解三角形练习题及答案
三角函数及解三角形测试题(含答案)
三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。
根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。
根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。
根据正切的定义,$\tan A=\frac{a}{b}$。
根据余切的定义,$\cotA=\frac{b}{a}$。
根据正割的定义,$\sec A=\frac{c}{a}$。
根据余割的定义,$\csc A=\frac{c}{b}$。
2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。
2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。
4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。
5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。
6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。
解三角形 习题含答案
第一章 解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形 答案 C2.在△ABC 中,已知a =1,b =3,A =30°,B 为锐角,那么A ,B ,C 的大小关系为( )A .A >B >C B .B >A >C C .C >B >AD .C >A >B解析 由正弦定理a sin A =b sin B ,∴sin B =b sin A a =32.∵B 为锐角,∴B =60°,则C =90°,故C >B >A . 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .43C .4 6 D.323解析 A =45°,由正弦定理,得b =a sin B sin A 答案 C4.在△ABC 中,A =60°,a =3,则a +b +c sin A +sin B +sin C等于( ) A.833 B.2393 C.2633 D .2 3解析 利用正弦定理及比例性质,得a +b +c sin A +sin B +sin C =a sin A =3sin60°=332=2 3. 答案 D 5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1: 3 :2C .1: 2 : 3 D. 2 : 3 :2 解析 设三边长分别为a ,3a,2a ,设最大角为A ,则cos A =a 2+(3a )2-(2a )22·a ·3a=0, ∴A =90°. 设最小角为B ,则cos B =(2a )2+(3a )2-a 22·2a ·3a=32, ∴B =30°,∴C =60°. 因此三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( ) A .无解 B .一解 C .两解 D .解的个数不确定解析 由b sin B =a sin A ,得sin B =b sin A a =9×226=3 24>1.∴此三角形无解. 答案 A7.已知△ABC 的外接圆半径为R ,且2R (sin 2A -sin 2C )=(2a -b )sin B (其中a ,b 分别为A ,B 的对边),那么角C 的大小为( )A .30°B .45°C .60°D .90°解析 根据正弦定理,原式可化为2R ⎝ ⎛⎭⎪⎫a 24R 2-c 24R 2=(2a -b )·b 2R ,∴a 2-c 2=(2a -b )b ,∴a 2+b 2-c 2=2ab ,∴cos C =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析 由a sin A =b sin B =c sin C =2R ,又sin 2A +sin 2B -sin A sin B =sin 2C ,可得a 2+b 2-ab =c 2 ∴cos C =a 2+b 2-c 22ab =12,∴C =60°,sin C =32.∴S △ABC =12ab sin C = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sin B sin C 的值为( )A.85B.58C.53D.35解析 由余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sin B sin C =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析 由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32 km解析 如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c .若a =c =6+2,且A =75°,则b 为( )A .2B .4+23C .4-2 3 D.6- 2解析 在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bc cos A ,∵a =c ,∴0=b 2-2bc cos A =b 2-2b (6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22(32-12)=14(6-2),∴b 2-2b (6+2)cos75°=b 2-2b (6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析 由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =b sin C sin B =4sin45°sin75°=4(3-1). 答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________. 解析 由B =A +60°,得sin B =sin(A +60°)=12sin A +32cos A .又由b =2a ,知sin B =2sin A .∴2sin A =12sin A +32cos A 即32sin A =32cos A .∵cos A ≠0,∴tan A =33.∵0°<A <180°,∴A =30°. 答案 30°15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =________,AB =________.解析 由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sin B ∴10 3=12AB ×5×sin60°,∴AB =8.答案60° 816.在△ABC 中,已知(b +c ) : (c +a ) : (a +b )=8:9:10,则sin A :sin B :sin C=________.解析 设⎩⎪⎨⎪⎧ b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sin A :sin B :sin C =11:9:7. 答案 11:9:717.(10分)在△ABC 中,若a 2b 2=sin A cos B cos A sin B ,判断△ABC 的形状.解 依据正弦定理,得a 2b 2=a b ·cos B cos A ,所以a cos A =b cos B .再由正弦定理,得sin A cos A=sin B cos B ,即sin2A =sin2B ,因为2A,2B ∈(0,2π),故2A =2B ,或2A +2B =π.从而A =B ,或A +B =π2,即△ABC 为等腰三角形,或直角三角形.18.(12分)锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满足2sin(A +B )-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B )-3=0,得sin(A +B )=32.∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2ab cos C=(a +b )2-3ab =12-6=6.∴c = 6.S △ABC =12ab sin C =12×2×32=32.19.(12分)如右图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 nmile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 nmile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°,求:(1)A 处与D 处的距离;(2)灯塔C 与D 处的距离.分析 (1)要求AD 的长,在△ABD 中,AB =126,B =45°,可由正弦定理求解;(2)要求CD 的长,在△ACD 中,可由余弦定理求解.解 (1)在△ABD 中,∠ADB =60°,B =45°,AB =12 6,由正弦定理,得AD =AB sin B sin ∠ADB =126×2232=24(nmile). (2)在△ADC 中,由余弦定理,得CD 2=AD 2+AC 2-2AD ·AC ·cos30°.解得CD =83(nmile).∴A 处与D 处的距离为24 nmile ,灯塔C 与D 处的距离为8 3 nmile.20.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积;(2)若b +c =6,求a 的值.解 (1)∵cos A 2=255,∴cos A =2cos 2A 2-1=35,sin A =45.又由AB →·AC→=3,得bc cos A =3,∴bc =5. 因此S △ABC =12bc sin A =2.(2)由(1)知,bc =5,又b +c =6,∴b =5,c =1,或b =1,c =5.由余弦定理,得a 2=b 2+c 2-2bc cos A =20.∴a =2 5.21.(12分)在△ABC 中,已知内角A =π3,边BC =23,设内角B =x ,周长为y .(1)求函数y =f (x )的解析式和定义域;(2)求y 的最大值.解 (1)△ABC 的内角和A +B +C =π,由A =π3,B >0,C >0,得0<B <2π3.