07 材料力学第6章 弯曲变形PPT课件

合集下载

材料力学课件ppt-6弯曲变形

材料力学课件ppt-6弯曲变形
Ey1 IEI12 FLb x2C1,
EI1 y6 FLb x3C1xD1, 3、确定常数
BC段 (axL)
E y2 I E2I2 F Lxb 2F 2(x a )2 C 2,
E2I6 F yLxb 3F 6(x a )3 C 2xD 2,
由边界条件: x0,wA0 (1)
目录
5、求 ymax 。
由dy 0求得 ymax 的位置值x。
dx
AF(b6LL2Eb2I)0,
C1x aF3 L (a a E b b ) I 0 ( a b )
则由 解得:
0在AC段。
1(x)6L FE b [3x2 I(L 2b2) ]0
xa时C , 左 C 右
x
L,
yB
FBy k
xa时yC , 左 yC 右
xL,yB lBD
FBy h EA
讨论:挠曲线分段处 (1)凡弯矩方程分段处,应作为分段点;
(2)凡截面有变化处,或材料有变化处,应作为分段点; (3)中间铰视为两个梁段间的联系,此种联系体现为两
w
目录
w w
w w
目录
w
C1


ql3 6EI
,
wC1


ql 4 8EI
q( l )3
w
C2 B2
2 6EI
,
wC2
wB2 q(l
B2
)4

l 2
2 8 EI
B2

l 2
目录
w
wCwC1wC2


ql 4 8 EI
CC1C2

ql 3 6 EI
q( l )4 2

材料力学(理工科课件)第六章 弯曲变形)

材料力学(理工科课件)第六章 弯曲变形)

§6-1 基本概念及工程实例 (Basic concepts and example problems)
一、工程实例(Example problem)
(Deflection of Beams)
但在另外一些情况下,有时却要求构件具有较大的弹性变 形,以满足特定的工作需要.
例如,车辆上的板弹簧,要求有足够大的变形,以缓解车辆受
M 0 w 0
x
O
M 0 w 0
M
(Deflection of Beams)
w (1 w )
2 3 2

M ( x) EI
2 w 与 1 相比十分微小而可以忽略不计,故上式可近似为
w"
M ( x) EI
(6.5)
此式称为 梁的挠曲线近似微分方程(differential equation of the deflection curve) 近似原因 : (1) 略去了剪力的影响; (2) 略去了 w2项; (3) tan w w( x )
x Cx D
4
(Deflection of Beams)
边界条件x=0 和 x=l时, w 0
梁的转角方程和挠曲线方程 A 分别为 q 2 3 3 (6lx 4 x l ) 24 EI qx 2 3 3 w (2lx x l ) 24 EI 最大转角和最大挠度分别为 在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
A a l D B
b
(Deflection of Beams)
解: 梁的两个支反力为
FRA F FRB F b l a l
x
l x
F FRA
A 1 a D b 2

材料力学第六章 弯曲变形PPT课件

材料力学第六章 弯曲变形PPT课件

解: (1)求支座反力,列弯矩方程 y
Fb FA l AC段: M1(x)
FB Fl bx1
Fa l
(0x1a)
Fb
A
FA
a
Fb
x1
C
x2
l
CB段: M2(x)l x2F(x2a) (ax2l)
(2)列挠曲轴近似微分方程并积分
AC段:
w1
Fb EIl
x1
w1E1I(F2bl x12)C1
(a )
因此 0的截A 面 段 C在 。 内
令(e)式等于零,得 :
y
F 6lb(l2b23x02)0
A
FA
x0
l2 b2 3
(k)
所以
|w|max9F 3EbI(l2b2)3
a
Fb
x1
A C B
x2
l
(l)
Bx
FB
例:已知梁的抗弯刚度为EI。试求图示简支梁的转 角方程、挠曲线方程,并确定θmax和vmax。
例 已知:EI, l, F。求:挠曲轴方程及转角方程,|w|max、|θ| max
y
MA A
(1)求支座反力,列弯矩方程
FA F
MA Fl
xl
FA
F Bx
M (x ) M A F A x F F l x
(2)列挠曲轴近似微分方程并积分
积分得:
w 1 (Fl Fx) EI
w1(Flx1Fx2)C
m axA1x1016 1q E a I3
wmax
w2(x22a)
19qa4
8EI
用积分法计算梁的挠度和转角的一般步骤:
(1)求支反力 (2)写弯矩方程M(x) (3)建立挠曲轴近似微分方程 (4)积分并确定积分常数

