讨论.20. 如图,△ABC的周长为16,D, E,F分别为AB, BC,AC的中点,M,N,P分别为DE, EF,DF的中点,则△MNP的周长为____;如果△ABC,△DEF,△MNP分别为第1个,第2个,第3个三角形,按照上述方法继续做三角形,那么第n个三角形的周长是___.[答案](1). 4(2). 52n-[解析][分析]利用中位线定理求出EF、DE、DF与AB、AC、BC的长度关系,可得△EFG的周长是△ABC周长的一半,△MNP 的周长是△DEF的周长的一半,以此类推,即可求得第n个三角形的周长.[详解]解:如图,△ABC的周长为16,D、E、F分别为AB、BC、AC的中点,∴EF、DE、DF为三角形中位线,∴EF=12AB,DE=12AC,FD=12BC∴EF+DE+DF=12(BC+AC+AB),即△DEF的周长是△ABC周长的一半同理,△MNP的周长是△DEF的周长的一半,即△MNP的周长为16×(12)2=4.以此类推,第n个小三角形的周长是第一个三角形周长的16×(12)n-1=415222n n.故答案是:52n-.[点睛]本题考查了三角形中位线定理,掌握三角形的中位线平行于第三边且等于第三边的一半是解答本题的关键.三、解答题:本大题共6小题,共40分.21. 计算:(1;(2[答案](1)(2)[解析][分析](1)先运用二次根式的性质进行化简,然后再按二次根式加减运算法则进行计算即可;(2)先将被开房数化为假分数,然后再按二次根式乘除运算法则进行计算即可.详解]解:(1==(25736355637=[点睛]本题考查了二次根式加减、乘除混合运算,掌握相关运算法则是解答本题的关键.22. 如图,□ABCD中,AE⊥BD于点E,CF⊥BD于点F.(1)求证:BF=DE;(2)如果∠ABC=75°, ∠DBC=30°,BC=2,求BD的长.[答案](1)证明见解析;(23+1.[解析][分析](1)根据矩形的性质和已知条件证得△ADE≌△CBF,再利用全等三角形的性质即可证明;(2)先根据矩形的性质、勾股定理等知识求得AE的长,进而求得DE和BD的长.[详解](1)证明:∵□ABCD,∴AD∥BC,AD=BC.∴∠ADE=∠CBF.∵AE⊥BD于点E,CF⊥BD于点F,∴∠AED=∠CFB=90°.在△ADE和△CBF中,∠AED=∠BFC,∠ADE=∠CBF,|AD=BC∴△ADE≌△CBF(AAS)∴DE=BF(2)解:∵∠ABC=75°,∠DBC=30°,∴∠ABE=750-30°=45.∵AB∥CD,∴∠ABE=∠BDC=45°,∵AD=BC=2,∠ADE=∠CBF=30°,∴在Rt△ADE中,AE=1,413.在Rt△AEB中,∠ABE=∠BAE=45°故AE=BE=1.则3+1.[点睛]本题主要考查了平行四边形的性质、全等三角形的判定与性质、勾股定理等知识,弄清题意、证得△ADE ≌△CBF 是解答本题关键.23. 如图,在平行四边形ABCD 中,E 、F 为对角线BD 上的三等分点.求证:四边形AFCE 是平行四边形.[答案]证明见解析[解析][分析]根据题意与平行四边形的性质得∠ADB=∠DBC,DA=BC,DE=BF ,则△ADE ≌△CBF ,所以AE=CF,同理可证得AF=CE,故可得四边形AFCE 是平行四边形.[详解]证明:∵四边形ABCD 平行四边形,∴∠ADB=∠DBC,DA=BC,∵E,F 为BD 的三等分点,∴DE=BF,在△ADE 和△CBF 中,DA BC ADE CBF DE BF =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CBF(SAS),∴AE=CF,同理△CDE ≌△ABF,∴AF=CE,∴四边形AFCE 是平行四边形.[点睛]本题考查平行四边形的判定与性质和全等三角形的判定与性质,解此题的关键在于灵活运用平行四边形的性质来证明三角形全等,再利用全等三角形的性质证明已知四边形为平行四边形.24. 如图,四边形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于E .(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.[答案](1)证明见解析;(2)△ABC是直角三角形,理由见解析.[解析][分析](1)先证明四边形AECD是平行四边形,然后证明AE=EC即可四边形AECD是菱形;(2)先说明BE=CE、∠ACE=∠CAE,再说明BE=CE、∠ACE=∠CAE,再根据三角形内角和得到∠B+∠BCA+∠BAC=180°,进一步得到∠BCE+∠ACE=90°即∠ACB=90°,即可说明△ABC是直角三角形.[详解](1)证明:∵AB//CD,∴AE//CD,又∵CE/∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD∴∠CAE=∠CAD,又∵AD∥CE,.∠ACE=∠CAD,∴∠ACE=∠CAE,∴AE=CE,∴四边形AECD是菱形;(2)解:△ABC是直角三角形,理由如下:∵E是AB中点,∴AE=BE.又∵AE=CE,∴BE=CE,∠ACE=∠CAE,∴∠B=∠BCE,∵∠B+∠BCA+∠BAC=180°,∴2∠BCE+2∠ACE=180°∴∠BCE+∠ACE=90°,即∠ACB=90°∴△ABC是直角三角形.[点睛]本题利用了平行四边形的判定和性质、菱形的判定和性质以及三角形中位线的性质等知识点,考查知识点较多,增加了试题难度,灵活应用所学知识成为解答本题的的关键.25. 如图,矩形ABCD中,AB=8,AD=10.(1)E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处.求DE的长;(2)点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长;(3)M是AD上的动点,在DC 上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T处,请直接写出线段CT长度的最大值与最小值.[答案](1)5;(2)6或4或73;(3)12.[解析][分析](1)根据折叠的特点和勾股定理即可求出ED的长;(2)需分AP=AF;PF=AF和AP=PF三种情况分别求出PB的长即可;(3)由题意可知当点N与C重合时,CT取最大值是8;当点M与A重合时,CT取最小值为4,进而求出线段CT长度的最大值与最小值之和.[详解]解:(1)∵四边形ABCD是矩形,AB=8,AD=10∴AF=AD=10,FE=DE(折叠对称性)∵在Rt△ABF中,BF=6,AF=10∴FC=4所以在Rt △ECF 中,42+(8-DE )2=EF 2,∴DE=5;(2)当AP=AF 时,AB ⊥PF ,∴PB=BF=6;当PF=AF 时,则PB+6=10,解得PB=4;若AP=PF ,在Rt △APB 中,AP 2=PB 2+AB 2,解得PB=73. 综合可得PB=6或4或73; (3)当点N 与C 重合时,CT 最大=MD=8;当点M 与A 重合时,AT=AD=10,AB=8,CT 最小=10-6=4,∴线段CT 长度的最大值与最小值之和为12.[点睛]本题考查了矩形的性质、勾股定理的运用以及图形折叠的问题,试题考查知识点较多,增加了试题难度,灵活运用所学知识和分类讨论成为解答本题的关键..26. 对于正数,用符号表示的整数部分,例如:[0.1]0=,[2.5]2=,[3]3=.点(,)A a b 在第一象限内,以A 为对角线的交点画一个矩形,使它的边分别与两坐标轴垂直. 其中垂直于轴的边长为,垂直于轴的边长为[]1b +,那么,把这个矩形覆盖的区域叫做点A 的矩形域.例如:点3(3,)2的矩形域是一个以3(3,)2为对角线交点,长为3,宽为2的矩形所覆盖的区域,如图1所示,它的面积是6.图1 图2根据上面的定义,回答下列问题:(1)在图2所示的坐标系中画出点 的矩形域,该矩形域的面积是 ;(2)点77(2)()(0)22P Q a a >,,,的矩形域重叠部分面积为1,求的值;(3)已知点(,)(0)B m n m >在直线1y x =+上, 且点B 的矩形域的面积满足45S <<,那么的取值范围是 .(直接写出结果)[答案](1)8;(2)所以的值为56或112;(3)45<<33m [解析][分析](1)点(2,72)的矩形域的定义,求出矩形边长分别为2,4,画出图形即可解决问题; (2)分两种情形,重叠部分在(1)中矩形的左边或右边,分别构建方程即可解决问题;(3)利用特殊值法.推出平行于y 轴的矩形的边长为3,由此即可解决问题;[详解]解:(1)点72,2⎛⎫ ⎪⎝⎭的矩形域如图所示,该该矩形域的面积是8;故答案为:8;(2)如图所示,因为点772(0)22P Q a a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,,,的矩形域重叠部分面积为1,且平行于轴的边长均为4, 所以点772(0)22P Q a a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,,,的矩形域重叠部分也是一个矩形,且平行于轴的边长为4,平行于轴的边长为14. ①当02a <<时,1124a a +=+,解得56a =; ②当2a >时,1324a a -=-,解得112a =. 所以的值为56或112. (3)当m=1时,S=3,当m=2时,S=8,∵4<S <5,∴1<m <2,∴平行于y 轴的矩形的边长为3,∴平行于x 轴的矩形的边长m 的范围为45<<33m 故答案为45<<33m . [点睛]本题考查一次函数综合题、矩形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.四、附加题:(第1题4分,第2题6分,共10分)27. 如图,菱形ABCD 的周长为20,对角线AC 长为45,点E 、F 分别为AC 、BC 边上的动点.(1)直接写出菱形ABCD 的面积:_______;(2)直接写出BE+EF 的最小值_______;并在图中作出此时的点E 和点F .[答案](1)20;(2)4,E 、F 两点的位置见解析.[解析][分析](1)如图:连接BD 交AC 于O 点,再根据菱形的性质求出AB 和OA 的长,再利用勾股定理求得OB 的长,进而求得BD 的长,最后利用菱形的面积等于对角线积的一半解答即可;(2)作DF ⊥BC 于点F ,交AC 于点E ,连接BE ,此时BE+EF=DE+EF=DF 最小,根据菱形面积即可求出DF 的长.[详解](1)解:连接BD 交AC 于O 点,∵菱形ABCD 的周长为20,对角线AC=45∴AB=BC=5,OA=5∴22525=5∴5∴菱形的面积为:11254522AC BD =20.(2)作DF⊥BC于点F,交AC于点E,连接BE,此时BE+EF=DE+EF=DF最小,∵BC•DF=S菱形ABCD=20,∴DF=20÷5=4.∴BE+EF的最小值4,E、F的位置如图所示..[点睛]本题考查了菱形的性质、勾股定理以及垂线段最短的应用,解答本题的关键在于灵活应用所学的几何知识以及数形结合思想.∠+∠=︒28. 如图,菱形ABCD中,E为AB边上的一点,F为BC延长线上的一点,且BED F180求证:DE=DF.[答案]证明见解析[解析][分析]如图,过D作DG⊥AB,DH⊥BC,再证明△ADG≌△DCH,得到DG=DH;然后再证△EDG≌△DHF,最后利用全等三角形的性质即可证明.[详解]证明:过D作DG⊥AB,DH⊥BC,∴∠DGA=∠DGE=∠DHB=∠DHF=90°∵菱形ABCD∴AB=BC=BD=AD,∠A=∠DCB∴△ADG≌△CDH(AAS)∴DG=DH∠+∠=︒,BED DEA180∵BED F180∠∴DEA=F∴△EDG≌△DHF(AAS)∴DE=DF.[点睛]本题考查了菱形的性质、全等三角形的判定与性质,解答本题的关键在于做出辅助线、借助菱形的性质证明三角形的全等.。

新人教版八年级下册数学期中测试卷及答案(北京)

新人教版八年级下册数学期中测试卷及答案(北京)

八十三团第一中学八年级下册数学期中测试卷一、选择答案:(每题3分,共30分)1.下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ; A .2个 B .3个 C .4个 D .5个 2.把aba 123化简后得 ( )A .b 4B .b 2C .b 21D . b b 2 3.化简二次根式352⨯-)(得 ( )A .35-B .35C .35±D .304.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m ,顶端离地面12m ,则梯子的长度为( )A .12mB .13mC .14mD .15m 5.下列几组数中,不能作为直角三角形三边长度的是( );A .1.5,2,2.5 B. 3,4,5 C. 5,12,13 D. 20,30,40 6.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( )A .4 cmB .8 cmC .10 cmD .12 cm7.如图,一块直角三角形的纸片,两直角边AC =6㎝,BC =8㎝,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ); A. 2㎝ B. 3㎝ C. 4㎝ D. 5㎝ 8. 已知函数13+=x y ,当自变量增加3时,相应的函数值增加( ) A .3 B .8 C .9 D .109. 下列各图表示的函数中y 是x 的函数的 ( )班级 姓名 考号 座位号AC DB E 第6题图10. 如图,直线与y 轴的交点是(0,-3),则当x<0时, ( )A. y<0B. y<-3C. y>0D. y>-3二.填空题:(每题3分,共18分) 11.当x 时,式子1+x 有意义,当x 时,式子422--x x 有意义.12.已知:()022=+++y x x ,则=-xy x 2 .13. 若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.(第14题) (第15题)14.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是______________________.15.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则正方形A 、B 、C 、D 的面积的和是_______________2cm . 16. 已知正比例函数y =(m -1)25m x -的图象在第二、四象限,则m 的值为_________,函数的解析式为__________.17. 一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: . 18.地面气温是20℃,如果每升高100m,气温下降6℃,则气温t (℃)与高度h (m )的函数关系式是__________。

人教数学八年级下册北京6中学第二学期初二期中练习及答案

人教数学八年级下册北京6中学第二学期初二期中练习及答案

初中数学试卷北京156中学2014—2015学年度第二学期初二数学期中测试班级_____学号_____ 姓名_______ 成绩________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1页至第2页;第Ⅱ卷第2页至第6页,共100分,考试时间100分钟。

考试结束后,将本试卷的第1页至第6页和答题卡一并交回。

第Ⅰ卷(选择题 共30分) 一、选择题(本题共30分,每小题3分) 1.下列线段不能构成直角三角形的是( ).A .5,12,13B .2,3,5C .4,7,5D .1,2,3 2.下列给出的条件中,能判定四边形ABCD 是平行四边形的为( ).A .AB=BC ,AD=CDB .AB=CD ,AD ∥BC C .∠A=∠B ,∠C=∠D D .AB ∥CD ,∠A=∠C 3. 正方形具有而菱形不一定具有的性质是 ( ) .A. 对角线互相平分B. 对角线相等C. 对角线互相垂直D. 对角线平分一组对角4. 若关于y 的一元二次方程 ky 2 - 4y - 3 = 3y + 4 有实数根, 则k 的取值范围是 ( ) .A . k ≥74-且k ≠ 0 B . k > 74-且k ≠ 0 C .k ≥74- D .k > 74- 5. △ABC 中,D 、E 、F 分别为AB 、AC 、BC 的中点, 若△DEF 的周长为6,则△ABC 周长为( ).A .3B .6C .12D .246.在Rt △ABC 中,∠C=90º,∠A=30º,BC=1,则AC 的长是( ) A .2 B .23C .3D . 23+ 7.在Rt △ABC 中,斜边长BC =3,AB 2+AC 2+BC 2的值为( ).A .9B . 18C . 6D .无法计算 8.用配方法解方程2220x x --=,下列变形正确的是( ).A .2(1)2x -=B .2(2)2x -=C .2(1)3x -=D .2(2)3x -= 9.如图,正方形ABCD 中,P 是BD 上一点,AB=4,CM ⊥BD 于M ,PE ∥AD ,PF ∥CD.则图阴影部分的面积是( ).A .8B .6C .16D .4ME C DABP第9题 第10题10.如图,在平行四边形ABCD 中,∠DAB =60°,AB =5,BC =3,点P 从起点D 出发,沿DC 、CB 向终点B 匀速运动.设点P 所走过的路程为x ,点P 所经过的线段与线段AD 、AP 所围成图形的面积为y ,y 随x 的变化而变化.在下列图象中,能正确反映y 与x 的函数关系的是( ).二、填空题(本题共20分,每小题2分)11.如果菱形的两条对角线长为6cm 与8cm ,则此菱形的面积为_______2cm 。

北京2019-2020年下学期八年级期中考试 数学(含答案)

北京2019-2020年下学期八年级期中考试 数学(含答案)

北京2019-2020年下学期八年级期中考试数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)第Ⅲ卷附加题三部分,其中第Ⅰ卷(选择题)和第Ⅱ卷共100分,第Ⅲ卷20分,考试时间100分钟。

第Ⅰ卷(共30分)一、选择题:(本大题共10小题,每小题3分,共30分. 在每小题的四个选项中,只有一个选项是符合题目要求的). 1.下列各式中,运算正确的是( ). A .3333-= B .822= C .2+323=D .2(2)2-=- 2.下列二次根式中,是最简二次根式的是(). A .15 B .12 C .13D .9 3.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ). A .1,2,3B .3,4,5C .5,12,13D .2,2,31.4.如图,矩形ABCD 中,对角线AC ,BD 交于O 点. 若∠AOB=60°,AC =8,则AB 的长为( ).A .4B .43C .3D .55.如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连接AB 、AD 、CD ,则四边形ABCD 一定是( ).A .平行四边形B .矩形C .菱形D .正方形 6.用配方法解方程2230x x --=,原方程应变形为( ).A .2(1)2x -=B .2(1)4x +=C .2(1)4x -= D .2(1)2x +=7.如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F ,若BF =12,AB =10, 则AE 的长为( ). A .13B .14 C .15 D .16 8.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形9.如图,一根木棍斜靠在与地面(OM )垂直的墙(ON )上,设木棍中点为P ,若木棍A 端沿墙下滑,且B 沿地面向右滑行. 在此滑动过程中,点P 到点O 的距离( ).A .不变B .变小C .变大D .无法判断10.如图,在菱形ABCD 中,∠BAD =60°,AB =2,E 是DC 边上一个动点,F 是AB 边上一点,∠AEF =30°.设DE =x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图所示,则这条线段可能是图中的( ). A .线段EC B .线段AE C .线段EF D .线段BF第9题图 第10题图第Ⅱ卷(共70分)二、填空:(每小题2分,共10个小题,共20分)11.写出一个以0,1为根的一元二次方程.12.如果3x -在实数范围内有意义,那么x 的取值范围是________. 13.一元二次方程2x +kx -3=0的一个根是x=1,则k 的值是.14.如图,为了检查平行四边形书架ABCD 的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线AC ,BD 的长度,若二者长度相等,则该书架的侧边与上、下边都垂直, 请你说出其中的数学原理.15.某城2016年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,预计到2018年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程是 .16.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为.17.如果关于x 的一元二次方程210ax x +-=有实数根,则a的取值范围N M OA PPFE DCBA EC'DBA是________.18.如图,矩形ABCD 中,AB=3,BC=5.过对角线交点O 作OE ⊥AC 交AD 于E, 则AE 的长是.19.如图,将矩形ABCD 沿对角线BD 所在直线折叠,点C 落在同一平面内,落点记为C’,BC’与AD 交于点E ,若 AB=3,BC =4,则DE 的长为.20.如图,正方形ABCD 的面积是2,E ,F ,P 分别是AB ,BC ,AC 上的动点, PE +PF 的最小值等于.第18题图 第19题图 第20题图三、解答题:(21,22题每小题4分,23,24,25每题5分, 26,27每题6分,28题7分;共计50分) 21.计算(1)188(31)(31)-++-; (2)1(123)622+⨯-22.解方程: (1)2650x x -+=;(2) 22310x x --=.23.如图,在四边形ABCD 中,∠B =90º,AB=BC=2, AD =1,CD =3.求∠DAB 的度数.24.列方程或方程组解应用题如图,要建一个面积为40平方米的矩形花园ABCD ,为了节约材料,花园的一边AD 靠着 原有的一面墙,墙长为8米(AD <8),另三 边用栅栏围成,已知栅栏总长为24米, 求花园一边AB 的长.25.如图,四边形ABCD 中,AB//CD ,AC 平分∠BAD ,CE//AD 交AB 于E.求证:四边形AECD 是菱形.D26.已知关于x的一元二次方程22(22)40x m x m+++-=有两个不相等的实数根.(1)求m的取值范围;(2)若m为负整数,且该方程的两个根都是整数,求m的值.27.如图,四边形ABCD是矩形,点E在CD边上,点F在DC延长线上,AE=BF.(1)求证:四边形ABFE是平行四边形(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的长.28.如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.(1)①依题意补全图形;②求证:BE⊥AC.(2)请探究线段BE,AD,CN所满足的等量关系,并证明你的结论.(3)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为______________(直接写出答案).第Ⅲ卷附加题(共20分)DAC BM附加题(1题6分,2题7分,3题7分,共20分)1. 如图1,将边长为1的正方形ABCD 压扁为边长为1的菱形ABCD .在菱形ABCD 中,∠A 的大小为α,面积记为S .30° 45°60° 90° 120°135°150° S12122由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A 大小的变化而变化,不妨把菱形的面积S 记为S (α).例如:当α=30°时,1(30)2S S =︒=;当α=135°时,2(135)2S S ο==.由上表可以得到 (60)S S ︒=( ______°);(150)S S ︒=( ______°),…,由此可以归纳出(180)()S S α︒-=.(3) 两块相同的等腰直角三角板按图2的方式放置,AD =2,∠AOB =α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).图2图22.已知:关于x 的一元二次方程23(1)230(3)mx m x m m --+>-=. (1)求证:方程总有两个不相等的实数根; (2)设方程的两个实数根分别为1x ,2x ,且12x x <. ①求方程的两个实数根1x ,2x (用含m 的代数式表示); ②若1284mx x <-,直接写出m 的取值范围. 3. 阅读下列材料:问题:如图1,在平行四边形ABCD 中,E 是AD 上一点,AE=AB ,∠EAB=60°,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB=∠EAB ,连接AG. 求证:EG =AG+BG.小明同学的思路是:作∠GAH=∠EAB 交GE 于点H ,构造全等三角形,经过推理解决问题.参考小明同学的思路,探究并解决下列问题: (1)完成上面问题中的证明;(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG 、AG 、BG 之间的数量关系,并证明你的结论. (1)证明:(2)解:线段EG 、AG 、BG 之间的数量关系为____________________________. 证明:图1GB E A D F 图2G C B答案及评分标准一、选择题(本题共30分每小题3分,) 题号 1 2 3 4 5 6 7 8 9 10 答案BADAACDDAB二、填空题:(共20分..) 11. 20x x -=或(1)0x x -= 12.x ≥313. 2 14. 对角线相等的平行四边形是矩形,矩形的四个角都是直角; 15. 300(1+x )2 =363 16. 1.517. a ≥-14且a ≠0 18. 3.4 19.25820.2 21.(118831)(31);=3222(31)-…………………………………………………3分 =22……………………………………………………………4分(2)原式=2(233)62 ----2分 =3362=3322⨯3分 =922=82 …………………………………………………………………4分22.(1)解:2650x x -+=移项,得265x x -=-.配方,得26959x x -+=-+,…………………………………………………1分所以,2(3)4x -=.………………………………………………………………2分 由此可得32x -=±,所以,15x =,21x =.…………………………………………………………4分 (2)解:2a =,3b =-,1c =-.………………………………… 1分224(3)42(1)170b ac ∆=-=--⨯⨯-=>.………………………2分方程有两个不相等的实数根24b b ac x -±-=3174±=,1317x +2317x -=.……………………………………4分23.解:连接AC在Rt △ABC 中,∠B =90º,AB =BC =2,∴∠BAC =∠ACB =45°,………………………………………………1分∴222AC AB BC =+.∴22AC =2分∵AD =1,CD =3,∴222AC AD CD +=.…………………………3分在△ACD 中,222AC AD CD +=,∴△ACD 是直角三角形,即∠DAC =90º.……………………………………4分 ∵∠BAD =∠BAC +∠DAC ,∴∠BAD =135º.………………………………………………………………5分 24.解:设AB 的长为x 米,则AD=BC=(242x -)米.(242)240x x -⋅=………………………………2分 212200x x -+= (10)(2)0x x --=DC1210,2x x ==………………………………4分当110,4x AD == 当22,20x AD ==8,4AD AD <∴=10x ∴=………………………………5分答:AB 的长为10米.25.证明:∵AB ∥CD ,CE ∥AD∴四边形ADCE 是平行四边形…………………1分 ∵AC 平分∠BAD∴∠DAC=∠EAC ………………2分 ∵AB ∥CD∴∠DCA=∠EAC ………………3分 ∴∠DAC=∠DCA∴AD=DC …………………………4分 ∴四边形ADCE 是菱形…………5分26. 解:(1)∵一元二次方程22(22)40x m x m +++-=有两个不相等的实数根, ∴2224(22)41(4)b ac m m ∆=-=+-⨯⨯-………………………………1分 8200m =+>……………………………………………………………2分∴52m >-.……………………………………………………………………3分(2)∵m 为负整数,∴1m =-或2-.……………………………………………………………4分当1m =-时,方程230x -=的根为13x =,23x =-不是整数,不符合题意, 舍去.…………………………………………………………………………5分当2m =-时,方程220x x -=的根为10x =,22x =都是整数,符合题意.综上所述2m =-.…………………………………………………………6分27.(1)证明:∵四边形ABCD 是矩形,∴AD =BC , ∠D =∠BCD =90°. ∴∠BCF =180°-∠BCD =180°-90°=90°.∴∠D =∠BCF .------------------------------------------------------------------1分 在Rt △ADE 和Rt △BCF 中,,.AE BF AD BC =⎧⎨=⎩∴Rt △ADE ≌Rt △BCF . ---------------------------------------------------------2分∴∠1=∠F.∴AE∥BF.∵AE=BF,∴四边形ABFE是平行四边形. ---------------------------------------------------3分(2)解:∵∠D=90°,∴∠DAE+∠1=90°.∵∠BEF=∠DAE,∴∠BEF+∠1=90°.∵∠BEF+∠1+∠AEB=180°,∴∠AEB=90°. --------------------------------------------------------------------------4分在Rt△ABE中, AE=3,BE=4,AB=2222345AE BE+=+=.∵四边形ABFE是平行四边形,∴EF=AB=5. --------------------------------------------------------------------------6分28.(1)①依题意补全图形.---------------------------------------------------------1分②解法1:证明:连接CE.∵四边形ABCD是正方形,∴∠BCD=90°, AB=BC.∴∠ACB=∠ACD=12∠BCD=45°.∵∠CMN=90°, CM=MN,∴∠MCN=45°.∴∠ACN=∠ACD+∠MCN=90°. ∵在Rt△ACN中,点E是AN中点,∴AE=CE=12AN. ----------------------------------------------------------------------------2分∵AE=CE,AB=CB,∴点B,E在AC的垂直平分线上.∴BE 垂直平分AC .∴BE ⊥AC . --------------------------------------------------------------------------------------3分 解法2:证明:连接CE .∵四边形ABCD 是正方形,∴∠BCD =90°, AB =BC .∴∠ACB =∠ACD =12∠BCD =45°. ∵∠CMN =90°,CM =MN ,∴△CMN 是等腰直角三角形.∴∠MCN =45°.∴∠ACN =∠ACD +∠MCN =90°.∵在Rt △ACN 中,点E 是AN 中点,∴AE =CE =12AN . 在△ABE 和△CBE 中,,,.AE CE AB CB BE BE =⎧⎪=⎨⎪=⎩∴△ABE ≌△CBE (SSS ). -----------------------------------------------------------------2分 ∴∠ABE =∠CBE .∵AB =BC ,∴BE ⊥AC . --------------------------------------------------------------------------------------3分(2)BE =22AD +12CN (或2BE =2AD +CN ). -------------------------------------4分 证明:∵AB =BC , ∠ABE =∠CBE ,∴AF =FC .∵点E 是AN 中点,∴AE =EN .∴FE 是△ACN 的中位线.∴FE =12CN .∵BE ⊥AC ,∴∠BFC =90°.∴∠FBC +∠FCB =90°.∵∠FCB =45°,∴∠FBC =45°.∴∠FCB =∠FBC .∴BF =CF .在Rt △BCF 中,222BF CF BF +=,∴BF 2BC . -----------------------------------------------------------------------------5分 ∵四边形ABCD 是正方形,∴BC =AD .∴BF 2AD . ∵BE =BF +FE ,∴BE 2AD +12CN . -------------------------------------------------------------------6分 (3)34.---------------------------------------------------------------------------------------7分附加题:1.(1233;12.(说明:每对两个给1分)----------------------------------2分 (2)120;30;α. -----------------------------------------------------------------------------------4分 (说明:前两个都答对给1分,最后一个α答对给1分)(3)答:两个带阴影的三角形面积相等.证明:将△ABO 沿AB 翻折得到菱形AEBO , 将△CDO 沿CD 翻折得到菱形OCFD .∴S △AOB =12S 菱形AEBO =12S (α)---------------------------------------------------5分 S △CDO =12S 菱形OCFD =12S (180α︒-)-----------------------------------------6分 由(2)中结论S (α)=S (180α︒-)∴S △AOB =S △CDO .2.(1)证明:∵23(1)230(0)mx m x m m --+≠-=是关于x 的一元二次方程,∴2[3(1)]4(23)m m m ∆=---- ···························································· 1分269m m =-+2(3)m =-. ······························································································· 2分 ∵3m >,∴2(3)0m ->,即0∆>.∴方程总有两个不相等的实数根. ··························································· 3分(2)①解:由求根公式,得3(1)(3)2m m x m-±-=. ∴1x =或23m x m -=. ∵3m >,∴23321m m m-=->. ∵12x x <,∴11x =,22332m x m m-==-. ····························································· 5分 ②323m <<. ··································································································· 7分 3.(1)证明:如图1,作∠GAH=∠EAB 交GE 于点H ,则∠GAB=∠HAE .……………………1分∵∠EAB=∠EGB ,∠AOE=∠BOF ,∴∠ABG=∠AEH .在△ABG 和△AEH 中 GAB HAE AB AE ABG AEH⎧∠∠⎪⎨⎪∠∠⎩===∴△ABG ≌△AEH .……………………2分∴BG=EH ,AG=AH .∵∠GAH=∠EAB=60°,∴△AGH 是等边三角形.∴AG=HG .∴EG=AG+BG ;……………………3分(2)线段EG 、AG 、BG 之间的数量关系是EG+BG =AG .………4分证明: O如图2,作∠GAH=∠EAB交GE的延长线于点H,则∠GAB=∠HAE.∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°.∴∠ABG=∠AEH.……………………5分在△ABG和△AEH中,∴△ABG≌△AEH.……………………6分∴BG=EH,AG=AH.∵∠GAH=∠EAB=90°,∴△AGH是等腰直角三角形.∴AG=HG,∴EG+BG =AG. (7)。