应用正弦定理,得AC =BC sin A ·sin B =23sin π3·sin x =4sin x .AB =BC sin A sin C =4sin ⎝ ⎛⎭⎪⎫2π3-x . ∵y =AB +BC +CA ,∴y =4sin x +4sin ⎝ ⎛⎭⎪⎫2π3-x +23⎝ ⎛⎭⎪⎫0<x <2π3. (2)y =4(sin x +32cos x +12sin x )+2 3 =43sin(x +π6)+2 3. ∵π6<x +π6<5π6,∴当x +π6=π2,即x =π3时,y 取得最大值6 3.22.(12分)△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,tan C =sin A +sin B cos A +cos B,sin(B -A )=cos C . (1)求A ,C ;(2)若S △ABC =3+3,求a ,c .解 (1)因为tan C =sin A +sin B cos A +cos B, 即sin C cos C =sin A +sin B cos A +cos B, 所以sin C cos A +sin C cos B =cos C sin A +cos C sin B ,即sin C cos A -cos C sin A =cos C sin B -sin C cos B ,得sin(C -A )=sin(B -C ).所以C -A =B -C ,或C -A =π-(B -C )(不成立),即2C =A +B ,得C =π3,所以B +A =2π3.又因为sin(B -A )=cos C =12,则B -A =π6,或B -A =5π6(舍去).得A =π4,B =5π12. 所以A =π4,C =π3.(2)S △ABC =12ac sin B =6+28ac =3+3,又a sin A =c sin C ,即a 22=c 32. 得a =22,c =2 3.。
解三角形(含答案)
解三角形一、单选题(共9道,每道11分)1.由下列条件解△ABC,其中有两解的是( )A.b=20,A=45°,C=80°B.a=30,c=28,B=60°C.a=12,c=15,A=120°D.a=5,,A=30°答案:D解题思路:试题难度:三颗星知识点:解三角形2.在△ABC中,已知下列条件解三角形,其中有唯一解的是( )A.A=30°,a=6,b=10B.A=30°,a=1,b=2C.A=133°,a=22,b=25D.A=90°,a=5,c=10答案:B解题思路:试题难度:三颗星知识点:解三角形3.在△ABC中,,则角B的解的个数是( )A.0B.1C.2D.不确定答案:C解题思路:试题难度:三颗星知识点:解三角形4.在△ABC中,a,b,c分别是角A,B,C的对边,若,,则B=( )A.45°或135°B.135°C.45°D.不确定答案:C解题思路:试题难度:三颗星知识点:解三角形5.在△ABC中,已知,则C=( )A.30°B.60°C.120°D.30°或150°答案:A解题思路:试题难度:三颗星知识点:解三角形6.在△ABC中,角A,B,C的对边分别为a,b,c,若,,B=45°,则角A=( )A.30°B.30°或105°C.60°D.60°或120°答案:D解题思路:试题难度:三颗星知识点:解三角形7.在△ABC中,角A,B,C的对边分别为a,b,c,如果满足的三角形恰有一个,则a的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:解三角形8.若满足的△ABC有两个,那么a的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:解三角形9.如果满足∠ABC=60°,AC=12,BC=a的△ABC恰有一个,那么a的取值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:解三角形。
解三角形练习题及答案
解三角形练习题及答案1.已知△ABC中,三内角A、B、C的度数成等差数列,边a、b、c依次成等比数列.则△ABC是()A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形2.△ABC中,若sin2A+sin2B>sin2C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=ccosB,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4.在△ABC中,若•=•=•,则该三角形是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.在△ABC中,acosA=bcosB,则三角形的形状为()A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰三角形6.在△ABC中,若b=asinC,c=acosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形7.在△ABC中,角A、B、C所对的边分别是a、b、c,若==则△ABC的形状是()A.等边三角形B.等腰直角三角形C.直角非等腰三角形D.等腰非直角三角形8.在△ABC中,P是BC边中点,若,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形但不一定是等边三角形9.在△ABC中,若(b﹣bcosB)sinA=a(sinB﹣sinCcosC),则这个三角形是()A.等腰直角三角形B.底角不等于45°的等腰三角形C.等腰三角形或直角三角形D.锐角不等于45°的直角三角形10.在△ABC中,sinA•sinB<cosA•cosB,则这个三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11.△ABC的三个内角A、B、C成等差数列,,则△ABC一定是()A.直角三角形B.等边三角形C.非等边锐角三角形D.钝角三角形12.若O是△ABC所在平面内的一点,且满足,则△ABC的形状是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形13.设△ABC的内角A,B,C的对边分别为a,b,c,若a=(b+c)cosC,则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形14.在△ABC中,∠ABC=30°,AB=,BC边上的中线AD=1,则AC的长度为()A.1或B.C.D.1或15.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10m到位置D,测得∠BDC=45°,则塔AB的高是()(单位:m)A.10B.10C.10D.1016.如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30米,并在C测得塔顶A的仰角为60°,则塔的高度AB为()A.15米B.15米C.15(+1)米D.15米17.在△ABC中,已知AB=4,cosB=,AC边上的中线BD=,则sinA=()A. B.C. D.18.在△ABC中,AB=AC,AC边上的中线长为9,当△ABC的面积最大时,AB的长为()A.9 B.9C.6D.619.在△ABC中,如果cos(B+A)+2sinAsinB=1,那么△ABC的形状是.20.给出下列命题:①在△ABC中,若,则△ABC是钝角三角形;②在△ABC中,若cosA•tanB•cotC<0,则△ABC是钝角三角形;③在△ABC中,若sinA•sinB<cosA•cosB,则△ABC是钝角三角形;④在△ABC中,若acosA=bcosB,则△ABC是等腰三角形.其中正确的命题序号是.21.在△ABC中,点D是BC的中点,若AB⊥AD,∠CAD=30°,BC=2,则△ABC的面积为.22.在三角形ABC中,已知AB=4,AC=3,BC=6,P为BC中点,则三角形ABP的周长为.23.在△ABC中,已知=,且cos(A﹣B)+cosC=1﹣cos2C.(1)试确定△ABC的形状;(2)求的范围.24.设△ABC中的内角A,B,C所对的边分别为a,b,c,已知a=2,(a+b)(sinA﹣sinB)=(c﹣b)sinC.(Ⅰ)若b=2,求c边的长;(Ⅱ)求△ABC面积的最大值,并指明此时三角形的形状.25.设△ABC的内角A,B,C所对的边a,b,c,=,=若,共线,请按以下要求作答:(1)求角A的大小;(2)当BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.26.如图,某炮兵阵地位于A点,两观察所分别位于C,D两点.已知△ACD为正三角形,且DC=km,当目标出现在B点时,测得∠BCD=75°,∠CDB=45°,求炮兵阵地与目标的距离.27.在数学研究性学习活动中,某小组要测量河对面C和D两个建筑物的距离,作图如下,所测得的数据为AB=50米,∠DAC=75°,∠CAB=45°,∠DBA=30°,∠CBD=75°,请你帮他们计算一下,河对岸建筑物C、D的距离?28.如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上.(l)若点D是CB的中点,∠CED=30°,DE=1,CE=求△ACE的面积;(2)若AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值.【答案】1-5BDCDB 6-10CBACB 11-15BDAAB 16-18DAD 19.等腰三角形20.①②③21.222.7+23.解:(1)由=,可得cos2C+cosC=1﹣cos(A﹣B)得cosC+cos(A﹣B)=1﹣cos2C,cos(A﹣B)﹣cos(A+B)=2sin2C,即sinAsinB=sin2C,根据正弦定理,ab=c2,①,又由正弦定理及(b+a)(sinB﹣sinA)=asinB可知b2﹣a2=ab,②,由①②得b2=a2+c2,所以△ABC是直角三角形,且B=90°;(2)由正弦定理化简==sinA+sinC=sinA+cosA=sin(A+45°),∵≤sin(A+45°)≤1,A∈(0,)即1<sin(A+45°),则的取值范围是(1,].24.解:(I)由正弦定理得:(a+b)(a﹣b)=(c﹣b)c,即a2﹣b2=c2﹣bc因为a=2且b=2,所以解得:c=2.(II)由(I)知,则A=60°因为a=2,∴b2+c2﹣bc=4≥2bc﹣bc=bc,∴,此时三角形是正三角形25.解:(1)∵∥,∴sinA•(sinA+cosA)﹣=0.∴+sin2A﹣=0,即sin2A﹣cos2A=1,即sin(2A﹣)=1,∵A∈(0,π),∴2A﹣∈(﹣,),∴2A﹣=,A=.(2)由余弦定理得:4=b2+c2﹣bc,又S△ABC=bcsinA=bc,而b2+c2≥2bc⇒bc+4≥2bc⇒bc≤4,(当且仅当b=c时取等号)∴S△ABC=bcsinA=bc≤×4=.当△ABC的面积取最大值时,b=c,又A=,∴此时△ABC为等边三角形.26.解:∠CBD=180°﹣∠CDB﹣∠BCD=180°﹣45°﹣75°=60°,在△BCD中,由正弦定理,得:BD==.在△ABD中,∠ADB=45°+60°=105°,由余弦定理,得AB2=AD2+BD2﹣2AD•BDcos105°=3+()2﹣2×××=5+2.∴AB=.27.解:在ABD中,∴,∵A+B+C=π,∴,所以a2=b2+c2﹣2bc•cosA,△ABD为为等腰三角形,即在中,∴bc=4,∴,由于∠ACB=30°,由正弦定理可得,计算得;在△ACD中,∠DAC=75°,,AD=50,根据余弦定理可得=28.解:(1)在△CDE中,CD==,解得CD=1,在直角三角形ABD中,∠ADB=60°,AD=2,AE=1,S△ACE===;(2)设CD=a,在△ACE中,=,CE==()a,在△CED中,=,sin∠CDE===﹣1,则cos∠DAB=cos(∠CDE﹣90°)=sin∠CDE=﹣1.。
