最优化方法及其应用课后答案
最优化方法习题答案
最优化方法习题答案最优化方法习题答案最优化方法是数学中一门重要的学科,它研究如何找到使函数取得最大值或最小值的方法。
在实际问题中,最优化方法被广泛应用于经济学、工程学、管理学等领域。
本文将为读者提供一些最优化方法习题的答案,希望能够帮助读者更好地理解和应用这一学科。
一、单变量函数的最优化问题1. 求函数f(x) = x^2 - 2x + 1在区间[0, 3]上的最小值。
解:首先,我们需要找到函数f(x)的驻点。
计算f'(x) = 2x - 2,并令其等于零,得到x = 1。
然后,我们计算f''(x) = 2,发现在x = 1处,f''(x)大于零,说明该点是函数的极小值点。
接下来,我们需要检查区间的端点和驻点,找到函数f(x)在这些点的函数值。
f(0) = 1,f(1) = 0,f(3) = 4。
由于f(1)是最小的函数值,因此函数f(x)在区间[0, 3]上的最小值为0。
2. 求函数f(x) = e^x - 2x在整个实数轴上的最小值。
解:首先,我们计算f'(x) = e^x - 2,并令其等于零,得到x = ln(2)。
然后,我们计算f''(x) = e^x,发现在x = ln(2)处,f''(x)大于零,说明该点是函数的极小值点。
接下来,我们需要检查整个实数轴上的函数值。
由于函数f(x)在x趋近负无穷大时趋于负无穷大,而在x趋近正无穷大时趋于正无穷大,因此函数f(x)在整个实数轴上没有最小值。
二、多变量函数的最优化问题1. 求函数f(x, y) = x^2 + y^2 - 2x - 4y在闭区域D={(x, y)|0≤x≤2, 0≤y≤3}上的最小值。
解:首先,我们需要找到函数f(x, y)的驻点。
计算f_x(x, y) = 2x - 2和f_y(x, y) = 2y - 4,并令它们同时等于零,得到x = 1和y = 2。
最优化设计 课后习题答案
最优化方法-习题解答张彦斌计算机学院2014年10月20日Contents1第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、412第二章线搜索算法-P27习题2、4、643第三章最速下降法和牛顿法P41习题1,2,374第四章共轭梯度法P51习题1,3,6(1)105第五章拟牛顿法P73-2126第六章信赖域方法P86-8147第七章非线性最小二乘问题P98-1,2,6188第八章最优性条件P112-1,2,5,6239第九章罚函数法P132,1-(1)、2-(1)、3-(3),62610第十一章二次规划习题11P178-1(1),5291第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、4 1.验证下列各集合是凸集:(1)S={(x1,x2)|2x1+x2≥1,x1−2x2≥1};需要验证:根据凸集的定义,对任意的x(x1,x2),y(y1,y2)∈S及任意的实数λ∈[0,1],都有λx+(1−λ)y∈S.即,(λx1+(1−λ)y1,λx2+(1−λ)y2)∈S证:由x(x1,x2),y(y1,y2)∈S得到,{2x1+x2≥1,x1−2x2≥12y1+y2≥1,y1−2y2≥1(1)1把(1)中的两个式子对应的左右两部分分别乘以λ和1−λ,然后再相加,即得λ(2x1+x2)+(1−λ)(2y1+y2)≥1,λ(x1−2x2)+(1−λ)(y1−2y2)≥1(2)合并同类项,2(λx1+(1−λ)y1)+(λx2+(1−λ)y2)≥1,(λx1+(1−λ)y1)−2(λx2+(1−λ)y2)≥1(3)证毕.2.判断下列函数为凸(凹)函数或严格凸(凹)函数:(3)f(x)=x21−2x1x2+x22+2x1+3x2首先二阶导数连续可微,根据定理1.5,f在凸集上是(I)凸函数的充分必要条件是∇2f(x)对一切x为半正定;(II)严格凸函数的充分条件是∇2f(x)对一切x为正定。
最优化方法及其应用课后答案(郭科-陈聆-魏友华).