人教版数学八年级下册《期中测试卷》及答案解析

人教版数学八年级下册《期中测试卷》及答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题1. 下列式子中是分式的是( ) A.1πB.3x C.5aD.232. 若代数式11x +在实数范围内有意义,则实数 x 的取值范围是( ) A. x > -1B. x = -1C. x ≠ 0D. x ≠ -13. 2020年1月24日,中国疾控中心成功分离我国首株新型冠状病毒毒种,该毒种直径大约90纳米(1纳米=0.000001毫米),数据“90纳米”用科学记数法表示为( ) A. 70.910-⨯毫米B. 6910-⨯毫米C. 5910-⨯毫米D. 69010-⨯毫米4. 根据分式的基本性质,分式ab a-可变形为( ) A.aa b-- B. ﹣aa b - C. a a b-+D.aa b- 5. 某公司为尽快给医院供应一批医用防护服,原计划x 天生产120套防护服,由于采用新技术,每天增加生产30套,因此提前2天完成任务,列出方程为( )A.1200x=12002x -﹣30 B.1200x =12002x +﹣30 C 12002x +=1200x﹣30 D. 12002x -=1200x﹣306. 下列各曲线中不能表示y 是x 的函数是( )A B.C. D.7. 若点P在一次函数4y x=-+的图像上,则点P一定不在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A. 28°B. 38°C. 62°D. 72°9. 如果反比例函数y=12mx-的图象在每个象限内,y随着x的增大而增大,则m的最小整数值为()A. ﹣1B. 0C. 1D. 210. 如图,在平面直角坐标系中点A的坐标为(0,6),点B的坐标为(﹣32,5),将△AOB沿x轴向左平移得到△A′O′B′,点A的对应点A′落在直线y=﹣34x上,则点B的对应点B′的坐标为()A. (﹣8,6)B. (﹣132,5) C. (﹣192,5) D. (﹣8,5)二.填空题11. 计算:(-3)0+3-1=________.12. 关于x的分式方程721511x mx x-+=--有增根,则m的值为__________.13. 若点A(1,y1)和点B(2,y2)在反比例函数y=﹣2x的图象上,则y1与y2的大小关系是_____.14. 如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是___.15. 如图,在▱ABCD 中,AB =32,BC =10,∠A =45°,点E 是边AD 上一动点,将△AEB 沿直线BE 折叠,得到△FEB ,设BF 与AD 交于点M ,当BF 与▱ABCD 的一边垂直时,DM 的长为_____.三.解答题16. 先化简,再求值:222x x 11x x x 2x 1-⎛⎫-÷ ⎪+++⎝⎭,其中的值从不等式组1214x x -≤⎧⎨-≤⎩的整数解中选取. 17. 小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图. 根据图中提供的信息回答下列问题: (1)小明家到学校的路程是多少米;(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分; (3)小明在书店停留了多少分钟;(4)本次上学途中,小明一共行驶了多少米;一共用了多少分钟.18. 如图,点E 是平行四边形ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F . (1)求证:△ADE ≌△FCE.(2)若AB =8,BC =5,则EF 长为 时,AB ⊥AF .19. 如图,点()5,2A ,()()5B m n m <,在反比例函数ky x=的图象上,作AC y ⊥轴于点.⑴求反比例函数的表达式; ⑵若ABC ∆的面积为,求点的坐标.20. 为及时救治新冠肺炎重症患者,某医院需购买A 、B 两种型号的呼吸机.已知购买一台A 型呼吸机需6万元,购买一台B 型呼吸机需4万元,该医院准备投入资金y 万元,全部用于购进35台这两种型号的呼吸机,设购进A 型呼吸机x 台. (1)求y 关于x 的函数关系式;(2)若购进B 型呼吸机数量不超过A 型呼吸机数量的2倍,则该医院至少需要投入资金多少万元? 21. 我们经历了“确定函数的表达式﹣利用函数图象研究其性质﹣运用函数解决问题”的学习过程在画函数图象时,我们通过描点的方法画出了所学的函数图象同时,我们也学习了绝对值的意义:|a|=(0)(0)a a a a ⎧⎨-<⎩,结合上面经历的学习过程,解决下面问题:(1)若一次函数y =kx+b 的图象分别经过点A(﹣1,1),B(2,2),请求出此函数表达式; (2)在给出的平面直角坐标系中,直接画出函数y =|x|和y =kx+b 的图象; (3)根据这两个函数图象直接写出不等式|x|≤kx+b 的解集.22. 在△ABC中,AB=AC,点P为△ABC所在平面内一点过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)观察猜想如图1,当点P在BC边上时,此时点P、D重合,试猜想PD,PE,PF与AB的数量关系:.(2)类比探究如图2,当点P在△ABC内时,过点P作MN∥BC交AB于点M,交AC于点N,试写出PD,PE,PF与AB的数量关系,并加以证明.(3)解决问题如图3,当点P在△ABC外时,若AB=6,PD=1,请直接写出平行四边形PEAF的周长.23. 如图,A点的纵坐标为3,过A点的一次函数图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的表达式;(2)若点P为第一象限内直线AB上的一动点,设点P的横坐标为m,过点P作x轴的垂线交正比例函数图象于点Q,交x轴于点M.①当△AOB≌△PQB时,求线段PM的长.②当线段PQ=12AO时,请直接写出点P的坐标.答案与解析一.选择题1. 下列式子中是分式的是( ) A.1πB.3x C.5aD.23[答案]C [解析] [分析]根据分式的定义求解即可. [详解]解:1π、3x 、23的分母中不含有字母,属于整式,5a的分母中含有字母,属于分式. 故选:C .[点睛]本题主要考查了分式的定义理解,准确分析是解题的关键. 2. 若代数式11x +在实数范围内有意义,则实数 x 的取值范围是( ) A. x > -1 B. x = -1C. x ≠ 0D. x ≠ -1[答案]D [解析] [分析]先根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可. [详解]由题意得 x +1≠0, 解得x ≠−1, 故选:D .[点睛]本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键. 3. 2020年1月24日,中国疾控中心成功分离我国首株新型冠状病毒毒种,该毒种直径大约为90纳米(1纳米=0.000001毫米),数据“90纳米”用科学记数法表示为( ) A. 70.910-⨯毫米B. 6910-⨯毫米C. 5910-⨯毫米D. 69010-⨯毫米[解析] [分析]科学记数法的表示形式为a 10n ⨯的形式,其中0a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. [详解]解:90纳米0.00009=毫米5910-=⨯毫米 故选:C .[点睛]本题考查知识点是用科学记数法表示较小的数,需要注意的是当原数的绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 4. 根据分式的基本性质,分式ab a-可变形为( ) A.aa b-- B. ﹣aa b - C. a a b-+D.aa b- [答案]B [解析] [分析]根据分式的基本性质即可求出答案. [详解]解:a a ab a a b a b-=-=---, 故选:B .[点睛]此题主要考查分式的变形运算,解题的关键是熟知分式的性质.5. 某公司为尽快给医院供应一批医用防护服,原计划x 天生产120套防护服,由于采用新技术,每天增加生产30套,因此提前2天完成任务,列出方程为( )A. 1200x=12002x -﹣30 B.1200x =12002x +﹣30 C. 12002x +=1200x﹣30D. 12002x -=1200x﹣30[答案]A [解析]根据工作效率=工作总量÷时间结合采用新技术后每天多生产30套,即可得出关于x的分式方程,此题得解.[详解]解:依题意,得:1200x=12002x-﹣30.故选:A.[点睛]本题主要考查了分式方程的应用题,根据已知条件列出方程是解题关键.6. 下列各曲线中不能表示y是x的函数是()A. B.C. D.[答案]D[解析][分析]根据函数的定义:给定一个数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A),那么这个关系式就叫函数关系式简称函数,可以得出答案.[详解]A选项,对于x在的每一个确定的值,y都有唯一确定的值与它对应,y是x的函数,故A不符合题意;B选项,对于x在的每一个确定的值,y都有唯一确定的值与它对应,y是x的函数,故B不符合题意;C选项,对于x在的每一个确定的值,y都有唯一确定的值与它对应,y是x的函数,故C不符合题意;D选项,对于x在的每一个确定的值,y有时有2个甚至3个值与它对应,y不是x的函数,故D符合题意;所以答案为D.[点睛]本题主要考查了函数的定义,熟练掌握函数的概念是解题关键.7. 若点P在一次函数4y x=-+的图像上,则点P一定不在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限[解析][分析]根据一次函数的性质进行判定即可.[详解]一次函数y=-x+4中k=-1<0,b>0,所以一次函数y=-x+4的图象经过二、一、四象限,又点P在一次函数y=-x+4的图象上,所以点P一定不在第三象限,故选C.[点睛]本题考查了一次函数的图象和性质,熟练掌握是解题的关键.y=kx+b:当k>0,b>0时,函数的图象经过一,二,三象限;当k>0,b<0时,函数的图象经过一,三,四象限;当k<0,b>0时,函数的图象经过一,二,四象限;当k<0,b<0时,函数的图象经过二,三,四象限.8. 如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A. 28°B. 38°C. 62°D. 72°[答案]A[解析][分析]由在平行四边形ABCD中,∠A=118°,可求得∠B的度数,又由CE⊥AB,即可求得答案.[详解]∵四边形ABCD是平行四边形,∴∠B=180°−∠A=180°−118°=62°,∵CE⊥AB,∴∠BCE=90°−∠B=28°.故选A.[点睛]考查平行四边形的性质,掌握平行四边形的邻角互补是解题的关键.9. 如果反比例函数y=12mx-的图象在每个象限内,y随着x的增大而增大,则m的最小整数值为()A. ﹣1B. 0C. 1D. 2 [答案]C[解析][分析]根据反比例函数的性质可得1﹣2m<0,再解不等式即可.[详解]解:∵反比例函数y=12mx-的图象在每个象限内,y随着x的增大而增大,∴1﹣2m<0,解得,m>12.∴m的最小整数值为1,故选:C.[点睛]本题主要是考查了反比例函数图像的性质,根据函数图象的增减性判断k的值是解题的关键 .10. 如图,在平面直角坐标系中点A的坐标为(0,6),点B的坐标为(﹣32,5),将△AOB沿x轴向左平移得到△A′O′B′,点A的对应点A′落在直线y=﹣34x上,则点B的对应点B′的坐标为()A. (﹣8,6)B. (﹣132,5) C. (﹣192,5) D. (﹣8,5)[答案]C [解析] [分析]根据题意确定点A′的纵坐标,根据点A′落在直线y=﹣34x上,求出点A′的横坐标,确定△OAB沿x轴向左平移的单位长度即可得到答案.[详解]解:由题意可知,点A移动到点A′位置时,纵坐标不变, ∴点A′的纵坐标为6,∵点A′落在直线上y=﹣34x上,∴﹣34x=6,解得x=﹣8,∴△OAB沿x轴向左平移得到△O′A′B′位置,移动了8个单位,∴点B与其对应点B′的坐标为(﹣192,5),故答案选:C.[点睛]本题主要考查了一次函数图像上点的坐标特征和图形的平移,解题的关键是确定△OAB移动的距离.二.填空题11. 计算:(-3)0+3-1=________.[答案]4 3 .[解析] [分析][详解]试题分析:-3的0次幂是1,3的-1次幂是三分子一,1+13=43.考点:整数指数幂的运算.12. 关于x的分式方程721511x mx x-+=--有增根,则m的值为__________.[答案]4.[解析]去分母得:7x+5(x-1)=2m-1,因为分式方程有增根,所以x-1=0,所以x=1, 把x=1代入7x+5(x-1)=2m-1,得:7=2m-1, 解得:m=4,故答案为4.13. 若点A(1,y1)和点B(2,y2)在反比例函数y=﹣2x的图象上,则y1与y2的大小关系是_____.[答案]y 1<y 2[解析][分析]由k=-2可知,反比例函数y =﹣2x 的图象在每个象限内,y 随x 的增大而增大,则问题可解. [详解]解:∵反比例函数y =﹣2x 中,k =﹣2<0, ∴此函数在每个象限内,y 随x 的增大而增大,∵点A (1,y 1),B (2,y 2)在反比例函数y =﹣2x的图象上,2>1, ∴y 1<y 2,故答案为y 1<y 2.[点睛]本题考查了反比例函数的增减性,解答关键是注意根据比例系数k 的符号确定,在各个象限内函数的增减性解决问题.14. 如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是___.[答案]12[解析][分析]根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出线段长度解答.[详解]根据题意观察图象可得BC=5,点P 在AC 上运动时,BPAC 时,BP 有最小值,观察图象可得,BP 的最小值为4,即BPAC 时BP=4,又勾股定理求得CP=3,因点P 从点C 运动到点A ,根据函数的对称性可得CP=AP=3,所以ABC ∆的面积是13+342⨯⨯()=12. [点睛]本题考查动点问题的函数图象,解题的关键是注意结合图象求出线段的长度,本题属于中等题型.15. 如图,在▱ABCD中,AB=32,BC=10,∠A=45°,点E是边AD上一动点,将△AEB沿直线BE折叠,得到△FEB,设BF与AD交于点M,当BF与▱ABCD的一边垂直时,DM的长为_____.[答案]4或7[解析][分析]如图1,当BF⊥AD时,如图2,当BF⊥AB时,根据折叠的性质和等腰直角三角形的判定和性质即可得到结论.[详解]解:如图1,当BF⊥AD时,∴∠AMB=90°,∵将△AEB沿BE翻折,得到△FEB,∴∠A=∠F=45°,∴∠ABM=45°,∵AB=32,∴AM=BM=3222=3,∵平行四边形ABCD,BC=AD=10, ∴DM=AD﹣AM=10﹣3=7;如图2,当BF⊥AB时,∵将△AEB沿BE翻折,得到△FEB, ∴∠A=∠EFB=45°,∴∠ABF =90°,此时F 与点M 重合,∵AB =BF =,∴AF =6,∴DM =10﹣6=4.综合以上可得DM 的长为4或7.故答案为:4或7.[点睛]本题主要考查平行四边形的判定与性质,解题的关键是熟知平行四边形的性质及折叠的特点.三.解答题16. 先化简,再求值:222x x 11x x x 2x 1-⎛⎫-÷ ⎪+++⎝⎭,其中的值从不等式组1214x x -≤⎧⎨-≤⎩的整数解中选取. [答案]1x x-,-2 [解析][分析]先根据分式混合运算顺序和运算法则化简原式,再解不等式组求得x 的范围,据此得出x 的整数值,继而根据分式有意义的条件得出x 的值,代入计算可得.[详解]解:222222221(1)(1)121(1)(1)(1)(1)(1)1x x x x x x x x x x x x x x x x x x x x x x ---+-+⎛⎫-÷=⨯=⨯= ⎪+++++-++--⎝⎭, 解不等式组1214x x -≤⎧⎨-≤⎩得,-1≤x ≤52,∴不等式组的整数解为-1,0,1,2, ∵x ≠±1且x ≠0,∴x=2,将x=2代入1x x-得, 原式=2212=--. [点睛]本题主要考查了分式的化简求值以及解不等式组,解题的关键是掌握基本运算法则,并注意选取代入的数值一定要使原分式有意义.17. 小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米;(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分;(3)小明在书店停留了多少分钟;(4)本次上学途中,小明一共行驶了多少米;一共用了多少分钟.[答案](1)1500米;(2)小明在12﹣14分钟最快,速度为450米/分;(3)4分钟.(4)共2700米,共用了14分钟.[解析][分析](1)根据图象,观察学校与小明家的纵坐标,可得答案;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)读图,对应题意找到其在书店停留的时间段,进而可得其在书店停留的时间;(4)读图,计算可得答案,注意要计算路程.[详解]解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;(2)根据图象,12≤x≤14时,直线最陡,故小明在12-14分钟最快,速度为1500-600=45014-12米/分.(3)根据题意,小明在书店停留的时间为从8分到12分,故小明在书店停留了4分钟.(4)读图可得:小明共行驶了1200+600+900=2700米,共用了14分钟.[点睛]本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.18. 如图,点E 是平行四边形ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F .(1)求证:△ADE ≌△FCE .(2)若AB =8,BC =5,则EF 的长为 时,AB ⊥AF .[答案](1)见解析;(2)3[解析][分析](1)利用中点定义可得DE =CE ,再用平行四边形的性质可得∠D =∠DCF ,然后可证明△ADE ≌△FCE ;(2)根据平行四边形的性质可得CE =4,CF =5,然后利用勾股定理可得EF 的长.[详解](1)证明:∵E 是边CD 的中点,∴DE =CE ,∵四边形ABCD 是平行四边形,∴AD ∥BF ,∴∠D =∠DCF ,在△ADE 和△FCE 中D ECF ED CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA );(2)解:∵四边形ABCD 是平行四边形,∴AB =CD =8,CD =AD =5,AB ∥CD ,∵△ADE ≌△FCE ,∴AD =CF =5,∵E 为CD 中点,∴CE =4,∵AB ⊥AF ,AB ∥CD ,∴CE ⊥EF ,∴EF =3,故答案为:3.[点睛]此题主要考查平行四边形的性质与证明,解题的关键是熟知平行四边形的性质特点.19. 如图,点()5,2A ,()()5B m n m <,在反比例函数k y x=的图象上,作AC y ⊥轴于点.⑴求反比例函数的表达式;⑵若ABC ∆的面积为,求点的坐标.[答案](1)10y x =;(2)5,63⎛⎫ ⎪⎝⎭B [解析][分析](1)利用待定系数法即可解决问题;(2)利用三角形的面积公式构建方程求出n ,再利用待定系数法求出m 的值即可;[详解]解:(1)∵点()5,2A 在反比例函数k y x=图象上, 10k ∴=, ∴反比例函数的解析式为:10y x =. (2)由题意:15(2)102n ⨯⨯-=, 6n ∴=,5(,6)3B ∴. [点睛]本题考查反比例函数的应用,解题的关键是熟练掌握待定系数法,学会构建方程解决问题,属于中考常考题型.20. 为及时救治新冠肺炎重症患者,某医院需购买A、B两种型号的呼吸机.已知购买一台A型呼吸机需6万元,购买一台B型呼吸机需4万元,该医院准备投入资金y万元,全部用于购进35台这两种型号的呼吸机,设购进A型呼吸机x台.(1)求y关于x的函数关系式;(2)若购进B型呼吸机的数量不超过A型呼吸机数量的2倍,则该医院至少需要投入资金多少万元?[答案](1)y=2x+140;(2)该医院至少需要投入资金164万元[解析]分析](1)根据题意即可得出y关于x的函数解析式;(2)根据题意列解不等式组求出x的范围,再根据一次函数的性质解答即可.[详解]解:(1)由题意得,y=6x+4(35﹣x)=2x+140;(2)由题意得:350 352xx x->⎧⎨-≤⎩,解得3535 3x<,∵x为正整数,∴x的最小值是12,又∵y=2x+140,k=2>0,∴y随x的增大而增大,∴当x=12时,y最小=2×12+140=164,答:该医院至少需要投入资金164万元.[点睛]此题主要考查不等式组及一次函数的应用,解题的关键是根据题意找到等量关系列出函数.21. 我们经历了“确定函数的表达式﹣利用函数图象研究其性质﹣运用函数解决问题”的学习过程在画函数图象时,我们通过描点的方法画出了所学的函数图象同时,我们也学习了绝对值的意义:|a|=(0)(0)a aa a⎧⎨-<⎩,结合上面经历的学习过程,解决下面问题:(1)若一次函数y=kx+b的图象分别经过点A(﹣1,1),B(2,2),请求出此函数表达式;(2)在给出的平面直角坐标系中,直接画出函数y=|x|和y=kx+b的图象;(3)根据这两个函数图象直接写出不等式|x|≤kx+b的解集.[答案](1)y=1433x+;(2)见解析;(3)﹣1≤x≤2[解析][分析](1)根据待定系数法可以求得该函数的表达式;(2)根据函数表达式可以画出该函数的图象;(3)根据图象可以直接写出所求不等式解集.[详解]解:(1)由题意得1 22k bk b-+=⎧⎨+=⎩,∴1343kb⎧=⎪⎪⎨⎪=⎪⎩,∴此函数表达式为:y=14 33x+;(2)画出函数y=|x|和y=kx+b的图象如图:;(3)由图象可知,不等式|x|≤kx+b的解集为﹣1≤x≤2.[点睛]此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法及函数的图像与不等式的解的联系.22. 在△ABC中,AB=AC,点P为△ABC所在平面内一点过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)观察猜想如图1,当点P在BC边上时,此时点P、D重合,试猜想PD,PE,PF与AB的数量关系:.(2)类比探究如图2,当点P在△ABC内时,过点P作MN∥BC交AB于点M,交AC于点N,试写出PD,PE,PF与AB的数量关系,并加以证明.(3)解决问题如图3,当点P在△ABC外时,若AB=6,PD=1,请直接写出平行四边形PEAF的周长.[答案](1)PD+PE+PF=AB;(2)PD+PE+PF=AB,见解析;(3)14[解析][分析](1)由PE∥AC,PF∥AB可判断四边形AEPF为平行四边形,根据平行线的性质得∠1=∠C,根据平行四边形的性质得PF=AE,再根据等腰三角形的性质得∠B=∠C,则∠B=∠1,则可根据等腰三角形的判定得PE=BE,所以PE+PF=AB;(2)因为四边形PEAF为平行四边形,所以PE=AF,又三角形FDC为等腰三角形,所以FD=PF+PD=FC,即PE+PD+PF=AC=AB;(3)过点P作MN∥BC分别交AB、AC于M、N两点,推出PE+PF=AM,再推出MB=PD即可得到结论.[详解]解:(1)答:PD+PE+PF=AB.证明如下:∵点P在BC上,∴PD=0,∵PE∥AC,PF∥AB,∴四边形PFAE是平行四边形,∴PF=AE,∵PE∥AC,∴∠BPE=∠C,∴∠B=∠BPE,∴PE=BE,∴PE+PF=BE+AE=AB,∵PD=0,∴PD+PE+PF=AB,故答案为:PD+PE+PF=AB;(2)如图2,结论成立:PD+PE+PF=AB.证明:过点P作MN∥BC分别交AB,AC于M,N两点,∵PE∥AC,PF∥AB,∴四边形AEPF是平行四边形,∵MN∥BC,PF∥AB,∴四边形BDPM是平行四边形,∴AE=PF,∠EPM=∠ANM=∠C,∵AB=AC,∴∠EMP=∠B,∴∠EMP=∠EPM,∴PE=EM,∴PE+PF=AE+EM=AM.∵四边形BDPM是平行四边形,∴MB=PD.∴PD+PE+PF=MB+AM=AB,即PD+PE+PF=AB;(3)如图3,过点P作MN∥BC分别交AB、AC延长线于M、N两点.∵PE∥AC,PF∥AB,∴四边形PEAF是平行四边形,∴PF=AE,∵AB=AC,∴∠B=∠C,∵MN∥BC,∴∠ANM=∠C=∠B=∠AMN,∵PE∥AC,∴∠EPM=∠FNP,∴∠AMN=∠FPN,∴∠EPM=∠EMP,∴PE=ME,∵AE+ME=AM,∴PE+PF=AM,∵MN∥CB,DF∥AB,∴四边形BDPM是平行四边形,∴MB=PD,∴PE+PF﹣PD=AM﹣MB=AB,∴PE+PF=AB+PD=6+1=7,∴平行四边形PEAF的周长=14,故答案为:14.[点睛]本题主要考查了平行四边形的性质应用,结合等腰三角判断角的关系是解题的关键.23. 如图,A点的纵坐标为3,过A点的一次函数图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的表达式;(2)若点P为第一象限内直线AB上的一动点,设点P的横坐标为m,过点P作x轴的垂线交正比例函数图象于点Q,交x轴于点M.①当△AOB≌△PQB时,求线段PM的长.②当线段PQ=12AO时,请直接写出点P的坐标.[答案](1)y=﹣x+3;(2)①1;②点P坐标为(32,32)或(12,52).[解析][分析](1)根据图象上点的坐标特征求得B的坐标,然后根据待定系数法即可求得一次函数的解析式;(2)①根据题意P(m,﹣m+3),则Q(m,2m),即可得到PQ=|2m﹣(﹣m+3)|=|3m﹣3|,当△AOB≌△PQB 时,AO=PQ,即|3m﹣3|=3,然后结合题意即可求得P(2,1),PM=1;②根据题意得到|3m﹣3|=32,求得m的值,从而求得P的坐标.[详解]解:(1)∵点B的横坐标为1,且点B在正比例函数y=2x的图象上, ∴y=2×1=2,∴B(1,2),∵A点的纵坐标为3,设一次函数的解析式为y=kx+3,代入B(1,2)得,2=k+3,解得k=﹣1,∴一次函数的解析式为y=﹣x+3;(2)①∵点P为第一象限内直线AB上的一动点,且点P的横坐标为m,∴P(m,﹣m+3),∵PQ⊥x轴,且Q在y=2x的图象上,∴Q(m,2m),∴PQ=|2m﹣(﹣m+3)|=|3m﹣3|,当△AOB≌△PQB时,∴AO=PQ,即|3m﹣3|=3,∴m=2或0(由点P在第一象限,故舍去), ∴P(2,1),PM=1;②当线段PQ=12AO时,则|3m﹣3|=32,当3m﹣3=32时,解得m=32,此时P(32,32);当﹣3m+3=32时,解得m=12,此时P(12,52).综上:点P的坐标为(32,32)或(12,52).[点睛]此题考查的是一次函数与几何图形的综合题型,掌握利用待定系数法求一次函数解析式、全等三角形的性质和方程思想是解决此题的关键.。

