线性代数第三章自测题

合集下载

线性代数习题答案第三章

线性代数习题答案第三章
所以当10时 方程组无解. 要使方程组有无穷多解 必须R(A)R(B)3 即必须 (1)(10)0且(1)(4)0
所以当1时 方程组有无穷多解此时,增广矩阵为
B~ 方程组的解为
或 (k1 k2为任意常数) 18 证明R(A)1的充分必要条件是存在非零列向量a及非零行向量bT
使T 证明 必要性 由R(A)1知A的标准形为
3 试利用矩阵的初等变换 求下列方阵的逆矩阵
(1) 解~ ~~ ~ 故逆矩阵为 (2)
解 ~ ~ ~ ~ ~
故逆矩阵为 4 (1)设 求X使AXB 解 因为
所以 (2)设 求X使XAB 解 考虑ATXTBT 因为
所以 从而
5 设 AX 2XA 求X 解 原方程化为(A2E)X A 因为
所以 6 在秩是r 的矩阵中,有没有等于0的r1阶子式? 有没有等于0的r阶子式? 解 在秩是r的矩阵中 可能存在等于0的r1阶子式 也可能存在等于0的r
第三章 矩阵的初等变换与线性方程组
1 把下列矩阵化为行最简形矩阵 (1) 解 (下一步 r2(2)r1 r3(3)r1 )
~(下一步 r2(1) r3(2) ) ~(下一步 r3r2 ) ~(下一步 r33 ) ~(下一步 r23r3 ) ~(下一步 r1(2)r2 r1r3 ) ~ (2) 解 (下一步 r22(3)r1 r3(2)r1 ) ~(下一步 r3r2 r13r2 ) ~(下一步 r12 ) ~ (3) 解 (下一步 r23r1 r32r1 r43r1 ) ~(下一步 r2(4) r3(3) r4(5) ) ~(下一步 r13r2 r3r2 r4r2 ) ~ (4) 解 (下一步 r12r2 r33r2 r42r2 ) ~(下一步 r22r1 r38r1 r47r1 ) ~(下一步 r1r2 r2(1) r4r3 ) ~(下一步 r2r3 ) ~ 2 设 求A 解 是初等矩阵E(1 2) 其逆矩阵就是其本身 是初等矩阵E(1 2(1)) 其逆矩阵是 E(1 2(1))

线性代数练习册第三章部分答案(本)

线性代数练习册第三章部分答案(本)

线性代数练习册第三章部分答案(本)第三章⾏列式及其应⽤§3-1 ⾏列式的定义⼀、填空题。

1、⾏列式a bc d=__ad bc -___;112213141---=____-24____. 2、⾏列式111112121200000a a a ab bc cd d =______0_____. 3、已知⾏列式1111111111111111D -=-----,则32M =___4__;32A =___-4__. 4、已知排列2145697m n 为奇排列,则m =__8_;n =__3_. 5、4阶⾏列式中含1331a a 且符号为负的项是____13223144a a a a -____.⼆、选择题。

1、⽅程0110001x x x=的实根为__C___. (A )0; (B )1; (C )-1; (D )2.(A )18; (B )19; (C )20; (D )21 4、n 阶⾏列式00102000D n = 的值为__D ___.(A )!n ; (B )!n -; (C )(1)!nn -; (D )(1)2(1)!n n n --.5、⾏列式312111321111x x x x x--中4x 的系数为__A____.(A )-1; (B )1; (C )2; (D )3.三、计算下列⾏列式1、12110001- 解:3331212110(1)(1)111001r +--=-按展开2、1010120012301234解:44432101010112004(1)120123012312341014120243、1132101123011002-- 解:414113211310111013223012303100210001300133033c c --------=--按r 展开四、设排列12n a a a 的逆序数为k ,证明排列11n n a a a - 的逆序数为(1)2n n k --. 证明:设i a 在排列12n a a a 的逆序数为i k ,则12n k k k k +++= ,且i a 在排列11n n a a a - 的逆序数为i t ,则i i i k t n a +=-,所以,i i i t n a k =--,所以,排列11n n a a a - 的逆序数为12112122122(1)()()2n n n n n n a k n n n t t t n a k n a k a a k k a k k ---=--+++=--+--++++++++=-(另解:因为12n a a a 中的任两个不同的元素,i j a a 必在排列12n a a a或排列11n n a a a - 中构成逆序且只能在其中⼀个中构成逆序,所以排列12n a a a 和11n n a a a - 的逆序数之和等于从n 个元素中任取两个不同数的组合数kn C ,即11n n a a a - 的逆序数为(1)§3-2 ⾏列式的性质与计算⼀、填空题。

线性代数第三章习题及答案

线性代数第三章习题及答案

习 题 3-11.设)1,0,2(-=α,)4,2,1(-=β,求32-αβ.解:)11,4,8()8,4,2()3,0,6()4,2,1(2)1,0,2(323--=---=---=-βα 2.设)4,3,2,1(=α,)3,4,1,2(=β,且324+=αγβ,求γ. 解:由324+=αγβ得αβγ232-= 所以)0,27,1,25()6,29,3,23()6,8,2,4()4,3,2,1(23)3,4,1,2(2-=-=-=γ。

3.试问下列向量β能否由其余向量线性表示,若能,写出线性表示式:(1))1,2(-=β,)1,1(1=α,)4,2(2-=α;(2))1,1(-=β,)1,1(1=α,)1,0(2=α,)0,1(3=α; (3))1,1,1(=β,)1,1,0(1-=α,)2,0,1(2=α,)0,1,1(3=α;(4))1,2,1(-=β,)2,0,1(1=α,)0,8,2(2-=α,0α(5)),,,(4321k k k k =β,)0,0,0,1(1=e ,)0,0,1,0(2=e ,)0,1,0,0(3=e ,)1,0,0,0(4=e . 解:(1)设2211ααβx x +=,即)4,2()4,2()1,1()1,2(212121x x x x x x -+=-+=-从而⎩⎨⎧-=-=+14222121x x x x ,解得⎪⎩⎪⎨⎧==21121x x所以β能由21,αα线性表示,表示式为2121ααβ+=。

(2)设332211αααβx x x ++=,即),()0,1()1,0()1,1()1,1(2131321x x x x x x x ++=++=-从而⎩⎨⎧-=+=+112131x x x x ,有无穷解⎪⎩⎪⎨⎧-=--==cx c x cx 11321所以β能由321,,ααα线性表示,表示式不唯一,为321)1()1(αααβc c c -+--+= (c 为任意常数)(3)设332211αααβx x x ++=即)2,,()0,1,1()2,0,1()1,1,0()1,1,1(213132321x x x x x x x x x +-++=++-=从而⎪⎩⎪⎨⎧=+-=+=+1211213132x x x x x x ,因为010********≠=-,所以有唯一解,解为⎪⎩⎪⎨⎧===011321x x x所以β能由321,,ααα线性表示,且表示式为3210αααβ⋅++=(4)设2211ααβx x +=,即)2,8,2()0,8,2()2,0,1()1,2,1(222121x x x x x x -+=-+=-从而⎪⎩⎪⎨⎧-==-=+1228121221x x x x ,由②,③式得211-=x ,412-=x 代入①式11)41(221≠-=-⋅+-所以该方程组无解, 即β不能由21,αα线性表示。