专题解三角形大题(含答案)
专题解三角形大题(含答案)靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
今天,你,做数学题了吗?1.在△ABC中,已知bcosA+a=c,求B的大小和△ABC的面积。
根据正弦定理和余弦定理,可以得到sinBcosA+sinA=sinC和cosB=(c-a2-b2)/2ab。
代入已知条件,解得B=π/3,S△ABC=absinB=√3/4.2.在△ABC中,已知(b-a)sinB+asinA=csinC,且c=2,求角C的度数和△ABC面积的最大值。
同样利用正弦定理和余弦定理,可以得到a2+b2-c2=ab和cosB=(c-a2-b2)/2ab。
解得C=π/3,S△ABC=absinC=√3.3.在△ABC中,已知a+b+c=2,求sinC和如果△ABC是钝角三角形,求其面积。
根据余弦定理,可以得到cosC=(a2+b2-c2)/2ab。
代入已知条件,解得sinC=√3/2,若△ABC是钝角三角形,面积为0.4.在△ABC中,已知2cosC(acosB+bcosA)=c,求角C和如果c=2,求△ABC面积的最大值。
根据余弦定理,可以得到cosC=(a2+b2-c2)/2ab。
代入已知条件,解得C=π/3,S△ABC=absinC=√3.当c=2时,代入面积公式,解得S△ABC=√3.5.在四边形ABCD中,已知∠D=2∠B,且AD=2,CD=6,cosB=1/3,求△ACD的面积和AB的长。
根据余弦定理,可以得到AC2=40-24cosB=32,再根据海龙公式和正弦定理,可以解得S△ACD=8√3和AB=2√7.6.在△ABC中,已知bsin(A+C)=asinC,且a=2c,求sinB和△ABC的周长。
代入正弦定理和已知条件,解得sinB=1/2,周长为3c。
1.由$a^2+b^2-c^2=ab$,得到$ab+4=a^2+b^2$。
由不等式$a^2+b^2\geq 2ab$,得到$ab+4\geq 2ab$,因此$ab\leq 4$。
高中数学解三角形精选题目(附答案)
高中数学解三角形精选题目(附答案)一、解三角解三角形的常见类型及方法(1)已知三边:先由余弦定理求出两个角,再由A+B+C=π,求第三个角.(2)已知两边及其中一边的对角:先用正弦定理求出另一边的对角,再由A +B+C=π,求第三个角,最后利用正弦定理或余弦定理求第三边.(3)已知两边及夹角:先用余弦定理求出第三边,然后再利用正弦定理或余弦定理求另两角.(4)已知两角及一边:先利用内角和求出第三个角,再利用正弦定理求另两边.1.设锐角△ABC的内角A,B,C的对边分别为a,b,c,且有a=2b sin A.(1)求B的大小;(2)若a=33,c=5,求b.1.解:(1)由a=2b sin A,根据正弦定理得sin A=2sin B sin A,所以sin B=1 2,由于△ABC是锐角三角形,所以B=π6.(2)根据余弦定理,得b2=a2+c2-2ac cos B=27+25-45=7,所以b=7.注:利用正、余弦定理来研究三角形问题时,一般要综合应用三角形的性质及三角函数关系式,正弦定理可以用来将边的比和对应角正弦值的比互化,而余弦定理多用来将余弦值转化为边的关系.2.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°解析:选A 由正弦定理可知c =23b ,则cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,所以A =30°,故选A.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B.932C.332 D .33解析:选C ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B =________.解析:依题意得,由正弦定理知:1sin π6=3sin B ,sin B =32,又0<B <π,b >a ,可得B =π3或2π3.答案:π3或2π35.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值.解:(1)证明:∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B .∵sin B =sin[π-(A +C )]=sin(A +C ),∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac≥2ac -ac 2ac =12, 当且仅当a =c 时等号成立.∴cos B 的最小值为12.二、三角形的形状判定三角形中的常用结论(1)A +B =π-C ,A +B 2=π2-C 2. (2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.6.在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断该三角形的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),∴a 2[sin(A -B )-sin(A +B )]=b 2[-sin(A +B )-sin(A -B )],∴2a 2cos A sin B =2b 2sin A cos B .法一:(化边为角)由正弦定理得2sin 2A cos A sin B =2sin 2B sin A cos B , 即sin 2A ·sin A sin B =sin 2B ·sin A sin B .∵0<A <π,0<B <π,∴sin 2A =sin 2B ,∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形.法二:(化角为边)2a 2cos A sin B =2b 2cos B sin A ,由正弦、余弦定理得a 2b ·b 2+c 2-a 22bc =b 2a ·a 2+c 2-b 22ac ,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),即(a 2-b 2)(c 2-a 2-b 2)=0.∴a =b 或c 2=a 2+b 2,∴△ABC 为等腰三角形或直角三角形.注:根据所给条件判断三角形的形状的途径(1)化边为角.(2)化角为边,转化的手段主要有:①通过正弦定理实现边角转化;②通过余弦定理实现边角转化;③通过三角变换找出角之间的关系;④通过对三角函数值符号的判断以及正、余弦函数的有界性来确定三角形的形状.7.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:选D ∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,∴sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,∴cos A (sin B -sin A )=0,∴cos A =0或sin B =sin A ,∴A =π2或B =A 或B =π-A (舍去).故△ABC 为直角三角形或等腰三角形.8.在△ABC 中,已知3b =23a sin B ,且A ,B ,C 成等差数列,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形解析:选C ∵A ,B ,C 成等差数列,∴A +C =2B ,即3B =π,解得B =π3.∵3b =23a sin B ,∴根据正弦定理得3sin B =23sin A sin B .∵sin B ≠0,∴3=23sin A ,即sin A =32,即A =π3或2π3,当A =2π3时,A +B =π不满足条件.∴A =π3,C =π3.故A =B =C ,即△ABC 的形状为等边三角形.9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,a 2=b 2+c 2-2bc cos A ,∴bc =-2bc cos A ,cos A =-12. 又0<A <π,∴A =2π3.(2)由(1)知sin 2A =sin 2B +sin 2C +sin B sin C ,∴sin 2A =(sin B +sin C )2-sin B sin C .又sin B +sin C =1,且sin A =32,∴sin B sin C =14,因此sin B =sin C =12.又B ,C ∈⎝ ⎛⎭⎪⎫0,π2,故B =C . 所以△ABC 是等腰的钝角三角形.三、实际应用(1)仰角与俯角是相对水平线而言的,而方位角是相对于正北方向而言的.(2)利用方位角或方向角和目标与观测点的距离即可唯一确定一点的位置.10.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.[解] (1)依题意,∠BAC =120°,AB =12海里,AC =10×2=20(海里),∠BCA =α.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos 120°=784.解得BC =28海里.∴渔船甲的速度为BC 2=14(海里/小时).(2)在△ABC 中,AB =12海里,∠BAC =120°,BC =28海里,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°.即sin α=AB sin 120°BC=12×3228=3314.故sin α的值为33 14.注:应用解三角形知识解决实际问题的步骤(1)读题.分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)图解.根据题意画出示意图,并将已知条件在图形中标出;(3)建模.将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)验证.