人教版数学八年级下册《期中测试卷》(含答案)

人教版数学八年级下册《期中测试卷》(含答案)

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共40分)1.下列式子中为最简二次根式的是( ) A. 8 B. 0.5 C. 12D. 15 2.下列计算正确的是( ) A. 3+3=6 B. 33=23⨯ C. 3+3=23D. 2+3=233.以下各组数据为三角形的三边长,能构成直角三角形的是( )A. 2,2,4B. 2,3,4C. 2,2,1D. 4,5,3 4.如图,已知其中两个正方形面积为20和69,那么正方形的边长为( )A. 5B. 6C. 7D. 89 5.在ABCD 中,220A C ∠+∠=︒,则A ∠为( )A. 70︒B. 110︒C. 65︒D. 55︒ 6.能判定一个四边形是平行四边形的条件是( )A. 一组对角相等B. 两条对角线互相平分C. 一组对边相等D. 两条对角线互相垂直7. 下列关于矩形的说法中正确的是( )A. 对角线相等四边形是矩形B. 矩形的对角线相等且互相平分C. 对角线互相平分四边形是矩形D. 矩形的对角线互相垂直且平分8.如图所示,在数轴上点A 所表示的数为,则的值为( )A. 5-B. 15-C. 15--D. 15-+9.如图,在ABC ∆中,90C ∠=︒,2AC =,点在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )A. 51-B. 51+C. 31-D. 31+10.如图,ABCD 、AEFC 都是矩形,而且点B 在EF 上,这两个矩形的面积分别是S 1,S 2,则S 1,S 2的关系是()A. S 1>S 2B. S 1<S 2C. S 1=S 2D. 3S 1=2S 2二.填空题(共24分)11.要使二次根式3x -有意义,则的取值范围是________.12.若一个直角三角形的三边分别为x ,4,5,则x =_____.13.“矩形的对角线相等”的逆命题是_____命题(填“真”或“假”).14.实数在数轴上的对应位置如图所示,化简()()2223x x -+-=______.15.如图, 利用四边形的不稳定性改变矩形ABCD 的形状,得到A 1BCD 1,若A 1BCD 1的面积是矩形ABCD 面积的一半,则∠A 1BC 的度数是__________.16.如图,在直角坐标系中,已知点()30A -,、()0,4B ,对OAB ∆连续作旋转变换,则第100个三角形的直角顶点的坐标为______.三.解答题(共86分)17.计算:(1)127382÷+⨯ (2)()()()2535252--+- 18.先化简,再求值:22x x 11x 2x 1x 1+⎛⎫÷+ ⎪-+-⎝⎭,其中x 21=+. 19.如图,在平行四边形ABCD 中,BF=DE .求证:四边形AFCE 是平行四边形.20.已知---2142b b ac x =a ,--2242b +b ac x =a,若,,===-322a b c ,试求12x x +值. 21.已知,每个小正方形的边长为1,以格点为顶点,只用一把无刻度的直尺,按要求作图:(1)在第一张表格中,作边长为17的正方形; (2)在第二张表格中,作一个三条边长分别为5,10,13的三角形.22.如图,在两面墙之间有一个底端在点的梯子,当它靠在左侧墙上时,梯子的顶端在点;当它靠在右侧墙上时,梯子的顶端在点.已知60BAC ∠=︒,45DAE ∠=︒,点到地面的垂直距离42DE =.(1)求梯子的长度;(2)求BC 和CE 的长度.23.如图1,AD 是ABC ∆边BC 上的中线.(1)①用尺规完成作图:延长AD 到点,使DE AD =,连接CE ;② 若,64AB =AC =,求AD 的取值范围;(2)如图2,当90BAC ∠=︒时,求证:12AD BC =.24.如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点.(1)求证:四边形EFGH是平行四边形;(2)当AD⊥BC时,四边形EFGH是哪种特殊的平行四边形?25.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=1BC,连接DE,CF.2(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=10,∠B=60°,求DE的长.答案与解析一.选择题(共40分)1.下列式子中为最简二次根式的是()A. B. C.D.[解析][分析]利用最简二次根式定义判断即可.[详解]解:A=不是最简二次根式;B=不是最简二次根式;C=不是最简二次根式;D,故选:D.[点睛]此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.2.下列计算正确的是( )D. [答案]C[解析][分析]利用二次根式的加减法对A、C、D进行判断;根据二次根式的乘法法则对B进行判断.[详解]解:A=故不正确;B3,故不正确;C故是正确的;D选项:2和3不能直接合并,故不正确;故选C.[点睛]本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.3.以下各组数据为三角形的三边长,能构成直角三角形的是( )A. 2,2,4B. 2,3,4C. 2,2,1D. 4,5,3[答案]D[解析]分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形可得答案.详解:A、22+22≠42,不符合勾股定理的逆定理,故此选项不合题意;B、22+32≠42,不符合勾股定理的逆定理,故此选项不合题意;C、12+22≠22,不符合勾股定理的逆定理,故此选项不合题意;D、32+42=52,符合勾股定理的逆定理,故此选项符合题意.故选D.点睛:考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.如图,已知其中两个正方形的面积为20和69,那么正方形的边长为()A. 5B. 6C. 7D. 89[答案]C[解析][分析]根据勾股定理,可得20+正方形的面积=69,求出正方形的面积即可解决问题.[详解]解:根据勾股定理,可得:20+正方形的面积=69,∴正方形的面积=49,∴正方形的边长为7,故选:C .[点睛]本题考查了勾股定理,此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.5.在ABCD 中,220A C ∠+∠=︒,则A ∠为( )A. 70︒B. 110︒C. 65︒D. 55︒[答案]B[解析][分析]由平行四边形的性质得出∠A =∠C ,结合已知条件即可求出∠A .[详解]解:∵四边形ABCD 是平行四边形,∴∠A =∠C ,∵∠A +∠C =220°,∴∠A =110°,故选:B .[点睛]本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键. 6.能判定一个四边形是平行四边形的条件是( )A. 一组对角相等B. 两条对角线互相平分C. 一组对边相等D. 两条对角线互相垂直 [答案]B[解析][分析]根据平行四边形的判定定理进行判断即可.[详解]A. 两组对角分别相等的四边形是平行四边形,故本选项错误;B. 两条对角线互相平分的四边形是平行四边形,故本选项正确;C. 两组对边分别相等的四边形是平行四边形,故本选项错误;D. 对角线互相平分的四边形才是平行四边形,而对角线互相垂直的四边形不一定是平行四边形,故本选项错误.故选B.[点睛]本题考查平行四边形的判定,定理有:①两组对角分别相等的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③对角线互相平分的四边形是平行四边形,④有一组对边相等且平行的四边形是平行四边形.7. 下列关于矩形的说法中正确的是( )A. 对角线相等的四边形是矩形B. 矩形的对角线相等且互相平分C. 对角线互相平分四边形是矩形D. 矩形的对角线互相垂直且平分[答案]B[解析]试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;B.矩形的对角线相等且互相平分,故本选项正确;C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.考点:矩形的判定与性质.8.如图所示,在数轴上点A所表示的数为,则的值为( )A. 5-B. 15-C. 15--D. 15-+[答案]C[解析] 分析:根据勾股定理求出直角三角形的斜边,即可得出答案.详解:如图:由勾股定理得:BC=221+2=5,即AC=BC=5, ∴a=-1-5, 故选C .点睛:本题考查了数轴和实数,勾股定理的应用,能求出BC 的长是解此题的关键. 9.如图,在ABC ∆中,90C ∠=︒,2AC =,点在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )5151 31 31[答案]B[解析][分析] 根据ADC 2B ∠=∠,可得∠B=∠DAB ,即5BD AD ==,在Rt △ADC 中根据勾股定理可得DC=1,则51.[详解]解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠∴∠B=∠DAB ∴5BD AD ==在Rt △ADC 中,由勾股定理得:22DC 541AD AC =-=-=∴BC=BD+DC=51+故选B [点睛]本题考查勾股定理应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.10.如图,ABCD 、AEFC 都是矩形,而且点B 在EF 上,这两个矩形的面积分别是S 1,S 2,则S 1,S 2的关系是( )A. S 1>S 2B. S 1<S 2C. S 1=S 2D. 3S 1=2S 2[答案]C[解析][分析] 由于矩形ABCD 的面积等于2个△ABC 的面积,而△ABC 的面积又等于矩形AEFC 的一半,所以可得两个矩形的面积关系.[详解]解:矩形ABCD 的面积S=2S △ABC ,而S △ABC =12S 矩形AEFC ,即S 1=S 2. 故选:C .[点睛]本题主要考查了矩形的性质及面积的计算,能够熟练运用矩形的性质进行一些面积的计算问题. 二.填空题(共24分)11.3x -有意义,则的取值范围是________.[答案]x ≥3[解析][分析]根据二次根式被开方数为非负数进行求解.x-≥,[详解]由题意知,30解得,x≥3,故答案为:x≥3.[点睛]本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.12.若一个直角三角形的三边分别为x,4,5,则x=_____.[答案]3[解析][分析]本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边5既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即5是斜边或直角边的两种情况,然后利用勾股定理求解.[详解]解:设第三边为x,(1)若5是直角边,则第三边x是斜边,由勾股定理得:52+42=x2,∴x(2)若5是斜边,则第三边x为直角边,由勾股定理得:32+x2=52,∴x=3;∴第三边的长为3故答案为:3[点睛]本题主要考查的是勾股定理的简单应用,需注意解答时有两种情况.13.“矩形的对角线相等”的逆命题是_____命题(填“真”或“假”).[答案]假[解析]试题分析:根据互逆命题的关系,可知其逆命题为“对角线相等的四边形为矩形”,而对角线互相平分且相等的四边形是矩形,可知是假命题.故答案为假.14.实数在数轴上的对应位置如图所示,化简()()2223x x -+-=______.[答案]1[解析][分析]根据二次根式的性质化简即可.[详解]解:由数轴可得:2<x <3,∴()()()2223231x x x x -+-=-+-=,故答案为:1.[点睛]本题考查了二次根式的性质与化简,熟知2a a =是解题关键.15.如图, 利用四边形的不稳定性改变矩形ABCD 的形状,得到A 1BCD 1,若A 1BCD 1的面积是矩形ABCD 面积的一半,则∠A 1BC 的度数是__________.[答案]30°[解析]过A 1作BC 的垂线交BC 于点E,平行四边形A 1BCD 1的面积是矩形ABCD 面积的一半,从而推出A 1E=12AB,AB=A 1B,A 1E=12A 1B,根据在直角三角形中, 30°角所对的边等于斜边的一半∴∠A 1BC 的度数是30°解:过A 1作BC 的垂线交BC 于点E,∵平行四边形A 1BCD 1的面积是矩形ABCD 面积的一半,∴A 1E=12AB, 又∵AB=A 1B∴A 1E=12A 1B, ∴∠A 1BC 的度数是30°16.如图,在直角坐标系中,已知点()30A -,、()0,4B ,对OAB ∆连续作旋转变换,则第100个三角形的直角顶点的坐标为______.[答案](396,0)[解析][分析]观察不难发现,每三次旋转为一个循环组依次循环,第100个直角三角形的直角顶点与第99个直角三角形的直角顶点重合,然后求出一个循环组旋转过的距离,即可得解.[详解]解:由图可知,每三次旋转为一个循环组依次循环,∵()30A -,、()0,4B , ∴OA=3,OB=4,∴AB 22345+=,∴一个循环组经过的长度为4+5+3=12,∵100÷3=33…1, ∴第100个直角三角形的直角顶点与第99个直角三角形的直角顶点重合,∵12×33=396, ∴第100个三角形的直角顶点的坐标为(396,0).故答案为:(396,0).[点睛]本题考查了图形旋转的变化规律和勾股定理,观察出每三次旋转为一个循环组依次循环,并且下一组的第一个直角三角形与上一组的最后一个直角三角形的直角顶点重合是解题的关键,也是本题的难点.三.解答题(共86分)17.计算:(1(2))222-[答案](1)5;(2)7-[解析][分析](1)根据二次根式的乘除法则计算,然后再合并同类二次根式;(2)利用完全平方公式和平方差公式进行计算即可.[详解]解:(1)原式325==+=;(2)原式53547=+-+=-.[点睛]本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.先化简,再求值:22x x 11x 2x 1x 1+⎛⎫÷+ ⎪-+-⎝⎭,其中x 1=.[答案]2[解析]分析]原式除数括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x 的值代入进行二次根式化简.[详解]解:原式=()()()()()()()()()22222x x 1x 1x 1xx 1x 1x x 1x 1x 1x 1x x 1x 1x 1x 1x 1++-++-÷=÷=⋅=-+-+----. 当x 21=+时,原式11222112===+-. 19.如图,在平行四边形ABCD 中,BF=DE .求证:四边形AFCE 是平行四边形.[答案]证明见解析.[解析]试题分析:可由已知求证AF=CE,又有AF∥CE ,根据一组对边平行且相等的四边形是平行四边形,可得四边形AFCE 是平行四边形.试题解析:∵四边形ABCD 是平行四边形,∴AB∥CD ,AB=CD .∵BF=DE ,∴AF=CE .∵在四边形AFCE 中,AF∥CE ,AF=CE,∴四边形AFCE 是平行四边形.考点:平行四边形的判定与性质.20.已知---214b b ac x =,--224b +b ac x =,若,,===-322a b c ,试求12x x +的值. [答案]23-[解析][分析]首先利用12x x +,代入进行化简,在代入参数计算.[详解]解:原式 2244b b ac b b ac ----+- =b a - =23-[点睛]本题主要考查分式的化简计算.21.已知,每个小正方形的边长为1,以格点为顶点,只用一把无刻度的直尺,按要求作图:(1)在第一张表格中,作边长为17的正方形;(2)在第二张表格中,作一个三条边长分别为5,10,13的三角形.[答案](1)见解析;(2)见解析.[解析][分析](1)根据勾股定理确定出边长的画法,然后作图即可;(2)根据勾股定理确定出三角形的三边即可.[详解]解:(1)如图所示,即为所作的正方形,(2)如图所示,即为所作的三角形.[点睛]本题考查了利用勾股定理作图,熟练掌握网格特点和勾股定理是解题关键.22.如图,在两面墙之间有一个底端在点的梯子,当它靠在左侧墙上时,梯子的顶端在点;当它靠在右侧墙上时,梯子的顶端在点.已知60BAC ∠=︒,45DAE ∠=︒,点到地面的垂直距离42DE =.(1)求梯子长度;(2)求BC 和CE 的长度.[答案](1)梯子的长度为8;(2)43BC=CE=4+42 [解析][分析](1)在Rt △ADE 中,运用勾股定理可求出梯子的长度;(2)在Rt △ABC 中,根据含30度角的直角三角形的性质和勾股定理求出AC 和BC 即可解决问题.[详解]解:(1)在Rt △ADE 中,∠DAE =45°,∴AE =DE =42∴222242428AD AE DE ,即梯子的长度为8;(2)在Rt △ABC 中,∠BAC =60°,AB =AD =8,∴∠ABC =30°,∴AC =12AB =4,∴22228443BC AB AC ,∴CE=AC+AE=4+42.[点睛]本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.23.如图1,AD 是ABC ∆的边BC 上的中线.(1)①用尺规完成作图:延长AD 到点,使DE AD =,连接CE ;② 若,64AB =AC =,求AD 的取值范围;(2)如图2,当90BAC ∠=︒时,求证:12AD BC =.[答案](1)①详见解析;②1<AD <5;(2)详见解析[解析][分析](1)①首先利用尺规作图,使得DE=AD ,在连接CE ,②首先利用ADB ∆≌EDC ∆可得AB=CE ,在ACE ∆中,确定AE 的范围,再根据AE=2AD ,来确定AD 的范围.(2)首先延长延长AD 到点,使DE AD =,连接CE 和BE ,结合BD DC =,可证四边形ABEC 是平行四边形,再根据90BAC ∠=︒,可得四边形ABEC 是矩形,因此可证明12AD BC =. [详解](1)①用尺规完成作图:延长AD 到点,使DE AD =,连接CE ;②∵BD DC =,DE AD =,ADB EDC ∠=∠∴ADB ∆≌EDC ∆∴EC AB =∴6-4<AE <6+4,即2<AE <10又∵2AE AD =∴1<AD <5(2)延长AD 到点,使DE AD =,连接CE BE ,∵BD DC =∴四边形ABEC 是平行四边形∵90BAC ∠=︒∴四边形ABEC 是矩形∴AE BC = ∴1122AD AE BC ==. [点睛]本题主要考查直角三角形斜边中线是斜边的一半,关键在于构造矩形,利用矩形的对角线相等. 24.如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点.(1)求证:四边形EFGH 是平行四边形;(2)当AD ⊥BC 时,四边形EFGH 是哪种特殊的平行四边形?[答案](1)见详解;(2)平行四边形EFGH 是矩形,理由见详解[解析][分析](1)根据三角形中位线定理得到EF=12AD,EF∥AD,GH=12AD,GH∥AD,得到EF=GH,EF∥GH,根据平行四边形的判定定理证明;(2)根据有一个角是直角的平行四边形是矩形解答.[详解](1)证明:∵E、F分别是AB、BD的中点, ∴EF是△BAD的中位线,∴EF=12AD,EF∥AD,同理,GH=12AD,GH∥AD,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形;(2)平行四边形EFGH是矩形,理由如下:∵EF∥AD,∴∠FEB=∠DAB,∵EH∥BC,∴∠HEA=∠ABC,∵AD⊥BC,∴∠DAB+∠ABC=90°,∴∠HEF=90°,∴平行四边形EFGH是矩形.[点睛]本题考查的是三角形中位线定理、矩形的判定,掌握平行四边形和矩形的判定定理是解题的关键.25.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=12BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=10,∠B=60°,求DE的长.[答案](1)见详解;(2)21DE[解析][分析](1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.[详解]证明:(1)在▱ABCD中,AD∥BC,且AD=BC.∵F是AD的中点,∴DF=12 AD.又∵CE=12 BC,∴DF=CE,∵DF∥CE,∴四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H.在▱ABCD中,∵∠B=60°,AD∥BC,∴∠B=∠DCE,∴∠DCE=60°.∵AB=4,∴CD=AB=4,∴CH=12CD=2,DH=3在▱CEDF中,CE=DF=12AD=5,则EH=3.∴在Rt△DHE中,根据勾股定理知23(23)321+=[点睛]本题考查了平行四边形的判定与性质、勾股定理.平行四边形的判定方法共有4种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.。

北京市2020〖人教版〗八年级数学下册复习试卷期中数学试卷参考答案与试题解析6

北京市2020〖人教版〗八年级数学下册复习试卷期中数学试卷参考答案与试题解析6

北京市2020年〖人教版〗八年级数学下册复习试卷期中数学试卷参考答案与试题解析创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、精心选择,一锤定音!(本题12小题,每小题3分,共36分,每小题只有一个选项是正确的)(请将正确的填在后面的答题栏内)1.(3分)(•娄底模拟)若分式的值为0,则x的值为()A.4B.﹣4 C.±4D.3考点:分式的值为零的条件.专题:计算题.分析:分式的值为0,分母不为0,分子为0,从而求得x的值.解答:解:∵的值为0,∴|x|﹣4=0且x+4≠0,∴|x|=±4且x≠﹣4,∴x=4,故选A.点评:本题考查了分式值为0的条件,分子为0且分母不为0,要熟练掌握.2.(3分)(•聊城)PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣6考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0025=2.5×10﹣6;故选:D.点评:本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)下列选项中,从左边到右边的变形正确的是()A.B.C.D.考点:分式的基本性质.分析:根据分式的基本性质进行解答.解答:解:A、当c=0时,等式不成立.故本选项错误;B、原式的变形不符合分式的基本性质.故本选项错误;C 、同时改变分式整体和分子的符号,得=﹣=﹣1.故本选项正确;D 、同时改变分式整体和分子的符号,得.故本选项错误;故选C.点评:本题考查了分式的基本性质.在分式的变形中,还要注意符号法则,即分式的分子、分母及分式的符号,只有同时改变两个其值才不变.4.(3分)(•长沙)已知长方形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为图中的()A.B.C.D.考点:反比例函数的应用.专题:应用题;压轴题.分析:由长方形的面积公式得y=,且x>0,y>0,而B中有x<0,y<0的情况,C,D中有x=0或y=0的情况,据此即可得出结果.解答:解:∵xy=10∴y=,(x>0,y>0)故选A.点评:现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.5.(3分)下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,23 考点:勾股定理的逆定理.专题:计算题.分析:根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.解答:解:A、∵42+52≠62,∴不能构成直角三角形;B、∵12+12=,∴能构成直角三角形;C、∵62+82≠112,∴不能构成直角三角形;D、∵52+122≠232,∴不能构成直角三角形.故选B.点评:此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.6.(3分)下列函数中,y是x的反比例函数的是()A.y=﹣B.y=﹣C.y=D.y=考点:反比例函数的定义.专题:常规题型.分析:此题应根据反比例函数的定义,解析式符合y=(k≠0)的形式为反比例函数.解答:解:A、是正比例函数,故错误;B、是反比例函数,故正确;C、不符合反比例函数的定义,故错误;D、不符合反比例函数的定义,故错误.故选B.点评:本题考查反比例函数的定义,熟记反比例函数解析式的一般式(k≠0)是解决此类问题的关键.7.(3分)已知反比例函数,当x<0时,y随x的增大而减小,则k的范围()A.B.C.D.考点:反比例函数的性质.分析:根据反比例函数图象的性质可得到2k﹣1>0,然后解不等式即可得到k的范围.解答:解:∵反比例函数,当x<0时,y随x的增大而减小,∴2k﹣1>0,解得,.故选A.点评:本题考查了反比例函数的性质.对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.8.(3分)等边三角形的边长为2,则该三角形的面积为()A.B.C.D.3考点:等边三角形的性质.专题:计算题.分析:如图,作CD⊥AB,则CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=1,所以,在直角△ADC中,利用勾股定理,可求出CD的长,代入面积计算公式,解答出即可;解答:解:作CD⊥AB,∵△ABC是等边三角形,AB=BC=AC=2,∴AD=1,∴在直角△ADC中,CD===,∴S△ABC =×2×=;故选C.点本题主要考查了等边三角形的性质及勾股定理的应用,根据题意,画出图形可利于解答,体现了数评:形结合思想.9.(3分)(•西宁)反比例函数的图象如图所示,则k的值可能是()A.﹣1 B.C.1D.2考点:反比例函数系数k的几何意义.专题:压轴题.分析:根据函数所在象限和反比例函数上的点的横纵坐标的积小于1判断.解答:解:∵反比例函数在第一象限,∴k>0,∵当图象上的点的横坐标为1时,纵坐标小于1,∴k<1,故选B.点评:用到的知识点为:反比例函数图象在第一象限,比例系数大于0;比例系数等于在它上面的点的横纵坐标的积.10.(3分)若关于x 的方程有增根,则k的值是()A.0B.3C.4D.1考点:分式方程的增根.分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x ﹣3)=0,得到x=3,然后代入化为整式方程的方程算出k的值.解答:解:方程两边都乘(x﹣3),得k+2(x﹣3)=4﹣x,∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,当x=3时,k=1,符合题意,故选D.点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.11.(3分)三角形的三边长分别为6,8,10,它的最长边上的高为()A.6B.2.4 C.8D.4.8 考点:勾股定理的逆定理.分析:根据已知先判定其形状,再根据三角形的面积公式求得其高.解答:解:∵三角形的三边长分别为6,8,10,符合勾股定理的逆定理62+82=102,∴此三角形为直角三角形,则10为直角三角形的斜边,设三角形最长边上的高是h,根据三角形的面积公式得:×6×8=×10h,解得h=4.8.故选D.点评:考查了勾股定理的逆定理,解答此题的关键是先判断出三角形的形状,再根据三角形的面积公式解答.12.(3分)如图,直线MN和EF相交于点O,∠EON=45°,AO=2,∠AOE=15°,设点A关于EF的对称点是B,点B关于MN的对称点是C,则AC的距离为()A.2B.C.D.考点:轴对称的性质.分析:根据轴对称的性质得出∠AOB=∠BON=∠NOC=30°,进而利用勾股定理得出即可.解答:解:∵∠EON=45°,AO=2,∠AOE=15°,点A关于EF的对称点是B,点B关于MN的对称点是C,∴∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2,∴∠AOB=∠BON=∠NOC=30°,∴∠AOC=90°,则AC 的距离为:=2.故选:D.点评:此题主要考查了轴对称图形的性质,根据已知得出∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2是解题关键.二、耐心填空,准确无误(每题3分,共计18分)13.(3分)命题:“直角三角形中,30°的锐角所对的直角边等于斜边的一半”的逆命题是直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的角等于30°.考点:命题与定理.专题:常规题型.分析:先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.解答:解:因为原命题的题设是“在直角三角形中,一个锐角等于30度”,结论是“30°的锐角所对的直角边等于斜边的一半”,所以“直角三角形中,30°的锐角所对的直角边等于斜边的一半”的逆命题是“直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的角等于30°”.故答案为:直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的角等于30°.点评:本题考查逆命题的定义,属于基础题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.14.(3分)已知,分式的值为 3 .考点:分式的值.分析:把所求分式的分子、分母同时除以a,然后把已知条件代入求值即可.解答:解:===3.即分式的值为3.故答案是:3.点评:本题考查了分式的值.解答该题时,也可以通过已知条件求得a=2b,然后把a的值代入所求的代数式,通过约分可以求得分式的值.15.(3分)若函数是y关于x的反比例函数,则k= 2 .考点:反比例函数的定义.分析:根据反比例函数的定义得到k2﹣5=﹣1,且k+2≠0据此可以求得k的值.解答:解:∵函数是y关于x的反比例函数,∴k2﹣5=﹣1,且k+2≠0,解得k=2.故答案是:2.点评:本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.16.(3分)在△ABC中,AB=13,AC=15,高AD=12,则BC的长为14或4 .考点:勾股定理的应用.专题:分类讨论.分析:根据勾股定理可分别求得BD与CD的长,从而不难求得BC的长.解答:解:∵AD为边BC上的高,AB=13,AD=12,AC=15,∴BD==5,CD==9,当AD在△ABC外部时,BC=CD﹣BD=4.当AD在△ABC内部时,B′C=CD+BD=14.故答案为:14或4.点评:此题主要考查学生对勾股定理的运用能力,易错点为学生容易忽略掉另外一种情况.17.(3分)(•台州)在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x下,则可列关于x的方程为=.考点:由实际问题抽象出分式方程.分析:要求的未知量是工作效率,有工作总量,一定是根据时间来列等量关系的.关键描述语是:“相同时间内小林跳了90下,小群跳了120下”;等量关系为:小林跳90下的时间=小群跳120下的时间.解答:解:小林跳90下的时间为:,小群跳120下的时间为:.所列方程为:.点评:题中一般有三个量,已知一个量,求一个量,一定是根据另一个量来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.18.(3分)(•江西)函数y l=x(x≥0),(x>0)的图象如图所示,则结论:①两函数图象的交点A的坐标为(3,3);②当x>3时,y2>y1;③当x=1时,BC=8;④当x逐渐增大时,y l随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是①③④.考点:反比例函数与一次函数的交点问题.专题:压轴题;函数思想.分析:逐项分析求解后利用排除法求解.①可列方程组求出交点A的坐标加以论证.②由图象分析论证.③根据已知先确定B、C点的坐标再求出BC.④由已知和函数图象分析.解答:解:①根据题意列解方程组,解得,;∴这两个函数在第一象限内的交点A的坐标为(3,3),正确;②当x>3时,y1在y2的上方,故y1>y2,错误;③当x=1时,y1=1,y2==9,即点C的坐标为(1,1),点B的坐标为(1,9),所以BC=9﹣1=8,正确;④由于y1=x(x≥0)的图象自左向右呈上升趋势,故y1随x的增大而增大,y2=(x>0)的图象自左向右呈下降趋势,故y2随x的增大而减小,正确.因此①③④正确,②错误.故答案为:①③④.点评:本题考查了一次函数和反比例函数图象的性质.解决此类问题的关键是由已知和函数图象求出正确答案加以论证.三、用心做一做,显显你的能力.(本大题共7小题,满分66分)19.(10分)(1)计算:(2)解方程:.考点:解分式方程;分式的混合运算.专题:计算题.分析:(1)括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=•=x;(2)去分母得:1﹣x=﹣1﹣2(x﹣2),去括号得:1﹣x=﹣1﹣2x+4,解得:x=2,经检验x=2是增根,原分式方程无解.点评:此题考查了解分式方程,以及分式的混合运算,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.(6分)(1)已知在△ABC中,AB=,AC=,BC=5,则△ABC的形状为直角三角形.(直接写出结果)(2)试在4×4的方格纸上画出△ABC,使它的顶点都在方格的顶点上.(每个小方格的边长为1)考点:勾股定理的逆定理;勾股定理.专题:作图题.分析:(1)由勾股定理的逆定理可判断△ABC为直角三角形;(2)AB为直角边长为1,2的直角三角形的斜边,BC为直角边长为3,4的直角三角形的斜边;AC为直角边长为4,2的直角三角形的斜边,依次画出相应图形即可.解答:解:(1)在△ABC中,∵AB=,AC=,BC=5,∴AB2+AC2=5+20=25=BC2,∴△ABC为直角三角形.(2)如图所示:故答案为:直角三角形.点评:本题考查了勾股定理,勾股定理的逆定理及直角三角形在网格中的画法,注意题目已知条件是4×4的方格,不要将BC画成了格点中的正方形的一边.21.(10分)问题探索(1)计算与观察:把的分子分母同时加上1,得到,把的分子分母同时加上2,得到.比较的大小关系:<,<(填“>”、“<”)(2)归纳猜想:若正分数(a>b>0)中的分子和分母同时加上正数m,得到,结论又如何呢?<(填“>”、“<”)(3)请证明你的猜想:考点:分式的加减法.专题:探究型.分析:一个真分数的分子和分母同时加上一个大于0的数,相当于分子、分母扩大了不同的倍数.由于原分数是真分数,分子小于分母,同时加上m,分子要比分母扩大的倍数大,所以得到的分数要比原分数大;如果这个分数是一个大于1的假分数,情况正好相反.此题也可以举例验证.解答:解:(1)∵=,=,∴<,即<.同理求得<.(2)<.(3)证明:一个真分数的分子和分母同时加上m以后,相当于分子、分母扩大了不同的倍数,即分子要比分母扩大的倍数大,所以得到的分数值一定比原分数大.如:原分数是,=,>.故答案是:<,<;<.点评:本题主要是考查分数的大小比较,本题分子、分母扩大了不同的倍数,所得到的分数与原分数不相等.22.(8分)已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时,y=1.求x=﹣时,y的值.考点:待定系数法求反比例函数解析式;待定系数法求正比例函数解析式.分析:依题意可设出y1、y2与x的函数关系式,进而可得到y、x的函数关系式;已知此函数图象经过(1,3)、(﹣1,1),即可用待定系数法求得y、x的函数解析式,进而可求出x=﹣时,y的值.解答:解:依题意,设y1=mx 2,y2=,(m、n≠0)∴y=mx2+,依题意有,∴,解得,∴y=2x2+,当x=﹣时,y=2×﹣2=﹣1.故y的值为﹣1.点评:考查了待定系数法求二次函数解析式,能够正确的表示出y、x的函数关系式,进而用待定系数法求得其解析式是解答此题的关键.23.(10分)如图所示,将长方形ABCD沿直线BD折叠,使C点落在C′处,BC′交AD于E.(1)求证:BE=DE;(2)若AD=8,AB=4,求△BED的面积.考点:翻折变换(折叠问题).分析:(1)先根据折叠的性质得出∠1=∠2,再由矩形的对边平行,内错角相等,所以∠1=∠3,然后根据角之间的等量代换可知DE=BE;(2)设DE=x,则AE=8﹣x,BE=x,在△ABE中,运用勾股定理得到BE2=AB2+AE2,列出关于x的方程,解方程求出x的值,再根据三角形的面积公式,即可求得△BED的面积.解答:(1)证明:∵△BDC′是由△BDC沿直线BD折叠得到的,∴∠1=∠2,∵四边形ABCD是矩形,∴AD∥BC,∴∠1=∠3,∴∠2=∠3,∴BE=DE;(2)解:设DE=x,则AE=AD﹣DE=8﹣x,在△ABE中,∵∠A=90°,BE=DE=x,∴BE2=AB2+AE2,∴x2=42+(8﹣x)2,∴x=5,∴△BED的面积=DE×AB=×5×4=10.点评:此题通过折叠变换考查了三角形的有关知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后对应边、对应角相等.24.(10分)某公司从开始投入技术改造资金,经技术改进后,其产品的生产成本不断降低,具体数据如表:年度投入技改资金x(万元) 2.5 3 4 4.5产品成本y(万元/件)7.2 6 4.5 4(1)试判断:从上表中的数据看出,y与x符合你学过的哪个函数模型?请说明理由,并写出它的解析式.(2)按照上述函数模型,若已投入技改资金5万元①预计生产成本每件比降低多少元?②如果打算在把每件产品的成本降低到3.2万元,则还需投入技改资金多少万元?考点:反比例函数的应用.分析:(1)根据实际题意和数据特点分情况求解,根据排除法可知其为反比例函数,利用待定系数法求解即可;(2)直接把x=5万元和y=3.2分别代入函数解析式即可求解.解答:解:(1)由表中数据知,x、y关系:xy=2.5×7.5=3×6=4×4.5=4.5×4=18∴xy=18∴x、y不是一次函数关系∴表中数据是反比例函数关系y=;(2)①当x=5万元时,y=3.6.4﹣3.6=0.4(万元),∴生产成本每件比降低0.4万元.②当y=3.2万元时,3.2=.∴x=5.625(1分)∴5.625﹣5=0.625≈0.63(万元)∴还约需投入0.63万元.点评:主要考查了函数的实际应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.25.(12分)如图,一次函数y=2x﹣2的图象与x轴、y轴分别相交于B、A两点,与反比例函数的图象在第一象限内的交点为M(3,m).(1)求反比例函数的解析式;(2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由.考点:反比例函数综合题.专题:综合题.分析:(1)先把M(3,m)代入y=2x﹣2求出m,确定M点的坐标,然后利用待定系数法确定反比例函数解析式;(2)先确定A点坐标为(0,﹣2),B点坐标为(1,0),再根据勾股定理计算出AB=;根据M点坐标得到MC=4,BC=2,则利用勾股定理可计算出BM=2,然后证明Rt△OBA∽Rt△MBP,利用相似比计算出BP,于是可确定P点坐标.解答:解:(1)把M(3,m)代入y=2x﹣2得m=2×3﹣2=4,∴M点坐标为(3,4),把M(3,4)代入y=得k=3×4=12,∴反比例函数的解析式为y=;(2)存在.作MC⊥x轴于C,如图,把x=0代入y=2x﹣2得y=﹣2;把y=0代入y=2x﹣2得2x﹣2=0,解得x=1,∴A点坐标为(0,﹣2),B点坐标为(1,0),∴OA=2,OB=1,在Rt△OAB中,AB==,∵M点坐标为(3,4),∴MC=4,BC=3﹣1=2,在Rt△MBC中,MB==2,∵MA⊥MB,∴∠BMP=90°,而∠OBA=∠MBP,∴Rt△OBA∽Rt△MBP,∴=,即=,∴BP=10,∴OP=11,∴点P的坐标为(11,0).点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征和待定系数法确定函数解析式;熟练运用勾股定理和相似比进行几何计算.创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校。