线代第3章习题答案

线代第3章习题答案

第3章1. 34(30,10,20,16)γαβ=-=---.2. (1) 能,唯一一种表示:12323βααα=--. (2) 不能.(3) 能,很多种表示:123(21)(35)c c c βααα=-+-++,c 为任意常数. 3. 证明略,唯一表达式为:12123234344()()()b b b b b b b βαααα=-+-+-+. 4. (1) 线性无关. (2) 线性相关.(3) 线性相关,因为4个向量,每个向量维数3维. (4) 若a ,b ,c 均不相等,线性无关,否则线性相关. 5. (1) 线性无关 (2) 线性无关 (3) 线性相关.6. 解:设112223334441()()()()0k k k k αααααααα+++++++=,整理可得141122233344()()()()0k k k k k k k k αααα+++++++=,因为已知1234,,,αααα是线性无关的,故有 141223340,0,0,0,k k k k k k k k +=⎧⎪+=⎪⎨+=⎪⎪+=⎩系数矩阵1001100111000101011000110011000A ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则()3r A =. 故12233441,,,αααααααα++++是线性相关的.7. 证:因为任意1n +个n 维向量必线性相关,故12,,,,n αααβ 线性相关,存在 不全为零的1n +个数121,,,n k k k + ,使得112210n n n k k k k αααβ+++++= . 若10n k +=,12,,,n ααα 线性相关,矛盾.所以10n k +≠,β可由12,,,n ααα 线 性表出.下证表达式唯一,类似于定理3.5的证明.8. 证:(反证法即得).假设1234,,,k k k k 不全为零,其中某个为零,其他的不为零.不妨假设10k =,则2233440k k k ααα++=,其中234,,k k k 均不为零,则可推出 234,,ααα是线性相关的,这与已知任意三个向量都线性无关矛盾,故假设不成 立.由假设的任意性可知112233440k k k k αααα+++=,其中1234,,,k k k k 全不为 零.9. 证:设前一向量组的秩为r ,则显然r s ≤,又后一组的秩也为r ,则有1r s s ≤<+,故后一向量组是线性相关的.若r s =,则前一组是线性无关 的,后一组是线性相关的,则由定理3.5知,β可由1α,2α, ,s α线性表出, 且表达式唯一.若r s <,则两组均是线性相关的,且两个向量组的秩是相等 的,也可推出β可由1α,2α, ,s α线性表出. 10. 证:因为12,,n εεε 能由12,,n a a a 线性表示, 所以 1212(,,,)(,,,)n n r r a a a εεε≤ ,而12(,,,)n r n εεε= ,12(,,,)n r a a a n ≤ ,所以12(,,,)n r a a a n = ,从而 12,,n a a a 线性无关.11. 证:因为任一向量β可由12,,,s ααα 线性表出,故n 维基本向量组12,,s εεε能由12,,,s ααα 线性表出,又知12,,,s ααα 可由基本向量组12,,s εεε 表出,故12,,,s ααα 与12,,s εεε 等价,所以12,,,s ααα 的秩为s ,即 12,,,s ααα 线性无关.12. 证:由于123,,ααα线性无关,而1234,,,αααα线性相关,故一定存在123,,k k k , 使得4112233k k k αααα=++.若其中某个i k 不为零,假定10k ≠,则1422331()/k k k αααα=--,知423,,ααα也是极大线性无关组,唯一性矛盾. 故一定有1230k k k ===,即40α=.13. 证:必要性.若12,,,s βββ 线性无关,则12,(,,)s r s βββ= ,又因为 12,12(,,)min{(),(,,,)}s s r r A r βββααα≤ ,而12(,,,)s r s ααα= ,故12,(,,)()s r s r A βββ=≤ ,又因为()r A s ≤,则一定有()r A s =,即矩阵A 可 逆.充分性,若矩阵A 可逆,则在等式两边左乘1A -,然后根据矩阵秩的不等 式可得11212,(,,,)min{(),(,,)}s s r r A r αααβββ-≤ ,显然有112(,,,)()s r s r A s ααα-=≤= ,可推出1212,(,,,)(,,)s s r s r αααβββ=≤ , 又12,(,,)s r s βββ≤ ,故只能12,(,,)s r s βββ= ,即12,,,s βββ 线性无关. 14. 证:因为向量组12,,,s ααα 的秩为1r ,则其中有1r 个线性无关的向量,设为 112,,,r c c c .向量组12,,,t βββ 的秩为2r ,则其中有2r 个线性无关的向量,设 为212,,,r d d d .则向量组1212,,,,,,s t αααβββ 中线性无关的向量一定在 121212,,,,,,r r c c c d d d 中选取,所以312r r r ≤+. 15. 定义即得.16. (例题)12(,,,)s r r ααα= ,且12,,,r i i i ααα 为其中r 个线性无关的向量.设 k α是向量组中任意一个向量,则12,,,,r i i i k αααα 线性相关,否则向量组的 秩会大于r .所以,由定理3.5,k α可由12,,,r i i i ααα 线性表出,故 12,,,r i i i ααα 为向量组的一个极大线性无关组.17. (1) 11311322601003000004000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,故123()(,,)2r A r ααα==, 1α 2α 3α故一个极大线性无关组是1α,2α.(2) 24611231123100013691000012310000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥---⎢⎥⎢⎥⎣⎦⎣⎦,1234()(,,,)2r A r αααα==, 故一个极大线性无关组是1α,4α.(3) 12341234234501233456000045670000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,1234()(,,,)2r A r αααα==, 故一个极大线性无关组是1α,2α.18. (1) 11511151112302743181000013970000A ----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦,于是得阶梯形方程组 123423450,2740,x x x x x x x ⎧-+-=⎨-+=⎩方程组的一般解为:34343432722x x x x X x x ⎡⎤--⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 可得方程组的一个基础解系为:137,,1,022Tη⎡⎤=-⎢⎥⎣⎦,[]21,2,0,1T η=--.通解为1122X k k ηη=+,1k ,2k 为常数.(3) 212112133112054736290010A ---⎡⎤⎡⎤⎢⎥⎢⎥=--→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,于是得阶梯形方程组12342343230,5470,0,x x x x x x x x ---=⎧⎪++=⎨⎪-=⎩方程组的一般解为44417,,0,55TX x x x ⎡⎤=-⎢⎥⎣⎦,可得方程组的一个基础解系:117,,0,155Tη⎡⎤=-⎢⎥⎣⎦,通解为11X k η=.(4) 方程组本身即为一个阶梯形方程组,其一般解为:()23423413,,,4TX x x x x x x ⎡⎤=-+-⎢⎥⎣⎦,可得方程组的一个基础解系:11,1,0,04Tη⎡⎤=-⎢⎥⎣⎦,23,0,1,04Tη⎡⎤=⎢⎥⎣⎦,31,0,0,14Tη⎡⎤=-⎢⎥⎣⎦.通解为112233X k k k ηηη=++,1k ,2k ,3k 为常数.19. 证:首先由定理3.9知AX O =的基础解系含有n r -个线性无关的解向量.设 12,,,r ηηη 是AX O =的任意n r -个线性无关的解向量,要证12,,,r ηηη 是 AX O =的基础解系,只需证AX O =的任一解向量β都可由12,,,r ηηη 线性 表出.事实上,12,,,,r ηηηβ 必线性相关(否则AX O =的基础解系至少含有 1n r -+个线性无关的解向量,与已知矛盾),所以β都可由12,,,r ηηη 线性 表出,故12,,,r ηηη 是AX O =的基础解系.20. 证:假定一个基础解系为12,,s ηηη ,向量组12,,,s βββ 与其等价,故也含 有s 个向量.已知向量组12,,,s βββ 满足线性无关性,又因为每一个解向量 都可以由12,,s ηηη 线性表出,而12,,s ηηη 和12,,,s βββ 是等价向量组, 根据线性表出的传递性,每个解向量都可以由12,,,s βββ 线性表出,故 12,,,s βββ 也是一个基础解系.21. 证:先证122331,,ηηηηηη+++线性无关.设存在123,,k k k ,使得 112223331()()()0k k k ηηηηηη+++++=,即131122233()()()0k k k k k k ηηη+++++=,又因为123,,ηηη线性无关,则1312230,0,0,k k k k k k +=⎧⎪+=⎨⎪+=⎩ 可得只能1230k k k ===,即122331,,ηηηηηη+++线性无关.由于112223331()()()X k k k ηηηηηη=+++++ 131122233()()()k k k k k k ηηη=+++++,可知任意一个向量都可由122331,,ηηηηηη+++线性表出, 即122331,,ηηηηηη+++也是AX O =的一个基础解系.22. 证:(1)反证法,若12,γγ线性相关,则12,γγ一定成倍数关系,不妨令12k γγ=. 又因为12γγ≠,故1k ≠.由于12γγ-为齐次线性方程组AX O =的解,并且 122(1)k γγγ-=-,所以有22(1)(1)A k k A O γγ-=-=,而1k ≠,则有2A O γ=, 这与2A γβ=矛盾,所以假设不成立,即12,γγ线性无关.(2)若()1r A n =-,则齐次线性方程组AX O =的基础解系中只有一个解向 量,又12()A O γγββ-=-=,故112()k γγ-即为基础解系,其中1k 为某个非 零常数,又已知η是齐次线性方程组AX O =的解,则一定有2112()k k ηγγ=-, 即说明12,,ηγγ是线性相关的.23. (1)[]27316121123522401151109417200000A β---⎡⎤⎡⎤⎢⎥⎢⎥=→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,于是得阶梯形方程组:123423422,11510,x x x x x x x --+=-⎧⎨+-=⎩取3x ,4x 为自由变量,则方程组一般解为:()()3434341129,105,,1111TX x x x x x x ⎡⎤=-+--+⎢⎥⎣⎦,可得一个特解为:0210,,0,01111Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:115,,1,01111Tη⎡⎤=-⎢⎥⎣⎦,291,,0,11111Tη⎡⎤=-⎢⎥⎣⎦.则方程组的通解为:01122122191111111051111111010001X k k k k ηηη⎡⎤⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-=++=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中1k ,2k 为常数. (2) []15231115231131425021131901170091475361100000A β----⎡⎤⎡⎤⎢⎥⎢⎥-----⎢⎥⎢⎥=→⎢⎥⎢⎥----⎢⎥⎢⎥--⎣⎦⎣⎦, 于是得阶梯形方程组:12342343452311,23,9147,x x x x x x x x x -+-=⎧⎪--+=⎨⎪-=⎩取4x 为自由变量,可得方程组一般解为:()444431751,,714,29189TX x x x x ⎡⎤=---+⎢⎥⎣⎦,可得一个特解为:01770,,,099Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:13514,,,12189T η⎡⎤=--⎢⎥⎣⎦.则方程组的通解为:011X k ηη=+,其中1k 为常数.(3) []211331321451010407551132121000152A β---⎡⎤⎡⎤⎢⎥⎢⎥=--→-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦,于是得阶梯形方程组:12342344324,75511,152,x x x x x x x x -+-+=⎧⎪-+=⎨⎪-=⎩取3x 为自由变量,可得方程组一般解为:333131552,,,1573715TX x x x ⎡⎤=++-⎢⎥⎣⎦,可得一个特解为:01352,,0,15315Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:115,,1,077Tη⎡⎤=⎢⎥⎣⎦.则方程组的通解为:011X k ηη=+,其中1k 为常数. (4) 方程组本身即为一个阶梯形方程组,其一般解为: []2345234544236,,,,TX x x x x x x x x =+-+-, 可得一个特解为:[]04,0,0,0,0Tη=, 一个基础解系:[]14,1,0,0,0Tη=,[]22,0,1,0,0Tη=-,[]33,0,0,1,0Tη=,[]46,0,0,0,1Tη=- 通解为011223344X k k k k ηηηηη=++++,1k ,2k ,3k ,4k 为常数.24. 解:[]2211230112302325012112020000A βλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥=-→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 当20λλ-=,即0λ=或1λ=时有解. 当20λλ-≠,即0λ≠且1λ≠时无解.若有解,得阶梯形方程组:1234234230,2,x x x x x x x λ+-+=⎧⎨+-=⎩取3x ,4x 为自由变量,则方程组一般解为: []34343444,2,,TX x x x x x x λλ=-+--+, 可得一个特解为:[]0,,0,0Tηλλ=-,一个基础解系为:[]14,2,1,0Tη=-,[]24,1,0,1Tη=-. 则方程组的通解为:01122X k k ηηη=++,其中1k ,2k 为常数,0λ=或1λ=.25. 解:[]11321113211316301121151010001053115230002226A b b a a b β⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥--+⎢⎥⎢⎥---+--⎣⎦⎣⎦,若220a -+=且260b --≠时,即1a =且3b ≠-时,无解. 若1a ≠时,有唯一解为:263420,6,5,11Tb b X b b b a a ++⎡⎤=--+-+⎢⎥--⎣⎦. 若1a =且3b =-时,有无穷多解.此时阶梯形方程组为:12342343321,21,2,x x x x x x x x +++=⎧⎪-+=⎨⎪=⎩取4x 为自由变量,可得方程组一般解为: []448,32,2,TX x x =--, 可得一个特解为:[]08,3,2,0Tη=-, 一个基础解系为:[]10,2,0,1T η=-.则方程组的通解为:011X k ηη=+,其中1k 为常数 26. 证法1:单位矩阵E 的每一列都是AX O =的解,故A AE O ==. 证法2:假设A O ≠,则()0r A r =≠,所以AX O =只有n r -个线性无关的解, 显然矛盾.27.证:已知齐次线性方程组AX O =的系数矩阵的秩为()r r n <,则AX O =的基 础解系中含有n r -个线性无关的解向量.反证法假设12(,,,)t r n r ααα>- , 则其中有大于n r -个线性无关的解向量,并且其中每个解向量都可由这 12(,,,)t r ααα 个解向量线性表出,这说明AX O =的基础解系中含有大于 n r -个线性无关的解向量,这与已知矛盾,故假设不成立.则 12(,,,)t r n r ααα≤-28.证:(1)AX O =的基础解系中含有()n r A -个线性无关的解向量,BX O =的基 础解系中含有()n r B -个线性无关的解向量.若AX O =的解均为BX O =的解,即有()()n r A n r B -≤-,故()()r A r B ≥.(2)若AX O =与BX O =同解,通过(1)的结论,基础解系中含有相同个数的 线性无关的解向量,则()()n r A n r B -=-,故()()r A r B =. (3)略.(4)不能.只能说基础解系中含有相同个数的线性无关的解向量,但这些解向 量不一定相等.。