检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.11.要测量底部不能到达的电视塔AB的高度,如图,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为()A.10 2 m B.20 mC.20 3 m D.40 m解析:选D设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,根据余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x =40或x=-20(舍去).故电视塔的高度为40 m.12.北京国庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10 6 m,则旗杆的高度为________m.解析:设旗杆高为h m,最后一排为点A,第一排为点B,旗杆顶端为点C,则BC=hsin 60°=233h.在△ABC中,AB=106,∠CAB=45°,∠ABC=105°,所以∠ACB=30°,由正弦定理,得106sin 30°=233hsin 45°,故h=30(m).答案:3013.某高速公路旁边B处有一栋楼房,某人在距地面100米的32楼阳台A处,用望远镜观测路上的车辆,上午11时测得一客车位于楼房北偏东15°方向上,且俯角为30°的C处,10秒后测得该客车位于楼房北偏西75°方向上,且俯角为45°的D处.(假设客车匀速行驶)(1)如果此高速路段限速80千米/小时,试问该客车是否超速?(2)又经过一段时间后,客车到达楼房的正西方向E处,问此时客车距离楼房多远?解:(1)在Rt△ABC中,∠BAC=60°,AB=100米,则BC=1003米.在Rt△ABD中,∠BAD=45°,AB=100米,则BD=100米.在△BCD中,∠DBC=75°+15°=90°,则DC=BD2+BC2=200米,所以客车的速度v=CD10=20米/秒=72千米/小时,所以该客车没有超速.(2)在Rt△BCD中,∠BCD=30°,又因为∠DBE=15°,所以∠CBE=105°,所以∠CEB=45°.在△BCE中,由正弦定理可知EBsin 30°=BCsin 45°,所以EB=BC sin 30°sin 45°=506米,即此时客车距楼房506米.巩固练习:1.在△ABC中,若a=7,b=3,c=8,则其面积等于()A.12 B.21 2C.28D.63解析:选D由余弦定理得cos A=b2+c2-a22bc=32+82-722×3×8=12,所以sin A=32,则S△ABC=12bc sin A=12×3×8×32=6 3.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.若3a=2b,则2sin2B-sin2Asin2A的值为()A.19 B.13C.1 D.7 2解析:选D由正弦定理可得2sin2B-sin2Asin2A=2b2-a2a2=2·⎝ ⎛⎭⎪⎫32a2-a2a2=72.3.在△ABC中,已知AB=2,BC=5,△ABC的面积为4,若∠ABC=θ,则cos θ等于()A.35B.-35C.±35D.±45解析:选C∵S△ABC =12AB·BC sin∠ABC=12×2×5×sin θ=4.∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin2θ=±3 5.4.某人从出发点A向正东走x m后到B,向左转150°再向前走3 m到C,测得△ABC的面积为334m2,则此人这时离开出发点的距离为()A.3 m B. 2 mC.2 3 m D. 3 m解析:选D在△ABC中,S=12AB×BC sin B,∴334=12×x×3×sin 30°,∴x= 3.由余弦定理,得AC=AB2+BC2-2AB×BC×cos B=3+9-9=3(m).5.在△ABC中,A=60°,AB=2,且△ABC的面积S△ABC=32,则边BC的边长为()A.3B.3C.7D.7解析:选A∵S△ABC =12AB·AC sin A=32,∴AC=1,由余弦定理可得BC2=AB2+AC2-2AB·AC cos A=4+1-2×2×1×cos 60°=3,即BC= 3.6.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B =a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B∵b cos C+c cos B=b·b2+a2-c22ab+c·c2+a2-b22ac=b2+a2-c2+c2+a2-b22a=2a22a=a=a sin A,∴sin A=1.∵A∈(0,π),∴A=π2,即△ABC是直角三角形.7.在△ABC中,B=60°,b2=ac,则△ABC的形状为____________.解析:由余弦定理得b2=a2+c2-2ac cos B,即ac=a2+c2-ac,∴(a-c)2=0,∴a=c.又∵B=60°,∴△ABC为等边三角形.答案:等边三角形8.在△ABC中,a=b+2,b=c+2,又知最大角的正弦等于32,则三边长为________.解析:由题意知a边最大,sin A=32,∴A=120°,∴a2=b2+c2-2bc cos A.∴a2=(a-2)2+(a-4)2+(a-2)(a-4).∴a2-9a+14=0,解得a=2(舍去)或a=7.∴b=a-2=5,c=b-2=3.答案:a=7,b=5,c=39.已知三角形ABC的三边为a,b,c和面积S=a2-(b-c)2,则cos A=________.解析:由已知得S=a2-(b-c)2=a2-b2-c2+2bc=-2bc cos A+2bc.又S=12bc sin A,∴12bc sin A=2bc-2bc cos A.∴4-4cos A=sin A,平方得17cos2A-32cos A+15=0.∴(17cos A-15)(cos A-1)=0.∴cos A=1(舍去)或cos A=15 17.答案:15 1710.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=23,sin B=5cos C.(1)求tan C的值;(2)若a=2,求△ABC的面积.解:(1)因为0<A<π,cos A=2 3,所以sin A=1-cos2A=5 3,又5cos C=sin B=sin(A+C)=sin A cos C+cos A sin C=53cos C+23sin C,所以253cos C=23sin C,tan C= 5.(2)由tan C=5得sin C=56,cos C=16,于是sin B =5cos C =56. 由a =2及正弦定理a sin A =c sin C 得c =3,所以△ABC 的面积S △ABC =12ac sinB =12×2×3×56=52. 11.如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ;(2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B=437×12-17×32=3314.(2)在△ABD 中,由正弦定理得BD =AB ·sin ∠BAD sin ∠ADB =8×3314437=3. 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+52-2×8×5×12=49. 所以AC =7.12.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,c =2,C =π3,求△ABC 的面积.解:(1)证明:∵m∥n,∴a sin A=b sin B,∴a·a=b·b,即a2=b2,a=b,∴△ABC为等腰三角形.(2)由m⊥p,得m·p=0,∴a(b-2)+b(a-2)=0,∴a+b=ab.由余弦定理c2=a2+b2-2ab cos C,得4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0,解得ab=4(ab=-1舍去),∴S△ABC =12ab sin C=12×4×sinπ3= 3.。
(完整版)解三角形练习题及答案
解三角形习题及答案一、选择题(每题5分,共40分)1、己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ). A .90° B .120° C .135° D .150°2、在△ABC 中,下列等式正确的是( ).A .a ∶b =∠A ∶∠B B .a ∶b =sin A ∶sin BC .a ∶b =sin B ∶sin AD .a sin A =b sin B3、若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ). A .1∶2∶3 B .1∶3∶2C .1∶4∶9D .1∶2∶34、在△ABC 中,a =5,b =15,∠A =30°,则c 等于( ).A .25B .5C .25或5D .10或55、已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小( ).A .有一种情形B .有两种情形C .不可求出D .有三种以上情形 6、在△ABC 中,若a 2+b 2-c 2<0,则△ABC 是( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .形状不能确定 7、)( 37sin 83sin 37cos 7sin 的值为︒︒-︒︒A.23- B 。
21- C 。
21D 。
238、化简1tan151tan15+-等于 ( )AB.2C .3D .1二、填空题(每题5分,共20分)9、已知cos α-cos β=21,sin α-sin β=31,则cos (α-β)=_______.10、在△ABC 中,∠A =105°,∠B =45°,c =2,则b = .11、在△ABC 中,∠A =60°,a =3,则C B A cb a sin sin sin ++++= . 12、在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则最大角的余弦值等于 .班别: 姓名: 序号: 得分:9、10、11、12、 三、解答题13、(12分)已知在△ABC 中,∠A =45°,a =2,c =6,解此三角形.14、(14分)已知21)tan(=-βα,71tan -=β,求)2tan(βα-的值15、(16分)已知x x x x f cos sin 32cos 2)(2-=,(1)求函数)(x f 的取最小值时x 的集合; (2)求函数单调增区间及周期。
高二数学解三角形测试题(附答案)