北京市2020〖人教版〗八年级数学下册复习试卷期中试卷参考答案与试题解析

北京市2020〖人教版〗八年级数学下册复习试卷期中试卷参考答案与试题解析

北京市2020年〖人教版〗八年级数学下册复习试卷期中试卷参考答案与试题解析创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题:(每小题2分,共20分)1.(2分)若分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x>﹣2 D.x >2考点:分式有意义的条件..分析:分式有意义的条件是分母不为0,解答:解:分式有意义,则x﹣2≠0,∴x≠2.故选A.点评:本题比较简单,考查了分式有意义的条件:分母不能为0.2.(2分)在式子,,,+,中,分式的个数是()A.5B.4C.3D.2考点:分式的定义..分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:,+的分母中均不含有字母,因此它们是整式,而不是分式.,,分母中含有字母,因此是分式.故选C.点评:本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.3.(2分)下列函数是反比例函数的是()A.y=B.y=C.y=D.y=考点:反比例函数的定义..分析:此题应根据反比例函数的定义,解析式符合y=(k≠0)的形式为反比例函数.解答:解:A、y=是正比例函数,错误;B、y=是反比例函数,正确;C、y=不符合反比例函数的定义,错误;D、y=不符合反比例函数的定义,错误.故选B.点评:本题考查了反比例函数的定义,重点是掌握反比例函数解析式的一般式(k≠0).4.(2分)现修建一座既是中心对称图形又是轴对称图形的花坛,征集到设计方案有平行四边形、正三角形、等腰三角形、矩形、菱形、正方形等图案,你认为符合条件的有()A.3个B.4个C.5个D.6个考点:中心对称图形;轴对称图形..分析:根据轴对称图形与中心对称图形的概念并分析各图形的特征求解.解答:解:平行四边形是中心对称图形,但不是轴对称图形;正三角形是轴对称图形,但不是中心对称图形;等腰三角形是轴对称图形,但不是中心对称图形;矩形是轴对称图形,也是中心对称图形;菱形是轴对称图形,也是中心对称图形;正方形是轴对称图形,也是中心对称图形;综上可得符合条件的有3个.故选A.点评:本题考查了轴对称及中心对称的知识,掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(2分)如果把分式中的x,y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.扩大2倍考点:分式的基本性质..分析:依题意,分别用3x和3y去代换原分式中的x和y,利用分式的基本性质化简即可.解答:解:分别用3x和3y去代换原分式中的x和y,得==,可见新分式与原分式相等.故选B.点评:解题的关键是抓住分子、分母变化的倍数.规律总结:解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.(2分)如图,一棵大树在离地面9米高的B处断裂,树顶A落在离树底BC的12米处,则大树断裂之前的高度为()A.9米B.15米C.21米D.24米考点:勾股定理的应用..专题:应用题.分析:根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.解答:解:由题意得BC=9,在直角三角形ABC中,根据勾股定理得:AB==15米.所以大树的高度是15+9=24米.故选D.点评:本题考查了勾股定理.熟记9,12,15这组勾股数,计算的时候较快.7.(2分)(•哈尔滨)直角三角形的两条直角边长分别为6cm和8cm,则连接这两条直角边中点线段的长为()A.3cm B.4cm C.5cm D.12cm考点:三角形中位线定理;勾股定理..分析:由题意可知:BC=6,AC=8.根据勾股定理得:BA=10.D、E是两直角边的中点,即为三角形中位线,根据中位线性质即可解答.解答:解:如图所示,在RT△ABC中,BC=6,AC=8,根据勾股定理得:AB==10,又D、E是两直角边的中点,所以DE=AB=5故选C.点评:此题不但考查了勾股定理,还考查了三角形中位线定理,所以学生要把学过的知识融合起来.要培养整体思维的能力.8.(2分)下列命题中不正确的是()A.直角三角形斜边中线等于斜边的一半B.矩形的对角线相等C.矩形的对角线互相垂直D.矩形是轴对称图形考点:命题与定理..分析:根据直角三角形斜边上的性质对A进行判断;根据矩形的性质对B、C、D进行判断.解答:解:A、直角三角形斜边中线等于斜边的一半,所以A选项的命题正确;B、矩形的对角线相等,所以B选项的命题正确;C、矩形的对角线相等且互相平分,所以C选项的命题不正确;D、矩形是轴对称图形,有两条对称轴,所以D选项的命题正确.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.9.(2分)顺次连结矩形各边的中点,所成的四边形一定是()A.平行四边形B.矩形C.菱形D.梯形考点:中点四边形..分因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都析:相等,从而说明是一个菱形.解答:解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选C.点评:本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.10.(2分)如图,过四边形ABCD的各顶点作对角线BD,AC的平行线围成四边形EFGH,若四边形EFGH 是菱形,则原四边形一定是()A.菱形B.平行四边形C.矩形D.对角线相等的四边形考点:菱形的性质..分析:推出四边形EFGH、HGCA\DGFB是平行四边形,推出GH=GF,则可求解.解答:解:∵EH∥BD,GF∥BD,∴EH∥GF,∵EF∥AC,GH∥AC,∴EF∥GH,∴四边形EFGH是平行四边形,∵GH∥AC,EH∥CG,∴四边形HACG是平行四边形,∴GH=AC,同理GF=BD,∴GH=GF,∴平行四边形EFGH是菱形,故选D.点评:此题主要考查平行四边形和菱形的判定.二、填空题:(每空3分,共30分)11.(3分)1纳米=0.000000001米,则7.5纳米用科学记数表示为7.5×10﹣9米.考点:科学记数法—表示较小的数..分析:首先把7.5纳米化为0.0000000075米,再用科学记数法表示,绝对值小于1的正数利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:7.5纳米=0.0000000075米=7.5×10﹣9米,故答案为:7.5×10﹣9米.点评:本题主要考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)若反比例函数y=的图象分布在第一、三象限,则k的取值范围是k>﹣2 .考点:反比例函数的性质..专题:计算题.分析:让反比例函数的比例系数大于0列式求值即可.解答:解:∵反比例函数y=的图象分布在第一、三象限,∴k+2>0,解得k>﹣2.故答案为:k>﹣2.点评:考查反比例函数的性质;用到的知识点为:反比例函数的图象在一、三象限,比例系数大于0.13.(3分)已知正方形的边长为10cm,则对角线的长为10cm.考点:正方形的性质..分析:作一个边长为4cm的正方形,连接对角线,构成一个直角三角形如下图所示:由勾股定理得AD2=AB2+BD2,求出AD的值即可.解答:解:如图所示:四边形ABCD是边长为4cm的正方形,在Rt△ABD中,由勾股定理得:AD===10cm.所以对角线的长:AD=10cm.点评:本题主要考查勾股定理的应用,应先构造一个直角三角形,在直角三角形中斜边的平方等于两直角边的平方和,作图可以使整个题变得简洁明了14.(3分)已知反比例函数的图象经过A(2,6),那么点B(﹣3,一4)是否在这个函数的图象上在(填“在”或“不在).考点:待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征..分析:计算点B的横纵坐标的积与点A的横纵坐标的积是否相等即可.解答:解:∵反比例函数的图象经过A(2,6),∴k=2×6=12.又∵﹣3×(一4)=12=k,∴点B(﹣3,一4)在这个函数的图象上.故答案为:在.点评:考查反比例函数的图象上的点的坐标的特征.用到的知识点为:反比例函数图象上点的横纵坐标的积相等.15.(3分)(•资阳)在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=5 .考点:含30度角的直角三角形;矩形的性质..分析:根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AB的长.解答:解:∵四边形ABCD是矩形,∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形.∴AB=OA=AC=5,故答案是:5.点评:本题考查了矩形的性质,正确理解△AOB是等边三角形是关键.16.(3分)若方程=无解,则m= ﹣1 .考点:分式方程的解..专题:计算题.分析:分式方程无解,即化成整式方程时无解,或者求得的x的值使最简公分母为0,据此进行解答.解答:解:方程两边同乘x﹣2,得x﹣1=﹣m,∴x=1﹣m.由于此整式方程一定有解,则此解使最简公分母为0.当x﹣2=0时,x=2,∴1﹣m=2时,m=﹣1.故若方程=无解,则m=﹣1.点评:分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.本题将分式方程化成整式方程以后,发现是一元一次方程,一定有解,则只能是整式方程的根使最简公分母为0.17.(3分)若菱形两条对角线长分别为6cm和8cm,则它的周长为20cm,面积是24cm2.考点:菱形的性质..专题:计算题.分析:根据菱形的对角线互相平分且垂直,可得菱形的周长为20cm;根据菱形的面积等于对角线积的一半,可得菱形的面积为24cm2.解答:解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD,∵AC=8cm,BD=6cm,∴AD=5cm,S菱形ABCD=AC•BD=24cm2.故答案为:20cm、24cm2.点评:此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的四条边都相等.解题的关键注意菱形面积的求解方法:底乘以高或对角线积的一半.18.(3分)(•杭州)当m= 3 时,分式的值为零.考点:分式的值为零的条件..专题:计算题.分析:要使分式的值为0,必须分式分子的值为0并且分母的值不为0.解答:解:要使分式由分子(m﹣1)(m﹣3)=0.解得:m=1或3;而m=3时,分母m2﹣3m+2=2≠0;当m=1时分母m2﹣3m+2=1﹣3+2=0,分式没有意义.所以m的值为3.故答案为3.点评:要注意分母的值一定不能为0,分母的值是0时分式没有意义.19.(3分)如图所示,一个梯子AB长5m,顶端A靠在墙AC上,这时梯子下端B与墙角C间的距离为3m梯子滑动后停在DE位置上,如图,测得DB的长为1m,则梯子顶端A下落了1 m.考点:勾股定理的应用..专题:应用题.分析:根据梯子、墙、地面构成直角三角形,利用勾股定理解答即可.解答:解:在Rt△ABC中,AB=5m,BC=3m,根据勾股定理得AC==4米,Rt△CDE中,ED=AB=5m,CD=BC+DB=3+1=4米,根据勾股定理得CE==3,所以AE=AC﹣CE=1米,即梯子顶端下滑了1m.点评:连续运用两次勾股定理,分别求得AC和CE的长,进一步求得AE的长.20.(3分)(•莆田)如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x≠0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P4A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S5的值为.考点:反比例函数系数k的几何意义..专题:压轴题;规律型.分析:根据反比例函数中k的几何意义再结合图象即可解答.解答:解:∵过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S=|k|.∴S1=1,S△OA2P2=1,∵OA1=A1A2,∴S△OA2P2=,同理可得,S2=S1=,S3=S1=,S4=S1=,S5=S1=.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.三、解答题:(共50分)21.(5分)已知y是x的反比例函数,当x=2时,y=6.(1)写出y与x的函数关系式;(2)求当x=4时y的值.考点:待定系数法求反比例函数解析式..专题:待定系数法.分析:(1)因为函数经过一定点,将此点坐标代入函数解析式(k≠0)即可求得k的值,从而求得反比例函数的解析式.(2)把x=4代入函数的解析式,求出y的值.解答:解:(1)设∵当x=2时,y=6∴解得k=12∴(2)把x=4代入,得.点评:本题考查的是用待定系数法求反比例函数的解析式,比较简单.22.(5分)(•武汉)解方程:.考点:解分式方程..分析:观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘以x(x﹣3),得2x=3(x﹣3).解这个方程,得x=9.检验:将x=9代入x(x﹣3)知,x(x﹣3)≠0.所以x=9是原方程的根.点评:本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.23.(6分)判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=15,b=8,c=17;(2)a=13,b=14,c=15.考点:勾股定理的逆定理..分析:根据两小边的平方和等于最长边的平方就是直角三角形,否则就不是,分别进行判断,即可求出答案.解答:解:(1)∵152+82=172,即a2+b2=c2,则是直角三角形;(2)132+142≠152,则不是直角三角形.点评:此题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.24.(6分)先化简,然后选取一个你喜欢的x的值代入计算.考点:分式的化简求值..专题:计算题;开放型.分析:先对x2﹣2x+1分解因式,再进行通分化简,最后求值.解答:解:==,(x≠1)当x=2时,原式=2.点评:主要考查分式的化简求值比较简单,不过选择喜欢的值时,一定要使分母有意义.25.(6分)某空调厂的装配车间计划组装9000台空调:(1)从组装空调开始,每天组装的台数m(单位:台/天)与生产时间t(单位:天)之间有怎样的函数关系?(2)原计划用2个月时间,(每月以30天计算)完成,由于气温提前升高,厂家决定这批空调提前10天上市,那么原装配车间每天至少要组装多少空调?考点:反比例函数的应用..专题:应用题.分析:首先根据题意,因总工作量为9000台空调,故每天组装的台数m与生产时间t之间成反比例关系,即m•t=9000;进一步求解可得答案.解答:解:(1)每天组装的台数m(单位:台/天)与生产时间t(单位:天)之间的函数关系:;(2)当t=50时,.所以,这批空调提前10天上市,那么原装配车间每天至少要组装180台空调.点评:本题考查反比例函数的定义、性质与运用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式,进一步根据题意求解答案.26.(6分)如图,在海上观察所A,我边防海警发现正北6km的B处有一可疑船只正在向东方向8km的C处行驶.我边防海警即刻派船前往C处拦截.若可疑船只的行驶速度为40km/h,则我边防海警船的速度为多少时,才能恰好在C处将可疑船只截住?考点:勾股定理的应用..分析:首先利用勾股定理求得线段AC的长,然后利用行驶时间相等求得边防海警船的速度.解答:解:∵AB=6,BC=8∴AC==10km,∵可疑船只的行驶速度为40km/h,∴可疑船只的行驶时间为8÷40=0.2小时,∴我边防海警船的速度为10÷0.2=50km/小时,∴我边防海警船的速度为50km/h时,才能恰好在C处将可疑船只截住.点评:本题考查了勾股定理在实际生活中的应用,本题中正确的找到OB,AB的等量关系,并且根据该等量关系在直角△OAB中求解是解题的关键.27.(6分)(•黔南州)已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.考点:全等三角形的判定;平行四边形的性质;菱形的性质;矩形的判定..专题:几何综合题.分析:(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.解答:(1)证明:∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD.∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD.∴AE=CF.在△AED与△CBF中,,∴△ADE≌△CBF(SAS).(2)解:当四边形BEDF是菱形时,四边形AGBD是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥BC.∵AG∥BD,∴四边形AGBD是平行四边形.∵四边形BEDF是菱形,∴DE=BE.∵AE=BE,∴AE=BE=DE.∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.∴∠2+∠3=90°.即∠ADB=90°.∴四边形AGBD是矩形.点评:主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.28.(10分)如图,已知反比例函数的图象经过第二象限内的点A(﹣2,m),AB⊥x轴于B,△AOB的面积为3,(1)求k,m的值;(2)若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点.①求直线y=ax+b的解析式;②设直线y=ax+b与x轴交于点M,求AM的长;③根据图象写出使反比例函数>y=ax+b的值x的取值范围.考点:反比例函数综合题..专题:综合题.分析:(1)利用△AOB的面积可求出点A的坐标,把点A的坐标代入反比例函数解析式即可求得k的值;(2)把C坐标代入反比例函数就能求得C完整的坐标:①把A、C代入一次函数解析式就能求得解析式;②求出M的坐标,利用勾股定理即可求得AM长;③应从A、C两点入手,判断出反比例函数的值>y=ax+b的值x的取值范围.解答:解:(1)∵点A(﹣2,m)在第二象限内∴AB=m,OB=2∴即:∴,解得m=3∴A(﹣2,3)∵点A(﹣2,3)在反比例函数的图象上,∴,解得:k=﹣6;(2)由(1)知,反比例函数为,又∵反比例函数的图象经过∴,解得:n=4.∴①∵直线y=ax+b过点A(﹣2,3)、∴∴解方程组得∴直线y=ax+b的解析式为.②当y=0时,即,解得:x=2,即点M(2,0)在Rt△ABM中,∵AB=3,BM=BO+OM=2+2=4由勾股定理得:AM=5.③由图象知:当﹣2<x<0或x>4时,反比例函数的值>的值.点评:过某个点,这个点的坐标应适合这个函数解析式.求一次函数的解析式需知道它上面的两个点的坐标;求自变量的取值范围应该从交点入手思考;需注意反比例函数的自变量不能取0.创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校。

人教版数学八年级下册《期中检测试卷》(含答案)