线性代数同步练习册第三章(20题,15页)

线性代数同步练习册第三章(20题,15页)

第三章向量组及其相关性1、求下列方程组的一般解.(1)1341234123420320 2530 x x xx x x xx x x x+-=⎧⎪-+-+=⎨⎪-+-=⎩(2)123123123252323214612x x xx x xx x x-+=-⎧⎪+-=⎨⎪-+-=⎩2、试将(4,11,3)Tβ=表示为12(1,3,2),(3,2,1),T Tαα==3(2,5,1)Tα=--的线性组合.3、试将(1,2,1,1)Tβ=表示为12(1,1,1,1),(1,1,1,1),T Tαα==--34(1,1,1,1),(1,1,1,1)T Tαα=--=--的线性组合.4、已知123(1,1,0),(2,0,1),(2,5,),T T T t ααα===试问t 为何值时3α可由12,αα线性表示.5、选择题(1) 已知向量组1234,,,αααα线性无关,则下列向量组中线性无关的是(C )(A )12233441,,,αααααααα++++; (B )12233441,,,αααααααα----; (C )12233441,,,αααααααα+++-; (D )12233441,,,αααααααα++--.(2) 若,,αβγ线性无关,,,αβδ线性相关,则(D )(A )α必可由,,βγδ线性表示; (B )β必不可由,,αγδ线性表示; (C )δ必不可由,,αβγ线性表示; (D )δ必可由,,αβγ线性表示.(3) n 维向量组12,,,(3)m m n ααα≤≤线性无关的充分必要条件是(D )(A )存在一组不全为零的数12,,,m k k k ,使11220m m k k k ααα+++≠;(B )12,,,m ααα中任意两个向量线性无关;(C )12,,,m ααα中存在一个向量,它不能由其余向量线性表示; (D )12,,,m ααα中任意一个向量都不能由其余向量线性表示.(4)向量组123,,ααα线性无关,112223,,βααβαα=-=-331t βλαα=-也线性无关,则,t λ满足(B )();();()1;()2A t B t C t D t λλλλ=≠==≠.6、求下列向量组的一个极大线性无关组,并将其余向量用此极大线性无关组线性表示.(1)12(1,2,3,0),(1,2,0,3),T T αα==--3(2,4,6,0),T α=45(1,2,1,0),(0,0,1,1)T T αα=--=.(2)123(1,1,2,4),(0,3,1,2),(1,1,2,0),T T T ααα=-==-45(3,0,7,14),(2,1,5,6)T T αα==.(3) 123(1,4,2),(1,2,4),(2,5,1),T T T ααα=-=-=-45(4,5,2),(5,4,4)T T αα=-=-.(4)12(1,3,5,1),(2,1,3,4),T T αα=-=--3(5,1,1,7),T α=-4(3,3,1,1)T α=--.(5)12(1,0,2,3,4),(7,1,0,1,3),T T αα=-=-3(1,4,9,6,22),T α=-- 4(6,4,1,9,2)T α=.7、已知向量组123,,ααα线性无关,试证向量组1223,αα+23134,5αααα++亦线性无关.8、向量组12,,,s ααα线性无关,112,βαα=+223,,βαα=+1s s βαα=+,试讨论向量组12,,,s βββ的线性相关性.9、设n 维向量123,,ααα线性相关,且满足123230ααα-+=. 试说明对于任意的n 维向量β,参数123,,λλλ满足什么条件时,向量组112233,,αλβαλβαλβ+++线性相关.10、已知向量组12,,,s ααα线性无关,矩阵A 可逆.求证向量组12,,,s A A A ααα线性无关.11、已知向量组123(1,3,0,5),(1,2,1,4),(1,1,2,3),T T T ααα===4(1,3,6,1)T α=--5(1,,3,)T a b α=的秩为2. 试求b a ,的值,并求向量组的一个极大线性无关组,且将其余向量用该极大线性无关组线性表示.12、已知矩阵11313134,1598A --⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭求()r A .13、矩阵21837230753258010320A ⎛⎫⎪--⎪= ⎪-⎪⎝⎭,求矩阵A 的秩并写出A 的一个最高阶非零子式.14、a 取何值时,矩阵23653014114589A a --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭的秩是2.15、已知4R 的两组基123{,,}ααα与123{,,}βββ,且123{,,}ααα到123{,,}βββ的过渡矩阵为211112113⎛⎫ ⎪-- ⎪ ⎪⎝⎭,向量α在基123{,,}ααα下的坐标为(1,1,3)T. 试求α在基123{,,}βββ下的坐标.16、已知向量空间4R 的两组基: ( I ) 1234(1,1,0,0),(1,2,0,0),(0,0,1,1),(0,0,1,2)αααα==== ( II )1234(2,1,0,0),(3,1,0,0),(0,0,2,3),(0,0,1,2)ββββ====(1) 求由基( I )到基( II )的过渡矩阵;(2) 求向量12342αββββ=++-在基( I )下的坐标.17、已知向量组123(1,1,0,0),(0,0,1,1),(1,0,0,4),T T T ααα===4(0,0,0,2)T α=是R 4的一组基, 设12(1,0,0,0),(0,1,0,0),T T εε==34(0,0,1,0),(0,0,0,1)T T εε==为自然基. 试求由基1234,,,αααα到基1234,,,εεεε的过渡矩阵,并求3ε在基1234,,,αααα下的坐标.18、设123,,ααα是3R 的一组标准正交基,且112321233123122212221,,333333333βαααβαααβααα=+-=++=--(1)证明123,,βββ也是3R 的一组标准正交基;(2)证明基123,,ααα到基123,,βββ的过渡矩阵为正交矩阵; (3)求向量1232αααα=+-在基123,,βββ下的坐标.19、设(1,1,1)T α=,(1,2,2)T β= (1) 求一个与,αβ都正交的非零向量γ;(2) 利用施密特正交化方法,把向量组{},,αβγ化为标准正交基20、设βααα,,,321均为n 维非零列向量,且321,,ααα线性无关,β与321,,ααα分别正交,试问321,,ααα,β是否线性无关?并给出证明.第三章 向量组及其相关性 自测题一、判断题:( ) 1、如果两个向量组的秩相等,那么它们必然是等价向量组. ( ) 2、若向量组123,,ααα线性无关,124,,ααα线性相关,则4α必可由123,,ααα线性表示. ( ) 3、设12,,,n ααα是一组n 维向量且n 维单位向量12,,,n εεε可被它们线性表出,那么12,,,n ααα线性无关.( ) 4、设123...,r βααα=+++ 213...,,r βααα=+++⋅⋅⋅ 121...r r βααα-=+++,那么1212{,,}{,,}r r r r βββααα⋅⋅⋅≤⋅⋅⋅.( ) 5、设1123(,,),T a a a α=2123(,,),T b b b α=3123(,,),T c c c α=则三条直线0i i i a x b y c ++=,22(0,1,2,3)i i a b i +≠=交于一点的充要条件是123,,ααα线性相关且12,αα线性无关.( ) 6、如果一个向量组线性无关,那么它的任何一个非空的部分组也线性无关.( ) 7、m n >是n 维向量组12m ,,ααα线性相关的必要条件.( ) 8、若123,,ααα线性无关,则122331,,αααααα+++线性无关. ( ) 9、正交的向量组必定不含零向量.( ) 10、如果A 是n 阶矩阵且0A =,则A 的每一个行向量都是其余各行向量的线性组合. 二、填空题1、设(2,1,5)Tα=-,(1,1,1)Tβ=-,则αβ+= ,32αβ-= .2、设1(1,1,1)Tα=,2(1,2,3)Tα=,3(1,3,)Tt α=,则当=t 时它们线性相关.3、设123(,1,1),(0,2,3),(1,2,1)T T T k ααα===, 则当k 时,123,,ααα线性无关.4、已知向量组123(1,2,3,4),(2,3,4,5),(3,4,5,6),T T T ααα===4(4,5,6,7)T α=,则该向量组的秩是 .5、若⎪⎪⎪⎭⎫ ⎝⎛=t A 31322101,且()3r A =,则 .6、设13014221x A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,()2r A =,则x = . 7、设三阶方阵 ()()1212,,,,2,3A B αγγβγγ==- , 其中αβγγ,,,12 均是三维列向量且1,33A B =-=, 则A B += .8、设12312,,,,αααββ均为4维列向量, 且矩阵1231(,,,)A αααβ=,1223(,,,)B ααβα=, 32112(,,,)C αααββ=+,如果||,||A a B b ==,则行列式||C = .9、已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=11334221t A 的列向量线性相关,则=t .10、设矩阵0100001000010000⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭A ,则3A 的秩为 11、若A 为n 阶可逆矩阵,则()r A *= .12、设123,,a a a 是3维向量空间3R 的一组基,则由基12311,,23a a a 到基122331,,+++a a a a a a 的过渡矩阵为13、在3R 中,向量(1,2,2),(1,0,1)T T αβ==-的夹角是 ,αβ-= .14、设向量4(1,1,0,1),(1,2,2,0),TTR αβ=--=-∈那么向量,αβ的夹角为 .15、已知(1,2,3),(5,1,),T Tk αβ=--= 那么k = 时,向量α与β正交.16、从2R 的基12(1,0),(1,1),T Tαα==-到基12(1,1),(1,2)T T ββ==的过渡矩阵为 .17、(2,0,0)T β=在基1(1,1,0)T α=,2(1,0,1)T α=,3(0,1,1)T α=下的坐标是 .18、设向量(1,,)Ta b α=与向量12(2,2,2),(3,1,3)T T αα==都正交,则a =_ _,b = .19、设a b A c d ⎛⎫= ⎪⎝⎭是正交阵,则=+bd ac .20、设A 是正交矩阵,j α是A 的第j 列,则j α与j α的内积等于 .三、求向量组1234(2,1,3,1),(3,1,2,0),(1,3,4,2),(4,3,1,1)T T T Tαααα=-=-=-=-的一个极大无关组,并将其余向量用此极大无关组线性表示.四、求矩阵11221511061λλ-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A 的秩.五、已知向量组123(1,1,1,3),(1,3,5,1),(2,6,10,)T T T a ααα==--=-- ,4(4,1,6,10)T a α=+ 线性相关. 试求a 的值并确定该向量组的一个极大线性无关组.六、已知123(1,2,1),(,1,10),(1,,6),(2,5,1)T T T T ααλαλβ==-=--= ,试分析λ的取值情况使得(1)β可由123,,ααα线性表出,表示方式唯一; (2)β可由123,,ααα线性表出,表示方式不唯一; (3)β不能由123,,ααα线性表出.七、试利用施密特正交化方法,把向量组()10,1,1T α=,()21,0,1Tα=,()31,1,0Tα=化为标准正交基.八、设11232123,2,βαααβααα=++=++312323,βααα=++如果321,,ααα线性无关,证明:321,,βββ也线性无关.。