材料力学课件 第六章弯 曲 内 力(土木专业)

材料力学课件 第六章弯  曲  内  力(土木专业)

M
A
0
FRA
A
a
F1
C
F2
D
FRB
B
FRB l F1a F2b 0
MB 0
c
E
F
d
FRAl F1 ( l a ) F2 ( l b) 0
FRA F1 ( l a ) F2 ( l b) l
b l
FRB
F1a F2b l
第六章
记 E 截面处的剪力为
FRA
A
弯曲内力
a F1 C F2 D B
FSE 和弯矩 ME ,且假设
FSE 和弯矩ME 的指向和转 向均为正值.取左段为研究
E
c b l
F
d
对象。
Fy 0 , M 0,
E
FRA FS E 0
M E FRA c 0
FRA
A E
FSE
解得 FSE FRA
ME
M E FRA c
第六章
6.1引言
1.弯曲的概念
弯曲内力
工程实例
第六章
工程实例
弯曲内力
第六章
弯曲内力
车刀轴
第六章
弯曲内力
火车轮轴
第六章
弯曲内力
起重机大梁
第六章
弯曲内力
镗刀杆轴
第六章
基本概念
弯曲内力
1.弯曲变形 (1) 受力特征 外力(包括力偶)的作用线垂直于杆轴线. (2) 变形特征 变形前为直线的轴线,变形后成为曲线. 2.梁 以弯曲变形为主的杆件 3.平面弯曲 作用于梁上的所有外力都在纵向对称面内,弯曲变形后的轴 线是一条在该纵向对称面内的平面曲线,这种弯曲称为平面弯曲.

材料力学第6章弯曲变形

材料力学第6章弯曲变形
Fb M2 x2 F ( x2 a ) l
M1 EIw1
Fb x1 l
2 x1
" EIw2
Fb M2 x2 F ( x2 a ) l
2 x2 2
EIw1
Fb C1 l 2
x2 a Fb F C2 (i) EIw2 l 2 2
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
工学院
§6.2 挠曲线的微分方程




(o) (p)
CB段 (a x2 l )
Fb 2 3l 2 2 2 l b 3 x ( x a ) 2 2 6l b Fb 2 l 2 2 3 EIw2 l b x x ( x a ) 2 2 6l b 2 EIw2
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
l
2
b
2

3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为: 3 1 Fb 2 2 wmax l b 9 3 EIl

材料力学课件-6弯曲变形

材料力学课件-6弯曲变形

对称截面形状
对称的截面可以减小弯曲变形和应力。
非对称截面形状
非对称的截面会导致不均匀的弯曲应力分布。
材料的弯曲变形特性
1 弯曲模量衡量材料的抗弯能力,源自 材料的刚度有关。2 弯曲强度
材料能够承受的最大弯曲 应力。
3 弯曲韧度
材料在弯曲变形下能够吸 收的能量。
测量材料的弯曲模量的方法
1
简支梁试验
通过在两个支点上加力,测量梁的挠度
梁的截面形状对弯曲变形的影响
形状对称性
对称的截面形状可以减小弯曲变形。
截面面积
较大的截面面积可降低弯曲应力和变形。
截面离心率
截面离心率越小,弯曲变形越小。
欧拉公式的介绍
欧拉公式描述了弯曲梁的变形和应力之间的关系。它是弯曲变形的经典理论基础,广泛应用于工程设计和结构 分析中。
对称性在弯曲变形中的应用
三点弯曲试验
2
来计算弯曲模量。
在梁的中间施加力,测量梁的挠度和应
力来计算弯曲模量。
3
四点弯曲试验
在梁的两端和中间分别施加力,测量梁 的挠度和应力来计算弯曲模量。
弯曲变形在工程设计中的应用
桥梁设计
弯曲变形是桥梁结构中常见的变形,需要考虑材料 的弯曲特性。
建筑设计
梁在建筑中承担重要的结构作用,需要考虑弯曲变 形。
材料力学课件ppt-6弯曲 变形
本节将介绍弯曲变形的定义和原理,讨论梁的截面形状对弯曲变形的影响, 以及欧拉公式的应用。还将探讨对称性在弯曲变形中的重要性,介绍材料的 弯曲变形特性,并介绍测量材料弯曲模量的方法。最后,我们将探讨弯曲变 形在工程设计中的应用。
弯曲变形的定义和原理
弯曲变形是指材料在承受外部力矩作用下产生的曲线形变。这种变形是由梁 的纵向拉伸和压缩引起的。