人教版数学八年级下册《期中检测试卷》(含答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1.若a>b,则下列不等式成立的是( )A. a2>b2B. 1﹣a>1﹣bC. 3a﹣2>3b﹣2D. a﹣4>b﹣32.如图,在Rt△ABD中,∠BDA=90°,AD=BD,点E在AD上,连接BE,将△BED绕点D顺时针旋转90°,得到△ACD,若∠BED=65°,则∠ACE的度数为( )A. 15°B. 20°C. 25°D. 30°3.一个多边形的内角和与外角和的比为5:2,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形4.下列命题是真命题是( )A. 如果x2>0,则x>0B. 平行四边形是轴对称图形C. 等边三角形是中心对称图形D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等5.如图,在等边△ABC中,点D、E分别是BC、AB边上的点,且AE=BD,AD与CE交于点F,则∠DFC的度数为( )A. 45°B. 60°C. 65°D. 75°6.一项工程,甲独做ah 完成,乙单独做bh 完成,甲、乙两人一起完成这项工程所需的时间为( ) A. 1a b +h B. (a +b )h C. a b ab +h D. ab a b+h 7.已知3x y +=,12xy =,则多项式2233+x y 值为( ). A. 24 B. 20 C. D.8.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF,则四边形AEDF 的面积为( )A. 6B. 7C. 62D. 9二、填空题9.不等式组21023x x x +>⎧⎨>-⎩的正整数解为__. 10.若31x x +-有意义,则x 的取值范围是__. 11.如图,在△ABC 中,∠B =45°,∠C =30°,AB 的垂直平分线分别交BC 、AB 于点D 、E ,AC 的垂直平分线分别交BC 、AC 于点F 、G ,DF =1,则BC =__.12.若关于x 的一次函数y =x +3a ﹣12的图象与y 轴的交点在x 轴上方,则a 的取值范围是__.13.若一个长方形长、宽分别为a 、b ,周长为12,面积为8,则a 2b +ab 2=__.14.如图,在△ABC 中,AB =5,AC =3,AD 、AE 分别是它的角平分线和中线,过点C 作CG ⊥AD ,垂足为点F ,连接EF ,则EF =__.15.若x 2﹣mx +9是个完全平方式,则m 的值是__.16.如图,在平行四边形ABCD 中,AB =6,AD =9,AF 平分∠BAD 交BC 于点E ,交DC 的延长线于点F ,BG ⊥AF 于点G ,BG =42,EF =12AE ,则△CEF 的周长为__.三、解答题17.(1)解不等式组:()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩(2)先化简再求值:2224224422a a a a a a a ⎛⎫-+-÷ ⎪-+--⎝⎭,请从0,1,2中选择一个合适的数作为a 的值. 18.分解因式:(1)(x 2+x )2﹣(5x +9)2 (2)(m ﹣1)3﹣2(1﹣m )2+(m ﹣1)19.在平面直角坐标系中,△ABC 位置如图所示,三个顶点的坐标分别为:A (1,2)、B (2,3)、C (3,0).(1)现将△ABC 先向左平移5个单位长度,再向上平移2个单位长度,得到△A 1B 1C 1,请在平面直角坐标系中画出△A 1B 1C 1.(2)此时平移的距离是 ;(3)在平面直角坐标系中画出△ABC 关于点O 成中心对称的△A 2B 2C 2.20.某市为治理污水,需要铺设一段全长为3000m污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前天完成这一任务,实际每天铺设多长管道?21.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?22.如图,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,AE平分∠CAB交CD于点F,交BC于点E,EH⊥AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形.23.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).答案与解析一、选择题1.若a >b ,则下列不等式成立的是( )A. a 2>b 2B. 1﹣a >1﹣bC. 3a ﹣2>3b ﹣2D. a ﹣4>b ﹣3[答案]C[解析][分析]根据不等式的基本性质即可判断.[详解]A :当a b < 时不成立,错误;B :0a b <<时不成立,错误;C :符合不等式的基本性质,正确;D :33a b ->- ,错误.故答案选:C[点睛]本题考查不等式的基本性质,理解不等式的基本性质是解题关键.2.如图,在Rt△ABD 中,∠BDA=90°,AD=BD,点E 在AD 上,连接BE,将△BED 绕点D 顺时针旋转90°,得到△ACD ,若∠BED=65°,则∠ACE 的度数为( )A. 15°B. 20°C. 25°D. 30°[答案]B[解析][分析] 根据旋转的性质得出:65BED ACD ∠=∠=︒,EDC ∆是等腰直角三角形,从而求解.[详解]∵90BDA ∠=︒,将△BED 绕点D 顺时针旋转90°,得到△ACD ,∠BED=65°∴65BED ACD ∠=∠=︒,EDC ∆是等腰直角三角形∴45ECD ∠=︒∴20ACE ACD ECD ∠=∠-=︒故答案选:B[点睛]本题考查旋转的性质,掌握相关的线段与角度的转换是解题关键.3.一个多边形的内角和与外角和的比为5:2,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形[答案]C[解析][分析]根据多边形的外角和为360︒和内角和公式()1802n ︒- 进行求算即可.[详解]∵一个多边形内角和与外角和的比为5:2,且多边形的外角和为360︒∴这个多边形的内角和为900︒∴()1802=900n ︒-︒∴7n =故答案选:C[点睛]本题考查多边形内角和公式与多边形外角和,掌握多边形内角和公式以及多边形的外角和为360︒是解题关键.4.下列命题是真命题的是( )A. 如果x 2>0,则x >0B. 平行四边形是轴对称图形C. 等边三角形是中心对称图形D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等[答案]D[解析][分析]根据不等式的性质、轴对称图形、中心对称图形和全等三角形的判定进行一一判断即可.[详解]A :当0x <时,满足20x >,错误;B :根据轴对称图形的概念知:平行四边形不是轴对称图形,错误;C :根据中心对称图形的概念知:等边三角形不是中心对称图形,错误;D :如图:当,AC DF AG DH ==时:∴()ACG DFH HL ∆≅∆∴CG FH =∴CB FE =∴()ACB DFE SAS ∆≅∆ ,D 正确故答案选:D[点睛]本题考查不等式的性质、轴对称图形、中心对称图形和全等三角形的判定,掌握相关的性质与概念以及判定方法是解题关键.5.如图,在等边△ABC 中,点D 、E 分别是BC 、AB 边上点,且AE =BD ,AD 与CE 交于点F ,则∠DFC 的度数为( )A. 45°B. 60°C. 65°D. 75°[答案]B[解析][分析] 根据题目中的条件判断ABD CAE ∆≅∆,再利用外角定理得出DFC FAC ACF ∠=∠+∠,转化角度从而得出答案.[详解]∵ABC ∆是等边三角形,且AE BD =∴,60AB AC B EAC =∠=∠=︒∴ABD CAE ∆≅∆(SAS)∴BAD ACF ∠=∠∴=60DFC FAC ACF FAC BAD BAC ∠=∠+∠∠+∠=∠=︒故答案选:B .[点睛]本题考查等边三角形的性质以及全等三角形的判定,掌握相关的角度转化是解题关键.6.一项工程,甲独做ah 完成,乙单独做bh 完成,甲、乙两人一起完成这项工程所需的时间为( ) A. 1a b +h B. (a +b )h C. a b ab +h D. ab a b+h [答案]D[解析][分析]设工作总量为单位“1”,分别表示出甲乙的工作效率,再根据工作总量=工作效率×工作时间建立方程即可求解.[详解]解:设工作总量为单位“1”, 设甲、乙两人一起完成这项工程所需的时间为xh∵甲独做ah 完成,乙单独做bh 完成 ∴甲乙的工作效率分别为11,a b根据题意可得:111x a b ⎛⎫+=⎪⎝⎭ 解得:ab x a b=+ 故答案选:D[点睛]本题考查一元一次方程工程问题,将工作总量设为单位“1”以及建立等量关系是解题关键. 7.已知3x y +=,12xy =,则多项式2233+x y 值为( ). A. 24B. 20C.D.[答案]A[解析]试题解析:∵x +y =3,2229x xy y ∴++=, 12xy =, ()223339124.x y ∴+=-=故选A.8.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF,则四边形AEDF 的面积为( )A. 6B. 7C. 62D. 9[答案]D[解析][分析] 连接AD ,根据等腰直角三角形的性质以及BE=AF 得出ADE CDF ∆≅,将四边形AEDF 的面积转化为三角形ADC 的面积再进行求解.[详解]解:连接AD ,如图:∵∠A=90°,AB=AC=6,点D 是BC 中点,BE=AF∴,45,AE CF BAD B C AD BD DC =∠=∠=∠=︒==∴ADE CDF ∆≅(SAS )∴12AED ADF CFD ADF ADC ABC AEDF S S S S S S S ∆∆∆∆∆∆=+=+==四 又∵166182ABC S ∆== ∴1=92ABC AEDF S S ∆=四 故答案选:D[点睛]本题考查等腰直角三角形的性质以及三角形全等的性质与判定,掌握相关的线段与角度的转化是解题关键.二、填空题9.不等式组21023x x x +>⎧⎨>-⎩的正整数解为__. [答案]1,2[解析][分析]分别解不等式求出公共部分,然后求正整数解.[详解]解:21023x x x +>⎧⎨>-⎩①②由①得:12x >- 由②得:3x < ∴不等式组的解集为:132x -<< ∴正整数解为:1,2故答案为:1,2.[点睛]本题考查一元一次不等式组的整数解,掌握不等式组的求解是解题关键.10.若1x -有意义,则x 的取值范围是__. [答案]x ≥﹣3且x ≠1[解析][分析]根据二次根式和分式有意义的条件进行求算.[详解]二次根式有意义的条件是被开方数是非负数:303x x +≥⇒≥-分式有意义的条件是分母不为零:101x x -≠⇒≠∴x 的取值范围是:3x ≥-且1x ≠故答案为:3x ≥-且1x ≠.[点睛]本题考查了式子有意义的条件,掌握二次根式有意义的条件是被开方数是非负数、分式有意义的条件是分母不为零是解题关键.11.如图,在△ABC 中,∠B =45°,∠C =30°,AB 的垂直平分线分别交BC 、AB 于点D 、E ,AC 的垂直平分线分别交BC 、AC 于点F 、G ,DF =1,则BC =__.[答案]3+3[解析][分析]过点D 作DH AF ⊥交AF 于H,根据∠B =45°,∠C =30°,以及DE,FG 分别为AB,AC 的垂直平分线得出60,30AFD DAF ∠=︒∠=︒,再根据特殊角解直角三角形即可.[详解]过点D 作DH AF ⊥交AF 于H,如图:∵45,30B C ∠=︒∠=︒,DE,FG 分别为AB,AC 的垂直平分线∴,,,AD BD AF FC B BAD C FAC ==∠=∠∠=∠∴60,30AFD DAF ∠=︒∠=︒又∵1DF =∴13,222FH DH AD AH ====∴2AD BD AF FC AH HF ====+=∴BC 的长为:故答案为:[点睛]本题考查垂直平分线的性质以及直角三角形中特殊角的应用,掌握相关的线段与角的转化是解题关键.12.若关于x 的一次函数y =x +3a ﹣12的图象与y 轴的交点在x 轴上方,则a 的取值范围是__.[答案]a >4[解析][分析]根据函数关系式求出与y 轴的交点,再根据图象与y 轴的交点在x 轴上方建立不等式求解.[详解]对于关于x 的一次函数y =x +3a ﹣12令0x =,解得:312y a =-∴该图象与y 轴的交点为()0,312a -又∵图象与y 轴的交点在x 轴上方∴3120a ->解得:4a >故答案为:4a >[点睛]本题考查了一次函数与y 轴的交点特征,掌握一次函数与y 轴的交点求算是解题关键.13.若一个长方形的长、宽分别为a 、b ,周长为12,面积为8,则a 2b +ab 2=__.[答案]48[解析]分析]根据一个长方形长、宽分别为a 、b ,周长为12,面积为8,可以得到a+b 的值和ab 的值,从而可以得到a 2b+ab 2的值.[详解]解:∵一个长方形的长、宽分别为a、b,周长为12,面积为8,∴2(a+b)=12,ab=8,∴a+b=6,ab=8,∴a2b+ab2=ab(a+b)=8×6=48,故答案为:48.[点睛]本题考查因式分解的应用,解题的关键是明确题意,求出a+b的值和ab的值.14.如图,在△ABC中,AB=5,AC=3,AD、AE分别是它的角平分线和中线,过点C作CG⊥AD,垂足为点F,连接EF,则EF=__.[答案]1[解析][分析]首先证明AG=AC,再证明EF是△BCG的中位线,根据EF=12BG即可解决问题.[详解]解:∵∠DAG=∠DAC,AD⊥AFC,∴∠AFC=∠AFG=90°,∴∠AGC+∠GAF=90°,∠ACG+∠CAF=90°, ∴∠AGC=∠ACG,∴AG=AC=3,GF=FC,∵BE=CE,∴EF=12BG=12(ABAG)=12×(53)=1,故答案为:1.[点睛]本题考查三角形中位线定理、等腰三角形的判定和性质、角平分线的定义,中线的定义等知识,解题的关键是根据已知条件证明△AGC 是等腰三角形,属于中考常考题型.15.若x 2﹣mx +9是个完全平方式,则m 的值是__.[答案]±6 [解析][分析]根据完全平方公式:()2222a ab b a b ±+=± 去分类讨论即可.[详解]完全平方公式:()2222a ab b a b ±+=± ∴()2293x mx x -+=±∴6m =±故答案为:6±[点睛]本题考查完全平方公式,掌握相关公式是解题关键.16.如图,在平行四边形ABCD 中,AB =6,AD =9,AF 平分∠BAD 交BC 于点E ,交DC 的延长线于点F ,BG ⊥AF 于点G ,BG =42,EF =12AE ,则△CEF 的周长为__.[答案]8[解析][分析]判断出△ADF 是等腰三角形,△ABE 是等腰三角形,DF 的长度,继而得到EC 的长度,在Rt △BGE 中求出GE ,继而得到AE ,求出△ABE 的周长,根据EF=12AE ,求出EF 即可得出△EFC 的周长. [详解]∵在▱ABCD 中,AB=CD=6,AD=BC=9,∠BAD 的平分线交BC 于点E ,∴∠BAF=∠DAF ,∵AB ∥DF ,AD ∥BC ,∴∠BAF=∠F=∠DAF ,∠BAE=∠AEB ,∴AB=BE=6,AD=DF=9,∴△ADF 是等腰三角形,△ABE 是等腰三角形,∵AD ∥BC ,∴△EFC 是等腰三角形,且FC=CE ,∴EC=FC=9﹣6=3,在△ABG 中,BG ⊥AE ,AB=6,BG=,∴=2,∴AE=2AG=4, 又∵12EF AE =, ∴EF=2,∴△CEF 的周长为EF+CE+CF=2+3+3=8.故答案为:8.[点睛]本题考查等腰三角形的判定与性质;平行四边形的性质和勾股定理的应用. 三、解答题17.(1)解不等式组:()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩(2)先化简再求值:2224224422a a a a a a a ⎛⎫-+-÷ ⎪-+--⎝⎭,请从0,1,2中选择一个合适的数作为a 的值. [答案](1)﹣1≤x <2;(2)12a +,13[解析][分析](1)分别解每一个不等式,再求出公共部分;(2)先将式子进行化简,再代入求值.[详解](1)()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①② 由①得:()()2213516x x --+≤ ,解得:1x ≥- ;由②得:2x <∴不等式组的解集为:12x -≤<(2)原式=()()()()22222222a a a a a a a ⎡⎤-+--⨯⎢⎥-+-⎢⎥⎣⎦=()222a a a a a -⨯-+ =12a + 根据题意:不能取0,2 ∴当1a =时,原式=11=1+23 [点睛]本题考查一元一次不等式组以及分式的化简求值,注意分式化简求值最终取值需满足分母不为零. 18.分解因式:(1)(x 2+x )2﹣(5x +9)2 (2)(m ﹣1)3﹣2(1﹣m )2+(m ﹣1)[答案](1)(x +3)2(x 2﹣4x ﹣9);(2)(m ﹣1)(m ﹣2)2[解析][分析](1)利用平方差公式进行因式分解,即可得到答案;(2)先提公因式,然后利用完全平方公式进行因式分解,即可得到答案.[详解]解:(1)原式=(x 2+x +5x +9)(x 2+x ﹣5x ﹣9)=(x +3)2(x 2﹣4x ﹣9);(2)原式=(m ﹣1)[(m ﹣1)2﹣2(m ﹣1)+1]=(m ﹣1)(m ﹣2)2.[点睛]本题考查了因式分解,解题的关键是熟练掌握提公因式、平方差公式、完全平方公式进行因式分解.19.在平面直角坐标系中,△ABC的位置如图所示,三个顶点的坐标分别为:A(1,2)、B(2,3)、C(3,0).(1)现将△ABC先向左平移5个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在平面直角坐标系中画出△A1B1C1.(2)此时平移的距离是;(3)在平面直角坐标系中画出△ABC关于点O成中心对称的△A2B2C2.[答案](1)见解析;(229[解析][分析](1)利用点平移的坐标规律写出点A、B、C平移后的对应点A1、B1、C1,然后描点即可得到△A1B1C1.(2)利用勾股定理计算;(3)利用关于原点对称的点的坐标特征写出点A、B、C的对应点A2、B2、C2,然后描点即可得到△A2B2C2.[详解]解答:解:(1)如图,△A1B1C1为所作;(2)225229+=29(3)如图,△A2B2C2为所作.[点睛]本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.20.某市为治理污水,需要铺设一段全长为3000m的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前天完成这一任务,实际每天铺设多长管道?[答案]实际每天铺设25m长管道.[解析]试题分析:解:设原计划每天铺设x m管道,则实际每天铺设5 (125%)4x x +=,故300030003054x x-=,解得x=20.经检验,x=20是原方程的解,且符合题意,5254x∴=,∴实际每天铺设25m长管道.考点:分式方程应用点评:本题难度中等,主要考查学生运用分式方程解决工程问题的实际应用能力.注意检验增根情况.21.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?[答案]①当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;②当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;③当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社[解析][分析]设甲旅行社的收费为y1,乙旅行社的收费为y2,然后讨论:若y1>y2,y1=y2,y1<y2,分别求出对应的x的取值范围,即可判断选择哪家旅行社.[详解]解:设甲旅行社的收费为y1,乙旅行社的收费为y2,根据题意得,y1=2×1000+0.7×1000x=700x+2000,y2=(x+2)×0.8×1000=800x+1600,若y1>y2,即700x+2000>800x+1600,解得x<4;若y1=y2,即700x+2000=800x+1600,解得x=4;若y1<y2,即700x+2000<800x+1600,解得x>4.∴①当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;②当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;③当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社.[点睛]本题考查了一次函数的应用:根据题意列出一次函数关系式y=kx+b(k≠0),然后比较函数值的大小得到对应的x的取值范围,从而确定省钱的方案.22.如图,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,AE平分∠CAB交CD于点F,交BC于点E,EH⊥AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形.[答案](1)见解析;(2)见解析.[解析][分析](1)利用垂直的定义结合角平分线的性质以及互余的性质得出∠4=∠5,进而得出答案;(2)根据题意分别得出CF∥EH,CF=EH,进而得出答案.[详解]证明(1)如图所示:∵∠ACB=90°,CD⊥AB垂足为D,∴∠1+∠5=90°,∠2+∠3=90°,又∵∠AE平分∠CAB,∴∠1=∠2,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴CF=CE;(2)∵AE平分∠CAB,CE⊥AC,EH⊥AB,∴CE=EB,由(1)知,CF=CE,∴CF=EH,∵CD⊥AB,EH⊥AB,∴∠CDB=90°,∠EHB=90°,∴∠CDB=∠EHB,∴CD∥EH,即CF∥EH,∴四边形CFHE是平行四边形.[点睛]本题考查了平行四边形的性质、角平分线性质等知识点的应用,熟练应用等腰三角形的性质是解题关键.23.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).[答案](1)见解析;(2)AD=CF,且AD⊥CF;(3)见解析;(4)不可能[解析][分析](1)∠CAB=∠CBA=45︒,且BF∥AC,则∠FBE=∠CAB=45︒,则∠DBF=90︒,又DE⊥AB,则∠BDE=45︒,则△BDF为等腰直角三角形,∴DB=BF,又D为BC中点,所以CD=BF.即可证明△ACD≌△CBF.(2)由△ACD≌△CBF可判断,AD=CF,又∠CAD=∠BCF,则∠CGD=90︒,所以AD⊥CF.(3)由(1)知AB垂直平分DF,由三线合一知△ADF是等腰三角形,则AD=AF,由(2)知AD=CF,所以AF=CF,即可证明.(4)在Rt△A C D中易知,AD>AC,又AD=AF=CF,所以△ACF不可能是等边三角形.[详解](1)证明:∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵BF∥AC,∴∠FBE=∠CAB=45°,∴∠CBF=90°,又DE⊥AB,∴∠FDB=45°,∴∠DFB=45°,∴BD=BF,又D为BC中点,∴CD=BF,在△ACD和△CBF中,CD BF ACD CBF AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBF ;(2)∵△ACD ≌△CBF ,∴AD =CF ,∠CAD=∠BCF ∴∠CAD+∠CDA=∠BCF+∠CDA=90︒ ∴AD ⊥CF故答案为:AD =CF 且AD ⊥CF ;(3)由(2)知∵DF ⊥AE ,DE =EF ,由三线合一可知,△ADF 是等腰三角形 ∴AD =AF ,∵AD =CF ,∴AF =CF ,∴△ACF 是等腰三角形;(4)在Rt △ACF 中,AC <AD , 由(2)知,AD=AF∴AC <AF ,∴△ACF 不可能是等边三角形, 故答案为:不可能.[点睛]本题考查了三角形的全等的判定和性质,等腰三角形的判定等知识点,熟练掌握相关知识点是解题关键.。

北京市2020〖人教版〗八年级数学下册复习试卷期中数学试卷参考答案与试题解析7

北京市2020〖人教版〗八年级数学下册复习试卷期中数学试卷参考答案与试题解析7

北京市2020年〖人教版〗八年级数学下册复习试卷期中数学试卷参考答案与试题解析创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题(本大题共6小题,每小题3分,共计18分.在每小题所给的四个选项中,请将符合要求的选项前面的字母填入下表相应的空格内)1.(3分)函数y=﹣的图象与x轴的交点的个数是()A.零个B .一个C.两个D.不能确定考点:反比例函数的图象.分析:此题可根据反比例函数的图象与两坐标轴无限接近但不相交进行解答.解答:解:∵反比例函数的图象与两坐标轴无限接近但不相交,∴函数y=﹣的图象与x轴没有交点.故选A.点评:本题考查的是反比例函数图象上点的坐标特点,即反比例函数的图象与两坐标轴无限接近但不相交.2.(3分)代数式,,,中分式有()A.1个B.2个C.3个D.4个考点:分式的定义.分析:找到分母中含有字母的式子的个数即可.解答:解:分式共有,2个,故选B.点评:本题考查分式的定义:分母中含有字母的式子就叫做分式;注意π是一个具体的数,不是字母.3.(3分)1月11日,埃科学研究中心在浙江大学成立,“埃”是一个长度单位,是一个用来衡量原子间距离的长度单位.同时,“埃”还是一位和诺贝尔同时代的从事基础研究的瑞典著名科学家的名字,这代表埃科学研究中心的研究要有较为深刻的理论意义.十“埃”等于1纳米.已知:1米=109纳米,那么:15“埃”等于()A.15×10﹣8米B.1.5×10﹣8米C.15×10﹣9米D.1.5×10﹣9米考点:科学记数法—表示较小的数.专题:应用题.分析:小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:15“埃”=0.000 000 001 5米=1.5×10﹣9米.故选D.点评:注意弄清“埃”和纳米的关系.十“埃”等于1纳米,1米=109纳米.4.(3分)如果点P 为反比例函数的图象上一点,PQ⊥x轴,垂足为Q,那么△POQ的面积为()A.2B.4C.6D.8考点:反比例函数系数k的几何意义.分析:此题可从反比例函数系数k的几何意义入手,△POQ的面积为点P向两条坐标轴作垂线,与坐标轴围成的矩形面积的一半即S=.解答:解:由题意得,点P 位于反比例函数的图象上,故S△POQ =|k|=2.故选A.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.5.(3分)在同一平面直角坐标系中,函数的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分根据一次函数的系数、反比例函数的系数确定直线和双曲线所经过的象限即可.析:解答:解:∵k>0,∴3k>0,2k>0,∴直线y=3kx+3k经过第一、二、三象限,双曲线y=经过第一、三象限,故选D.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.6.(3分)(•天津)已知,则的值等于()A.6B.﹣6 C.D.考点:分式的基本性质;分式的加减法.专题:计算题.分析:由已知可以得到a﹣b=﹣4ab,把这个式子代入所要求的式子,化简就得到所求式子的值.解答:解:已知可以得到a﹣b=﹣4ab,则==6.故选A.点评:观察式子,得到已知与未知的式子之间的关系是解决本题的关键.二、填空题(本大题共8小题,每小题3分,共计24分.)7.(3分)已知y与(2x+1)成反比例,且当x=1时,y=2,那么当x=﹣1时,y= ﹣6 .考点:待定系数法求反比例函数解析式.分析:根据y与(2x+1)成反比例可设出反比例函数的解析式为y=(k≠0),再把已知代入求出k 的值,再把x=﹣1时,代入求得y的值.解答:解:∵y 与(2x+1)成反比例,∴设反比例函数的解析式为y=(k≠0),又∵当x=1时,y=2,即2=,解得:k=6,∴反比例函数的解析式为:y=,则当x=﹣1时,y=﹣6.故答案为:﹣6.点评:本题主要考查了用待定系数法求反比例函数的解析式,关键是根据题意设出解析式,求出k的值.8.(3分)如果点(m,﹣2m)在双曲线上,那么双曲线在第二、四象限.考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象上的点的坐标特征:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k 可得k=﹣2m2<0,根据反比例函数的性质可得答案.解答:解:∵点(m,﹣2m)在双曲线(k≠0)上,∴m•(﹣2m)=k,解得:k=﹣2m2,∵﹣2m2<0,∴双曲线在第二、四象限.故答案为:第二、四.点评:此题主要考查了反比例函数图象上的点的坐标特征,以及反比例函数的性质,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.(3分)若分式方程无解,则m的值为 3 .考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,根据分式方程无解得到x=3,代入整式方程即可求出m的值.解答:解:去分母得:x﹣2x+6=m,将x=3代入得:﹣3+6=m,则m=3.故答案为:3.点评:此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.(3分)(•哈尔滨模拟)反比例函数y=(k≠0)的图象经过点(2,5),若点(1,n)在图象上,则n= 10 .考点:待定系数法求反比例函数解析式.专题:计算题;待定系数法.分析:将点(2,5)代入反比例函数解析式得出k值,然后再将(1,n)代入所求出的函数解析式可得出n的值.解答:解:将点(2,5)代入y=得:5=∴k=10,函数解析式为y=,将点(1,n)代入y=得:n==10∴n=10.故答案为:10.点评:本题考查了待定系数法求函数解析式,属于比较经典的题目,要注意待定系数法的掌握.11.(3分)(•南汇区二模)当x= ﹣2 时,分式的值为0.考点:分式的值为零的条件.专题:计算题.分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:∵=0,∴x=﹣2.故答案为﹣2.点评:此题考查的是对分式的值为0的条件的理解,比较简单.12.(3分)反比例函,x>0时,y随着x的增大而增大,则m的值是﹣1 .考点:反比例函数的性质;反比例函数的定义.分析:先根据反比例函数的性质判断出(2m﹣1)的符号以及利用m2﹣2=﹣1求出m的值,再写出符合条件的m即可.解答:解:∵反比例函,x>0时,y随着x的增大而增大,∴m2﹣2=﹣1,∴m2=1,m=±1,∵2m﹣1<0,∴m<,∴m=﹣1.故答案为:﹣1.点评:本题考查的是反比例函数的性质,利用反比例函数y=(k≠0),当k<0时,反比例函数图象在第二、四象限内,在每一象限内y随x的增大而增大是解题关键.13.(3分)(•南京)设函数y=与y=x﹣1的图象的交点坐标为(a,b),则﹣的值为﹣.考点:反比例函数与一次函数的交点问题.专题:计算题;压轴题.分析:把交点坐标代入2个函数后,得到2个方程,求得a,b的解,整理求得﹣的值即可.解答:解:∵函数y=与y=x﹣1的图象的交点坐标为(a,b),∴b=,b=a﹣1,∴=a﹣1,a2﹣a﹣2=0,(a﹣2)(a+1)=0,解得a=2或a=﹣1,∴b=1或b=﹣2,∴﹣的值为﹣.故答案为:﹣.点评:考查函数的交点问题;得到2个方程判断出a,b的值是解决本题的关键.14.(3分)观察下面给定的一列分式:,,,,…(其中y≠0).根据你发现的规律,给定的这列分式中的第7个分式是.考点:分式的定义.专题:规律型.分析:分子的指数是3,5,7,9…是连续奇数,分母的指数是大于0的自然数,奇数项的符号是负号.解答:解:第奇数个式子的符号是负数,偶数个是正数,分母是第几个式子就是y的几次方;分子是第几个式子就是x的第几加1个奇数次方.所以第七个分式是.点评:注意观察每项变化,然后找出的规律.三、解答题(本大题共10小题,共78分)15.(6分)计算:(2m2n﹣1)2÷3m3n﹣5.考点:负整数指数幂.分析:根据负整数指数幂的意义计算即可.解答:解:原式=4m4n﹣2÷3m3n﹣5=mn3.点评:本题主要考查了负指数幂的运算,解题的关键是根据负整数指数幂的意义计算.16.(6分)(•莒南县模拟)化简:.考点:分式的混合运算.专题:计算题.分析:先通分,计算括号里的,再除法转化成乘法,最后算减法.解答:解:原式=1﹣×=1﹣=﹣.点评:本题考查了分式的混合运算,解题的关键是注意通分以及对分式分子分母的因式分解.17.(6分)先化简,.考点:分式的混合运算.专题:计算题.分析:原式第一项利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后通分并利用同分母分式的加法法则计算即可得到结果.解答:解:原式=•+=+=.点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是约分,约分的关键是找公因式.18.(6分)解方程.考点:解分式方程.分析:观察可得最简公分母是(x﹣1)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3,解得x=1.检验:把x=1代入(x﹣1)(x+2)=0.所以原方程无解.点评:本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.(8分)已知函数 y=(5m﹣3)x2﹣n+(n+m),(1)当m,n为何值时是一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?考点:反比例函数的定义;一次函数的定义;正比例函数的定义.分析:(1)根据一次函数的定义知2﹣n=1,且5m﹣3≠0,据此可以求得m、n的值;(2)根据正比例函数的定义知2﹣n=1,m+n=0,5m﹣3≠0,据此可以求得m、n的值;(3)根据反比例函数的定义知2﹣n=﹣1,m+n=0,5m﹣3≠0,据此可以求得m、n的值.解答:解:(1)当函数y=(5m﹣3)x2﹣n+(m+n)是一次函数时,2﹣n=1,且5m﹣3≠0,解得,n=1,m≠;(2)当函数y=(5m﹣3)x2﹣n+(m+n)是正比例函数时,,解得,n=1,m=﹣1.(3)当函数y=(5m﹣3)x2﹣n+(m+n)是反比例函数时,,解得n=3,m=﹣3.点评:本题考查了一次函数、正比例函数、反比例函数的定义.关键是掌握正比例函数是一次函数的一种特殊形式以及三种函数的关系是形式.20.(8分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等,两种机器人每小时分别搬运多少千克化工原料?考点:分式方程的应用.分析:设B种机器人每小时搬运x千克化工原料,则A种机器人每小时搬运(x+30)千克化工原料,根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程求出其解就可以得出结论.解答:解:设B种机器人每小时搬运x千克化工原料,则A种机器人每小时搬运(x+30)千克化工原料,由题意得,解得:x=60,经检验,x=60是原方程的解,故A种机器人每小时搬运90千克化工原料.答:B种机器人每小时搬运60千克化工原料,则A种机器人每小时搬运90千克化工原料.点评:本题考查了列分时方程解实际问题的运用,分式方程的解法的运用,解答时根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程是关键.21.(9分)(•桂林)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?考点:分式方程的应用.专题:工程问题.分析:(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.解答:解:(1)设乙队单独完成需x天.(1分)根据题意,得:×20+(+)×24=1.(3分)解这个方程得:x=90.(4分)经检验,x=90是原方程的解.∴乙队单独完成需90天.(5分)(2)设甲、乙合作完成需y天,则有(+)y=1.解得y=36,(6分)甲单独完成需付工程款为60×3.5=210(万元).乙单独完成超过计划天数不符题意,甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).(7分)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.(8分)点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.(10分)在25℃的室内烧开一壶水用了5分钟(水温与时间的关系是一次函数关系),又过了一分钟(其中在5﹣6分钟之间,水温保持不变),随后壶中的水温按反比例关系下降.(1)在这个过程中,水温超过60℃的时间是多少分钟?(2)从水烧开到水温降至25℃用了多长时间?考点:一次函数的应用.分析:设水温为y,时间为x.(1)则由题意得到y=k1x+b(k1≠0).所以把x=0,y=25;x=5,y=100代入其中可以求得k1的值,易求该一次函数解析式;把y=60代入该解析式即可求得相应的x,即所需的时间;(2)设y=(k2≠0).把x=6,y=100代入该反比例函数解析式可以求得k2的值,易求该反比例函数解析式,然后把y=25代入该解析式即可求得x的值.解答:解:设水温为y,时间为x.(1)依题意可设y=k1x+b(k1≠0).则,解得,,则该一次函数解析式为y=15x+25.所以,当y=60时,60=15x+25,解得x=,即在这个过程中,水温超过60℃的时间是分钟;(2)由题意可设y=(k2≠0).则100=,解得,k2=600.所以,该反比例函数解析式为:y=.则当y=25时,25=,解得,x=24,即从水烧开到水温降至25℃用了24分钟.点评:本题考查了一次函数的应用.注意开水的温度是100℃,所以在解题中,这是隐含在题中的已知条件.23.(10分)如图,小明家、王老师家、学校在同一条路上.小明家到王老师家路程为3km,王老师家到学校的路程为0.5km,由于小明父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学,已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少km/h?考点:分式方程的应用.分析:王老师接小明上学后走的总路程为3+3+0.5=6.5km,平时步行去学的路程为0.5km,根据时间=路程÷速度,以及关键语“比平时步行上班多用了20分钟”可得出的等量关系是:接小明上学后走的路程÷骑车的速度=平时上班的路程÷步行的速度+20分钟.解答:解:设王老师步行速度为xkm/h,则骑自行车的速度为3xkm/h,依题意,得=+,解得x=5,经检验x=5是原方程的根,∴3x=15.答:王老师步行速度为5km/h,骑自行车的速度为15km/h.点评:此题主要考查了分式方程的应用题,重点在于准确地找出相等关系,这是列方程的依据.本题要注意时间的单位要一致.24.(9分)(•临沂)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.考点:反比例函数与一次函数的交点问题.专题:压轴题.分析:(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.解答:解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE 为3+2=5,∴S△ABC=×2×5=5.点评:此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校。