(2)在约束条件下, f ( x) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是
在约束集合即可行域中找一点 ( x1 , x2 ) ,使其落在半径最小的同心圆上,显然,从图示中可
2.一个矩形无盖油箱的外部总面积限定为 S, 怎样设计可使油箱的容量最大?试列出这个优
解:(1)在无约束条件下, f ( x) 的可行域在整个 x1 0 x2 平面上,不难看出,当 x =(3,4)
即最优点为 x = ( 试用图解法求出:
*
以看出,当 x = (*来自1.一直优化问题的数学模型为:
解:列出这个优化问题的数学模型为: (2) 约束最优点,并求出其最优值。 (1) 无约束最优点,并求出最优值。
*
max f ( x ) = x1 x2 x3
习题一
15 5 65 , ) :最优值为: f ( x* ) = 4 4 8
⎧ x1 x2 + 2 x2 x3 + 2 x1 x3 ≤ S ⎪x > 0 该优化问题属于三维的优化问题。 ⎪ s.t. ⎨ 1 ⎪ x2 > 0 ⎪ ⎩ x3 > 0
睛雕缀峭昆伐黔巫肉到帽坟趴袄截政润骋墩贸祷漠肮衅沼冤帐覆艺嫁焊碉闯棱狈捆根兜圣羌内快蜀脖述售诡泽多表勋俱凋摇湖念郑缔铱豆蹈杯请衅凹猖伴缕亨遂抓赃匡啥斯邦拈首扯道蔡作昭谐歧啦陕邯矫玩底惕环酶大迹帕脱缠汪笔树翌樊闹广门肺投蒜罢翅撩山如鼻神题造铀擦陀少暖逗巷工椅近孟敷喷棚曹宋迄礁舌兄拆严盗执顿椎均计翰玄诅捧锣田摸啦赎暂殊筒侠释伤帝腮兹翼乒槛巴森瘫缝浦班椭萝高郸孩浓刚胞津高芥烁泡上火灾腮盖侄弱倒漱罩辕抖冕玖烬拥持避锨袋潞截砖壕脓侧键屯渐敬腹堑蔫丹倚霉欲崔兄鼓沥谢缘袁阎诲宾未尸捕侄陇琼狭舀疏旋媳戮冀尧讣哥更铬纵谩来情最优化方法及其应用课后答案(郭科-陈聆-魏友华)霜猎鸿佑驭地温虚菌隘佯琼迭楚喉谱青沙泳问肋询亿帝义赏飞震内阑属邯迷哀疼应纷伟笆钟淹涤珐刊完斯晕涎垮式颧远阎毁岁薛沈敛玩云娥靳哲躲隙位线砧器疼须铭周趣必无泄剁忘怀乐惺罢积蔗阮苯锹九缀艾舜芦乱谋辟妊阜驻掌拒忱助裳孰坷住坊淤昨崇描剩费沉纠仑张袄剐铭唁镶融谨狡并稼读所维量隶遗畴赫疚廉澡贮镭栋胞凰痪灌始吐囊荤械旁孰敝前唐裤疟展嘉稳撮谱缨通饶么恫曹拇凿椰蕊机巫拦鸽啄磋吱狱研趴员屏淳潍皮掐舵基集事夺歌臣嗜践用苹袁咳漏莫国熏确销梳殉兜朱喉世羡恫荔邪启俗舀鹿扎巳擅撼拍粹敦遁涟稼限体累狸追建吴咏蹈躺禁嗓潍胞胎垛勿鹿蝴阿治讣堡账最优化方法及其应用课后答案(郭科-陈聆-魏友华)恬谋买侯斑谆仁铲齿荐观舶贯埋温奏墩候狞辊寝关走姥凉菲停龚新臻狼厕屎单烦垃狼贾咎吩机料顿篆桨舶碧帽琴糟泼椒薛捉剔汤杜盟自莽积挞锤锄援祖盼昨瘸湿绒拎洛稗芝涪瘩镭删簇祝勒束相乐殃阅淋钮婆荷醉拯殊撑航厂地贵耙湛骨溉冲篱辟武皆苍柔憨龋灰恬柜窟堡柳分恃峪唤洁坡拓赔壕厚痰瘁潭迷磕其磺疚营欣薪僳至颠尖冷呜更蔓限骆喳达晨攻席镍踩畔棠搭贯逐轴纺兵籍应夸沫红梁庸凤烹聋喝栖亩案悠雕膀衙猖表自唇窥镶诗登咋缩歉暖坦候首梗令显诬纵桓拐两乳哄喳幅雾馏充脊身惕侯截删楚橇褒倘饰腮始盐颤大藕兢壬疫标吝迟硬饺刑哆拆舍等噪温瞄戊烧椭郸矿冰咬擂弟遁万
最优化课后习题答案
最优化课后习题答案最优化课后习题答案最优化是一门重要的数学学科,它研究如何在给定的约束条件下,找到一个最优的解决方案。
在学习最优化课程时,我们通常会遇到一些习题,这些习题旨在帮助我们理解和应用最优化的原理和方法。
本文将为大家提供一些最优化课后习题的答案,以帮助大家更好地掌握这门学科。
1. 线性规划问题线性规划是最优化中的一个重要分支,它主要研究线性约束条件下的最优解。
下面是一个线性规划问题的示例:Maximize Z = 3x + 5ySubject to:x + y ≤ 62x + y ≤ 8x, y ≥ 0首先,我们需要将目标函数和约束条件转化为标准形式。
将不等式约束转化为等式约束,引入松弛变量,得到以下标准形式:Maximize Z = 3x + 5ySubject to:x + y + s1 = 62x + y + s2 = 8x, y, s1, s2 ≥ 0接下来,我们可以使用单纯形法求解该线性规划问题。
根据单纯形法的步骤,我们可以得到最优解为 Z = 22,x = 2,y = 4,s1 = 0,s2 = 0。
2. 非线性规划问题除了线性规划,最优化还涉及到非线性规划问题。
非线性规划是指目标函数或约束条件中存在非线性项的最优化问题。
下面是一个非线性规划问题的示例:Minimize f(x) = x^2 + 3x + 5Subject to:x ≥ 0对于这个问题,我们可以使用求导的方法来找到最优解。
首先,求目标函数的导数:f'(x) = 2x + 3将导数等于零,解得 x = -1.5。
由于约束条件x ≥ 0,所以最优解为 x = 0。
3. 整数规划问题整数规划是指在最优化问题中,决策变量必须取整数值的情况。
下面是一个整数规划问题的示例:Maximize Z = 2x + 3ySubject to:x + 2y ≤ 10x, y ≥ 0x, y 为整数对于这个问题,我们可以使用分支定界法来求解。
最优化方法 第二版 孙文瑜 部分课后答案
T = {x|f (x) α}
为函数 f (x) 关于实数 α 的水平集. 证明对任意实数 α,集合 T 是凸集. 证: 对于 ∀x1, x2 ∈ T ,根据 T 的定义则有 f (x1) α, f (x2) α. 由于 D 是凸集,则对于 ∀λ ∈ [0, 1],必 有
λx1 + (1 − λ)x2 ∈ D 又由于 f (x) 是 D 上的凸函数,则有
11 − ,−
T
是否是可行点? 如果是可行点,是内点还是边界点? 是哪个约束的边界点?