线性代数 第三章自测题参考答案

线性代数 第三章自测题参考答案

自测题(三)参考答案与提示一、(1) ;2−n (2) 方程组的未知量个数为3,由基础解系所含向量个数与系数矩阵的秩的关系,可知1,不妨设所求方程组为()R =A 1230ax bx cx ++=,并将代入,得,故方程组的系数矩阵为. 12,ηη1,1a b c =−==(1,1,1)=−A 二、(1)(D );(2)(D ).三、123412341311~014537570000−−⎛⎞⎛⎜⎟⎜=−⎜⎟⎜⎜⎟⎜−⎝⎠⎝A ⎞⎟−⎟⎟⎠⎞⎟⎟⎟⎟⎟⎠ 得基础解系 . 1234111445,1001x x x x −⎛⎞⎛⎞⎛⎜⎟⎜⎟⎜−⎜⎟⎜⎟⎜=⎜⎟⎜⎟⎜⎜⎟⎜⎟⎜⎜⎟⎜⎜⎟⎝⎠⎝⎝⎠四、1111011011211131~00121211231200000−−−−⎛⎞⎛⎜⎟⎜=−−−⎜⎟⎜⎜⎟⎜−−−⎝⎠⎝A ⎞⎟⎟⎟⎠可见()()R R =A A ,方程组有解,并有1243412212x x x x x =++⎧⎨=+⎩ 取,则 240x x ==1312x x ==,即得原方程组的一个特解T*(12,0,12,0)=η. 对应齐次线性方程组的基础解系 , T 1(1,1,0,0)=ηT 2(1,0,2,1)=η原方程组的通解为 .112212*,(k k k k R =++∈ηηηη、)五、考虑向量方程1122330k k k ααα++=⎪⎩⎪⎨⎧=++=+−=+030422032132131ak k k k k k k k 013422101=−a,即 02)3(2=−−−a ,即2=a .六、当()R n =A 时,12,,,n αα"α0线性无关,设1122231()()()n n k k k αααααα++++++=",于是有 ,12310,0,,0n n k k k k k k −+=+=+="n 可见当为偶数时,有非零解,当n 为奇数时,n =Bx 0=Bx 0无非零解.七、由的每一列均为的解,那么矩阵中列向量组的秩必小于等于的解向量组的秩,即有R () = R (B =A x 0B =A x 0B s βββ,,,"21)()n R ≤−A所以 ()()R R n +≤A B .八、(1)由已知,得矩阵的秩小于3,又()1223123123101(,,),,11011a a αααααααααα−⎛⎞⎜⎟−+−++=−⎜⎟⎜⎟⎝⎠123,,ααα线性无关,所以矩阵10111011a −⎛⎞⎜⎟−⎜⎜⎟⎝⎠⎟4一定不可逆,推出.2a =(2)方程组1223123(,,)a αααααααα−+−++=x 可化为()()1231231011,,11,,10112a αααααα−⎛⎞⎜⎟−=⎜⎟⎜⎟⎝⎠x ⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠ 因为123,,ααα线性无关,所以原方程组与方程组同解.10111110112a −⎛⎞⎜⎟−=⎜⎟⎜⎟⎝⎠x ⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠⎞⎟⎟⎟⎠由此求出通解 .111210k ⎛⎞⎛⎜⎟⎜=−+⎜⎟⎜⎜⎟⎜⎝⎠⎝η九、方程组的系数行列式3[3]()a b b b ba b ba b a b b b a b bb ba==+A −b(1)当且时,方程组仅有零解.a b ≠3a ≠−(2)当时,对系数矩阵作行初等变换得原方程组的同解方程组,其基础解系为a b =A 12340x x x x +++=T 1(1,1,0,0),=−ηT 2(1,0,1,0),=−ηT 3(1,0,0,1)=−η于是方程组的通解为112233k k k =++x ηηηb 4 其中为任意常数.123,,k k k (3)当时,对系数矩阵作初等行变换,得原方程组的同解方程组为3a =−A 14234x x x x x x=⎧⎪=⎨⎪=⎩,由此得基础解系为 , T(1,1,1,1)=η于是方程组的通解为,其中k 为任意常数.k =x η十、2113112112~0113(111200(1)(2)3(1)a a a a a a a a a −−⎛⎞⎛⎜⎟⎜=−−−⎜⎟⎜⎜⎟⎜−−+⎝⎠⎝A )a a ⎞⎟−⎟⎟−⎠ 于是可知当a 1且a =-2时,方程组有唯一解. ≠≠ 当a =-2时,方程组无解. 当a =1时,方程组有无穷多解.通解为x = (k 1 ,k 2为任意常数).⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−+⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−+⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛11010120021321k k x x x 十一、必要性 由及知,=AB O ≠B O =A x 0有非零解,所以0=A .充分性 若0=A ,则=A x 0有非零解,记为.令0x ()0,,,,=≠B x O 000",满足.=AB O 十二、因为方程组的增广矩阵A 的行向量组是的行向量组的部分组,所以C A 的行向量组可由的行向量组线性表示,于是C A 的行向量组的秩小于或等于的行向量组的秩,因此有C ()()()R R R ≤=A C A ,又的列向量组可由A A 的列向量组线性表示,有()()R R ≤A A , 所以()()R R =A A ,故方程组有解.。