【三套打包】北京市八年级下学期期中数学试题含答案

【三套打包】北京市八年级下学期期中数学试题含答案

最新八年级下册数学期中考试题及答案人教版八年级下学期期中数学试卷八年级数学一、选择题 1、若二次根式5-x 有意义,则x 的取值范围是( a )A 、5≥xB 、5≤xC 、5 xD 、5 x 2、下面各式是最简二次根式的是( d )A 、8B 、21C 、9D 、2 3、下列各组数中不能作为直角三角形的三边长的是( c )A 、6,8,10B 、5,12,13C 、1.5,2,3D 、9,12,15 4、下列计算正确的是( c ) A 、532=+ B 、3223=- C 、632=⨯ D 、322324= 5、在平面直角坐标系中,点P (1,-3)到原点的距离是( b )A 、4B 、10C 、22D 、无法确定 6、如图所示,在平行四边形ABCD 中,已知AC=3cm ,若△ABC 的周长为9cm , 则平行四边形的周长为( b )A 、6cmB 、12cmC 、16cmD 、11cm 7、下列命题是真命题的是( c )A 、一组对边平行,另一组对边相等的四边形是平行四边形B 、对角线互相垂直的平行四边形是矩形C 、四条边相等的四边形是菱形D 、对角线相等的矩形是正方形8、甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发, 他们离出发地的距离s (km )和骑行时间t (h )之间的函数关系如图所示, 根据图像信息,以上说法正确的是( d )A 、甲和乙两人同时到达目的地;B 、甲在途中停留了0.5h;C 、相遇后,甲的速度小于乙的速度;D 、他们都骑了20km9、已知菱形的面积为24cm ²,一条对角线长为6cm ,则这个菱形的边长是( b )cm A 、8 B 、5 C 、10 D 、410如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于E ,PF ⊥CD 于 F ,连接EF ,给出下列四个结论:①AP=EF,②△APD 一定是等腰三角形,G ,③∠PFE=∠BAP,④PD=2EC.其中正确结论的序号是( d ) A 、①②④ B 、②④ C 、①②③ D 、①③④ 二、填空题11、=÷218__3_____12、在实数范围内因式分解:32-x =__)3)(3(-+x x _13、如图,在直角三角形ABC 中,点D 为AC 的中点,BC=3,AB=4,则BD=____2.5______ 14、“全等三角形的对应角相等”的逆命题 对应角相等的三角形是全等三角形 ,这个命题是__假__命题。

人教版数学八年级下册《期中考试卷》(含答案)

人教版数学八年级下册《期中考试卷》(含答案)

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题4分,共计40分)1. 在二次根式2x -中,字母x 的取值范围是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤ 2. 下列根式中属于最简二次根式的是( )A. 12B. 8C. 27D. 21a + 3. 下列各组数中,不是勾股数的为( )A. 3,4,5B. 6,8,10C. 5,12,13D. 5,7,10 4. 计算33008÷,结果( ) A 403B. 402C. 203D. 202 5. 如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能..是( )A. AE =CFB. BE =FDC. BF =DED. ∠1=∠26. 如图所示,四边形ABCD 是平行四边形,∠D =120°,∠CAD =32°,则∠ABC 、∠CAB 的度数分别为( ).A. 28°,120°B. 32°,120°C. 120°,28°D. 120°,32°7. 实数在数轴上的位置如图所示,化简22(1)(2)p p-+-=( )A. B. 3 C. 3p- D. 18. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 59. 平行四边形的两条对角线长分别是、,一边长为12,则、可能是下列各组中的()A. 8与14B. 10与14C. 18与20D. 10与3810. 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是()A. 105B.2105C.255D.355二、填空题(每题4分,共计24分)11. 1326⨯=____________. 12. 比较大小:1010-__________13-(填“>”、“=”、“<”) 13. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.14. 在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.15. 如图,将有一边重合两张直角三角形纸片放在数轴上,纸片上的点表示的数是-2,1AC BC BD ===,若以点为圆心、AD 的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.16. 如图,▱ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 延长线上,AE ∥BD ,EF ⊥BC ,EF=3,则AB 的长是_____.三、解答题(共计86分)17. 计算:1325045183(2)2(13)(26)(221)+-18. 已知:ABC ∆中的三条中位线的长分别为5cm 、6cm 、10cm ,求这个三角形的周长.19. 21点.20. 如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=2求斜边AB 的长.21. 如图,在ABC ∆中,13AB =,14BC =,AD 是BC 边上的高,12AD =,求AC 的长.22. 如图,在平行四边形ABCD 中,若AB=6,AD=10,∠ABC 的平分线交AD 于点E,交CD 的延长线于点F,求DF 的长.23. (1)定义新运算:对于任意实数,a b ,都有()1a b a a b ⊕=-+.例如,数字2和5在该新运算下结果为.计算如下:25⊕=()22515⨯-+=-.(1)求()37-⊕的值;(2)请你模仿(1),定义一种新运算,使得实数642+和322-的运算结果为2020.写出你定义的新运算,并写出计算过程.答案与解析一、选择题(每题4分,共计40分)1. ,字母x 的取值范围是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤[答案]C[解析][分析]根据二次根式意义,被开方数是非负数,列出不等式,解不等式得到答案.[详解]解:由题意得,x-2≥0,解得x≥2,故选:C[点睛]本题考查的是二次根式有意义的条件,掌握二次根式的意义,被开方数是非负数是解题的关键. 2. 下列根式中属于最简二次根式的是( )[答案]D[解析][分析]根据最简二次根式的两个条件进行判断,即可得出结论.[详解]A =2,不是最简二次根式,错误;B =不是最简二次根式,错误;C ,不是最简二次根式,错误;D ,正确;故选D .[点睛]本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3. 下列各组数中,不是勾股数的为( )A. 3,4,5B. 6,8,10C. 5,12,13D. 5,7,10 [答案]D[解析][分析]满足222+=a b c 的三个正整数,称为勾股数,由此判断即可.[详解]解:、222435+=,此选项是勾股数; 、2226810+=,此选项是勾股数; 、22251213+=,此选项是勾股数;、2225710+≠,此选项不是勾股数.故选:.[点睛]此题主要考查了勾股数,关键是掌握勾股数的定义.4. 结果为( )A. B. C. D. [答案]D[解析][分析]利用二次根式的乘除法运算法则进行运算即可.[详解]原式===, 故选:D .[点睛]本题考查二次根式的乘除运算,熟练掌握二次根式的乘除运算法则是解答的关键.5. 如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能..是( )A. AE=CFB. BE=FDC. BF=DED. ∠1=∠2[答案]A[解析]试题分析:因为四边形ABCD是平行四边形,所以AB//CD,AB=CD,所以∠ABD=∠CDB,所以要使△ABE≌△CDF,若添加条件:∠1=∠2,可以利用ASA证明△ABE≌△CDF,所以D正确,若添加条件:BE=FD,可以利用SAS证明△ABE≌△CDF,所以B正确,若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明△ABE≌△CDF,所以C 正确;若添加条件:AE=CF,因为∠ABD=∠CDB,不是两边的夹角,所以不能证明△ABE≌△CDF,所以A错误,故选A.考点:1.平行四边形的性质2.全等三角形的判定.6. 如图所示,四边形ABCD是平行四边形,∠D=120°,∠CAD=32°,则∠ABC、∠CAB的度数分别为().A. 28°,120°B. 32°,120°C. 120°,28°D. 120°,32°[答案]C[解析][分析][详解]解:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠BAD+∠D=180°.∵∠D=120°,∠CAD=32°,∴∠ABC=∠D=120°,∠BAD=60°,∴∠CAB=∠BAD﹣∠CAD=60°﹣32°=28°.故选C.7. 实数在数轴上的位置如图所示,化简22-+-=( )(1)(2)p pp- D. 1A. B. 3 C. 3[答案]D[解析][分析]根据数轴确定p的取值范围,再利用二次根式的性质化简即可.[详解]由数轴可得,1<p<2,∴p-1>0,p-2<0,22--,p p(1)(2)故选:D.[点睛]本题主要考查二次根式的化简,判断出代数式的正负是解题关键.8. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 5[答案]A[解析]分析] 设BN=x ,则由折叠的性质可得DN=AN=9-x ,根据中点的定义可得BD=3,在Rt △BND 中,根据勾股定理可得关于x 的方程,解方程即可求解.[详解]解:设BN=x ,由折叠的性质可得DN=AN=9-x ,∵D 是BC 的中点,∴BD=3,在Rt △NBD 中,x 2+32=(9-x )2,解得x=4.即BN=4.故选A .[点睛]本题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强. 9. 平行四边形的两条对角线长分别是、,一边长为12,则、可能是下列各组中的( )A. 8与14B. 10与14C. 18与20D. 10与38[答案]C[解析][分析] x、y是平行四边形的两条对角线的长,则它们的一半与平行四边形长为12的边构成三角形,根据三角形三边关系中“三角形的任意两边之和大于第三边”即可从选项中判定出正解的答案.[详解]解:∵平行四边形的对角线互相平分,此平行四边形的两对角线长为x、y∴这两条对角线的一半就是x2,y2∴这两条对角线的一半与边长为12的边组成的三角形的三边为:x2、y2、12 根据三角形任意两边之和大于第三边得: A选项中149212=8+2<,不符合;B选项中1014122=+2,不符合;C选项中182019122=>+2,符合;D选项中1038172=<+122,不符合. 故选:C[点睛]本题考查的知识点有两个:一是平行四边形的对角线互相平分,一是三角形的三边关系,综合运用这两个知识点逐个判定是解题的基本方法.10. 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC ,则AC 边上的高是( )A. 105 2105255 355[答案]D[解析][分析]先求出△ABC 的面积,再根据勾股定理求出AC 的长度,即可求出AC 边上的高.[详解]1113222121112222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= 22125AC =+=AC 边上的高133525225ABC SAC =÷÷=⨯= 故答案为:D .[点睛]本题考查了三角形的高的问题,掌握勾股定理、三角形面积公式是解题的关键. 二、填空题(每题4分,共计24分)11.=____________.[答案[解析][分析] 利用二次根式的乘除法运算法则进行运算即可.[详解]原式=====[点睛]本题考查了二次根式的运算,熟练掌握二次根式的乘除法运算法则是解答的关键.12. 比较大小:__________13-(填“>”、“=”、“<”) [答案]>[解析][分析]先将这两个数分别平方,通过比较两个数的平方的大小即可得解.[详解]解:∵21()1010-=,211()39-=且11109<,∴1103<,∴13>- 故答案为:>.[点睛]此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.13. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.[答案]13cmcm[解析][分析]设直角三角形的第三条边为c ,分c 为斜边和12cm 为斜边两类进行讨论,根据勾股定理计算即可.[详解]解:设直角三角形的第三条边为c ,当c 为斜边时,2251213c =+= ;当12cm 为斜边时,22125119c =-=.故答案为:13cm 或119cm[点睛]本题考查了勾股定理和直角三角形分类讨论思想.由于条件没有指明直角边和斜边,故要分类讨论,同时要注意直角三角形斜边最长,5cm 不可能为斜边,故分两类讨论.14. 在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.[答案][解析][分析]连接AC ,利用1sin 2ABC S AB BC B ∆=••求出ABC ∆的面积,再求出ABCD 的面积. [详解]解:连接AC ,如图:∵30B ∠=︒,BC 10cm =,6AB cm =,∴111sin 61015222ABC S AB BC B ∆=••=⨯⨯⨯=; ∴215230ABCD ABC S S ∆==⨯=.故答案为:30.[点睛]本题考查了解直角三角形,平行四边形的性质,以及求三角形的面积,解题的关键是利用1sin 2ABC S AB BC B ∆=••求出三角形的面积.15. 如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点表示的数是-2,1AC BC BD ===,若以点为圆心、AD 的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.[答案]32-[解析][分析]首先根据勾股定理求出AB 、AD 的长,再根据圆的半径相等可知AD=AE ,再根据数轴上两点间距离的公式即可得出答案.[详解]根据勾股定理得:2AB =,3AD =,∴3AE =,∴23OE =-∴点表示的数为23-+.故答案为:23-+[点睛]此题主要考查了勾股定理,以及数轴与实数,解题时求数轴上两点间的距离应让较大的数减去较小的数即可,本题的关键是求出AE 的长.16. 如图,▱ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 的延长线上,AE ∥BD ,EF ⊥BC ,EF=3,则AB 的长是_____.[答案]1[解析][分析]根据平行四边形性质推出AB=CD ,AB ∥CD ,得出平行四边形ABDE ,推出DE=DC=AB ,根据直角三角形性质求出CE 长,即可求出AB 的长.[详解]∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB=CD.∵AE ∥BD ,∴四边形ABDE 是平行四边形.∴AB=DE=CD ,即D 为CE 中点.∵EF ⊥BC ,∴∠EFC=90°.∵AB ∥CD ,∴∠DCF=∠ABC=60°.∴∠CEF=30°.∵EF=,∴CE=2∴AB=1三、解答题(共计86分)17. 计算:(2)2(11)+-[答案](1);(2)9;[解析][分析](1)先化简根式,然后再合并同类根式即可;(2)先算乘法和完全平方,再去括号,计算加减即可.[详解](1==+(2)2(13)(26)(221)+---26618(8421)=-+---+232942=--+229-=.[点睛]本题主要考查了二次根式的混合运算,关键是掌握计算顺序和运算法则.18. 已知:ABC ∆中三条中位线的长分别为5cm 、6cm 、10cm ,求这个三角形的周长.[答案]42.cm[解析][分析]根据三角形中位线定理可分别求得三角形各边的长,从而不难求得其周长.[详解]∵三角形的三条中位线的长分别是5cm 、6cm 、10cm ,∴三角形的三条边分别是10cm 、12cm 、20cm .∴这个三角形的周长=10+12+20=42cm .[点睛]此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 19. 作图题:在数轴上画出表示21+的点.[答案]作图见解析[解析]分析]由题意,作斜边为2的等腰直角三角形,以数1为圆心画弧,与数轴正方向的交点为所求.[详解]解:如图所示,点A 为21+的点;[点睛]本题考查的是实数与数轴,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.20. 如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=2求斜边AB 的长.[答案]433. [解析][分析]设BC=x,则AB=2x,再根据勾股定理求出x 值,进而得出结论.[详解]∵在Rt △ABC 中,∠C=90°,∠A=30°,AC=2, ∴设BC=x ,则AB=2x,∵AC 2+BC 2=AB 2,即22+x 2=(2x)2,解得x=233, ∴AB=2x=433. [点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.21. 如图,在ABC ∆中,13AB =,14BC =,AD 是BC 边上的高,12AD =,求AC 的长.[答案]15.AC =[解析][分析]利用勾股定理先求出BD ,进而求得DC ,再用勾股定理求得AC 即可.[详解]∵AD 是BC 上的高,∴AD BC ⊥,在Rt ABD ∆中,222213125BD AB AD =-=-=,∴9CD BC BD =-=,∴在Rt ADC ∆中,222212915AC AD CD =+=+=.[点睛]本题考查勾股定理,会利用勾股定理解直角三角形是解答的关键.22. 如图,在平行四边形ABCD 中,若AB=6,AD=10,∠ABC 的平分线交AD 于点E,交CD 的延长线于点F,求DF 的长.[答案]4[解析][分析]首先根据平行四边形的性质可得AB=DC=6,AD=BC=10,AB ∥DC ,再根据平行线的性质与角平分线的性质证明∠2=∠3,根据等角对等边可得BC=CF=10,再用CF ﹣CD 即可算出DF 的长.[详解]∵四边形ABCD 为平行四边形,∴AB=DC=6,AD=BC=10,AB ∥DC .∵AB ∥DC,∴∠1=∠3,又∵BF 平分∠ABC,∴∠1=∠2,∴∠2=∠3,∴BC=CF=10,∴DF=CF ﹣DC=10﹣6=4.[点睛]本题考查了平行四边形的性质;等腰三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.23. (1)定义新运算:对于任意实数,a b ,都有()1a b a a b ⊕=-+.例如,数字2和5在该新运算下结果为.计算如下:25⊕=()22515⨯-+=-.(1)求()37-⊕的值;(2)请你模仿(1),定义一种新运算,使得实数642+和322-的运算结果为2020.写出你定义的新运算,并写出计算过程.[答案](1)31; (2)见解析 [解析][分析](1)根据新定义即可求解;(2)根据平方差公式即可构造新定义运算求解.[详解]解:(1)(37)⊕-()()3371=-⨯--+31=.(2)答案不唯一,合理即可.如:定义新运算:对于任意实数,a b ,都有2018a b ab *=+. (642)(322)+*-(62)(32)2018=+-+2020=.[点睛]此题主要考查新定义运算,解题的关键是熟知平方差公式的运用.。