解三角形测试题一、选择题:1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于〔〕A.60°B.60°或120°C.30°或150°D.120°2、符合以下条件的三角形有且只有一个的是〔〕A.a=1,b=2 ,c=3 B.a=1,b=2,∠A=30°C.a=1,b=2,∠A=100°D.b=c=1, ∠B=45°3、在锐角三角形ABC中,有〔〕A.cosA>sinB且cosB>sinA B.cosA<sinB且cosB<sinAC.cosA>sinB且cosB<sinA D.cosA<sinB且cosB>sinA4、假设(a+b+c)(b+c-a)=3abc,且sinA=2sinBcosC, 那么ΔABC是〔〕A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形5、设A、B、C为三角形的三内角,且方程(sinB-sinA)x2+(sinA-sinC)x +(sinC-sinB)=0有等根,那么角B 〔〕A.B>60°B.B≥60°C.B<60°D.B ≤60°6、满足A=45,c=6,a=2的△ABC的个数记为m,则a m的值为〔〕A.4 B.2 C.1 D.不定7、如图:D,C,B三点在地面同一直线上,DC=a,从C,D两点测得A点仰角分别是β,ABα(α<β),则A 点离地面的高度AB 等于 〔 〕A .)sin(sin sin αββα-a B .)cos(sin sin βαβα-⋅aC .)sin(cos sin αββα-a D .)cos(sin cos βαβα-a8、两灯塔A,B 与海洋观察站C 的距离都等于a(km), 灯塔A 在C 北偏东30°,B 在C 南 偏东60°,则A,B 之间的相距 〔 〕A .a (km)B .3a(km)C .2a(km)D .2a (km)二、填空题:9、A 为ΔABC 的一个内角,且sinA+cosA=127, 则ΔABC 是______三角形. 10、在ΔABC 中,A=60°, c:b=8:5,内切圆的面积为12π,则外接圆的半径为_____.11、在ΔABC 中,假设S ΔABC =41 (a 2+b 2-c 2),那么角∠C=______. 12、在ΔABC 中,a =5,b = 4,cos(A -B)=3231,则cosC=_______.三、解答题:13、在ΔABC 中,求分别满足以下条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ; ③sinC=BA BA cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).D Cα β14、已知ΔABC 三个内角A 、B 、C 满足A+C=2B,A cos 1+ C cos 1 =-B cos 2 , 求2cosCA 的值.15、二次方程ax 2-2bx+c=0,其中a 、b 、c 是一钝角三角形的三边,且以b 为最长.①证明方程有两个不等实根; ②证明两个实根α,β都是正数; ③假设a=c,试求|α-β|的变化范围.16、海岛O 上有一座海拨1000米的山,山顶上设有一个观察站A,上午11时,测得一轮船在岛北60°东C 处,俯角30°,11时10分,又测得该船在岛的北60°西B 处,俯角60°.①这船的速度每小时多少千米?②如果船的航速不变,它何时到达岛的正西方向?此时所在点E离岛多少千米?一、BDBBD AAC 二、〔9〕钝角 〔10〕3314 〔11〕4π 〔12〕81三、〔13〕分析:化简已知条件,找到边角之间的关系,就可判断三角形的形状. ①由余弦定理ac ac c a ac b c a ac b c a =-+⇒=-+⇒-+=︒22222222212260cos 0)(2=-∴c a ,c a =∴. 由a=c 及B=60°可知△ABC 为等边三角形. ②由AAb B a A b cos sin tan tan 222⇒=,2sin 2sin ,cos sin cos sin sin sin cos sin cos sin cos sin 22222B A B B A A AB a b B A A B B B a =∴=∴==⇒=∴A=B 或A+B=90°,∴△ABC 为等腰△或Rt △. ③BA B A C cos cos sin sin sin ++= ,由正弦定理:,)cos (cos b a B A c +=+再由余弦定理:b a acb c a c bc c b a c +=-+⨯+-+⨯22222222∆∆∴+=∴=--+∴Rt ABC b a c b a c b a 为,,0))((222222. ④由条件变形为2222)sin()sin(ba b a B A B A +-=+-︒=+=∴=∴=⇒=--+-++∴90,2sin 2sin sin sin sin cos cos sin ,)sin()sin()sin()sin(2222B A B A B A BA B A B A b a B A B A B A B A 或. ∴△ABC 是等腰△或Rt △. 点评:这类判定三角形形状的问题的一般解法是:由正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简考察边或角的关系,从而确定三角形的形状. 有时一个条件既可用正弦定理也可用余弦定理甚至可以混用. 如本例的②④也可用余弦定理,请同学们试试看.〔14〕分析:︒=+︒=∴=+120,60,2C A B B C A 再代入三角式解得A 或 C. 解:︒=+︒=∴=-︒∴=+120.60,2180,2C A B B B B C A .∴由已知条件化为:22cos )120cos(.22)120cos(1cos 1-=+-︒∴-=-︒+A A A A),120cos(cos A A -︒设ααα-︒=+︒==-60,60,2C A CA 则.代入上式得:)60cos(α-︒ )60cos()60cos(22)60cos(ααα-︒+︒-=+︒+.化简整理得023cos 2cos 242=-+αα222cos ,22cos ,0)3cos 22)(2cos 2(=+=∴=+-⇒C A 即ααα. 注:此题有多种解法. 即可以从上式中消去B 、C 求出cosA ,也可以象本例的解法.还可以用和、差化积的公式,同学们可以试一试.〔15〕分析:证明方程有两个不等实根,即只要验证△>0即可.要证α,β为正数,只要证明αβ>0,α+β>0即可. 解:①在钝角△ABC 中,b 边最长.ac b ac b B ac c a b B 424)2(,cos 20cos 122222-=--=∆-+=<<-∴且.0cos 4)(24)cos 2(2222>--=--+=B ac c a ac B ac c a 〔其中0cos 40)(22>-≥-B ac c a 且∴方程有两个不相等的实根. ②,0,02>=>=+aca b αββα ∴两实根α、β都是正数. ③a=c 时,=-=-+=-+=-∴⎪⎪⎩⎪⎪⎨⎧===+424)(2)(,12222222a b a a c a bαββααβββααββα2||0,4cos 40,0cos 1,cos 44)cos 2(22222<-<<-<∴<<--=--+βα因此B B B aa B ac c a . 〔16〕分析:这是一个立体的图形,要注意画图和空间的简单感觉.解:①如图:所示. OB=OA 3330tan =(千米),3=OC 〔千米〕 则313120cos 222=︒⋅-+=OC OB OC OB BC 〔千米〕3926010313=÷=∴v 船速〔千米/小时〕 ②由余弦定理得:=∠=∠∴=⨯-+=∠OBC EBO BC OB OC BC OB OBC sin sin ,261352cos 222 =︒+∠-︒=∠-=∠=-)]30(180sin[sin ,26135cos ,26393)26135(12EBO OEB EBO .131330sin cos 30cos sin )30sin(=︒⨯∠+︒⨯∠=︒+∠EBO EBO EBO 再由正弦定理,得OE=1.5〔千米〕,5),(639==vBEBE 千米〔分钟〕. 答:船的速度为392千米/小时;如果船的航速不变,它5分钟到达岛的正西方向,此时所在点E 离岛1.5千米.。
解三角形专题练习【附答案】
解三角形专题(高考题)练习【附答案】1、在ABC ∆中,已知内角3A π=,边BC =.设内角B x =,面积为y .(1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。
2、已知ABC ∆中,1||=AC ,0120=∠ABC ,θ=∠BAC ,…记→→•=BC AB f )(θ,(1)求)(θf 关于θ的表达式; (2)(2)求)(θf 的值域;3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b =2,求△ABC 面积的最大值. 4、在ABC ∆中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量(2sin ,m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。
(I )求锐角B 的大小; (II )如果2b =,求ABC ∆的面积ABC S ∆的最大值。
5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=⋅,且22=b ,求c a 和b 的值. 6、在ABC ∆中,cos A =cos 10B =. —(Ⅰ)求角C ; (Ⅱ)设AB =,求ABC ∆的面积.7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =,A B C120°θ(sin ,1cos ),//,3.n A A m n b c a =++=满足 (I )求A 的大小;(II )求)sin(6π+B 的值.8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。
解三角形 练习题(答案)