线性代数第三章向量复习题答案

线性代数第三章向量复习题答案

B 、向量组(Ⅰ)线性相关时,向量组(Ⅱ)线性相关C 、向量组(Ⅱ)线性相关时,向量组(Ⅰ)线性相关D 、向量组(Ⅱ)线性无关时,向量组(Ⅰ)线性相关4. 下列命题中正确的是( C ) (A)任意n 个1+n 维向量线性相关 (B)任意n 个1+n 维向量线性无关 (C)任意1+n 个n 维向量线性相关 (D)任意1+n 个n 维向量线性无关5. 向量组r ααα,,,21Λ线性相关且秩为s ,则( D ) (A )s r = (B) s r ≤ (C) r s ≤(D) r s <6. n 维向量组 s ααα,,,Λ21(3 s n )线性无关的充要条件是( B ). (A )s ααα,,,Λ21中任意两个向量都线性无关 (B) s ααα,,,Λ21中任一个向量都不能用其余向量线性表示 (C) s ααα,,,Λ21中存在一个向量不能用其余向量线性表示 (D) s ααα,,,Λ21中不含零向量 7. 向量组n ααα,,,21⋅⋅⋅线性无关的充要条件是(D ) A 、任意i α不为零向量B 、n ααα,,,21⋅⋅⋅中任两个向量的对应分量不成比例C 、n ααα,,,21⋅⋅⋅中有部分向量线性无关D 、n ααα,,,21⋅⋅⋅中任一向量均不能由其余n-1个向量线性表示 8. 设A 为n 阶方阵,n r A R <=)(,则A 的行向量中(A ) A 、必有r 个行向量线性无关B 、任意r 个行向量构成极大线性无关组C 、任意r 个行向量线性相关D 、任一行都可由其余r 个行向量线性表示9. 设A 为n 阶方阵,且秩12() 1.,A n αα=-是非齐次方程组AX B =的两个不同的解向量,则AX =0的通解为( C )A 、1αkB 、2αkC 、)(21αα-kD 、)(21αα+k10. 已知向量组()()()1231,1,1,1,2,0,,0,0,2,5,2t ααα=-==--的秩为2,则=t ( A ). A 、3 B 、-3 C 、2 D 、-2 11. 设A 为n 阶方阵,n r A R <=)(,则A 的行向量中( A ) A 、必有r 个行向量线性无关B 、任意r 个行向量构成极大线性无关组C 、任意r 个行向量线性相关D 、任一行都可由其余r 个行向量线性表示12. 设向量组A: 321,,ααα线性无关,则下列向量组线性无关的是(C ) A 、321ααα++,321232ααα+-,321323ααα+- B 、21αα+,32αα+,13αα- C 、212αα+,3232αα+,133αα+ D 、12-αα+,32αα+,3212ααα++- 14. 已知向量组A 线性相关,则在这个向量组中( C )(A)必有一个零向量 . (B)必有两个向量成比例 .(C)必有一个向量是其余向量的线性组合 . (D)任一个向量是其余向量的线性组合 .15. 设A 为n 阶方阵,且秩()1R A n =-,12,a a 是非齐次方程组Ax b =的两个不同的解向量, 则0Ax = 的通解为 ( )(A )12()k a a + (B) 12()k a a - (C) 1ka (D) 2ka 16. 已知向量组1,,m ααK 线性相关, 则(C ) (A )该向量组的任何部分组必线性相关 . (B) 该向量组的任何部分组必线性无关 .(C) 该向量组的秩小于m . (D) 该向量组的最大线性无关组是唯一的.17.已知123234(,,)2,(,,)3,R R αααααα==则 ( C ) (A )123,,ααα 线性无关 (B) 234,,ααα 线性相关 (C) 1α能由23,αα 线性表示 (D) 4α能由123,,ααα 线性表示18. 若有 1133016,02135k k k ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭则k 等于(A) 1 (B) 2 (C) 3 (D) 4第三题 计算题:1. 已知向量组⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0221,8451,6352,2130,421154321ααααα(1)求向量组54321,,,,ααααα的秩以及它的一个极大线性无关组; (2)将其余的向量用所求的极大线性无关组线性表示。

线性代数第三章习题

线性代数第三章习题

矩阵的加法满足交换律和结合 律,即A + B = B + A,(A + B) + C = A + (B + C)。
数与矩阵的乘法
数与矩阵的乘法定义为该数与矩阵中每一个元素相乘,即kA = [kaij]m×n,其中k 是一个数,A是一个m×n的矩阵。
数与矩阵的乘法满足分配律和结合律,即k(A + B) = kA + kB,(k + l)A = kA + lA, k(lA) = (kl)A。
03
逆矩阵与矩阵的秩
逆矩阵的定义和性质
定义:设A为n阶方阵,若存在n阶方阵B, 使得AB=BA=I(I为单位矩阵),则称B 为A的逆矩阵,记为A^(-1)。
若A、B均可逆,则AB也可逆,且 (AB)^(-1)=B^(-1)A^(-1)。
若A可逆,则A的逆矩阵也可逆,且 (A^(-1))^(-1)=A。
应用实例
1
2
图像处理中的PCA(主成分分析)方法就利用了 特征值和特征向量的概念来进行数据降维和特征 提取。
3
在推荐系统中,可以利用特征值和特征向量的概 念来进行用户和物品的相似度计算,从而提高推 荐算法的准确性。
THANKS
感谢您的观看
线性代数第三章习
目录
CONTENTS
• 矩阵的基本概念和性质 • 行列式及其性质 • 逆矩阵与矩阵的秩 • 线性方程组与矩阵的应用 • 特征值与特征向量
01
矩阵的基本概念和
性质
矩阵的定义和表示
矩阵是一个由数值组成的矩形阵 列,其大小由行数和列数确定。
矩阵通常用大写字母表示,如A、 B、C等,而行列数通常用小写 字母m和n表示,其中m表示行

线性代数第三章练习册答案

线性代数第三章练习册答案

线性代数第三章练习册答案线性代数第三章综合自测题一、单项选择题(在四个备选答案中,只有一项是正确的,将正确答案前的字母填入下面横线上。

本题共10小题,每小题3分,共30分) 1. 如果向量β能由向量组m ααα,,,21 线性表示,则( D )。

(A )存在一组不全为零的数m k k k ,,,21 ,使得m m k k k αααβ+++= 2211 (B )对β的线性表示惟一(C )向量组m αααβ,,,,21 线性无关(D )存在一组数m k k k ,,,21 ,使得m m k k k αααβ+++= 2211 2. 向量组t ααα,,,21 线性无关的充分条件是(C )(A )t ααα,,,21 均为非零向量;(B )t ααα,,,21 的任意两个向量的分量不成比例;(C )t ααα,,,21 中任意部分向量组线性无关;(D )t ααα,,,21 中有一个部分向量组线性无关。

3. 若m ααα,,,21 线性相关,且0=+++m m k k k ααα 2211,则( D )。

(A )021====m k k k (B )m k k k ,,,21 全不为零(C )m k k k ,,,21 不全为零(D )上述情况都有可能4. 一个n m ?阶矩阵A 的秩为m ,则下列说法正确的是( A )(A )矩阵A 的行向量组一定线性无关;(B )矩阵A 的列向量组一定线性无关;(C )矩阵A 的行向量组一定线性相关;(D )矩阵A 的列向量组一定线性相关。

5. 两个n 维向量组A :s ααα,,,21 ,B :t βββ,,,21 ,且r B R A R ==)()(,于是有( C )(A )两向量组等价,也即可以相互线性表出;(B )s R ααα,,,(21 ,r t =),,,21βββ ;(C )当向量组A 能由B 线性表出时,两向量组等价;(D )当t s =时,两向量组等价。

线性代数第三章-练习题

线性代数第三章-练习题

阶可逆矩阵P及n阶可逆矩阵Q , 使得PAQ B .
典 型 例 题
一、求矩阵的秩
二、求解线性方程组
三、含参数线性方程组求解
一、求矩阵的秩
求矩阵的秩有下列基本方法 ⑴ (定义法) 计算矩阵的各阶子式,从阶数最高的 子式开始,找到不等于零的子式中阶数最大的一 个子式,则这个子式的阶数就是矩阵的秩. ⑵ 用初等变换.即用矩阵的初等行(或列)变换, 把所给矩阵化为阶梯形矩阵,由于阶梯形矩阵的 秩就是其非零行(或列)的个数,而初等变换不 改变矩阵的秩,所以化得的阶梯形矩阵中非零行 (或列)的个数就是原矩阵的秩.
7 矩阵秩的性质及定理
如果A中有一个非零的 r阶子式, 则rank(A) r;
如果A中所有r 1阶子式都为零 , 则 rank(A) r;
rank(AT) rank(A);
定理
若A B, 则 rank(A) rank(B);
行阶梯形矩阵的秩等于非零行的行数.
若A为n阶可逆矩阵, 则
1. 有非零解 rankA n det A 0 ( A 不满秩 ) 2. 只有零解 rankA n det A 0 ( A 满秩,非奇异,可逆 )
9 线性方程组的解法
齐次线性方程组:把系数矩阵化成行最简形 矩阵,写出通解. 非齐次线性方程组:把增广矩阵化成行阶梯 形矩阵,根据有解判别定理判断是否有解,若有 解,把增广矩阵进一步化成行最简形矩阵,写出 通解.
2 初等变换的定义
对调
对调矩阵的两行 (列), 记作 r i r j (c i c j );
数乘
以数k 0乘某一行(列)中的所有元素 , 记作 r i k (c i k ); 倍加 把某一行(列)所有元素的k倍加到另一行(列)

线性代数第三章测验题(含答案)

线性代数第三章测验题(含答案)

测试题答案
3 一、1. ; 2. 任意实数; 3. 2; 4. n s; 15 5. 5; 6. 2 1 1; 7. 1; 8. 1 , 2 .
二、1. 0,1,2 2;
2. 当t 2,3时, 1 , 2 , 3线性无关; 当t 2,3时, 1 , 2 , 3线性相关. 3. a b 0.
线性无关?
3 0,0,1,1与向量组 1 1, a, b,1, 2 2,1,1,2, 3 0,1,2,1可以互相线性表示 .
3. 求实数 和b, 使向量 (每小题8分,共24分).
四、 lm 1.
第三章
测试题
一、填空题(每小题5分,共40分).
4 1,0,2,1, 则k
4 1,3, t ,0, 则t
1. 设 1 2,1,0,5, 2 4,2,3,0 3 1,0,1, k , 时, 线性相关. 2. 设 1 2,1,3,0, 2 1,2,0,2, 3 0,5,3,4, 时, 线性无关.
3. 已知向量组 1 1,2,3,4, 2 2,3,4,5, 3
3,4,5,6, 4 4,5,6,7 , 则该向量组的秩是
4. n维单位向量组 1 , 2 , , n均可由向量组 1 , 2 , , s 线性表出 则向量个数 ,
1 0 1 0 0 1 1 0 0 0 5. 已 知A 0 1 1 0 0 , 则 秩r A 0 0 1 1 0 0 1 0 1 1
6. 方 程 组 0以1 1,0,2,2 0,1,1为 其 基 AX 础 解 系 则该方 程组的同解 方程 , 为
1 7. 设 2 , 1,2,3, A , 则 秩r A 3