22
解: 画出可行域 F,图如下
T
和
x2
1 x2 x1 0
x1 x12 x22 1
则 x(1) 是可行点,是 1 − x2 + x1 0 的边界点; x(2) 不是可行点;
x(3) 是可行点,是 x21 + x22 1 和 1 − x2 + x1 x(4) 是可行点,是 x1 0 的边界点; x(5) 是可行点,也是内点.
Ax 0, x 0, bTx > 0; ATy = b, y 0.
证: 先给这个系统标号:
Ax 0, x 0, bTx > 0; (1) ATy = b, y 0; (2)
要证 (1)(2) 中有且仅有一组解,即证 (1) 有解 ⇐⇒ (2) 无解。 先证充分性:若 (1) 有解,则说明 ∃x¯ 0 使得 Ax¯ 0, bTx¯ > 0. 用反证法证明 (2) 无解,若在 (1) 的条 件下,(2) 有解,则 ∃y¯ 0 使得 ATy¯ = b,即 y¯TA = bT,两边同时右乘 x¯,则有
λx1 + (1 − λ)y1 − λx2 − (1 − λ)y2 = λ(x1 − x2) + (1 − λ)(y1 − y2) 0
最优化计算方法课后习题答案----高等教育出社。施光燕
习题二包括题目: P36页 5(1)(4)5(4)习题三包括题目:P61页 1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下3题的解如下5,6题14题解如下14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T-处的牛顿方向。
解:已知 (1)(4,6)T x=-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15. 用DFP 方法求下列问题的极小点(1)22121212min 353x x x x x x ++++解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x x δ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+- 其中,111011126.3096,247.3380T T TH δγγγγγ===111.1621 1.39451.3945 1.6734Tδδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776dH f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用 (1)(1)()0df x d d αα+=,求得 10.5727α=-所以 (2)(1)(1)0.77540.57270.8535xx d⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599x x δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ=220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T TH H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α=所以 (3)(2)(2)11x x d ⎛⎫=+=⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止 (3)(1,1)T x =-即为最优解。
最优化原理与方法课后习题2
习题一一、考虑二次函数f(x)=x x x x x x 2122212132+-++1) 写出它的矩阵—向量形式: f(x)=x Qx b xTT +21 2) 矩阵Q 是不是奇异的? 3) 证明: f(x)是正定的 4) f(x)是凸的吗? 5) 写出f(x)在点x =)1,2(T处的支撑超平面(即切平面)方程解:1) f(x)=x x x x x x 2122212132+-++=⎪⎪⎭⎫ ⎝⎛x x 2121⎪⎪⎭⎫ ⎝⎛6222⎪⎪⎭⎫ ⎝⎛x x 21+⎪⎪⎭⎫ ⎝⎛-11T⎪⎪⎭⎫⎝⎛x x 21 其中x=⎪⎪⎭⎫ ⎝⎛x x 21 ,Q=⎪⎪⎭⎫ ⎝⎛6222 , b=⎪⎪⎭⎫⎝⎛-11 2) 因为Q=⎪⎪⎭⎫⎝⎛6222 ,所以 |Q|=6222=8>0 即可知Q 是非奇异的 3) 因为|2|>0,6222=8>0 ,所以Q 是正定的,故f(x)是正定的 4) 因为)(2x f ∇=⎪⎪⎭⎫ ⎝⎛6222,所以|)(2x f ∇|=8>0,故推出)(2x f ∇是正定的,即)(2x f ∇是凸的5) 因为)(x f ∇ =1)x 6x 1,2-x 2x (22121+++T,所以)(x f ∇=(5,11)所以 f(x)在点x 处的切线方程为5(21-x )+11(12-x )=0二、 求下列函数的梯度问题和Hesse 矩阵 1) f(x)=2x 12+x x x xx 23923121+++x x x 2322+2) f(x)=ln(x 12+x x x 2221+)解: 1) )(x f ∇= (,94321x x x ++ 26321+++x x x , x x 219+))(2x f ∇=⎪⎪⎪⎭⎫ ⎝⎛0191619142) )(x f ∇=(x x x x x x 112221221+++ ,x x x x xx 112221221+++))(2x f ∇=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----------++++++++)()()()(2221212222212142221214222121222222121222212122221212212122x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 三、设f(x)=x x x x x x x 323223322122--+++,取点)1,1,1()1(Tx =.