三角函数练习题(含答案)1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不能确定解析:选C.∵sin 2A +sin 2B <sin 2C ,由正弦定理可得a 2+b 2<c 2,所以cos C <0,得角C 为钝角,故选C.2.在△ ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B =( ) A .-12B.12 C .-1D .1解析:选D.由a cos A =b sin B 可得sin A cos A =sin 2B , 所以sin A cos A +cos 2B =sin 2B +cos 2B =1.3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则∠B =( ) A.π6 B.π3 C.2π3D.5π6解析:选A.∵a cos C +c cos A =b , ∴原式可化为b sin B =12b ,sin B ≠0,∴sin B =12,a >b ,B 为锐角,∴B =π6.4.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若A =π3,b =1,△ABC 的面积为32,则a 的值为( ) A .1 B .2 C.32D. 3 解析:选D.∵A =π3,b =1,S △ABC =32, ∴12bc sin A =32,∴c =2.∴a 2=b 2+c 2-2bc cos A =3, ∴a = 3.5.在△ABC 中,cos 2A 2=b +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形 解析:选B.∵cos 2A 2=b +c2c,∴1+cos A 2=b +c 2c ,∴1+b 2+c 2-a 22bc =b +cc ,化简得a 2+b 2=c 2.故△ABC 是直角三角形.6.在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC =( )A.1010 B.105C.31010D.55解析:选C.先利用余弦定理求出AC 边的长度,再利用正弦定理求出sin ∠BAC . 由余弦定理可得 AC = BA 2+BC 2-2BA ·BC cos ∠ABC =2+9-2×2×3×22=5, 于是由正弦定理可得BC sin ∠BAC =ACsin ∠ABC ,于是sin ∠BAC =3×225=31010.7.(2016·广西南宁模拟)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且sin 2A +sin 2B +sin 2C =12,△ABC 的面积S ∈[1,2],则下列不等式一定成立的是( )A .ab (a +b )>16 2B .bc (b +c )>8C .6≤abc ≤12D .12≤abc ≤24解析:选B.依题意得sin [(A +B )+(A -B )]+sin [(A +B )-(A -B )]+sin 2C =12,展开并整理得2sin(A +B )·cos(A -B )+2sin C cos C =12,又sin(A +B )=sin C ,cos C =-cos(A +B ),所以2sinC cos(A -B )+2sin C cos C =2sin C ·[cos(A -B )-cos(A +B )]=12,所以4sin A sin B sin C =12,sinA sinB sinC =18.又S =12ab sin C =12bc sin A =12ca sin B ,因此S 3=18a 2b 2c 2·sin A ·sin B sin C =164a 2b 2c 2.由1≤S ≤2得1≤164a 2b 2c 2≤23,即8≤abc ≤162,因此选项C 、D 不一定成立.∵b+c >a >0,∴bc (b +c )>bc ·a ≥8,即有bc (b +c )>8,∴选项B 一定成立.∵a +b >c >0,∴ab (a +b )>ab ·c ≥8,即有ab (a +b )>8,∴选项A 不一定成立.故选B. 8.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ) A.32 B.332C.3+62D.3+394解析:选B.设AB =c ,在△ABC 中,由余弦定理知AC 2=AB 2+BC 2-2AB ·BC ·cos B , 即7=c 2+4-2×2×c ×cos 60°, c 2-2c -3=0,即(c -3)(c +1)=0. 又c >0,∴c =3.设BC 边上的高等于h ,由三角形面积公式S △ABC =12AB ·BC ·sin B =12BC ·h ,知12×3×2×sin 60°=12×2×h ,解得h =332. 9.(2014·高考新课标卷Ⅱ)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2D .1解析:选B.利用三角形面积公式可求角B ,再利用余弦定理求得B 的对边AC . ∵S =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =π4或3π4. 当B =3π4时,根据余弦定理有AC 2=AB 2+BC 2-2AB ·BC cos B =1+2+2=5,∴AC =5,此时△ABC 为钝角三角形,符合题意;当B =π4时,根据余弦定理有AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2=1,∴AC =1,此时AB 2+AC 2=BC 2,△ABC 为直角三角形,不符合题意.故AC = 5.10.(2015·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.解析:利用三角形面积公式及余弦定理列式求解. 在△ABC 中,由cos A =-14可得sin A =154,所以有⎩⎨⎧12bc ×154=315,b -c =2,a 2=b 2+c 2-2bc ×⎝⎛⎭⎫-14,解得⎩⎪⎨⎪⎧a =8,b =6,c =4.答案:811.(2015·高考重庆卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =__________. 解析:先根据正弦定理得3a =2b ,进而结合条件a =2求出b 的值,然后由余弦定理求出c 的值.∵3sin A =2sin B ,∴3a =2b . 又a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16, ∴c =4. 答案:412.(2015·高考北京卷)在△ABC 中,a =4,b =5,c =6,则sin 2Asin C =________.解析:利用二倍角的正弦公式结合正、余弦定理求解.由正弦定理得sin A sin C =ac ,由余弦定理得 cos A =b 2+c 2-a 22bc,∵a =4,b =5,c =6,∴sin 2A sin C =2sin A cos A sin C =2·sin A sin C ·cos A =2×46×52+62-422×5×6=1. 答案:113.(2016·洛阳市高三模拟)如图,在△ABC 中,sin∠ABC 2=33,AB =2,点D 在线段AC 上,且AD =2DC ,BD =433,则cos ∠C =__________.解析:由条件得cos ∠ABC =13,sin ∠ABC =223.在△ABC 中,设BC =a ,AC =3b ,则9b 2=a 2+4-43a ①.因为∠ADB 与∠CDB 互补,所以cos ∠ADB =-cos ∠CDB ,所以4b 2+163-41633b =-b 2+163-a 2833b ,所以3b 2-a 2=-6②,联合①②解得a =3,b =1,所以AC =3,BC =3.在△ABC 中,cos ∠C =BC 2+AC 2-AB 22BC ·AC =32+32-222×3×3=79.答案:7914.△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin B sin C ;(2)若AD =1,DC =22,求BD 和AC 的长. 解:(1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC . 由正弦定理,得sin B sin C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理,知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1),知AB =2AC ,所以AC =1.15.(2015·高考浙江卷)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a 2=12c 2.(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 解:(1)由b 2-a 2=12c 2及正弦定理得sin 2B -12=12sin 2C ,所以-cos 2B =sin 2C .又由A =π4,即B +C =34π,得-cos 2B =sin 2C =2sin C cos C , ∴2sin C ·cos C =sin 2 C 解得tan C =2.(2)由tan C =2,C ∈(0,π),得 sin C =255,cos C =55.因为sin B =sin(A +C )=sin ⎝⎛⎭⎫π4+C , 所以sin B =31010.由正弦定理得c =22b3,又因为A =π4,12bc sin A =3,所以bc =62,故b =3.16.(2015·高考调研卷)已知在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且tan A =3cb c 2+b 2-a 2.(1)求角A 的大小;(2)当a =3时,求c 2+b 2的最大值,并判断此时△ABC 的形状. 解:(1)由已知及余弦定理,得sin A cos A =3cb2cb cos A ,sin A =32, 因为A 为锐角,所以A =60°.(2)法一 由正弦定理,得a sin A =b sin B =c sin C =332=2,所以b =2sin B ,c =2sin C =2sin(120°-B ). c 2+b 2=4[sin 2B +sin 2(120°-B )] =4⎣⎡⎦⎤1-cos 2B 2+1-cos (240°-2B )2=4⎣⎡⎦⎤1-12cos 2B -12⎝⎛⎭⎫-12cos 2B -32sin 2B=4-cos 2B +3sin 2B =4+2sin(2B -30°).由⎩⎪⎨⎪⎧0°<B <90°,0°<120°-B <90°,得30°<B <90°,所以30°<2B -30°<150°, 当sin(2B -30°)=1,即B =60°时,(c 2+b 2)max =6, 此时C =60°,△ABC 为等边三角形.。
(完整版)解三角形经典练习题集锦(附答案)
解三角形试题及详细答案(基础)
22.(12
分)如图,在平面四边形中,
AB
14
,
cos
A
3 5
,
cos
ABD
5 13
.
(1)求对角线 BD 的长; (2)若四边形 ABCD 是圆的内接四边形,求 △BCD 面积的最大值.
解三角形 答 案
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的. 1.【答案】D
7
故选 A.
方法二:海伦-秦九韶公式 S
p( p a)( p b)( p c) ,其中 p a b c 9 , 2
所以 S 9 (9 7) (9 3) (9 8) =6 3 ,故选 A.