材料力学 弯曲变形ppt课件

材料力学  弯曲变形ppt课件

由此可见,M

d 2w dx2
始终保持同号,(d)式左边取“+”号,即有
6.1 引 言
d2w dx2
M(x) EI
〔6-2〕
式(6-2)称为梁挠曲线的近似微分方程。根据这个近似 微分方程所得的解,在工程中,已足够准确。
对于等截面梁,抗弯刚度EI为常量,式(6-2)可改写为
d2w EI dx2
M(x)
CB段:
E(I x) Fx2 b F (x a )2 F(b b 2 l2)
2 l 2
6 l
(g) 〔h〕
〔i〕
E(I x) w Fx3 b F (x a )3 F(b b 2 l2)x 〔j〕
6 l 6
6 l
6.1 引 言 〔5〕求梁的最大转角与最大挠度。
将x=0代入式〔g〕可得梁左端面的转角为
6.1 引 言
〔3〕分段建立梁的挠曲线近似微分方程。写出挠曲线
的近似微分方程分别为
AC段:
d2w b
EI dx2
l
Fx
CB段:
EIdd2xw 2 bl FxF(xa)
6.1 引 言
〔4〕积分法求变形。分别积分两次,可得
AC段:
EIdwFbx2 dx 2l
C1
(a)
EIwF6lbx3C1xD1
(b)
图6-3
6.1 引 言
解 选取坐标系如图6-3所示。距梁左端为x处截面的弯
矩为
M x W l x W W x l
代入式〔6-3〕,得挠曲线的近似微分方程为
EIdd2xw2 WxWl
将式〔a〕积分一次,得
EIdwW2xWlxC dx 2
再积分一次,得 W3x Wl2x

材料力学第六章弯曲时的变形精品PPT课件

材料力学第六章弯曲时的变形精品PPT课件

1
(x)
(1| ww2|)32
(1| ww2|)32
M(x) EI
在规定的坐标系中,x 轴水平向右 w
M
M
为正, w轴竖直向上为正.
x
O
曲线向下凸时: w 0M 0
M 0
曲线向上凸时, w 0M 0w
w 0
M
M
因此, w 与 M 的正负号相同
O M 0 w 0
x
w (1 w2)32
两段梁的挠曲线方程分别为:
1 ( 0 x a)
挠曲线方程 EIw1 M1Fbl x
转角方程
EIwFb l
x2 2
C1
挠度方程 EIw1Fb lx63C1xD 1
2 (axl )
挠曲线方程 E Iw 2 M 2F b lxF (xa)
转角方程 挠度方程
E Iw 2 'F b lx 2 2F (x 2 a)2C 2 E Iw 2 F b lx 6 3 F (x 6 a )3 C 2 x D 2
转角
B
x
w挠度(
B
3、挠曲线 :梁变形后的轴线称为挠曲线 . 挠曲线方程为:
w f(x)
式中,x 为梁变形前轴线上任一点的横坐标,w 为该点的挠度. w
A
C
B
x
挠曲线
C'
w挠度(
B
转角
4、挠度与转角的关系:
tg w ' w '(x )
w
A
挠曲线
C C'
转角
B
x
w挠度
B
5、挠度和转角符号的规定
挠度:向上为正,向下为负.
转角:自x 转至切线方向,逆时针转为正,顺时针转为负.