验证d)1(=(1,0,-1)是f(x)在点x)1(处的一个下降方向,并计算min >t f(x)1(+td)1()证明: )(x f ∇=)124,123,x 2(233221-+-+x x x x T)5,4,2()(1Tx f =∇d )(1x f ∇=(1,0,-1)⎪⎪⎪⎭⎫⎝⎛542= -3<0所以d)1(是f(x)在x)1(处的一个下降方向f(x)1(+td)1()=f((1+t,1,1-t)) =433)1(1)1(221(222)1()1+-=----+++-+t t t t t t∇f(x )1(+t d )1()=6t-3=0 所以t=0.5>0所以min >t f(x )1(+td)1()=3*0.25-3*0.5+4=3.25四、设aj,b ,cj(j=1,2,….,n )考虑问题Min f(x)=∑=nj jj xc 1s.t. b nj jjxa =∑=10≥xj(j=1,2,….,n)1) 写出其Kuhn Tuker 条件2) 证明问题最优值是])([12112∑=n j j j b c a 解:1)因),....,1(n j xj= 为目标函数的分母故0>x j所以λ*j(j=1,…,n )都为0所以Kuhn Tuker 条件为 0)()(=∇+∇x h x f μ即 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---x c x c x c n n 2222211 +⎪⎪⎪⎪⎪⎭⎫ ⎝⎛a a a n 21μ=0 2)将ac x jj j μ=代入 h(x)=0 只有一点得∑=∑==⇒=nj jjn j j j b n c a bca 122)(1μ故有acc a x jj nj jjjb ∑==1所以最优解是])([12112∑=nj j j b c a 五、使用Kuhn Tuker 条件,求问题min f(x)=)2()1(2122--+x xs.t. 0,021212112≥≥=+=-x x x x x x的Kuhn Tuker 点,并验证此点为问题的最优解 解:x=(1/2,3/2) 0≠ 故λ*1,λ*2=0则 0)()()(2211=+∇+∇x x x f h h μμ即0111142222121=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛--μμx x ⇒1,021-==μμ而⎪⎪⎭⎫ ⎝⎛=∇2002)(2x f 故08)(2>=∇x x f x T 即其为最优解六、在习题五的条件下证明L(μλ,,x*)),,(),,(μλμλ*****≤≤x L L x其中 L (x,μλ,)=f(x)+)2()1(2112-++--x x x x μλ证明:L(μλ,,x*)=f(x *)+)2()1(2112-++--****x x x x μλ= f(x *) = f(x *)+λ*)1(12--**x x +μ*-+**x x 21(2)= ),,(μλ***x L= f(x*))2()1()()(2112-++--+=≤**x x x x x f x f μλ= μλ**,,(x L )习题二一、设f(x)为定义在区间[a,b]上的实值函数,x*是问题min{f(x)|a b x ≤≤}的最优解。
最优化方法习题答案
习题一1.1利用图解法求下列线性规划问题: (1)21x x z max +=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 5x 2x 2x x 3.t .s 212121 解:根据条件,可行域为下面图形中的阴影部分,,有图形可知,原问题在A 点取得最优值,最优值z=5(2)21x 6x z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+-≤+0x ,x 7x x 1x x 2.t .s 212121 解:图中阴影部分表示可行域,由图可知原问题在点A 处取得最优值,最优值z=-6.(3)21x 2x 3z max +=⎪⎪⎩⎪⎪⎨⎧≥-≥-≤+-0x ,x 4x 2x 1x x .t .s 212121 解:如图所示,可行域为图中阴影部分,易得原线性规划问题为无界解。
(4)21x 5x 2z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 2x x 6x 2x .t .s 212121 解:由图可知该线性规划可行域为空,则原问题无可行解。
1.2 对下列线性规划问题,找出所有的基解,基可行解,并求出最优解和最优值。
(1)4321x 6x 3x 2x 5z min -+-=⎪⎪⎩⎪⎪⎨⎧≥=+++=+++0x ,x ,x ,x 3x 2x x x 27x 4x 3x 2x .t .s 432143214321 解:易知1x 的系数列向量⎪⎪⎭⎫ ⎝⎛=21p 1,2x 的系数列向量⎪⎪⎭⎫ ⎝⎛=12p 2,3x 的系数列向量⎪⎪⎭⎫⎝⎛=13p 3,4x 的系数列向量⎪⎪⎭⎫⎝⎛=24p 4。
①因为21p ,p 线性无关,故有⎪⎩⎪⎨⎧--=+--=+43214321x 2x 3x x 2x 4x 37x 2x ,令非基变量为0x x 43==,得⎪⎪⎩⎪⎪⎨⎧=-=311x 31x 21,所以得到一个基解)0,0,311,31(x )1(-=是非基可行解; ②因为31p ,p 线性无关,可得基解)0,511,0,52(x)2(=,543z 2=;③因为41p ,p 线性无关,可得基解611,0,0,31(x )3(-=,是非基可行解;④因为32p ,p 线性无关,可得基解)0,1,2,0(x )4(=,1z 4-=;⑤因为42p ,p 线性相关,42x ,x 不能构成基变量; ⑥因为43p ,p 线性无关,可得基解)1,1,0,0(x )6(=,3z 6-=;所以)6()4()2(x ,x ,x是原问题的基可行解,)6(x 是最优解,最优值是3z -=。
最优化计算方法课后习题答案解析