4.【答案】B
【解析】因为 b cos C c cos B a sin A ,所以 sin B cosC sin C cos B sin2 A ,
A. π 6
B. π 3
C. 2π 3
D. 5π 6
3.在 V ABC 中,若 a 7 , b 3 , c 8 ,则其面积等于( )
A. 6 3
B. 21 2
C.28
D.12
4.在 V ABC 中,a,b,c 分别是内角 A,B,C 所对的边,若 b cos C c cos B a sin A ,则 V ABC 的
,函数
f
x
cos
2x
π 3
2sin
π 4
x
sin
π 4
解三角形练习题和答案
解三角形练习题【1】1.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对边,若C b a cos 2=,则此三角形一定是()A.等腰直角三角形B. 直角三角形C. 等腰三角形D. 等腰或直角三角形2.在△ABC 中,角,,A B C 的对边边长分别为3,5,6a b c ===,则cos cos cos bc A ca B ab C ++的值为A .38B .37C .36D .353.有四个关于三角函数的命题:1p :∃x ∈R, 2sin 2x +2cos 2x =122p : ,x y R ∃∈, sin()sin sin x y x y -=- 3p : ∀x ∈[]0,π1cos 2sin 2x x -=4p : sin cos 2x y x y π=⇒+= 其中假命题的是 (A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,3p4.已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,若31sin =A ,B b sin 3=,则a 等于.5.在△ABC 中,已知边10c =, cos 4cos 3A bB a ==,求边a 、b 的长。
6.已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若21sin sin cos cos =-C B C B . (Ⅰ)求A ;(Ⅱ)若4,32=+=c b a ,求ABC ∆的面积.7.已知△ABC 的内角C B A ,,的对边分别为c b a ,,,其中2=c ,又向量m )cos ,1(C =,n )1,cos (C =,m ·n =1.(1)若45A =︒,求a 的值;(2)若4=+b a ,求△ABC 的面积.8.已知:△ABC 中角A 、B 、C 所对的边分别为a 、b 、c 且sin cos sin cos sin 2A B B A C ⋅+⋅=.(1)求角C 的大小;(2)若,,a c b 成等差数列,且18CA CB ⋅=,求c 边的长.9.已知ABC ∆的三个内角A 、B 、C 所对的边分别为a b c 、、,向量(4,1),m =-2(cos ,cos 2)2A n A =,且72m n ⋅= . (1)求角A 的大小; (2)若3a =b c ⋅取得最大值时ABC ∆的形状.10.在ABC ∆中,54sin ,135cos =-=B A . (Ⅰ)求C cos 的值; (Ⅱ)设15=BC ,求ABC ∆的面积.11..已知31cos 32cos sin 2)(2--+=x x x x f ,]2,0[π∈x⑴求)(x f 的最大值及此时x 的值;⑵求)(x f 在定义域上的单调递增区间。
解三角形练习题附答案
一、选择题1.在锐角△ABC中,角A,B所对的边长分别为a,b.若2a sin B=b,则角A等于()A. B. C. D.2.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定二、填空题3.已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sin B)=(c-b)·sin C,则△ABC面积的最大值为________.4.在△ABC中,角A,B,C的对边分别为a,b,c,已知4sin2-cos 2C=,且a+b=5,c=,则△ABC的面积为________.5.如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=,AB=3,AD=3,则BD的长为________.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A-cos2B=sin A cos A-sin B cos B.(1)求角C的大小;(2)若sin A=,求△ABC的面积.7.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知4sin2+4sin A sin B=2+.(1)求角C的大小;(2)已知b=4,△ABC的面积为6,求边长c的值.8.在△ABC中,a、b、c分别为角A、B、C所对的边,且c=-3bcosA,tanC=.(1) 求tanB的值;(2) 若c=2,求△ABC的面积.9.在△ABC中,设角A、B、C的对边分别为a、b、c,且a cos C+c=b.(1) 求角A的大小;(2) 若a=,b=4,求边c的大小.10.在△ABC中,角A,B,C的对边分别为a,b,c,且=.(1)求角的值;(2)若角,边上的中线=,求的面积.11.在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos 2A-3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=5,b=5,求sin B sin C的值.12.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=,sin B=cos C.(1)求tan C的值;(2)若a=,求△ABC的面积.13.如图,在△ABC中,∠B=,AB=8,点D在BC边上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.答案解析1.【答案】A【解析】本题主要考查锐角三角形的定义、正弦定理与解三角方程,意在考查考生的转化能力与三角变换能力.由正弦定理可得,2a sin B=b可化为2sin A sin B=sin B,又sin B≠0,所以sin A=,又△ABC为锐角三角形,得A=.2.【答案】B【解析】本题考查正弦定理和两角和的正弦公式的逆用.依据题设条件的特点,由正弦定理,得sin B cos C+cos B sin C=sin2A,有sin(B+C)=sin2A,从而sin(B+C)=sin A=sin2A,解得sin A=1,∴A =,故选B3.【答案】【解析】∵===2R,a=2,又(2+b)(sin A-sin B)=(c-b)sin C可化为(a+b)(a-b)=(c-b)·c,∴a2-b2=c2-bc,∴b2+c2-a2=bc.∴===cos A,∴A=60°.∵△ABC中,4=a2=b2+c2-2bc·cos 60°=b2+c2-bc≥2bc-bc=bc(“=”当且仅当b=c时取得),∴S△ABC=·bc·sin A≤×4×=.4.【答案】【解析】因为4sin2-cos 2C=,所以2[1-cos(A+B)]-2cos2C+1=,2+2cos C-2cos2C+1=,cos2C-cos C+=0,解得cos C=.根据余弦定理,有cos C==,则ab=a2+b2-7,故3ab=a2+b2+2ab-7=(a+b)2-7=25-7=18,所以ab =6,所以△ABC的面积S△ABC=ab sin C=×6×=.5.【答案】【解析】题考查诱导公式、余弦定理等基础知识,意在考查考生的转化和化归能力、运算求解能力.因为sin∠BAC=,且AD⊥AC,所以sin=,所以cos∠BAD=,在△BAD中,由余弦定理得,BD===.6.【答案】(1);(2)【解析】(1)由题意得-=sin 2A-sin 2B,即sin 2A-cos 2A=sin 2B-cos 2B,sin=sin.由a≠b,得A≠B.又A+B∈(0,π),得2A-+2B-=π,即A+B=,所以C=.(2)由c=,sin A=,=,得a=.由a<c,得A<C,从而cos A=,故sin B=sin(A+C)=sin A cos C+cos A sin C=,所以,△ABC的面积为S=ac sin B=.7.【答案】(1);(2).【解析】(1)由已知得2[1-cos(A-B)]+4sin A sin B=2+,化简得-2cos A cos B+2sin A sin B=,故cos(A+B)=-,所以A+B=,从而C=.(2)因为S△ABC=ab sin C,由S△ABC=6,b=4,C=,得a=3.由余弦定理c2=a2+b2-2ab cos C,得c=.8.【答案】(1);(2).【解析】(1) 由正弦定理,得sinC=-3sinBcosA,即sin(A+B)=-3sinBcosA.所以sinAcosB+cosAsinB=-3sinBcosA.从而sinAcosB=-4sinBcosA.因为cosAcosB≠0,所以=-4.又tanC=-tan(A+B)=,由(1)知,=,解得tanB=.(2) 由(1),得sinA=,sinB=,sinC=.由正弦定理,得a===.所以△ABC的面积为acsinB=××2×=.9.【答案】(1);(2)2±.【解析】(1) 用正弦定理,由a cos C+c=b,得sin A cos C+sin C=sin B.∵ sin B=sin(A+C)=sin A cos C+cos A sin C,∴sin C=cos A sin C.∵ sin C≠0,∴ cos A=.∵ 0<A<π,∴A=.(2) 用余弦定理,得a2=b2+c2-2bc cos A.∵a=,b=4,∴ 15=16+c2-2×4×c×.即c2-4c+1=0.则c=2±.10.【答案】(1);(2)【解析】(1)因为,由正弦定理得,即=sin(A+C) .因为B=π-A-C,所以sin B=sin(A+C),所以.因为B∈(0,π),所以sin B≠0,所以,因为,所以.(2)由(1)知,所以,.设,则,又在△AMC中,由余弦定理得即解得x=2.故11.【答案】(1);(2)【解析】(1)由cos 2A-3cos(B+C)=1,得2cos2A+3cos A-2=0,即(2cos A-1)(cos A+2)=0,解得cos A=或cos A=-2(舍去).因为0<A<π,所以A=.(2)由S=bc sin A=bc·=bc=5,得bc=20.又b=5,知c=4.由余弦定理得a2=b2+c2-2bc cos A=25+16-20=21,故a=.又由正弦定理得sin B sin C=sin A·sin A=sin2A=×=.12.【答案】(1);(2)【解析】(1)因为0<A<π,cos A=,得sin A==.又cos C=sin B=sin (A+C)=sin A cos C+cos A sin C=cos C+sin C.所以tan C=.(2)由tan C=,得sin C=,cos C=.于是sin B=cos C=.由a=及正弦定理=,得c=.设△ABC的面积为S,则S=ac sin B=.13.【答案】(1)(2)7【解析】(1)在△ADC中,因为cos∠ADC=,所以sin∠ADC=.所以sin∠BAD=sin(∠ADC-∠B)=sin∠ADC cos B-cos∠ADC sin B =×-×=.(2)在△ABD中,由正弦定理得BD===3.在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BC·cos B=82+52-2×8×5×=49.所以AC=7.。