线性代数第二三章训练题

线性代数第二三章训练题

15.设 A 为 3 阶方阵,且 − 1 A = 1, 则| A |= ( )
33
A.–9
B.–3
C.–1
.D 9
16.设 、A B 为 n 阶方阵,满足 A2=B2,则必有( )
.A A=B
. – B A= B
.C |A|=|B|
.D |A|2=|B|2
17.设 A 为 ×5 4 矩阵,若秩(A)=4,则秩(5AT)为( )

A.
0 3
−31
B.
0 1
−33
C.
0 1
3
− 1 1
1 1
D. − 1
3 0
1
9.设 A 为 n 阶方阵,λ为实数,则|λA|=(

A.λ|A|
B.|λ||A|
C.λn|A|
D.|λ|n|A|
10.设 A 为 n 阶方阵,令方阵 B=A+AT,则必有(

A.BT = B
B.B = 2A

A.ACB
B.ABC
C.BAC
D.CBA
6.设 A 为任意 n 阶矩阵,下列矩阵中为反对称矩阵的是(

A.A+AT
B.A-AT
C.A AT
D.AT A
7.设
2
阶矩阵
A=
a c
b d
,则
A*=(

A.
d −c
−b a
B.
−d b
c −a
C.
−d c
b −a
D.
d −b
−c a
8.矩阵
3 −1
3 0
的逆矩阵是(
线性代数第三章矩阵训练题
一、单项选择题

线性代数第三章向量复习题答案

线性代数第三章向量复习题答案

B 、向量组(Ⅰ)线性相关时,向量组(Ⅱ)线性相关C 、向量组(Ⅱ)线性相关时,向量组(Ⅰ)线性相关D 、向量组(Ⅱ)线性无关时,向量组(Ⅰ)线性相关4、 下列命题中正确的就是( C ) (A)任意n 个1+n 维向量线性相关 (B)任意n 个1+n 维向量线性无关 (C)任意1+n 个n 维向量线性相关 (D)任意1+n 个n 维向量线性无关5、 向量组r ααα,,,21Λ线性相关且秩为s ,则( D )(A)s r = (B) s r ≤ (C) r s ≤ (D) r s <6、 n 维向量组 s ααα,,,Λ21(3≤ s ≤ n)线性无关的充要条件就是( B )、 (A)s ααα,,,Λ21中任意两个向量都线性无关 (B) s ααα,,,Λ21中任一个向量都不能用其余向量线性表示 (C) s ααα,,,Λ21中存在一个向量不能用其余向量线性表示 (D) s ααα,,,Λ21中不含零向量 7、 向量组n ααα,,,21⋅⋅⋅线性无关的充要条件就是(D ) A 、任意i α不为零向量B 、n ααα,,,21⋅⋅⋅中任两个向量的对应分量不成比例C 、n ααα,,,21⋅⋅⋅中有部分向量线性无关D 、n ααα,,,21⋅⋅⋅中任一向量均不能由其余n-1个向量线性表示 8、 设A 为n 阶方阵,n r A R <=)(,则A 的行向量中(A ) A 、必有r 个行向量线性无关B 、任意r 个行向量构成极大线性无关组C 、任意r 个行向量线性相关D 、任一行都可由其余r 个行向量线性表示9、 设A 为n 阶方阵,且秩12() 1.,A n αα=-就是非齐次方程组AX B =的两个不同的解向量,则AX =0的通解为( C )A 、1αkB 、2αkC 、)(21αα-kD 、)(21αα+k 10、 已知向量组()()()1231,1,1,1,2,0,,0,0,2,5,2t ααα=-==--的秩为2,则=t ( A)、 A 、3 B 、-3 C 、2 D 、-2 11、 设A 为n 阶方阵,n r A R <=)(,则A 的行向量中( A ) A 、必有r 个行向量线性无关B 、任意r 个行向量构成极大线性无关组C 、任意r 个行向量线性相关D 、任一行都可由其余r 个行向量线性表示12、 设向量组A: 321,,ααα线性无关,则下列向量组线性无关的就是(C ) A 、321ααα++,321232ααα+-,321323ααα+- B 、21αα+,32αα+,13αα- C 、212αα+,3232αα+,133αα+ D 、12-αα+,32αα+,3212ααα++-14、 已知向量组A 线性相关,则在这个向量组中( C ) (A)必有一个零向量 、 (B)必有两个向量成比例 、(C)必有一个向量就是其余向量的线性组合 、 (D)任一个向量就是其余向量的线性组合 、15、 设A 为n 阶方阵,且秩()1R A n =-,12,a a 就是非齐次方程组Ax b =的两个不同的解向量, 则0Ax = 的通解为 ( )(A)12()k a a + (B) 12()k a a - (C) 1ka (D) 2ka 16、 已知向量组1,,m ααK 线性相关, 则(C ) (A)该向量组的任何部分组必线性相关 、 (B) 该向量组的任何部分组必线性无关 、(C) 该向量组的秩小于m 、 (D) 该向量组的最大线性无关组就是唯一的、 17.已知123234(,,)2,(,,)3,R R αααααα==则 ( C )(A)123,,ααα 线性无关 (B) 234,,ααα 线性相关(C) 1α能由23,αα 线性表示 (D) 4α能由123,,ααα 线性表示18、 若有 1133016,02135k k k ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭则k 等于(A) 1 (B) 2 (C) 3 (D) 4第三题 计算题:1、 已知向量组⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0221,8451,6352,2130,421154321ααααα(1)求向量组54321,,,,ααααα的秩以及它的一个极大线性无关组; (2)将其余的向量用所求的极大线性无关组线性表示。

线性代数第三章习题及解答

线性代数第三章习题及解答

43

3 5 5
2 2 1 5 2 0 0 0 −1 1 0 0
−1 3 0
1

3
6. 设 α1 , α2 , . . . , αn 是一组 n 维向量,已知 n 维单位坐标向量 e1 , e2 , . . . , en 能由它们线性表示, 证明 α1 , α2 , . . . , αn 线性无关.
4 1 −1 1 −2 −22 1 −2 −1 3 6
−24 −11 3 −2 1 −2 −1 0 11 −→ 10 5 −20 0 0 0

10 0
5 9 1 T T 齐次方程的基础解系为 ξ1 = ( 21 11 , 11 , 1, 0) , ξ2 = (− 11 , 11 , 0, 1)
α4 = 8 α − α2 + 2α3 5 1 1 1 2 2 1 0 2 1 5 −1 (2) 3 2 0 3 −1 1 1 0 4 −1 1 1 2 2 1 1 1 0 2 1 5 −1 0 2 解: 2 0 3 −1 3 −→ 0 0 1 1 0 4 −1 0 0 α1 α2 α3 α4 α5 1 1 0 4 −1 1 0 0 1 0 1 0 3 −1 3 −→ 0 1 0 0 0 1 −1 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 于是最大线性无关向量组之一为 α1 , α2 , α3 α4 = α1 + 3α2 − α3 , α5 = α3 − α2
T
− 20 83
5 83

− 17 83

线性代数第一三四章练习题参考答案

线性代数第一三四章练习题参考答案

第一章练习题参考答案一、填空题.1.-6d;2. 12;3. 23231414()()a a b b a a b b --;4. 1(1)(1)n n ---;5. -10;6. 0;7.-888;8. 4;-6.9. 132531445213253241541325344251,,a a a a a a a a a a a a a a a . 二、计算题. 1. 14().j k k j D x x ≤<≤=∏-2. 117!(2)27D =-+++.3. (1)(2)2121(1)(1)2n n n n n D x x x ---+=- ;4. 34560;5. 11[1]()nni i i i a x a x a==+⋅∏--∑.6.11024x +.7. 3(2)x x + 三、3(1)2n n -第三章练习参考答案 一、选择题1. C ;2. C ;3. C;4.C. 二、填空题1. (1)m nab -; 2.100122010345⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 3. 2123n --; 4. 108; 5. 2132-⎡⎤⎢⎥-⎣⎦; 6. 0; 7. 301050103⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦;8. 12; 9. 1100BA B A--⎡⎤⎢⎥⎣⎦; 10. 3E ;11. 3A E +; 12. 25A ;13. 88000880008808⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; 14. 12.三、计算与证明题 1. 600006006060031⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦; 2. 02100000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 3. (1) T CA , (2) 101214122--⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 4. 2a =-; 5. 12345B A A E -=++; 6. -16; 7. 001010100B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦; 8. 见课堂笔记; 9. 111212132122222331323233114411441144b b b b b b b b b b b b ⎡⎤-+⎢⎥⎢⎥⎢⎥-+⎢⎥⎢⎥⎢⎥-+⎢⎥⎣⎦. 10. 22211212513--⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦. 11. 略. 第四章练习参考答案一、选择题1. C ;2. D ;3. B;4.D. 二、填空题1. (1,2,0,4)(0,3,3,10)T T t -+--, 其中t 为任意实数;2. 12,αα; 2;3. 3-;4.122113311441233224423443,,,,,E E E E E E E E E E E E ------; dimV=6;(2,3,1,4,2,2)T--; 5. 极大无关组为12,αα; 3124122,23αααααα=-+=-+;6. 12(1,0,1,1)(1,1,0,1)(1,3,1,0),T T Tk k α=-+-+-- 其中 12,k k 是任意数;7.141113M ⎡⎤=⎢⎥⎣⎦, 15(,)33TX =-. 三、计算与证明题1.(1) 当1b =时, 极大无关组为124,,ααα, (2) 当1b =时, 4α不能由12,αα线性表示, 3α能由12,αα线性表示(3122ααα=-+).2. (1) 5λ≠时,123,,ααα是基,21311222131222M λλλ⎡⎤⎢⎥-+⎢⎥⎢⎥=--⎢⎥⎢⎥+⎢⎥--⎣⎦; (2)ξ在基123,,βββ下的坐标为 (1,0,1)T;(3)所有非零向量为 (3,3,2)T k -. 3. (1) 只要证123,,0ααα≠ ,(2) 1232,0),1,1),2,1,5)TTTβββ==-=-;(3)M ⎤⎥⎥⎢⎥=⎢⎥⎢⎥⎢⎢⎣; (4)坐标为10)T β=.4. 1)通解为0112233X k k k ξηηη=+++, 其中021(,,0,0,0)33T ξ=-,1(5,2,3,0,0)Tη=,2(1,0,0,1,0)Tη=-,3(1,2,0,0,3)Tη=-, 123,,k k k 为任意数.2)解向量的极大无关组是0010203,,,.ξξηξηξη+++5. 1)过渡矩阵111100010010010M ⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦; 2)α在基I 下的坐标为(1,1,1,1)TX =,α在基II 下的坐标为(4,1,1,1)TX =---; 3)(1,1,1,1)Tk β=,k 为任意常数.6. 15,5a b ==, 3121322βαα=+;7. 因为1V 的零元素00000⎡⎤=⎢⎥⎣⎦不在1V 中,所以1V 不是V 的子空间;而2V 是V 的子空间(主要验证运算封闭),2V 的基是2111010,,;dim 3.001001V -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦6-10. 证明略。