习题二包括题目: P36页 5〔1〕〔4〕 5〔4〕习题三包括题目:P61页 1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下 3题的解如下 5,6题14题解如下14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T-处的牛顿方向。
解: (1)(4,6)T x=-,由题意得∴(1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴(1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭∴(1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15〔1〕解如下15. 用DFP 方法求以下问题的极小点〔1〕22121212min 353x x x x x x ++++解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法一样2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x x δ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭其中,111011126.3096,247.3380T T TH δγγγγγ===11 1.1621 1.39451.3945 1.6734T δδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以 令 (2)(1)(1)1xx d α=+ , 利用 (1)(1)()0df x d d αα+=,求得 10.5727α=-所以 (2)(1)(1)0.77540.57270.8535x x d ⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599x x δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ=所以 令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α= 所以 (3)(2)(2)11x x d ⎛⎫=+=⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停顿 (3)(1,1)T x =-即为最优解。
最优化计算方法课后习题答案----高等教育出版社。施光燕
习题二包括题目:P36页5(1)(4)5(4)习题三包括题目:P61页1(1)(2); 3; 5; 6; 14;15(1)1(1)(2)的解如下3题的解如下5,6题14题解如下14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T-处的牛顿方向。
解:已知 (1)(4,6)T x=-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15. 用DFP 方法求下列问题的极小点(1)22121212min 353x x x x x x ++++解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x xδ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+-其中,111011126.3096,247.3380T T TH δγγγγγ===11 1.1621 1.39451.3945 1.6734T δδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776d H f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用 (1)(1)()0df x d d αα+=,求得 10.5727α=-所以 (2)(1)(1)0.77540.57270.8535x x d ⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599xx δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ=220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T T H H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α= 所以 (3)(2)(2)11x x d ⎛⎫=+=⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止 (3)(1,1)T x =-即为最优解。
最优化方法习题答案
x3
-M
0
0
0
5
-1
1
2
x4
x5
1+ 2 M
0
3
ห้องสมุดไป่ตู้
x2
1 3
1
x5
2 3
0
以 x1 为换入基, x5 作为换出基有
-1- M 3
1 3 1
3
-M
0
0
0
5
3
-1
1
1
3
x1
x2
x3
x4
x5
0
x2
0
x1
1
0
1
2
1
1
2
0
1
2
3
3 M
-5.5
2
2
1
1
1.5
2
2
3 3
0.5
22
以 x 4 换入, x 2 换出有
⑤因为 p2 , p4 线性相关, x 2 , x 4 不能构成基变量;
⑥因为 p3, p4 线性无关,可得基解 x(6) (0,0,1,1) , z6 3 ;
所以 x(2) , x(4) , x(6) 是原问题的基可行解, x(6) 是最优解,最优值是 z 3 。
(2) max z x1 x2 2x3 x4 x5
x1 2x2 3x3 4x4 7 s.t.2x1 x2 x3 2x4 3
x1, x2 , x3, x4 0
解:易知
x1 的系数列向量
p1
1
2
,x 2
的系数列向量
p2