高三数学复习专题练习题:解三角形(含答案)
⾼三数学复习专题练习题:解三⾓形(含答案)⾼三数学复习专题练习:解三⾓形(含答案)⼀. 填空题(本⼤题共15个⼩题,每⼩题5分,共75分)1.在△ABC 中,若2cosBsinA=sinC,则△ABC ⼀定是三⾓形.2.在△ABC 中,A=120°,AB=5,BC=7,则CBsin sin 的值为 . 3.已知△ABC 的三边长分别为a,b,c,且⾯积S △ABC =41(b 2+c 2-a 2),则A= . 4.在△ABC 中,BC=2,B=3π,若△ABC 的⾯积为23,则tanC 为 . 5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= . 8.在△ABC 中,若∠C=60°,则c b a ++ac b+= . 9.如图所⽰,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km, 灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为 km.10.⼀船⾃西向东匀速航⾏,上午10时到达⼀座灯塔P 的南偏西75°距塔68海⾥的M 处,下午2时到达这座灯塔的东南⽅向的N 处,则这只船的航⾏速度为海⾥/⼩时. 11. △ABC 的内⾓A 、B 、C 的对边分别为a 、b 、c ,若c=2,b=6,B=120°,则a= .12. 在△ABC 中,⾓A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tanB=3ac ,则⾓B 的值为 . 13. ⼀船向正北航⾏,看见正西⽅向有相距10 海⾥的两个灯塔恰好与它在⼀条直线上,继续航⾏半⼩时后,看见⼀灯塔在船的南偏西600,另⼀灯塔在船的南偏西750,则这艘船是每⼩时航⾏________ 海⾥.14.在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的⾯积为 .15.在△ABC 中,⾓A 、B 、C 所对的边分别为a 、b 、c.若(3b-c )cosA=acosC ,则cosA= .(资料由“⼴东考神”上传,如需更多⾼考复习资料,请上 tb ⽹搜“⼴东考神”)⼆、解答题(本⼤题共6个⼩题,共75分)1、已知△ABC 中,三个内⾓A ,B ,C 的对边分别为a,b,c,若△ABC 的⾯积为S ,且2S=(a+b )2-c 2,求tanC 的值. (10分)2、在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (11分)(1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状.3、在△ABC 中,a 、b 、c 分别是⾓A ,B ,C 的对边,且C B cos cos =-ca b+2. (12分)(1)求⾓B 的⼤⼩;(2)若b=13,a+c=4,求△ABC 的⾯积.4、△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (12分) (1)求⾓A 的⼤⼩;(2)若a=3,求bc 的最⼤值;(3)求cb C a --?)30sin(的值.5、已知△ABC 的周长为)12(4+,且sin sin B C A +=. (12分)(1)求边长a 的值;(2)若A S ABC sin 3=?,求A cos 的值.6、在某海岸A 处,发现北偏东 30⽅向,距离A 处)(13+n mile 的B 处有⼀艘⾛私船在A 处北偏西 15的⽅向,距离A 处6n mile 的C 处的缉私船奉命以35n mile/h 的速度追截⾛私船. 此时,⾛私船正以5 n mile/h 的速度从B 处按照北偏东 30⽅向逃窜,问缉私船⾄少经过多长时间可以追上⾛私船,并指出缉私船航⾏⽅向. (12分)ACB3015· ·参考答案:⼀、填空题:1、等腰;2、53;3、45°;4、33;5、60°;6、45°或135°;7、65π;8、1;9、3a ;10、2617;11、2;12、3π或32π;13、10;14、103;15、33。
一题打天下之解三角形(原创45问含答案)
= 3a,求
sin A sin C
的值;
(26)若
a
+
√ 2b
=
2c,求
sin C
的值;
(27)若 b 是 a 与 c 的等比中项,求证:△ABC 为正三角形;
(28)若 a,b,c 成等差数列,求证:△ABC 为正三角形;
(29)若 sin A sin C = cos2 B ,求证:△ABC 为正三角形; 2 √
(12)7;
(13)直角三角形;
(14)直角三角形;
(15)等边三角形;
(16)等边三角形;
(17)等边三角形;
(18) 1 ; 2
( (19)
√ 3
,
]
√ 3
;
2
(]
(20)
13 ,
;
24
(21)(√3, 2√3];
[)
(22)
1 ,1
;
2
(23)[2, +∞);
第 3 页(共 4 页)
√ (24) 3 ;
(09)若 b2 = (a − c)2 + 6,求 △ABC 的面积;
√ (10)若 △ABC 的面积 S = 5 3,且 a = 5,求 sin A • sin C 的值;
√
(11)若
b
=
4,且
△ABC
的面积
S△ABC
=
3 3 ,求 4
−−→ −−→ AB • BC
及
a+c
的值;
(12)若
a
−
b
=
(22)若 a + c = 1,求 b 的取值范围; (23)若 △ABC 的面积 S = √3,求 b 的取值范围;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形练习题及答案
解三角形习题及答案
一、选择题(每题5分,共40分)
1、己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ). A .90°
B .120°
C .135°
D .150°
2、在△ABC 中,下列等式正确的是( ). A .a ∶b =∠A ∶∠B
B .a ∶b =sin A ∶sin B
C .a ∶b =sin B ∶sin A
D .a sin A =b sin B
3、若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ). A .1∶2∶3 B .1∶3
∶2
C .1∶4∶9
D .1∶
2∶3
4、在△ABC 中,a =5
,b =
15,∠A =30°,则c 等于( ).
A .2
5
B .5
C .2
5
或5
D .10或5 5、已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC
的形
状大小 ( ).
A .有一种情形
B .有两种情形
C .不可求出
D .有三种以上情形
6、在△ABC 中,若a 2+b 2-c 2<0,则△ABC 是( ). A .锐角三角形 B .直角三角形
C .钝角三角形
D .形状不能确定
7、)( 37sin 83sin 37cos 7sin 的值为︒︒-︒︒
A.23-
B.2
1- C.21
D.23
8、化简
1tan15
1tan15
+-等于 ( )
A 3
B 3
C .3
D .1 二、填空题(每题5分,共20分)
9、已知cos α-cos β=2
1,sin α-sin β=3
1,则cos (α-β)=_______.
10、在△ABC 中,∠A =105°,∠B =45°,c =2,则b = .
11、在△ABC 中,∠A =60°,a =3,则C B A c b a sin sin sin ++++= .
12、在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则最大角的余弦值等于 .
班别: 姓名: 序号: 得分:
9、 10、 11、 12、 三、解答题
13、(12分)已知在△ABC 中,∠A =45°,a =2,c =6,解此三角形.
14、(14分)已知2
1
)tan(=-βα,7
1tan -=β,求)2tan(βα-的值
题号 1
2
3
4
5
6
7
8
选项
15、(16分)已知x
2
)
(2-
=,
2
cos
x
3
x
x
f cos
sin
(1)求函数)
f的取最小值时x的集合;
(x
(2)求函数单调增区间及周期.
16、(18分)在△ABC中,角A,B,C的对边分别为a,b,c,已知
B a A b
C c cos cos cos 2⋅+⋅=⋅
(1)求角C ;
(2)若9=a ,5
4
cos -=A ,求c 。
.
第一章 解三角形 参考答案
一、选择题
1.B 2.B 3.B 4.C 5.C 6.C 7.B 8.A 二、填空题 9.
72
59. 10.2. 11.23. 12.41
-.
三、解答题
13.解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小. 解法1:由正弦定理得sin C =26sin 45°=26
·22=2
3. ∵c sin A =6×
2
2
=3,a =2,c =6,3<2<6, ∴本题有二解,即∠C =60°或∠C =120°,
∠B =180°-60°-45°=75°或∠B =180°-120°-45°=15°. 故b =
A
a
sin sin B ,所以b =3+1或b =3-1, ∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°. 解法2:由余弦定理得 b 2+(6)2-26b cos 45°=4, ∴b 2-23b +2=0,解得b =3±1.
又(6)2=b 2+22-2×2b cos C ,得cos C =±2
1,∠C =60°或∠C =120°, 所以∠B =75°或∠B =15°.
∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°.
14、解:∵21)tan(=-βα ∴ 344
1121
2)
(tan 1)tan(2)(2tan 2=-⨯
=
---=-βαβαβα ∵7
1
tan -=β
∴ 1)7
1(3417134tan )(2tan 1tan )(2tan ])(2tan[)2tan(=-⋅--
=⋅--+-=
+-=-ββαββαββαβα
15、解:1)3
2cos(212sin 32cos cos sin 32cos 2)(2++=+-=-=π
x x x x x x x f
(1)∴函数)(x f 的取最小值时满足)( 3
23
2Z k k x k x ∈+=
⇒+=+
ππ
πππ
∴函数)(x f 的取最小值时x 的集合}, 3
|{Z k k x x ∈+=
ππ
(2)周期ππ
ω
π
==
=
2
22T 要使函数单调递增,则满足 ππ
ππππ
ππk x k k x k +-≤≤+-
⇒≤+
≤+-6
32 23
22 ∴函数)(x f 的单调增区间为)( ]6
,32[Z k k k ∈+-+-
ππ
ππ
16、解:(1)∵C R c sin 2=,B R b sin 2=,A R a sin 2=
∴B a A b C c cos cos cos 2⋅+⋅=⋅ 有 B A A B C C cos sin cos sin cos sin 2⋅+⋅=⋅
⇒ 0060 2
1
cos sin )180sin()sin(cos sin 2=⇒=⇒=-=+=⋅C C C C B A C C
(2)∵5
4cos -=A 得53
cos 1sin 2=-=A A
又∵9=a ,060=C ,由正弦定理得2
3
15sin sin ==
A C a c。