人教版八年级下册数学《期中检测试题》及答案解析

人教版八年级下册数学《期中检测试题》及答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A. 赵爽弦图B. 笛卡尔心形线C. 科克曲线D. 斐波那契螺旋线2.式子21xx -在实数范围内有意义的条件是( ) A. 1x ≥B. 1x >C. 0x <D. 0x ≤3.已知一组数据a,b,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( ) A. 3,2B. 3,4C. 5,2D. 5,44.命题“关于x 的一元二次方程210x bx ++=,必有实数解”是假命题.则在下列选项中,可以作为反例的是( ) A. 3b =-B. 2b =-C. 1b =-D. 2b =5.若m 是关于x 方程x 2﹣2012x ﹣1=0的根,则(m 2﹣2012m +3)•(m 2﹣2012m +4)的值为( ) A. 16B. 12C. 20D. 306.如图,D ,E ,F 分别是△ABC 各边的中点,AH 是高,若ED =6cm ,那么HF 的长为( )A. 5 cmB. 6 cmC. 10 cmD. 不能确定7.我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒60元下调至52元,若设每次平均降价的百分率为x ,由题意可列方程为( ) A. 52+52x 2=60 B. 52(1+x )2=60 C. 60﹣60x 2=52 D. 60(1﹣x )2=528.把代数式()111a a--中的1a -移到根号内,那么这个代数式等于()A. 1a --B.1a - C. 1a -D. 1a --9.如图,菱形ABCD 的边长为2,且∠ABC =120°,E 是BC 的中点,P 为BD 上一点,且△PCE 的周长最小,则△PCE 的周长的最小值为( )A.3+1B.7+1 C. 23+1 D. 27+110.已知如图,矩形ABCD 中AB=4cm ,BC=3cm ,点P 是AB 上除A ,B 外任一点,对角线AC ,BD 相交于点O ,DP ,CP 分别交AC ,BD 于点E ,F 且△ADE 和BCF 面积之和4cm 2,则四边形PEOF 的面积为( )A. 1cm 2B. 1.5cm 2C. 2cm 2D. 2.5cm 2二.填空题(共10小题)11.如果y 44x x --则2x +y 值是_______. 12.小明用S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______. 13.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m 2+3m +n =_____.14.如图所示,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草.则种植花草的面积是____________米²;15.如图,E为▱ABCD边AD上一点,将△ABE沿BE翻折得到△FBE,点F在BD上,且EF=DF,若∠BDC=81°,则∠C=_____.16.直角坐标系中,已知A(3,2),作点A关于y轴对称点A1,点A1关于原点对称点A2,点A2关于x轴对称点A3,A3关于y轴对称点A4,……,按此规律,则点A2019的坐标为_____.17.三角形的每条边的长都是方程2680-+=的根,则三角形的周长是.x x18.如图,若菱形ABCD的顶点A.B的坐标分别为(6,0),(﹣4,0),点D在y轴正半轴上,则点C的坐标是_____.19.如图,四边形ABCD和四边形ACEF都是平行四边形,EF经过点D,若平行四边形ABCD的面积为S1,平行四边形ACEF的面积为S2,则S1与S2的大小关系为S1_____S2.20.如图,在矩形ABCD中,BC=4,点F是CD边上的中点,点E是BC边上的动点.将△ABE沿AE折叠,点B 落在点M处;将△CEF沿EF折叠,点C落在点N处.当AB的长度为_____时,点M与点N能重合时.三.解答题(共7小题)21.计算(1)220-5+35(2)3112-41144⎛⎫⨯ ⎪ ⎪⎝⎭22.解下列方程: (1)(x ﹣1)(x ﹣3)=8; (2)2(x ﹣3)2=x 2﹣9.23.甲、乙两班举行电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表: 输入汉字个数(个) 132 133 134 135 136 137 甲班人数人) 1 0 2 4 1 2 乙班人数(人) 014122请分别判断下列同学是说法是否正确,并说明理由. (1)两个班级输入汉字个数的平均数相同; (2)两个班学生输入汉字的中位数相同众数也相同; (3)甲班学生比乙班学生的成绩稳定.24.如图,平行四边形ABCD ,对角线,AC BD 交于点,点,E F 分别是,AB BC 的中点,连接EF 交BD 于,连接OE(1)证明:四边形COEF 平行四边形(2)点是哪些线段的中点,写出结论,并选择一组给出证明.25.某汽车销售公司4月份销售某厂家的汽车,在一定范围内每部汽车的进价与销售量有如下关系;若当月仅售出1辆汽车,则该部汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.6万元;销售量在10辆以上,每辆返利1.2万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为________万元;(2)若该公司当月售出5辆汽车,且每辆汽车售价为元,则该销售公司该月盈利________万元(用含的代数式表示).(3)如果汽车的售价为25.6万元/辆,该公司计划当月盈利16.8万元,那么需要售出多少辆汽车?(盈利销售利润+返利)26. 如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,AB ⊥AC ,AB=3cm ,BC=5cm .点P 从A 点出发沿AD 方向匀速运动速度为lcm/s ,连接PO 并延长交BC 于点Q .设运动时间为t (s )(0<t <5) (1)当t 为何值时,四边形ABQP 是平行四边形?(2)设四边形OQCD 的面积为y (cm 2),当t=4时,求y 的值.27.阅读下面材料,并回答下列问题:小明遇到这样一个问题,如图,在ABC ∆中,//DE BC 分别交AB 于点,交AC 于点.已知,3,5CD BE CD BE ⊥==,求BC DE +值.小明发现,过点作//EF DC ,交BC 的延长线于点,构造BEF ∆,经过推理和计算能够使问题得到解决(如图)请你回答:(1)证明:DE CF =; (2)求出BC DE +的值;(3)参考小明思考问题的方法,解决问题;如图,已知ABCD 和矩形,ABEF AC 与DF 交于点,G AC BF DF ==.求AGF ∠的度数.答案与解析一.选择题(共10小题)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A. 赵爽弦图B. 笛卡尔心形线C. 科克曲线D. 斐波那契螺旋线[答案]C [解析] [分析]根据把一个图形绕某一点旋转180,如果旋转后图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.[详解]A 、不是轴对称图形,是中心对称图形,故此选项错误; B 、是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,是中心对称图形,故此选项正确; D 、不是轴对称图形,不是中心对称图形,故此选项错误; 故选C .[点睛]此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 2.1x -在实数范围内有意义的条件是( ) A 1x ≥ B. 1x >C. 0x <D. 0x ≤[答案]B [解析] [分析]根据二次根式有意义的条件即可求出答案. [详解]]解:由题意可知:x-1>0, ∴x >1, 故答案为:x >1[点睛]本题考查二次根式及分式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.3.已知一组数据a,b,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( ) A. 3,2 B. 3,4C. 5,2D. 5,4[答案]B [解析]试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.4.命题“关于x 的一元二次方程210x bx ++=,必有实数解”是假命题.则在下列选项中,可以作为反例的是( ) A. 3b =- B. 2b =-C. 1b =-D. 2b =[答案]C [解析][详解]∵方程210x bx ++=,必有实数解,22440b ac b ∴-=-≥ ,解得:2b ≤-或2b ≥,又∵命题“关于的一元二次方程210x bx ++=,必有实数解”是假命题,∴可以作为反例的是1b =-,故选C . 5.若m 是关于x 的方程x 2﹣2012x ﹣1=0的根,则(m 2﹣2012m +3)•(m 2﹣2012m +4)的值为( ) A. 16 B. 12C. 20D. 30[答案]C [解析][分析]根据一元二次方程的解的定义得到m2﹣2012m﹣1=0,变形得m2﹣2012m=1,然后整体代入的方法计算.[详解]解:根据题意得程m2﹣2012m﹣1=0,所以m2﹣2012m=1,所以(m2﹣2012m+3)•(m2﹣2012m+4)=(1+3)(1+4)=20.故选:C.[点睛]本题考查一元二次方程的解以及整体代入思想,掌握整体代入思想是解题的关键.6.如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为( )A. 5 cmB. 6 cmC. 10 cmD. 不能确定[答案]B[解析][分析]根据D、E、F分别是△ABC各边的中点,可知DE为△ABC的中位线,根据DE的长度可求得AC的长度,然后根据直角三角形斜边的中线等于斜边的一半,可得HF=12AC,即可求解.[详解]∵D、E分别是△ABC各边的中点, ∴DE为△ABC的中位线,∵ED=6cm,∴AC=2DE=2×6=12(cm),∵AH⊥CD,且F为AC的中点,∴HF=12AC=6cm.故选:B.[点睛]此题考查三角形的中位线定理、直角三角形斜边中线定理,熟记定理并熟练运用解题是关键.7.我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒60元下调至52元,若设每次平均降价的百分率为x ,由题意可列方程为( ) A. 52+52x 2=60 B. 52(1+x )2=60 C. 60﹣60x 2=52 D. 60(1﹣x )2=52[答案]D [解析] [分析]若设每次平均降价的百分率为x ,根据某种药品经过两次降价后,由每盒60元下调至52元,可列方程求解. [详解]解:设每次平均降价的百分率为x , 60(1﹣x )2=52. 故选:D .[点睛]本题考查列一元二次方程,关键设出下降的生产率,经过两次变化,从而可列出方程. 8.把代数式()111a a--中的1a -移到根号内,那么这个代数式等于()A. 1a --B. 1a -C. 1a -D. 1a --[答案]A [解析]试题解析:(a-1)11a -=-(1-a)11a-=1a --. 故选A .9.如图,菱形ABCD 的边长为2,且∠ABC =120°,E 是BC 的中点,P 为BD 上一点,且△PCE 的周长最小,则△PCE 的周长的最小值为( )A.3 B.7+1 37+1[答案]B[解析][分析]由菱形ABCD中,∠ABC=120°,易得△BCD是等边三角形,继而求得∠ADE的度数;连接AE,交BD于点P;首先由勾股定理求得AE的长,即可得△PCE周长的最小值=AE+EC.[详解]解:∵菱形ABCD中,∠ABC=120°,∴BC=CD=AD=2,∠C=180°﹣∠ABC=60°,∠ADC=∠ABC=120°,∴∠ADB=∠BDC=12∠ADC=60°,∴△BCD是等边三角形, ∵点E是BC的中点,∴∠BDE=12∠BDC=30°,∴∠ADE=∠ADB+∠BDE=90°,∵四边形ABCD是菱形,∴BD垂直平分AC,∴P A=PC,∵△PCE的周长=PC PE CE++,若△PCE的周长最小,即PC+PE最小,也就是P A+PE最小,即A,P,E三点共线时,∵DE=CD•sin60°=3,CE=12BC=1,∴在Rt△ADE中,227AE AD DE=+=,∴△PCE周长为:PC+PE+CE=P A+PE+CE=AE+CE=71+,故选:B.[点睛]本题考查了菱形的性质、最短路线问题、等边三角形的性质,熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.10.已知如图,矩形ABCD中AB=4cm,BC=3cm,点P是AB上除A,B外任一点,对角线AC,BD相交于点O ,DP ,CP 分别交AC ,BD 于点E ,F 且△ADE 和BCF 的面积之和4cm 2,则四边形PEOF 的面积为( )A. 1cm 2B. 1.5cm 2C. 2cm 2D. 2.5cm 2[答案]A [解析]试题解析:因为4AEDBFCS S+=2cm ,所以2EOD FOCS S+=2cm ,而3CODS=2cm ,所以6231PEOF S =--=四边形2cm ,故本题应选A.二.填空题(共10小题)11.如果y 44x x --则2x +y 的值是_______. [答案]9 [解析]解:由题意得x=4,y=1,则2x +y=9. 12.小明用S 2= 110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______. [答案]30 [解析] [分析]根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和. [详解]解:∵S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2], ∴平均数为3,共10个数据, ∴x 1+x 2+x 3+…+x 10=10×3=30. 故答案为30.[点睛]本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大. 13.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m 2+3m +n =_____.[答案]5.[解析][分析]根据根与系数的关系可知m+n=﹣2,又知m是方程的根,所以可得m2+2m﹣7=0,最后可将m2+3m+n变成m2+2m+m+n,最终可得答案.[详解]解:∵设m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2,∵m是原方程的根,∴m2+2m﹣7=0,即m2+2m=7,∴m2+3m+n=m2+2m+m+n=7﹣2=5,故答案为:5.[点睛]本题考查了根与系数的关系,熟练掌握一元二次方程根与系数的关系是解决本题的关键.14.如图所示,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草.则种植花草的面积是____________米²;[答案]1421[解析][分析]如图,根据平移的性质,种植花草的面积等于图中小矩形的面积,根据矩形的面积公式计算即可.[详解]如图,根据平行的性质,种植花草的面积等于图中小矩形的面积,∴种植花草的面积=(50-1)(30-1)=1421m2.故答案1421.[点睛]本题考查了图形的平移的性质,把小路进行平移,得到种植花草的面积等于图中小矩形的面积是解题的关键.15.如图,E为▱ABCD边AD上一点,将△ABE沿BE翻折得到△FBE,点F在BD上,且EF=DF,若∠BDC=81°,则∠C=_____.[答案]66°.[解析][分析]折叠就有全等,就有相等的边和角,根据平行四边形的性质和等腰三角形的性质,可以把要求的角转化在一个三角形中,由三角形的内角和列方程解得即可.[详解]解:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,AB∥CD,∴∠ADF=∠FBC,∠ABD=∠BDC=81°,∵EF=FD,∴∠FED=∠FDE,由折叠得:∠ABE=∠EBF=12∠ABD=40.5°,∠A=∠EFB,设∠C=x,则∠DBC=∠ADB=12x,在△BDC中,由内角和定理得:81°+x+12x=180°,解得:x=66°,故答案为:66°.[点睛]本题考查折叠的性质、平行四边形的性质以及三角形内角和定理等内容,解题的关键是折叠的性质的运用.16.直角坐标系中,已知A(3,2),作点A关于y轴对称点A1,点A1关于原点对称点A2,点A2关于x轴对称点A 3,A 3关于y 轴对称点A 4,……,按此规律,则点A 2019的坐标为_____. [答案](3,2). [解析] [分析]根据题目已知条件,写出A 1、A 2、A 3的坐标,找出规律,即可解决问题. [详解]解:作点A 关于y 轴对称点为A 1,是(﹣3,2); 作点A 1关于原点的对称点为A 2,是(3,﹣2); 作点A 2关于x 轴的对称点为A 3,是(3,2). 显然此为一循环,按此规律,2019÷3=673, 则点A 2019的坐标是(3,2), 故答案为:(3,2).[点睛]本题考查了关于原点对称的点的坐标,关于坐标轴对称点的坐标,解答此题需熟悉:两个点关于x 轴对称,则横坐标不变,纵坐标互为相反数;两个点关于y 轴对称,则横坐标互为相反数,纵坐标不变;两个点关于原点对称,则横坐标、纵坐标都是互为相反数.17.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 . [答案]6或10或12 [解析] [分析]首先用因式分解法求得方程根,再根据三角形的每条边的长都是方程2680x x -+=的根,进行分情况计算. [详解]由方程2680x x -+=,得=2或4. 当三角形的三边是2,2,2时,则周长是6; 当三角形的三边是4,4,4时,则周长是12;当三角形的三边长是2,2,4时,2+2=4,不符合三角形的三边关系,应舍去; 当三角形的三边是4,4,2时,则三角形的周长是4+4+2=10. 综上所述此三角形的周长是6或12或10.18.如图,若菱形ABCD 的顶点A .B 的坐标分别为(6,0),(﹣4,0),点D 在y 轴正半轴上,则点C 的坐标是_____.[答案](﹣10,8)[解析][分析]由菱形的性质可求AB=AD=10,OA=6,由勾股定理可得OD=8,即可求点C坐标.[详解]解:∵菱形ABCD的顶点A,B的坐标分别为(6,0),(﹣4,0),∴AB=AD=10,OA=6,∴228=-=,OD AD OA∴点D(0,8),∵CD∥AB,∴CD=10,∴点C(﹣10,8),故答案为:(﹣10,8).[点睛]本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.如图,四边形ABCD和四边形ACEF都是平行四边形,EF经过点D,若平行四边形ABCD的面积为S1,平行四边形ACEF的面积为S2,则S1与S2的大小关系为S1_____S2.[答案]=.[解析][分析]由题意可知2ABCDABCSS=,2ACEFADC SS =△,而S △ABC =S △ADC ,进而可得S 1与S 2的大小关系.[详解]解:∵四边形ABCD 和四边形ACEF 都是平行四边形, ∴2ABCDABCSS=,2ACEFADC SS =△,∵S △ABC =S △ADC , ∴S 1=S 2, 故答案为:=.[点睛]本题考查了平行四边形的性质以及三角形面积公式的运用,熟记平行四边形被一条对角线分成的两个三角形面积相等是解题的关键.20.如图,在矩形ABCD 中,BC =4,点F 是CD 边上的中点,点E 是BC 边上的动点.将△ABE 沿AE 折叠,点B 落在点M 处;将△CEF 沿EF 折叠,点C 落在点N 处.当AB 的长度为_____时,点M 与点N 能重合时.[答案]2. [解析] [分析]设AB =CD =2m .在Rt △ADF 中 利用勾股定理构建方程即可解决问题. [详解]解:设AB =CD =2m .由题意:BE =EM =EC =2,CF =DF =FM =m ,AN =AM =2m , ∴AF =3m ,∵四边形ABCD 是矩形, ∴AD =BC =4,在Rt △ADF 中,∵AD 2+DF 2=AF 2, ∴42+m 2=(3m )2, 解得2m =或2-(舍弃),∴AB =2m =故答案为.[点睛]本题考查折叠的性质,解题的关键是根据勾股定理构建方程求解.三.解答题(共7小题)21.计算(1)(2[答案](1)(2)14[解析] [分析](1)先化简,再合并同类二次根式;(2)先算乘法,再化简二次根式,然后合并即可.[详解]解:(1)-=2255+3-(2111=244-. [点睛]本题考查了二次根式的化简与运算,属于基础题型,熟练掌握二次根式的运算法则和化简的方法是解题的关键. 22.解下列方程: (1)(x ﹣1)(x ﹣3)=8; (2)2(x ﹣3)2=x 2﹣9.[答案](1)x 1=5,x 2=﹣1;(2)x 1=3,x 2=9. [解析] [分析](1)先去括号,把方程化为一般形式,再根据因式分解法即可求出答案;(2)利用平方差公式将等号右边因式分解,再移项,提取公因式x-3即可求出答案.[详解]解:(1)(x﹣1)(x﹣3)=8,整理得,x2﹣4x﹣5=0,分解因式得:(x-5)(x+1)=0,则x-5=0或x+1=0,解得:x1=5,x2=﹣1;(2)2(x﹣3)2=x2﹣9,分解因式得:(x﹣3)(x﹣9)=0,则x﹣3=0或x﹣9=0,解得:x1=3,x2=9.[点睛]本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).23.甲、乙两班举行电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:请分别判断下列同学是说法是否正确,并说明理由.(1)两个班级输入汉字个数的平均数相同;(2)两个班学生输入汉字的中位数相同众数也相同;(3)甲班学生比乙班学生的成绩稳定.[答案]说法(1)(3)正确,说法(2)错误.[解析][分析]根据平均数、中位数、众数以及方差的计算方法,分别求出,就可以分别判断各个说法是否正确.[详解]解:(1)由平均数的定义知,甲班学生的平均成绩为:13213421354136137213510+⨯+⨯++⨯=,乙班学生的平均成绩为:13313441351362137213510+⨯++⨯+⨯=,所以他们的平均数相同.故说法(1)正确;(2)甲班学生的成绩按从小到大排列:132、134、134、135、135、135、135、136、137、137,可见其中位数是135;乙班学生的成绩按从小到大排列:133、134、134、134、134、135、136、136、137、137,可见其中位数是134.5,所以两组学生成绩的中位数不相同,甲班学生成绩的众数是135,乙班学生成绩的众数是134,所以两组学生成绩的众数不相同; 故说法(2)错误;(3)2222221=[(132135)2(134135)4(135135)(136135)2(137135)]210S ⨯-+-+-+-+-=甲, 2222221=[(133135)4(134135)(135135)2(136135)2(137135)] 2.710S ⨯-+-+-+-+-=甲, ∴甲班学生比乙班学生的成绩方差小, ∴甲班学生比乙班学生的成绩稳定. 故说法(3)正确;故答案为:说法(1)(3)正确,说法(2)错误.[点睛]本题考查平均数、方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数;一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.24.如图,平行四边形ABCD ,对角线,AC BD 交于点,点,E F 分别是,AB BC 的中点,连接EF 交BD 于,连接OE(1)证明:四边形COEF 是平行四边形(2)点是哪些线段的中点,写出结论,并选择一组给出证明.[答案](1)见解析;(2)G 是线段OB 的中点,也是EF 的中点,证明见解析[解析][分析](1)根据三角形的中位线定理可得EF 与AC 的数量关系和位置关系,再由平行四边形的性质即可证得EF 与CO 的关系,进一步即可证得结论;(2)根据三角形中位线定理即可得出结论.[详解]解:(1)证明:∵,E F 分别是,AB BC 中点,∴EF AC 且12EF AC =, ∵ABCD 是平行四边形,∴AO CO =,∴CO EF =,∴四边形COEF 是平行四边形.(2)G 是线段OB 的中点,也是EF 的中点.证明:∵EF AC ,E 为AB 中点,∴G 为OB 中点.∴FG 、GE 分别是△BCO 、△BAO 的中位线, ∴11,22FG CO GE AO ==, ∵AO =CO ,∴FG GE =,即G 为EF 的中点.[点睛]本题考查了平行四边形的判定和三角形的中位线定理,熟练掌握平行四边形的判定方法和三角形的中位线定理是解题的关键.25.某汽车销售公司4月份销售某厂家的汽车,在一定范围内每部汽车的进价与销售量有如下关系;若当月仅售出1辆汽车,则该部汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.6万元;销售量在10辆以上,每辆返利1.2万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为________万元;(2)若该公司当月售出5辆汽车,且每辆汽车售价为元,则该销售公司该月盈利________万元(用含的代数式表示).(3)如果汽车的售价为25.6万元/辆,该公司计划当月盈利16.8万元,那么需要售出多少辆汽车?(盈利销售利润+返利)[答案](1)24.6;(2)(5m -121);(3)7[解析][分析](1)根据题意每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,即可得出当月售出3辆汽车时,每辆汽车的进价;(2)先表示出当月售出5辆汽车时每辆汽车的进价,再根据利润=售价-进价即可求得该月盈利;(3)首先表示出每辆汽车的销售利润,再利用当0≤x≤10,当x>10时,分别得出答案.[详解]解:(1)∵当月仅售出1辆汽车,则该辆汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,∴该公司当月售出3辆汽车,则每辆汽车的进价为25-2×0.2=24.6万元;故答案为:24.6;(2)∵当月售出5辆汽车,∴每辆汽车的进价为25-4×0.2=24.2万元,∴该月盈利为5(m-24.2)=5m-121,故答案为:(5m-121);(2)设需要售出x辆汽车,由题意可知,每辆汽车的销售利润为:25.6-[25-0.2(x-1)]=(0.2x+0.4)(万元),当0≤x≤10,根据题意,得x•(0.2x+0.4)+0.6x=16.8,整理,得x2+5x-84=0,解这个方程,得x1=-12(不合题意,舍去),x2=7,当x>10时,根据题意,得x•(0.2x+0.4)+1.2x=16.8,整理,得x2+8x-84=0,解这个方程,得x1=-14(不合题意,舍去),x2=6,因为6<10,所以x2=6舍去.答:需要售出7辆汽车.[点睛]此题主要考查了一元二次方程的应用,根据题意正确表示出每部汽车的销售利润是解题关键.26.如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动速度为lcm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.[答案](1)当t=2.5s 时,四边形ABQP 是平行四边形,理由详见解析;(2)5.4cm 2.[解析][分析](1)求出AP BQ =和//AP BQ ,根据平行四边形的判定得出即可;(2)先求出高AM 和ON 的长度,再求出DOC ∆和OQC ∆的面积,再求出答案即可.[详解](1)当 2.5t s =时,四边形ABQP 是平行四边形,理由如下:∵四边形ABCD 是平行四边形∴//,,5,,AD BC AB CD AD BC cm AO CO AO OC =====∴PAO QCO ∠=∠在APO ∆和CQO ∆中,PAO QCO AO CO POA QOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()APO CQO ASA ∆≅∆∴ 2.5AP CQ cm ==, 2.5()1AP t s == ∵5BC cm =∴5 2.5 2.5BQ cm cm cm AP =-==即,//AP BQ AP BQ =∴四边形ABQP 是平行四边形故当 2.5t s =时,四边形ABQP 是平行四边形;(2)过A 作AM BC ⊥于M ,过O 作ON BC ⊥于N∵,3,5AB AC AB cm BC cm ⊥==∴在Rt ABC ∆中,由勾股定理得:224AC BC AB cm =-=由三角形的面积公式得:1122BAC S AB AC BC AM ∆=⋅=⋅,即1134522AM ⨯⨯=⨯ ∴ 2.4AM cm =∵,ON BC AM BC ⊥⊥∴//AM ON∵AO OC =∴MN CN =∴1 1.22ON AM cm == 在BAC ∆和DCA ∆中,AC AC BC AD AB CD =⎧⎪=⎨⎪=⎩∴()BAC DCA SSS ∆≅∆∴21346()2DCA BAC S S cm ∆∆==⨯⨯= ∵AO OC =∴DOC ∆的面积为2132DCA S cm ∆= 当4t s =时,4AP CQ cm ==∴OQC ∆的面积为21 1.24 2.4()2cm ⨯⨯= ∴23 2.4 5.4()y cm =+=故y 的值为25.4cm .[点睛]本题考查了平行四边形的性质和判定、三角形的面积、全等三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.27.阅读下面材料,并回答下列问题:小明遇到这样一个问题,如图,在ABC ∆中,//DE BC 分别交AB 于点,交AC 于点.已知,3,5CD BE CD BE ⊥==,求BC DE +的值.小明发现,过点作//EF DC ,交BC 的延长线于点,构造BEF ∆,经过推理和计算能够使问题得到解决(如图)请你回答:(1)证明:DE CF =;(2)求出BC DE +的值;(3)参考小明思考问题的方法,解决问题;如图,已知ABCD 和矩形,ABEF AC 与DF 交于点,G AC BF DF ==.求AGF ∠的度数.[答案](1)详见解析;34(3)60[解析][分析](1)由DE ∥BC ,EF ∥DC ,可证得四边形DCFE 是平行四边形,从而问题得以解决;(2)由DC ⊥BE ,四边形DCFE 是平行四边形,可得Rt △BEF ,求出BF 的长,证明BC+DE=BF ;(3)连接AE ,CE ,由四边形ABCD 是平行四边形,四边形ABEF 是矩形,易证得四边形DCEF 是平行四边形,继而证得△ACE 是等边三角形,问题得证.[详解](1)证明:∵DE ∥BC ,EF ∥DC ,∴四边形DCFE 是平行四边形.∴DE=CF .(2)解:由于四边形DCFE 是平行四边形,∴DE=CF ,DC=EF ,∴BC+DE=BC+CF=BF .∵DC ⊥BE ,DC ∥EF ,∴∠BEF=90°.在Rt △BEF 中,∵BE=5,CD=3,∴BF=22225=3=34BE EF ++.(3)连接AE ,CE ,如图.∵四边形ABCD 是平行四边形, ∴AB ∥DC .∵四边形ABEF 是矩形, ∴AB ∥FE ,BF=AE . ∴DC ∥FE .∴四边形DCEF 是平行四边形. ∴CE ∥DF .∵AC=BF=DF ,∴AC=AE=CE .∴△ACE 是等边三角形. ∴∠ACE=60°.∵CE ∥DF ,∴∠AGF=∠ACE=60°.[点睛]本题考查了平行四边形的判定与性质、矩形的性质、等边三角形的判定与性质以及勾股定理.连接AE 、CE 构造等边三角形是关键.。

八年级(下)期中数学试卷6套附答案(适用于北京市)

八年级(下)期中数学试卷6套附答案(适用于北京市)