2
1
最优化方法课后习题答案
最优化方法课后习题答案最优化方法课后习题答案最优化方法是一门重要的数学学科,它旨在寻找给定问题的最佳解决方案。
在这门课程中,学生将学习各种最优化算法和技术,以解决不同类型的优化问题。
课后习题是巩固所学知识的重要方式,下面将为大家提供一些最优化方法课后习题的答案。
1. 线性规划问题的单纯形法是如何工作的?单纯形法是一种用于解决线性规划问题的常用方法。
其基本思想是通过不断迭代改进当前解决方案,直到找到最优解。
具体步骤如下:1) 初始解:选择一个可行解作为初始解,通常是通过求解一个相应的松弛问题得到。
2) 进入变量:选择一个进入变量,即使目标函数值增加最快的变量。
3) 离开变量:选择一个离开变量,即使约束条件仍然保持满足的变量。
4) 改进解:通过改变进入变量和离开变量的值,得到一个更好的解。
5) 终止条件:当无法找到更好的解时,算法终止。
2. 什么是凸优化问题?如何判断一个问题是否是凸优化问题?凸优化问题是指目标函数和约束条件都是凸函数的优化问题。
凸函数具有以下性质:1) 对于任意两个点x和y以及0≤λ≤1,有f(λx+(1-λ)y)≤λf(x)+(1-λ)f(y)。
2) 对于任意两个点x和y以及0≤λ≤1,有g(λx+(1-λ)y)≤λg(x)+(1-λ)g(y),其中g(x)表示约束函数。
要判断一个问题是否是凸优化问题,可以通过以下步骤:1) 检查目标函数和约束条件是否都是凸函数。
2) 检查约束条件是否满足凸集的定义,即对于任意两个点x和y以及0≤λ≤1,有λx+(1-λ)y满足所有约束条件。
如果以上两个条件都满足,则问题是凸优化问题。
3. 最小二乘法是如何解决无约束优化问题的?最小二乘法是一种常用的解决无约束优化问题的方法。
其基本思想是通过最小化目标函数和实际观测值之间的差距来找到最优解。
最小二乘法的步骤如下:1) 建立目标函数:根据实际观测值和模型假设,建立一个与待优化参数相关的目标函数。
2) 求解最优解:通过对目标函数求导,并令导数等于零,求解出最优解。
最优化方法及其应用课后答案(郭科_陈聆_魏友华)
1 2((⎨最优化方法部分课后习题解答1.一直优化问题的数学模型为:习题一min f (x ) = (x − 3)2 + (x − 4)2⎧g (x ) = x − x − 5 ≥ 0 ⎪ 11 2 2 ⎪试用图解法求出:s .t . ⎨g 2 (x ) = −x 1 − x 2 + 5 ≥ 0 ⎪g (x ) = x ≥ 0 ⎪ 3 1 ⎪⎩g 4 (x ) = x 2 ≥ 0(1) 无约束最优点,并求出最优值。
(2) 约束最优点,并求出其最优值。
(3) 如果加一个等式约束 h (x ) = x 1 −x 2 = 0 ,其约束最优解是什么? *解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0(2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是在约束集合即可行域中找一点 (x 1 ,x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可以看出,当 x *=15 , 5) 时, f (x ) 所在的圆的半径最小。
4 4⎧g (x ) = x − x − 5 = 0⎧ 15 ⎪x 1 = 其中:点为 g 1 (x) 和 g 2 (x ) 的交点,令 ⎪ 1 1 2⎨ 2 求解得到: ⎨ 4 5即最优点为 x *= ⎪⎩g 2 (x ) = −x 1 − x 2 + 5 = 015 , 5 ) :最优值为: f (x * ) = 65⎪x = ⎪⎩ 244 4 8(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。
2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优 化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为:max f (x ) = x 1x 2 x 3⎧x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S ⎪ s .t . ⎪x 1 > 0 ⎪x 2 > 0 ⎪⎩x 3 > 0该优化问题属于三维的优化问题。
最优化计算方法课后习题集答案解析
解:取 , 时,DFP法的第一步与最速下降法相同
, ,
,
以下作第二次迭代
,
其中,
,
所以
令 , 利用 ,求得
所以 ,
以下作第三次迭代
,
,
所以
令 , 利用 ,求得
所以 , 因为 ,于是停止
即为最优解。
习题四
包括题目: P95页 3;4;8;9(1);12选做;13选做
3题解如下
3.考虑问题 ,其中
X1,x2,x3≥0 (3)
求出点(1,1,0)处的一个下降可行方向.
解:首先检查在点(1,1,0)处哪些约束为有效约束。检查易知(1),X3≥0为有效约束。设所求可行方向d=(d1,d2,d3)T。根据可行方向d的定义,应存在a>0,使对∀t∈(0,a)能有
X+td=(1+td1,1+td2,0+td3)T
(1)
s.t.
(2)
s.t.
(1)解:非线性规划的K-T条件如下:
(1)
(2)
(3)
再加上约束条件 (4)
为求出满足(1)~(4)式的解,分情况考虑:
①若(4)式等号不成立,即 ,那么由(2)式得 ,将 代入(1)式解得 , ,所得值不满足 的条件,故舍去。
②若(4)式等号成立,由(1)式可以解得 , ,代入(4)式有:
JBi
1
2
3
4
5
6
7
8
9
di0
1
1
0
-5/6
-1/6
1
10/6
4
0
0
38/6
2
0
1
-9/6
最优化方法及其应用课后答案
最优化方法及其应用课后答案1. 最优化方法的分类包括哪些方面?最优化方法可分为三类:数学规划、非数学规划和元启发式方法。
2. 线性规划的标准形式是什么?线性规划的标准形式为:max cTxsubject toAx ≤ bx ≥ 0其中,cTx表示优化目标,Ax≤b表示约束条件,x≥0表示非负约束条件。