线性代数第三章练习题

线性代数第三章练习题

8、设有向量组 α1=(1, 0, 3, 1, 2), α3=(3, 0, 7, 14), α4=( 1, - 2, 2, 0)与 - 1, 2, 4), α2=(
9、齐次线性方程组 nx1 + ( n - 1) x2 + L + 2 xn -1 + xn = 0 的一个基础解系为
α5=( 2, 1, 5, 10),则向量组的极大线性无关组是(B) (A)α1,α2,α3 (B) α1,α2,α4 (C) α1,α2,α5 (D) α1,α2,α4,α5
(C)任意 r 个行向量都构成极大线性无关向量组; (D)任何一个行向量都可以由其它 r 个行向量线性表出。 12、 设 a 1 , a 2 , L , a m 均为 n 维列向量, 那么, 下列结论正确的是 ( B ) 。 (A)若 k1a 1 + k 2a 2 + L + k ma m = 0 ,则 a 1 , a 2 , L , a m 线性无关; ( B ) 若 对 任 意 一 组 不 全 为 零 的 数 k1 , k 2 , L , k m , 都 有
h 1 = (1 , 2 , 3 , 4 ) T , h 2 = ( 2 , 3 , 4 , 5 ) T 为其两个解,则 Ax = b 的通解为
x=
k (1,1,1,1)T + (1,2,3,4)T

11、设矩阵 A = ( a1 , a 2 , a3 , a 4 ) ,其中 a 2 , a3 , a4 线性无关, a1 = 2a2 - a3 , 向量 b = a1 + a 2 + a3 + a 4 ,则方程 Ax = b 的通解为
求解上述方组中线性无关的向量组是(

(完整版)线性代数第三章向量试题及答案

(完整版)线性代数第三章向量试题及答案

第三章 向量1、基本概念定义1:由n 个数构成的一个有序数组[]n a a ,,a 21 称为一个n 维向量,称这些数为它的分量。

分量依次是a 1,a 2,⋯ ,a n 的向量可表示成:=α[]n a a ,,a 21 ,称为行向量,或=T α[]T n a a ,,a 21 称为列向量。

请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n 矩阵,右边是n ⨯1矩阵)。

习惯上把它们分别(请注意与下面规定的矩阵的行向量和列向量概念的区别)。

一个m ⨯n 的矩阵的每一行是一个n 维向量,称为它的行向量;每一列是一个m 维向量,称为它的列向量,常常用矩阵的列向量组来写出矩阵,例如当矩阵A 的列向量组为m ααα,,21 时(它们都是表示为列的形式!)可记A =(m ααα,,21 )。

矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0。

两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.2、向量的线形运算3、向量组的线形相关性定义2:向量组的线性组合:设m ααα,,21 是一组n 维量,m k k k 21,是一组数,则m m k k k ααα ++2211为m ααα,,21 的线性组合。

n 维向量组的线性组合也是n 维向量。

定义3:线形表出:如果n 维向量β能表示成m ααα,,21 的一个线性组合,即=βm m k k k ααα ++2211,则称β可以用量组m ααα,,21 线性表示。

判别β是否可以用m ααα,,21 线性表示? 表示方式是否唯一?就是问:向量方程βααα=++m m x x x 2211是否有解?解是否唯一?用分量写出这个向量方程,就是以()βααα m 21,为增广矩阵的线性方程组。