八年级(下)期中数学试卷题号得分一二三总分一、选择题(本大题共10 小题,共30.0 分)1.在下列性质中,平行四边形不一定具有的是()A. 对边相等2.与y轴交于(0,1)点的直线是()A. y=2x+1B. y=2x-1B. 对角互补C. 对边平行D. 对角相等C. y=-2x+2D. y=-2(x+1)3.在图形:①线段;②等边三角形;③矩形;④菱形;⑤平行四边形中,既是轴对称图形又是中心对称图形的个数是()A. 2B. 3C. 4D. 54.在下列四个函数图象中,y的值随x的值增大而减小的是()A. B. C. D.5.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A. 6,8,10B. 8,15,17C. 1,,2D. 2,2,6.如图,是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A. 甲正确,乙错误C. 甲、乙均正确B. 甲错误,乙正确D. 甲、乙均错误7.已知,点P(1-t,t+2)随着t的变化,点P不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A. 35°B. 40°C. 50°D. 65°9.已知一次函数y=-x+3,当0≤x≤3时,函数y的最大值是()A. 10 C. -3 D. 无法确定B. 310.已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A. B.C.D.二、填空题(本大题共11 小题,共33.0 分)11.古希腊的哲学家柏拉图曾指出,如果m表示大于1 的整数,a=2m,b=m2-1,c=m2+1,那么a,b,c为勾股数.请你利用这个结论得出一组勾股数是______.12.在四边形ABCD中,若分别给出四个条件:①AB∥CD,②AD=BC,③∠A=∠C,④AB=CD.现以其中的两个为一组,能判定四边形ABCD为平行四边形的条件是______(只填序号,填上一组即可,不必考虑所有可能情况).13.若一次函数y=kx+2 的图象经过点(1,5),则k=______.14.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有______种.15.如图,活动衣帽架由三个菱形组成,利用四边形的不稳定性,调整菱形的内角α,使衣帽架拉伸或收缩.当菱形的边长为18cm,α=120°时,A、B两点的距离为______cm.16.如图,在平面直角坐标系xOy中,矩形OBCD,点C的坐标为(8,6),G为边OB上一点,连接DG,沿DG折叠△ODG,使OD与对角线BD重合,点O落在点K处,则G点坐标为______.17.借助等边三角形,我们发现了含有30°角的直角三角形的一条性质;借助矩形的对角线,我们发现了直角三角形斜边中线的性质,那么请你回答,三角形中位线的性质,我们是借助研究______形而得到的.18.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg0 1 2 3 4 5y/cm10 10.5 11 11.5 12 12.5下列说法正确的是______.①x与y都是变量;②弹簧不挂重物时的长度为0cm;③物体质量每增加1kg,弹簧长度增加0.5cm;④所挂物体质量为7kg时,弹簧长度为13.5cm.19.以正方形ABCD的BC边为一边作等边三角形BCE,则∠AED=______.20.寻求处理同类问题的普遍算法,是我国古代数学的基本特征.例如,已知任意三角形的三边长,如何求三角形的面积呢?南宋时期的数学家秦九韶给出了一个计算公式(称为三斜求积公式):S△ABC= 式中a,b,c为△ABC的三边长.此公式的发现独立于古希腊的海伦公式.秦九韶的主要数学成就在于“大衍求一术”、“高次方程正根的数值求法”前者是把《孙子算经》中的“物不知数”问题推广为一般的一次同余式问题,后者是把三次方程的数值解法推广为一般的高次方程数值解法.秦九韶的这两项重大数学成就领先于西方数百年.美国著名科学史家萨顿对此给与高度评价,称秦九韶为“他那个民族,他那个时代,并且确实也是所有时代最伟大的数学家之一”.,现在请你试一试上述三斜求积公式的威力吧!已知△ABC的三边a=2,b=3,c= 则S△ABC=______.21.我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“等积线”,等积线被这个平面图形截得的线段叫做该图形的“等积线段”(例如三角形的中线就是三角形的等积线段).已知菱形的边长为4,且有一个内角为60°,设它的等积线段长为m,则m的取值范围是______ .三、解答题(本大题共8 小题,共56.0 分)22.解下列方程(1)(x-5)2=9(2)x2-4x-1=0.23.已知正比例函数的图象过点(1,-2).(1)求此正比例函数的解析式;(2)若一次函数图象是由(1)中的正比例函数的图象平移得到的,且经过点(1,2),求此一次函数的解析式.24.如图,在平行四边形ABCD中,对角线AC、BD交于点O,E、F是AC上两点,且AE=CF,连接BE、ED、DF、FB,得四边形BEDF.(1)四边形BEDF的形状是______,并证明你的结论.(2)当OE、BD满足______条件时,四边形BEDF是矩形.25.如图1,等腰直角三角形的三个顶点都在小正方形的顶点处,若剪四刀可把这个等腰直角三角形分成五块,请用这五块,(1)在图2 中拼成一个梯形(2)在图3 中拼成一个正方形.26.已知:如图1,长方形ABCD中,AB=2,动点P在长方形的边BC,CD,DA上沿B→C→D→A的方向运动,且点P与点B,A都不重合.图2 是此运动过程中,△ABP 的面积y与点P经过的路程x之间的函数图象的一部分.请结合以上信息回答下列问题:(1)长方形ABCD中,边BC的长为______;(2)若长方形ABCD中,M为CD边的中点,当点P运动到与点M重合时,x=______,y=______;(3)当6≤x≤10时,y与x之间的函数关系式是______;(4)利用第(3)问求得的结论,在图2 中将相应的y与x的函数图象补充完整.27.我们把两组对边分别平行的四边形定义为平行四边形,同样的道理,我们也可以把至少有一组邻边相等的四边形定义为等邻边四边形.把对角互补的等邻边四边形定义为完美等邻边四边形.(1)请写出一个你学过的特殊四边形中是等邻边四边形的图形的名称;(2)已知,如图,完美等邻边四边形ABCD,AD=CD,∠B+∠D=180°,连接对角线AC,BD,请你结合图形,写出完美等邻边四边形的一条性质;(3)在四边形ABCD中,若∠B+∠D=180°,且BD平分∠ABC时,求证:四边形ABCD是完美等邻边四边形.28.已知:如图,矩形ABCD中,BC延长线上一点E满足BE=BD,F是DE的中点,猜想∠AFC的度数并证明你的结论.29.已知,一次函数y=2x+b(b为常数),它的图象记为C1,一次函数y=kx+2(k为常数),它的图象记为C2.根据条件回答下列问题:(1)平面内点P(2,2),点Q(2,4),连接PQ,求当直线C1 经过线段PQ的中点时,b的值;(2)令b=4,将直线C1 中,x轴下方的部分沿x轴翻折,得到的图象与未翻折的部分组成V字形,记为C,若C与C只有一个公共点,画出图形,并直接写出k3 2 3的取值范围.(3)若C与x轴,y轴交于点C,D,C与x轴,y轴分别交于点A,B.且OA=OD2 1,∠ABO=∠CDO,直接写出k,b的值.答案和解析1.【答案】B【解析】解:因为平行四边形的对边平行、对角相等、对边相等,故选项B不正确,故选:B.根据平行四边形的性质即可判断;本题考查平行四边形的性质,解题的关键是熟练掌握平行四边形的性质,属于中考基础题.2.【答案】A【解析】解:A、直线y=2x+1 与y轴交于点(0,1),∴选项A符合题意;B、直线y=2x-1 与y轴交于点(0,-1),∴选项B不符合题意;C、直线y=-2x+2 与y轴交于点(0,2),∴选项C不符合题意;D、直线y=-2(x+1)=-2x-2 与y轴交于点(0,-2),∴选项D不符合题意.故选:A.利用一次函数图象上点的坐标特征找出四个选项中直线与y轴的交点坐标,比照后即可得出结论.本题考查了一次函数图象上点的坐标特征,牢记“一次函数y=kx+b的图象与y轴的交点坐标是(0,b)”是解题的关键.3.【答案】B【解析】解:①线段既是轴对称图形又是中心对称图形,②等边三角形是轴对称图形不是中心对称图形,③矩形既是轴对称图形又是中心对称图形,④菱形既是轴对称图形又是中心对称图形,⑤平行四边形不是轴对称图形是中心对称图形,所以既是轴对称图形又是中心对称图形的个数是3 个.故选B.根据轴对称图形与中心对称图形的概念判断即可.本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180 度后两部分重合.4.【答案】C【解析】解:A、y的值随x的值增大而增大,故本选项错误;B、y的值随x的值增大而增大,故本选项错误;C、y的值随x的值增大而减小,故本选项正确;D、对称轴左边,y的值随x的值增大而减小,对称轴右边,y的值随x的值增大而增大,故本选项错误.故选C.根据函数与函数的增减性对各选项分析判断利用排除法求解.本题考查了二次函数图象,一次函数图象,正比例函数图象,反比例函数图象,准确识图并理解函数的增减性的定义是解题的关键.5.【答案】D【解析】解:A、∵62+82=100=102,∴能够成直角三角形,故本选项不符合题意;B、∵82+152=289=172,∴能够成直角三角形,故本选项不符合题意;C、∵12+()2=4=22,∴能够成直角三角形,故本选项不符合题意;D、∵22+22=8≠(2 )2,∴不能够成直角三角形,故本选项符合题意.故选:D.根据勾股定理的逆定理对各选项进行逐一判断即可.本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.6.【答案】C【解析】解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:C.首先证明△AOE≌△COF(ASA),可得AE=CF,再根据一组对边平行且相等的四边形是平行四边形可判定判定四边形AECF是平行四边形,再由AC⊥EF,可根据对角线互相垂直的四边形是菱形判定出AECF是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.此题主要考查了菱形形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).7.【答案】C【解析】解:t>1 时,P在第二象限,-2<t<1 时,P在第一象限,t<-2 时,P在第四象限,故选:C.根据点的坐标特征求解即可.本题考查了点的坐标,分类讨论是解题关键,并利用点的坐标特征求解.8.【答案】C【解析】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°-2∠ACC′=180°-2×65°=50°,∴∠CAC′=∠BAB′=50°.故选:C.根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.9.【答案】B【解析】解:y=-x+3,k=-1<0,y随x的增大而减小,当x=0 时,y最大=3,故选:B.根据一次函数的性质,自变量与函数值的对应关系,可得答案.本题考查了一次函数的性质,利用一次函数的性质是解题关键.10.【答案】A【解析】解:A、等边三角形,点P在开始与结束的两边上直线变化,在点A的对边上时,设等边三角形的边长为a,则y= (a<x<2a),符合题干图象;B、菱形,点P在开始与结束的两边上直线变化,在另两边上时,都是先变速减小,再变速增加,题干图象不符合;C、正方形,点P在开始与结束的两边上直线变化,在另两边上,先变速增加至∠A的对角顶点,再变速减小至另一顶点,题干图象不符合;D、圆,AP的长度,先变速增加至AP为直径,然后再变速减小至点P回到点A,题干图象不符合.故选:A.根据等边三角形,菱形,正方形,圆的性质,分析得到y随x的增大的变化关系,然后选择答案即可.本题考查了动点问题函数图象,熟练掌握等边三角形,菱形,正方形以及圆的性质,理清点P在各边时AP的长度的变化情况是解题的关键.11.【答案】4,3,5(答案不唯一)【解析】解:∵如果m表示大于1 的整数,a=2m,b=m2-1,c=m2+1,那么a,b,c为勾股数,∴当m为大于1 的任意整数时,a,b,c为勾股数,如m=2,那么a=2m=4,b=m2-1=3,c=m2+1=5,故答案为4,3,5(答案不唯一).取m=2,分别计算出a,b,c的值即可求解.本题考查了勾股数的定义及学生阅读理解的能力,本题是开放性试题,注意答案不唯一.12.【答案】①③或①④或②④(只要求填一组)【解析】解:根据一组对边平行且相等的四边形是平行四边形,能判定四边形ABCD为平行四边形的条件是①④;由①③可求得∠B=∠D,则两组对角相等的四边形是平行四边形;根据两组对边分别相等的四边形是平行四边形,能判定四边形ABCD为平行四边形的条件是②④.故答案为:①③或①④或②④(任填一组即可).根据平行四边形的判定,要四个条件中选择两个,看是否能推出是平行四边形,如果是则是我们要找的条件.本题考查了平行四边形的判定,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论.13.【答案】3【解析】解:∵一次函数y=kx+2 的图象经过点(1,5),∴5=k+2,解得,k=3,故答案为:3.根据一次函数y=kx+2 的图象经过点(1,5),可以求得k的值,本题得以解决.本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.14.【答案】4【解析】解:如图所示:这个格点正方形的作法共有4 种.故答案为:4.利用轴对称图形以及中心对称图形的性质与定义,进而得出符合题意的答案.此题主要考查了利用轴对称以及旋转设计图案,正确把握中心对称以及轴对称图形的定义是解题关键.15.【答案】54【解析】解:∵α=120°,∴菱形的锐角为60°,∴AB=3×18=54cm.故答案为,54.根据α=120°得出菱形的锐角是60°,所以A、B两点的距离是边长的3 倍,代入求解即可.本题考查有一个角是60°的特殊菱形,此时一条短对角线等于边长.16.【答案】(3,0)【解析】解:∵点C的坐标为(8,6),∴OD=BC=6,OB=CD=8,由勾股定理得,BD=10,由折叠的性质可知,OG=GK,DK=OD=6,∴BK=DB-DK=4,在Rt△BGK中,BG2=GK2+BK2,即(8-OG)2=OG2+42,解得,OG=3,∴G点坐标为(3,0),故答案为:(3,0).根据题意和矩形的性质得到OD=BC=6,OB=CD=8,根据勾股定理求出BD,根据折叠的性质得到OG=GK,DK=OD=6,根据勾股定理计算即可.本题考查的是翻转变换的性质、矩形的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17.【答案】平行四边【解析】解:E、F分别AB、AC的中点.沿着EF剪裁,将△AEF拼在△CDF处,即可得到平行四边形BCDE,故三角形中位线的性质,我们是借助研究平行四边形而得到的;故答案为:平行四边分别取AB,AC的中点E,F,延长EF至点D,使EF=FD,连接CD,因为两组边分别对应相等所以四边形BCDE是平行四边形主要考查了三角形中位线定理,平行四边形,解决问题的关键是对所学的知识能够灵活运用.18.【答案】①③④【解析】解:①x与y都是变量,且x是自变量,y是因变量,正确;②弹簧不挂重物时的长度为10cm,错误;③物体质量每增加1kg,弹簧长度增加0.5cm,正确;④所挂物体质量为7kg时,弹簧长度为13.5cm,正确故答案为:①③④根据给出的表格中的数据进行分析,可以确定自变量和因变量以及弹簧伸长的长度,得到答案.本题考查的是函数的表示方法,理解一次函数的表示方法是解题的关键.19.【答案】30°或150°【解析】解:如图1∠ABE=90°+60°=150°,AB=BE,∴∠AEB=15°=∠DEC,∴∠AED=30°,如图2BE=BA,∠ABE=30°,∴∠BEA =75°=∠CED ,∴∠AED =360°-75°-75°-60°=150°.故答案为 30 或 150.等边△BCE 可能在正方形内如图(1),也可在正方形外如图(2),应分情况讨论. 本题主要考查正方形的性质,解答本题的关键是进行分类讨论,此题难度不大,熟练掌 握正方形的性质即可.20.【答案】【解析】解:∵a =2,b =3,c = ∴S △ABC故答案为: 直接代入三斜求积公式可得结论.,= = = ;.本题是数学常识问题,考查了二次根式的应用、三斜求积公式的计算,熟练掌握二次根 式的运算法则是关键. 21.【答案】2 ≤m ≤4【解析】解:由“等积线段”的定义可知:当菱形的“等积线段”和边垂直时最小,此时直线 l ⊥DC ,过点 D 作 DN ⊥AB 于点 N ,则∠DAB =60°,AD =4,故 DN =AD •sin 60°=2 ,当“等积线段”为菱形的对角线时最大,则 DO =2,故 AO =2 ,即 AC =4 则 m 的取值范围是:2 ≤m ≤4 ,.故答案是:2 ≤m ≤4 .由题目所提供的材料信息可知当菱形的“等积线段”和边垂直时最小,当“等积线段” 为菱形的对角线时最大,由此可得问题答案.本题考查了菱形的性质以及勾股定理的运用,读懂题意,弄明白”等积线段”的定义, 并准确判断出最短与最长的“等积线段”是解题的关键.22.【答案】解:(1)x -5=±3,∴x =8,x =2(2)x 2-4x +4=4+1(x -2)2=5∴x =2±【解析】根据一元二次方程的解法即可求出答案本题考查一元二次方程的解法,解题的关键是熟练运用一元二次方程的解法,本题属于 基础题型.23.【答案】解:(1)设正比例函数解析式为 y =ax (a ≠0),把(1,-2)代入得-2=a ,解得 a =-2故所求解析式为 y =-2x ;(2)设一次函数解析式为 y =kx +b (k ≠0)依题意有解得,,故所求解析式为y=-2x+4.【解析】(1)利用待定系数法求正比例函数的解析式;(2)设一次函数解析式为y=kx+b(k≠0),根据一次函数图象与几何变换得到k=-2,再把(1,2)代入可得到k+b=2,然后解方程组即可.本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m .也考查了待定系数法确定函数的解析式.24.【答案】平行四边形OE= BD【解析】(1)答:平行四边形,证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO∵AE=CF,∴AO-AE=CO-CE.即EO=FO.∴四边形BEDF为平行四边形(对角线互相平分的四边形是平行四边形);(2)OE= BD,证明:∵四边形BEDF为平行四边形,∴OE=OF,OB=OD,∵OE= BD,∴BD=EF,∴四边形BEDF是矩形.(1)平行四边形;有平行四边形的性质则可知OB=OD,OA=OC,又AE=CF,所以OE=OF,然后依据对角线互相平分的四边形是平行四边形即可证明;(2)根据对角线相等的平行四边形是矩形填空即可.此题主要考查了平行四边形的判定和矩形的判定,题目难度不大,属于基础题.25.【答案】解:(1)如图所示:图2 中拼成一个梯形;(2)如图所示:在图3 中拼成一个正方形.【解析】(1)根据图形的形状进行拼接即可;(2)根据图形的形状进行拼接即可.此题主要考查了图形的剪拼,关键是掌握各种图形的性质.26.【答案】4 5 4 y=10-x【解析】解:(1)∵当点P到达点C时,△ABP的面积最大,∴△ABP的面积= ×AB×BC=4∵AB=2,∴BC=4,故答案为:4.(2)∵M为CD边的中点,AB=2,BC=4,∴x=4+1=5,此时的y= AB•BC=4,故答案为:5,4.(3)如图,当6≤x≤10时,∵AP=4-(x-6)=10-x,∴△ABP的面积= AB•AP=10-x,∴y与x之间的函数关系式是:y=10-x.故答案为:y=10-x.(4)如图2,利用6≤t≤10时,y与t之间的函数关系式是:y=10-x补全图象.(1)由图象2 看出当点P到达点C时,即x=4 时,△ABP的面积最大,根据面积公式求出BC;(2)由长方形ABCD的边长AB=2,BC=4,可求出x=BC+ AB,此时△ABP的面积是4,可从图象上看也可计算;(3)当6≤x≤10时,求出AP,再根据三角形的面积公式求出y与x之间的函数关系式;(4)根据6≤x≤10时,y与x之间的函数关系式补全图象.本题主要考查了四边形综合题及动点问题的函数图象.解题的关键是根据点P不同的位置得出y与x之间的函数关系式.27.【答案】解:(1)菱形、正方形都是满足条件的等邻边四边形(2)性质是∠BAD+∠BCD=180°;(3)证明:作DM⊥BC,DN⊥AB,垂足分别为M,N,∵BD平分∠ABC,DM⊥BC,DN⊥AB,∴DM=DN,∵∠DMB=∠DNB=90°,∴∠ABC+∠MDN=180°,∵∠ABC+∠ADC=180°,∴∠ADC=∠MDN,∴∠ADN=∠MDC,∵∠DNA=∠DMC,∴△DMC≌△DNA,∴AD=CD,∴四边形ABCD是等邻边四边形;又∵∠ABC+∠ADC=180°,∴等邻边四边形ABCD是完美等邻边四边形.【解析】(1)根据“等邻边四边形的”的定义解答;(2)根据四边形内角和为360°,可得结论;(3)作DM⊥BC,DN⊥AB,垂足分别为M,N,想办法证明△DMC≌△DNA,即可解决问题;本题考查四边形的性质、全等三角形的判定和性质、完美等邻边四边形的定义等知识,解题的关键是理解题意,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.28.【答案】解:∠AFC=90°,理由如下:连接BF,如图所示:∵矩形ABCD,∴∠ADC=∠DCB=90°,AD=BC,在Rt△CDE中,F是DE的中点,∴DF=CF=FE,∴∠1=∠2,∴∠ADC+∠1=∠DCB+∠2,即∠ADF=∠BCF,在△ADF与△BCF中,,∴△ADF≌△BCF(SAS),∴∠3=∠4,∵BE=BD,DF=FE,∴BF⊥DE,∴∠3+∠5=90°,∴∠4+∠5=90°,即∠AFC=90°.【解析】根据矩形的性质得出∠ADC=∠DCB=90°,AD=BC,然后根据中点的性质得出DF=CF=FE,然后根据角之间的关系即可得出答案.本题主要考查了矩形的性质、全等三角形的判定与性质、等腰三角形的性质、中点的性质以及角之间的关系,熟练掌握矩形的性质,证明三角形全等是解题的关键.29.【答案】解:(1)∵点P(2,2),点Q(2,4),∴PQ的中点坐标为(2,3),∵当直线C1 经过线段PQ的中点,∴3=2×2+b,∴b=-1;(2)∵C2 的解析式为y=kx+2,∴C2 恒过点(0,2),∵b=4,∴C1 的解析式为y=2x+4,当C与C平行时,图象C与C没有交点,1 2 2 3此时k=2,图象C2 绕着此图象与y轴的交点D(2,0)顺时针旋转,旋转至过点A(-2,0)时,只有一个交点,此时,k=1,旋转的过程中,图象C与C始终没有交点,2 3此时,1<k<2,即:1<k≤2时,图象C与C没有交点2 3继续顺时针旋转,旋转至CD∥AE'时,图象C与C没有交点,2 3过点F(-4,0)作EF⊥x轴交直线AB于E,则E(-4,-4),作点E的对称点E',∴E'(-4,4),∵A(-2,0),∴直线AE'的解析式为y=-2x-4,此时,k=-2,图象C与C有一个交点,2 3在此旋转的过程中,图象C与C始终有2 个交点,此时,0<k<1 或-2<k<-1,2 3再继续旋转,旋转到原来位置的过程中,图象C与C始终只有1 个交点,2 3即:C与C只有一个公共点时,k=1 或k>2 或k≤-2;2 3(3)∵一次函数y=2x+b,∴A(- ,0),B(0,b),∴OA= |b|,OB=|b|,∵一次函数y=kx+2,∴D(0,2),C(- ,0),∴OC= ,OD=2,∵OA=OD,∴|b|=2,∴b=±4,即:OA=2,OB=4,∵∠ABO=∠CDO,∠AOB=∠COD=90°,∴△AOB∽△COD,∴∴,∴k=±2.即:k=±2,b=±4【解析】(1)先确定出PQ的中点坐标,代入y=2x+b中即可得出结论;(2)先判断出图象C2 恒过点(0,2),再利用旋转即可得出结论;(3)先求出点A,B,C,D的坐标,进而利用OA=OD求出b的值,再判断出△AOB∽△COD,得出比例式求出k的值.此题是一次函数综合题,主要考查了中点坐标的求法,旋转的性质,对称点的坐标的确定,相似三角形的判定和性质,利用旋转确定出k的值是解本题的关键.八年级(下)期中数学试卷题号得分一 二 三 四 总分一、选择题(本大题共 10 小题,共 30.0 分)1. 下列各图中,是中心对称图形的是( ) A. B. C. D.2. ▱ABCD 中,∠A :∠B =1:3,则∠C 的度数为( )A. 30°B. 45°C. 60°D. 120°3. 如图,在▱ABCD 中,已知 AD =10cm ,AB =7cm ,DE 平分∠ADC 交 BC 边于点 E ,则 BE 等于( ) A. 2cm 4. 下列各组数中能作为直角三角形的三边长的是( )A. 4,5,6B. 1,1,C. 6,8,11 B. 4cm C. 3cmD. 8cmD. 5,12,235. 已知点(-4,y ),(2,y )都在直线 y =kx +b 上(k <0,b <0),则 y 、y 的大 1 2 1 2 小关系是( )A. y 1<y 2B. y 1=y 2C. y 1>y 2D. 不能比较6. 如图,矩形 ABCD 的对角线 AC ,BD 交于点 O ,AC =4cm ,∠AOD =120°,则 BC 的长为( )A. 4 cmB. 4cmC. 2 cmD. 2cm7. 把函数 y =3x +2 的图象沿着 y 轴向下平移 5 个单位,得到的函数关系式是( )A. y =-3x +3B. y =3x -3C. y =-2x +2D. y =3x -58. 下列条件中,不能判断四边形 ABCD 是平行四边形的是( )A. AB =CD ,AD ∥BCC. AB =CD ,AD =BC B. AB ∥CD ,AB =CDD. AB ∥CD ,AD ∥BC9. 如图,在 Rt △ABC 中,∠ACB =90°,若 AB =15,则正方形ADEC 和正方形 BCFG 的面积和为( )A. 225B. 200C. 250D. 15010. 如图,已知矩形 ABCD 中,R 、P 分别是 DC 、BC 上的点,E 、F 分别是 AP 、RP 的中点,当 P 在 BC 上从 B向 C 移动而 R 不动时,那么下列结论成立的是()A. 线段 EF 的长逐渐增大的长逐渐减小 B. 线段 EFC. 线段 EF 的长不改变D. 线段 EF 的长不能确定二、填空题(本大题共10 小题,共20.0 分)11.亮亮学习了一次函数的知识后,老师要求画y=2x-2 的图象,他根据所学知识只描出了两个点(0,-2)和(1,0)很快就画出了y=2x-2 的图象,那么亮亮画图的依据是______.12.在同一平面直角坐标系中,若一次函数y=-x+3 与y=3x-5 的图象交于点M,则点M的坐标为______.13.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分别找出它们的中点M、N.若测得MN=15m,则A,B两点间的距离为______ m.14.若在▱ABCD中,∠A=30°,AB=9,AD=8,则S▱ABCD=______.15.若一次函数的图象从左到右下降,并且过点(0,-3),请写出一个符合条件的一次函数解析式______.16.若一个等腰三角形的腰长为10,底边长为12,则其底边上的高为______.17.如图,在▱ABCD中,已知对角线AC和BD相交于点O,△AOB的周长为15,AB=6,那么对角线AC+BD= ______.18.已知三角形的三边分别为3、4、5.则最长边上的高为______.19.如图,正方形网格的边长为1,点A,B,C在网格的格点上,点P为BC的中点,则AP= ______ .20.如图,已知直线y=3x+b与y=ax-2 的交点的横坐标为-2,根据图象有下列3 个结论:①a>0;②b<0;③x>-2 是不等式3x+b>ax-2 的解集;④方程3x+b=ax-2 的解为x=-2.其中正确的结论是______.三、计算题(本大题共1 小题,共5.0 分)21.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
A B C
D
E
一、选择答案:(每题3分,共30分)
( )1、下列二次根式中,属于最简二次根式的是
A .
2
1
B .
8.0
C .
4
D .
5
( )2、有意义的条件是
二次根式3 x A .x>3 B. x>-3 C. x ≥-3 D.x ≥3 ( )3、正方形面积为36,则对角线的长为 A .6
B .6
2
C .9
D .92
( )4、等腰梯形的两底之差等于腰长,则腰与下底的夹角为
A. 120° B . 60° C . 45° D. 50°
( )5、下列命题中,正确的个数是
①若三条线段的比为1:1:
2,则它们组成一个等腰直角三角形;②两条对角线相等的平
行四边形是矩形;③对角线互相垂直的四边形是菱形;④有两个角相等的梯形是等腰梯形;⑤一条直线与矩形的一组对边相交,必分矩形为两个直角梯形。

A 、2个 B 、3个 C 、4个 D 、5个
( )7、如图,在□ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等

(A)1cm (B)2cm (C)3cm (D)4cm
( )8、如图,菱形ABCD 中,E 、F 分别是AB 、AC
的中点,若EF =3,则菱形ABCD 的周长是 A .12
B .16
C .20
D .24
( )9、如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿
AC 折叠,点D 落在点D’处,则重叠部分△AFC 的面积为. A .6
B .8
C .10
D .12
( )10、如图,正方形ABCD 中,AE =AB ,直线DE 交
BC 于点F ,则∠BEF = A .45°
B .30°
C .60°
D .55°
二、填空:(每题2分,共20分) 11、
ABCD 中一条对角线分∠A 为35°和45°,则∠B= __ 度。

F
E C
A
A
B
C
D
F D ’
F
B
A C
E
C
1 m ,当它把绳子的下端拉开5m 后,
那么这个菱形的周长是 cm,面积是 cm 2
. _______。

的中点,则线段CD 的长为 ; AC 于F 。

且AD 交EF 于O ,则∠AOF= 度.
题)
上的动点,则PE 和PC 的长度之和最小是
20、 ===请你找出 其中规律,并将第n (n ≥1)个等式写出来 .
三、 解答题:(共50分)
(3分) 21、
)227(328--+ (3分) 22.
5
2
32232⨯÷
23、(6分) 如图,已知□ABCD 中,AE 平分∠BAD ,CF 平分∠BCD ,分别交BC 、AD 于E 、F . 求证:
AF=EC
24、已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H 形EFGH (即四边形ABCD 的中点四边形).
(1分)(1)四边形EFGH (3分)证明你的结论. 证明:
(1分)(2)当四边形ABCD 的对角线满足 条件时,四边形EFGH 是矩形; (1分)(3
(5分)25、某港口位于东西方向的海岸线上。

“远航” F
班级 姓名
3
方向航行,“远航” 号每小时航行16海里,“海天”号每小时航行12海里。

它们离开港口一个半小时后相距30海里。

如果知道“远航” 号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
26、(3分)现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形.要求:在图①中画出分割线并在图②正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.
27、(6分)已知:如图,ABC ∆中,︒=∠90ACB ,点D 、E 分别是AC 、AB 的中点,点F 在BC 的延长线上,且A CDF ∠=∠. 求证:四边形DECF 是平行四边形. 证明:
30、梯形ABCD ,AD ∥BC ,∠A=90°AB=8cm ,AD=24cm ,BC=26cm 点,点P 从A 出发沿线段AD 的方向以1cm/s
的速度运动;点Q 从C 出发沿线段CB 的方向以3cm/s 的速度运动,点P 、Q 分别从A 、C 同时出发,当点P 运动到点D 时,点Q 随之停止运动.设运动时间为t (秒).
(3分)(1)设四边形PQCD 的面积为S ,写出S 与t 之间的函数关系(注明自变量的取值范围); 解:
(3分)(2)当t 为何值时,四边形PQCD 为等腰梯形?
附加题:(本题满分5分,可计入总分,但试卷满分不超过100分) (1)在图1,2,3中,给出平行四边形
ABCD 的顶点A B D ,,的坐标(如图所示)
,写出图1,2,3中的顶点C 的坐标,它们分别是(52),
,( , ),( ,______)
x
图1
x
图2
x
图3
Q
C
图①
图②
)f
x
(2)在图4中,给出平行四边形
ABCD 的顶点A B D ,,的坐标(如图所示)
,求出顶点C 的坐标( , )(C 点坐标用含a b c d e f ,,,,,的代数式表示)归纳与发现 (3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角
坐标系中哪个位置,当其顶点坐标为
()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四
个顶点的横坐标a c m e ,,,之间的等量关系为 ; 纵坐标b d n f ,,,之间的等量关系为 (不必证明)。

初二数学答案
一、 选择答案:(每题3分,共30分) 二、填空:(每题2分,共20分)
11、100 12、24 13、12 14、24 15、
5
16、
226
17、90 18、2 19、
13
20、
2
1
)1(21++=++
n n n n
三、 解答题:(共50分)
(3分) 21、
)227(328--+ (3分) 22.
52
32232⨯÷
=2333222+-+ =
5
28332⨯⨯
=323- =
10
1
=
10
10
(6分)23、证明:由⊿ABE ≌⊿CDF ,得BE=DF 。

∵□ABCD ∴AD=BC ∴AF=EC (5分)24、(1)平行四边形 证明:连结BD
∵E 、H 分别是AB 、AD 中点
5

EH ∥BD ,EH=BD 21
同理FG ∥BD ,FG=BD 2
1
EH ∥FG,EF=EG
四边形EFGH 是平行四边形。

(2)互相垂直 。

(3)菱形。

(5分)25、(图略)由题知OA=16×1.5=24,OB=12×1.5=18,AB=30。

∵AB 2
=OA 2
+OB

∴∠AOB=90°
∵∠1=45° ∴ ∠2=45° ∴海天号沿西北方向航行。

(3分)26、
(6分)27、证明: ∵D 、E 分别是AC 、AB ∴DE ∥CB。

即DE ∥CF
∴在Rt ⊿ABC 中,∠ACB=90º ∵E 是AB 中点 ∴AE=BE=CE ∴∠A=∠ACE ∵∠A=∠CDF ∴∠ACE=∠CDF ∴DF ∥CE ∵DE ∥CF
∴四边形DECF 是平行四边形. 29、(3分)(1)由题知AD=24,BC=26,AB=8,AP=t,CQ =3t,
BQ=BC-CQ=26-3t
S四边形PQCD =S梯形ABCD -S梯形ABQP =200-104+8t=8t+96(0<t ≤
3
26
) (3分)(2)QC=PD+2(BC-AD)
3t=24-t+4 t=7 附加题:
(1)(c+e,d),(c+e-a,d) (2)(c+e-a,d+f-b) (3)c+e=a+m,b+n=d+f
图① 图② B。

相关文档
最新文档