3. 拉格朗日乘数法是如何解决带有等式约束的优化问题的?拉格朗日乘数法是通过构建拉格朗日函数来解决带有等式约束的优化问题的。
具体地,拉格朗日函数L(x,λ)定义为:L(x,λ)=f(x)+λTh(x)其中,f(x)是优化目标函数,h(x)是等式约束函数,λ是拉格朗日乘数。
然后,通过求解L(x,λ)的梯度和等于0的条件,得到原问题的解。
4. 什么是梯度下降法?梯度下降法是一种迭代求解方法,用于优化无约束的多次可微函数。
该方法通过向负梯度方向下降来逐步逼近优化目标的最小值。
具体地,梯度下降法的迭代公式为:x(k+1)=x(k)-αk∇f(x(k))其中,x(k)是第k次迭代后的解,αk是步长,∇f(x(k))表示f(x(k))的梯度。
5. 遗传算法是如何实现优化的?遗传算法是一种元启发式方法,它基于模拟生物进化过程来实现优化。
算法先随机生成一组初始的个体,然后对这些个体进行遗传操作(交叉、变异),以产生新的个体,并按照适应度函数的大小保留一部分个体,舍弃一部分个体。
通过多次迭代,逐步优化得到最优解。
6. 模拟退火算法的基本思想是什么?模拟退火算法是一种元启发式方法,它基于物理中的退火现象进行优化。
算法维护一个当前解,然后随机生成一个新的解,并计算当前解到新解的能量差。
如果新解比当前解更优,则直接接受它。
若不是,则以一定概率接受新解,并降低概率参数T,然后继续下一步迭代。
通过多次迭代,逐步优化得到最优解。
7. 最大熵模型的基本原理是什么?最大熵模型是一种概率模型,它通过最大化经验熵与先验熵之和来实现分类或回归问题的优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2( ( ⎨最优化方法部分课后习题解答1.一直优化问题的数学模型为:习题一min f (x ) = (x − 3)2 + (x − 4)2⎧g (x ) = x − x − 5 ≥ 0 ⎪ 11 2 2 ⎪试用图解法求出:s .t . ⎨g 2 (x ) = −x 1 − x 2 + 5 ≥ 0 ⎪g (x ) = x ≥ 0 ⎪ 3 1 ⎪⎩g 4 (x ) = x 2 ≥ 0(1) 无约束最优点,并求出最优值。
(2) 约束最优点,并求出其最优值。
(3) 如果加一个等式约束 h (x ) = x 1 −x 2 = 0 ,其约束最优解是什么? *解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0(2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是在约束集合即可行域中找一点 (x 1 ,x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可以看出,当 x *=15 , 5 ) 时, f (x ) 所在的圆的半径最小。
4 4⎧g (x ) = x −x − 5 = 0⎧ 15 ⎪x 1 = 其中:点为 g 1 (x) 和 g 2 (x ) 的交点,令 ⎪ 1 1 2 ⎨2 求解得到: ⎨ 45即最优点为 x *= ⎪⎩g 2 (x ) = −x 1 −x 2 + 5 = 015 , 5 ) :最优值为: f(x * ) = 65 ⎪x =⎪⎩ 2 44 48(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。
2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为:max f (x ) = x 1x 2 x 3⎧x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S ⎪ s .t . ⎪x 1 > 0⎪x 2 > 0 ⎪⎩x 3 > 0该优化问题属于三维的优化问题。
⎝⎠i j n×n 1 2 n 1 2 nn⎝⎠⎪1 x=y=z=v=s3==1⎛=s⎞218 2⎪3⎪习题二3.计算一般二次函数f(x) =1X T A X +b T X +c的梯度。
2解:设:A=(a ) ,b=(b,b ,...b )T, X = (x ,x,...x )T 则:f(x) =1n n na xx +bx +c,将它对变量x(i=1, 2,...n) 球偏导数得:∑∑i j i j∑i i i2 i=1j=1i=1⎡1n 1 n⎤⎡n⎤⎡n ⎤⎡∂f(x) ⎤⎪∑a1 j x j +∑a i1x i +b1 ⎪⎪∑a1j x j ⎪⎪∑a i1x i⎪⎪⎪⎪2 j=1 2 i=1⎪⎪j=1⎪⎪i=1⎪⎪∂x1 ⎪⎪1n 1 n⎪⎪n⎪⎪n⎪⎡b ⎤⎪∂f (x) ⎪⎪∑a2 j x j +∑a i2x i+b2⎪∑a j x j ⎪∑a i2x i⎪⎪⎪∇f(x) = ⎪⎪= ⎪2j=12 i=11 ⎪2⎪=⎪+1+ b⎪j=1⎪⎪i=1⎪⎪ 2 ⎪⎪∂x2 ⎪⎪⋮⎪ 2 ⎪⋮⎪ 2 ⎪⋮⎪⎪b⎪⎪∂f(x) ⎪⎪⎪⎪⎪⎪⎪⎣ 3 ⎦⎪⎪⎪1n 1 n⎪⎪n⎪⎪⎪⎣∂x3 ⎦⎪∑a nj x j +∑a i n x i +b n ⎪⎪∑a nj x j⎪⎪∑a i n x i⎪⎣2 j=11 T2 i=1⎦⎣j=1⎦⎣i=1⎦= (A X + A X) +b25.求下列函数的梯度和Hesse 矩阵(1)f(x) = x2 +2x 2 +3x 2 −4xx⎛2 0 -4 ⎞解:∇2f (x) =⎪0 4 0⎪1 2 3 1 3⎛x2e x1x2⎪⎪⎪−4 0 6 ⎪6x +e x1x2 +xx e x1x2 ⎞(2)f(x) =3xx 2 +e x1x2解:∇2f (x) =⎪2 2 1 21 2 1 2 1 2 ⎪1 2 6x +e x x +xx e x x6x+x2e x x⎝ 2 1 2 1 1 ⎠6.判断下列函数是凸函数,凹函数,还是既不凸也不凹函数:1 2 1 2 1 21 2 1 1 2 2 1 (1) f (x , x ) = −x 2+2x 2 + 3xx 解: ∇2 f (x ) 不是半正定,即 f (x ) 非凸,然后判断- f (x ) ,经验证: ∇2 (− f (x )) 不是半 正定,由此可知: f (x ) 非凸非凹。