反之,判别“以()β A 为增广矩阵的线性方程组是否有解?解是否唯一?的问题又可转化为β是否可以用A 的列向量组线性表示? 表示方式是否唯一?”的问题。

线性代数第三章习题及解答

线性代数第三章习题及解答

第三章练习题1.已知R (α1,α2,α3)=2,R (α2,α3,α4)=3,证明:(1)α1能由α2,α3线性表示;(2)α4不能由α1,α2,α3线性表示.证明:(1)因为R (α2,α3,α4)=3,于是α1可由α2,α3唯一的线性表示(2)反证,若α4可由α1,α2,α3线性表示,则α4可由α2,α3线性表示,与R (α2,α3,α4)=3矛盾2.a 取什么值时下列向量组线性相关?α1=(a,1,1)T ,α2=(1,a,−1)T ,α3=(1,−1,a )T解: a 111a −11−1a−→01+a 1−a 201+a −(1+a )1−1a那么a =−1或a =2,则三个向量线性相关3.设α1,α2线性无关,α1+β,α2+β线性相关,求向量β用α1,α2线性表示的表示式.解:因为α1+β=k (α2+β),于是β=1k −1α1+k1−k α24.举例说明下列各命题是错误的:(1)若向量组α1,α2,...,αm 是线性相关的,则α1可由α2,α3,...,αm1线性表示;解:例如α1=0,α2,α3为零向量,显然α1不能用其余向量线性表示(2)若有不全为0的数λ1,λ2,...,λm,使得λ1α1+λ2α2+···+λmαm+λ1β1+···+λmβm=0成立,则α1,...,αm线性相关,β1,β2,...,βm亦线性相关.解:取α1=(1,0,0)T,α2=(0,1,0)T,β1=(−1,0,0)T,β2= (0,−1,0)α1+α2+β1+β2=0,但α1,α2线性无关,且β1,β2也线性无关(3)若只有当λ1,...,λm全为0时,等式λ1α1+···+λmαm+λ1β1+···+λmβm=0才能成立,则α1,α2,...,αm线性无关,β1,β2,...,βm 亦线性无关.解:取α1=(1,0,0)T,α2=(1,0,0)T,α3=(0,0,0)Tβ1=(0,1,1)T,β2= (0,0,1)T,β3=(0,0,1)T(4)若α1,α2,...,αm线性相关,β1,β2,...,βm亦线性相关,则有不全为0的数λ1,...,λm,使得λ1α1+···+λmαm=0,λ1β1+···+λmβm=0同时成立.解:取α1=(0,0,0)T,α2=(0,1,0)T,α3=(1,1,0)Tβ1=(1,0,0)T,β2=2(0,0,0)T ,β3=(−1,−1,1)T5.利用初等行变换求下列矩阵的列向量组的一个最大线性无关组,并把其余列向量用最大线性无关组线性表示.(1)2531174375945313275945413425322048解:2531174375945313275945413425322048α1α2α3α4−→ 25311743012301350135−→ 25311743012300120000−→10085010−100120000于是最大线性无关向量组之一为α1,α2,α3α4=85α1−α2+2α3(2) 112210215−1203−131104−1 解: 112210215−1203−131104−1α1α2α3α4α5−→ 112210215−100203000001104−10103−1001−1100000 −→ 100100103−1001−1100000于是最大线性无关向量组之一为α1,α2,α3α4=α1+3α2−α3,α5=α3−α236.设α1,α2,...,αn是一组n维向量,已知n维单位坐标向量e1,e2,...,e n能由它们线性表示,证明α1,α2,...,αn线性无关.证明:因为n=R(e1,...,e n)≤R(α1,...,αn)≤n于是R(α1,...,αn)=n,则α1,α2,...,αn线性无关7.设向量组α1,α2,...,αm线性相关,且α1=0,证明:存在某一个向量αk(2≤k≤m)使得αk能由α1,α2,...,αk−1线性表示.证明:反证若∀αk都不能被α1,α2,...,αk−1线性表示,于是对于k1α1+k2α2+···+k mαm=0,则k m=0,若否αm可以被前面m−1个向量线性表示以此类推k2=k3=···=k m−1=k m=0,由于k1,k2,...,k m不全为零,于是k1=0,那么α1=0与题设矛盾,因此命题成立.8.设向量组B:β1,β2,...,βr能由向量组A:α1,α2,...,αs线性表示为(β1,β2,...,βr)=(α1,α2,...,αs)K,其中K为s×r矩阵,且A向量组线性无关,证明:向量组B 线性无关的充分必要条件是矩阵K的秩为r证明:(=⇒)因为向量组B线性无关,于是R(β1,...,βr)=r,注意到r=R(B)≤R(K)≤r那么R(K)=r4(⇐=)若R (K )=r ,那么线性方程组KX =0只有零解,令KX =Y ,注意到向量组A 线性无关,于是线性方程组AY =0只有零解,由于BX =AY =AKX ,那么BX =0只有零解,于是R (B )=r ,即向量组B 线性无关.9.求下列齐次线性方程组的基础解系:(1) x 1−8x 2+10x 3+2x 4=02x 1+4x 2+5x 3−x 4=08x 1+7x 2+6x 3−3x 4=0解 1−8102245−1876−3−→100−2083010−1783001583ξ=(−20,−17,5,83)T(2) 2x 1−3x 2−2x 3+x 4=03x 1+5x 2+4x 3−2x 4=03x 1+8x 2+6x 3−2x 4=0解 3−3−21354−2386−2−→100−12010−7201−214ξ=(2,14,−21,4)T10.求下列非齐次线性方程组的一般解(1) 2x 1+7x 2+3x 3+x 4=63x 1+5x 2+2x 3+2x 4=49x 1+4x 2+x 3+7x 4=2解 273163522494172 −→274161−2−11−21−24−113−221−2−11−20115−1100−22−102−20−→1−2−11−20115−11003齐次方程的基础解系为ξ1=(2111,511,1,0)T ,ξ2=(−911,111,0,1)T5非齐次方程的一个解为η=(−211,1011,0,0)T ,于是原方程组的通解为ξ=C 1ξ1+C 2ξ2+η,其中C j (j =1,2)为任意常数(2) x 1+x 2+x 3+x 4+x 5=73x 1+2x 2+x 3+x 4−3x 5=−2x 2+2x 3+2x 4+6x 5=235x 1+4x 2+3x 3+3x 4−x 5=12解1111173211−3−201226235433−112−→1111170122623000000000000齐次方程的基础解系为ξ1=(5,−6,0,0,1)T ,ξ2=(1,−2,0,1,0)T ,ξ3=(1,−2,1,0,0)T非齐次方程组的一个解为η=(−16,23,0,0,0)T于是原方程组的通解为ξ=C 1ξ1+C 2ξ2+C 3ξ3+η,其中C j (j =1,2,3)为任意常数11.设n 阶矩阵A 满足:A 2=A,E 为n 阶单位矩阵,证明:R (A )+R (A −E )=n证明:因为A (A −E )=0若A =E ,所证命题显然成立若A =E ,则线性方程组AX =0有非零解,即矩阵A −E 的列向量组是AX =0的解集,必然可以由其基础解系线性表示,那么6R (A −E )≤n −R (A ),即R (A )+R (A −E )≤n又n =R (E )=R (A +E −A )≤R (A )+R (E −A )=R (A )+R (A −E ),于是R (A )+R (A −E )=n12.设A 为n 阶矩阵,求A 的伴随矩阵A ∗的秩R (A ∗)解:因为AA ∗=|A |E ,若|A |=0,则|A ∗|=0,所以R (A ∗)=R (A )=n若|A |=0则R (A )≤n −1,当R (A )<n −1时A 的所有n −1阶子式全为零,所以A ∗=0故R (A ∗)=0,当R (A )=n −1时A 至少有一个n −1阶子式不为零,故A ∗=0,则R (A ∗)≥1,而AA ∗=0即A (a ∗1,a ∗2,...,a ∗n )=0这说明A ∗的列向量a ∗j (j =1,2,...,n )是方程组AX =0的解,所以该列向量组可以被方程组AX =0的基础解系线性表示,那么该向量组的秩R (A ∗)≤(基础解系的秩)n −R (A )=n −(n −1)=1,由以上分析得知R (A ∗)=1综上所述R (A ∗)=n |A |=00R (A )<n −11R (A )=n −113.设a =(a 1,a 2,a 3)T ,b =(b 1,b 2,b 3)T ,c =(c 1,c 2,c 3)T .证明:三条直线ℓ1:a 1x +b 1y +c 1=0ℓ2:a 2x +b 2y +c 2=0ℓ:a 3x +b 3y +c3=0(a 2i +b 2i =0,i =1,2,3)相交于一点的充分必要条件是:向量组a ,b 线性无关,且向量组a ,b ,c 线性相关.7证明:(=⇒)因为三条直线相交于一点,于是必有两条直线彼此相交,不妨设ℓ1,ℓ2相交,那么a1 b1=a2b2,于是向量a与向量b线性无关,注意到齐次线性方程组x a+y b+1c=0有非零解(x,y,1)T,则向量a,b,c线性相关(⇐=)向量组a,b线性无关,且向量组a,b,c线性相关,则向量组−c可由向量组a,b唯一的线性表示,即x a+y b+c=0,中系数x,y,1是唯一确定的,即三条直线ℓ1:a1x+b1y+c1=0ℓ2:a2x+b2y+c2=0ℓ:a3x+b3y+c3=0相较于唯一点14.α1,α2...,αm,α1=0,αi(i=2,3...,m)都不能由α1,α2,...,αi−1线性表示,证明α1,α2...,αm线性无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章
1.初等变换不改变矩阵的秩.
( )
2.若向量组B 能由向量组A 线性表示,则()(,)R B R A B =.( ) 3.()()()R A B R A R B +≤+
( )
4.如果线性方程组b x A n n =⨯无解或有两个不同的解,则它的系数行列式必为零.
5.初等变换不改变矩阵的秩. ( )
6.若0A ≠,则齐次线性方程组0A x =只有零解. ( )
7.若A ~B ,则()()R A R B =. ( )
8.若0A =,则齐次线性方程组0A x =必有非零解.
9.若m n <,则0m n A x ⨯=有非零解. ( ) 10.(√)2.若m n <,则0m n A x ⨯=有非零解. 11.若m n <,则0m n A x ⨯=有非零解.
( )
12.已知12,a a ,3a 是四元非齐次线性方程组A x b =的三个解向量,且()3R A =,
1(1,2,3,4)
T
a =,23(0,1,2,3)T a a +=,c 是任意的常数,则A x
b =的通解是x =
( )
A. 11213141c ⎛⎫
⎛⎫ ⎪ ⎪ ⎪ ⎪+
⎪ ⎪ ⎪ ⎪⎝⎭
⎝⎭ B. 10213243c ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭
⎝⎭ C. 12233445c ⎛⎫
⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭
⎝⎭ D. 1324
3546c ⎛⎫
⎛⎫
⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭
⎝⎭
. 13.设A 是m n ⨯矩阵,且秩()R A m n =<,则( )
A.A 的任意m 个列向量必定线性无关
B.A 的任意一个m 阶子式不等于零
C.齐次线性方程组0A x =只有零解
D.非齐次线性方程组A x b =必有无穷多解
14.设A 是4×5矩阵,A 的秩等于3,则齐次线性方程组0A x =的基础解系中所含解向量的个数为( )
A. 4
B.5
C.2
D.3
15.设A 是n 阶方阵,B 是A 经过有限次矩阵的初等变换后所得到的矩阵,则有(C )
.A A B
= .B A B ≠
.C 若0A =,则一定有0B = .D 若0A >,则一定有0B >
16.设A 是4×5矩阵,A 的秩等于3,则齐次线性方程组0A x =的基础解系中所含解向量的个数为 ( ) A. 4; B.5 ; C.2 ; D.3.
17.行列式0=A 时,线性方程组0
=AX
( )
.A 只有零解;
.B 只有非零解; .C 无解; .D 有非零解.
18.设A 是n 阶方阵,B 是A 经过有限次矩阵的初等变换后所得到的矩阵,则一定有 ( )
.A A B
= .B A B ≠
.C )()(B R A R = .D )()(B R A R ≠
19.设n 阶方阵不可逆,则必有 ( )
.A n A R <)(;
.B 1)(-=n A R ;
.C 0=A ; .D 方程组0
=AX 只有零解.
20.n 个方程n 个未知数构成的线性方程组,如果它的系数行列式0≠D ,那么他一定有___________解.
21.线性方程组A x b =有解的充分必要条件是()(,)R A R A b =.
22.设A 为一个三阶矩阵,且2=A ,若将A 按列分块为),,(321ααα=A ,令
),,(21312αααα+=B ,则=B ________.
23.三元齐次线性方程组0
=AX 的基础解系只含一个向量,则
=)(A R _________.
24.设A 为三阶方阵,且其行列式3A =-,若记()123,,A ααα=, 则
1232,2,2αααα-= .
25.已知1001001
470
010*******
01
13
6
9A ⎛⎫⎛⎫⎛⎫
⎪ ⎪ ⎪
= ⎪

⎪ ⎪ ⎪ ⎪⎝
⎭⎝⎭⎝⎭
,则A =6
4766965
8-⎛⎫ ⎪- ⎪ ⎪-⎝

26.线性方程组A x b =有解的充分必要条件是()(,)R A R A b =.
27. 解线性方程组:2
1112
10111
13X -⎛⎫⎛⎫
⎪ ⎪=- ⎪ ⎪ ⎪ ⎪-⎝
⎭⎝⎭
. 28. 求齐次线性方程组123412341
234220
2220
430
x x x x x x x x x x x x +++=⎧⎪
+--=⎨⎪---=⎩ 的基础解系.
29.求齐次线性方程组⎪⎩⎪
⎨⎧=---=+-+-=-+-0
490
2430
32542143214321x x x x x x x x x x x 的基础解系.
30.k 为何值时,方程组12312312312202x x x x kx x kx x x k
+-=⎧⎪
+-=⎨⎪++=⎩
(1)有唯一解;(2)无解;(3)有无
穷多解?并求它的通解。

31.问λ取何值时,非齐次线性方程组12312321231
x x x x x x x x x λλλ
λλ
⎧++=⎪
++=⎨⎪++=⎩(1)有唯一解;(2)无
解;(3)有无穷多解,并求其通解。

32.问λ取何值时,非齐次线性方程组()()()1231231
2310
131x x x x x x x x x λλλλ
+++=⎧⎪
+++=⎨⎪+++=⎩(1)有唯一解;(2)
无解;(3)有无穷多解,并求其通解。

32.1231231
230
(1)20
x x x x x x x x x λλ++=⎧⎪
+-=⎨⎪-+=⎩.1231231232
2
(2)23
x x x x x x x x x λλ++=-⎧⎪
+-=⎨⎪-+=⎩
试求:(1)λ为何值时,上齐次线性方程组⑴有非零解?(2)方程组⑴有非零解时,方程组⑵是否有解?若有,请分别写出其解(通解)。

相关文档
最新文档