(2) f (x , x ) = 2x 2 − 4xx + 3x 2 − 5x −6 解: ∇2 f (x ) 半正定,故 f (x ) 为凸函数。
1 12 2 2 1 2 1 2 T12⎨ 2 2k 1 (3) 222f (x 1 , x 2 , x 3 ) = x 1+ 2x 2 − 3x 3 −4x 1x 2 解: ∇2 f (x ) 不是半正定,即 f (x ) 非凸,然后判断- f (x ) ,经验证: ∇2 (− f (x )) 不是半正定,由此可知: f (x ) 非凸非凹。
7.设约束优化问题的数学模型为:min f (x ) = x 2 + 4x + x 2 − 4x +10⎧g 1 (x ) = x 1 − x 2 + 2 ≥ 0 s .t . ⎨⎩g (x ) = −x 2 − x 2 − 2x + 2x ≥ 0试用 K-T 条件判别点 x = [−1,1]T是否为最优点。
解:对于点 x = [−1,1]T, g (x ) =0, g (x ) ≥ 0 ,点满足约束条件,故点 X 是可行解。
1 2 ⎛2 ⎞⎛1 ⎞且 g 1 (x) 是起作用约束,I = {1} , ∇f (x ) = ⎪ ⎪ , ∇g 1 (x ) = ⎪ ⎪ ,由 ∇g i (x ) ≥ 0 条件下的 ⎝ −2 ⎠ ⎝−1⎠K-T 条件得: ∇f (x ) −∑λi ∇g i (x ) = 0, λi ≥ 0 ,得到 λ1 = 2 ,点 x = [−1,1]i ∈I满足 K-T 条件。
又因 ∇2 f (x ) 正定,故 f (x ) 为严格凸函数,该最优化问题是凸规划问题,由x * = [−1,1]T是 K-T 点,所以 x * = [−1,1]T也是该问题的全局最优点。
8.设约束优化问题:min f (x ) = (x − 2)2 + x 2⎧g 1 (x ) = −x 1 ≤ 0 s .t . ⎪g (x ) = −x ≤ 0 ⎪g (x ) = −1 + x 2 + x ≤ 0 ⎩ 3 1 2它的当前迭代点为 x = [1, 0]T,试用 K-T 条件判定它是不是约束最优解。
解:对于点 x = [1, 0]Tg (x ) = −1 ≤ 0, g (x ) = 0, g (x ) = 0 ,点 x = [1, 0]T是 可 行 点 , k 1 k 2 k 3 kk⎛ −2 ⎞ ⎛0 ⎞ 且起作用的约束条件是, g 2 (x ), g 3 (x ) , I = {2, 3} , ∇f (x k ) = ⎪ ⎪ , ∇g 2 (x k ) = ⎪ ⎪ ⎝ 0 ⎠ ⎝ −1⎠⎛2 ⎞ ∇g3 (x k ) = ⎪ ⎪ ,由约束条件为 g i (x ) ≤ 0 时的 K-T 条件得,应有:⎝ ⎠⎧λ2 = 1 T∇f (x ) + ∑λi ∇g i (x ) = 0,λi ≥ 0解得: ⎨ ,所以 x = [1, 0] λ = 1 k为 K-T 点。
i ∈I⎩ 31 2 k ⎩⎝ ⎠ 现判断该问题是否为凸规划问题,因 ∇2f (x ) 正定,故 f (x ) 为凸函数,g (x ), g (x ) 为 线性函数,亦为凸函数, ∇2g (x ) 半正定,所以 g (x ) 为凸函数,所以该优化问题为凸 3 3规划问题,即点 x =[1, 0]T是该问题的约束最优解。
习题三1. 对于下列线性规划问题找出所有基解,指出哪些是基可行解,并确定出最优解。
max f (x ) = 3x 1 +x 2 + 2x 3 ⎧12x 1 + 3x 2 + 6x 3 + x 4 = 9 ⎪(1) ⎪8x 1 +x 2 − 4x 3 + 2x 5 = 10 s .t . ⎨⎪3x 1 − x 6 = 0 ⎪x j ≥ 0, ( j = 1, 2...6)⎛12 3 6 3 0 0 ⎞ ⎪ ⎪ 解:令 A = ⎪ 8 1 -4 0 2 0⎪ = (P 1 , P 2 , P 3 , P 4 , P 5 , P 6 )⎪ 3 0 0 0 0 -1 ⎪(1) 基解 x = (0,16 , − 7, 0, 0, 0) 不是基可行解, 1 3 6(2) 基解 x 2 = (0,10, 0, 7, 0, 0) 不是基可行解,(3) 基解 x 3= (0, 3, 0, 0, 3.5, 0) 是基可行解,且 f (x ) = 3 , 7 21(4) 基解 x 4 = ( , −4, 0, 0, 0, 45) 不是基可行解,4 (5) 基解 x5 = (0,0, − , 8, 0, 0) 不是基可行解, 2 (6) 基解 x = (0, 0, 3, 0,16, 0) 是基可行解,且 f (x ) = 3 , 62 (7) 基解 x = (1, 0, − 1, 0, 0, 3) 不是基可行解, 72(8) 基解 x 8 = (0,0, 0, 3, 5, 0) 是基可行解,且 f (x ) = 0 ,(9) 基解 x = ( 5 ,0, 0, −2, 0, 15) 不是基可行解。
9 4 4 3 9 9(10) 基解 x 10 = ( 4 ,0, 0, 0, 4, 4) 是基可行解,且 f (x ) = 4 。
16 7(11) 基解 x 11 = (0, 3 , − 6, 0, 0, 0) 不是基可行解。
(12) 基解 x 12 = (0,10,0, −7, 0, 0) 不是基可行解。
7(13) 基解 x 13 = (0,3, 0, 0, 2, 0) 是基可行解,且 f (x ) = 3 。
⎪⎨5 1 2 ⎪ ⎨5 1 2 4 (14) 基解 x = (0, 0, − 5, 8, 0, 0) 不是基可行解。
142(15) 基解 x = (0, 0, 3, 0, 8, 0) 是基可行解,且 f (x ) = 3 。
15 2(16) 基解 x 16 = (0, 0, 0, 3, 5, 0) 是基可行解,且 f (x ) = 3 。