《材料力学》课程讲解课件第六章弯曲变形

《材料力学》课程讲解课件第六章弯曲变形
成为一条曲线,这条曲线称为挠曲线。
F
q
M
轴线
弯曲后梁的轴线 (挠曲线)
纵向对称面
2. 梁变形的度量—挠度、转角
挠曲线
转角
(1) 挠度w:截面形心在y方
y
C’
向的位移。 向上为正
w 挠度 (2)挠曲线:变形后梁的轴线
x
C
x
F
挠曲线方程: w f (x)
⑶ 转角θ:截面绕中性轴转过的角度。(挠曲线法线与y轴的
是上面求得的 B,由此引起的A端挠度w1= B·a应叠加到图
b所示悬臂梁的A端挠度w2上去才是原外伸梁的A端挠度wA :
wA w1 w2
1 3
qa3 EI
a
2q a4
8EI
7 qa4 12 EI
例题:列出图示结构的边界条件和连续条件。
边界条件: A 0
wA 0
连续条件: B左 B右 wB左 wB右
例题:列出图示结构的边界条件和连续条件。
wA 0
解:边界条件:A 0
wC 0
wD左 wD右
连续条件:D左 D右
wB左 wB右
例题6.1 求梁的转角和挠曲线方程, w
并求最大转角、最大挠度,EI已知。 A
已知结果,先将均布载荷延长至
梁的全长;
为不改变原载荷的作用效果,
在AB 段加上集度相同、方向相 反的均布载荷。
wC1
⑵ 计算两种载荷下的wC和C 。
wC1
ql 4 8EI
C1
ql 3 6EI
wB 2
wC 2
wB 2
B2
l 2
C 2
ql 3 48EI
wC 2
ql 4 ql3 l 128EI 48EI 2

材料力学《第六章》弯曲变形ppt课件

材料力学《第六章》弯曲变形ppt课件

F A l C B l
铰支座:wA = 0,wB = 0
弯曲变形对称点:qC = 0
连续性条件:挠曲线为一条光滑连续曲线,其上任意点由唯一 确定的挠度和转角。
F
A
a
上海交通大学
C
B
C截面处: qC+ = qC–
b
wC+= wC–
例1 图示悬臂梁,已知F、l,EIz为常数。 w 试求: qB,wB 解:(1) 弯矩方程 M(x) = –F (l –x)= –Fl + Fx A x l
上海交通大学
称为转角方程
五、挠度与转角之间的微分关系 转角q w 挠曲轴 A q 由几何关系得:q = q '
qC
q'
x
wC C B 挠度w F
由小变形条件:q' ≈ tanq '
d w 由微分知识: tan θ w ( x ) w d x
d w ∴ θ tan θ w ( x ) w d x
B
F
பைடு நூலகம்
变弯后的梁轴称为挠曲轴,又称为挠曲线; 对称弯曲时,挠曲线为位于纵向对称平面内的平面曲线; 小变形下,挠曲线为平坦曲线,水平位移不计,曲线连续、 光滑、单值; 对细长梁,剪力对弯曲变形的影响一般可忽略不计,因而 弯曲变形后梁横截面仍保持为平面,并与挠曲线正交。
上海交通大学
四、弯曲变形的表示和度量
上海交通大学
上式化简为
2 1 d w 2 w ρ (x ) d x
1 M (x ) ρ (x) EI z
(a)
2 1 d w 2 ρ (x ) dx
(b)
(b)代入(a) ,得梁挠曲线的近似微分方程:

材料力学 第6章 梁的弯曲变形

材料力学 第6章  梁的弯曲变形

(c)
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
在本章所取的坐标系中,
上凸的曲线w″为正值,下凸的为负值。
如图6-5所示。 按弯矩正负号的规定,正弯矩对应着负的w″, 负弯矩对应着正的w″,故(c)式
w
M (x)
(1
w2 )3 2
EI z
在小变形情况下, w dw 是一个很小的量, dx
则 w'2为高阶微量,可略去不计,故
挠曲线的近似微分方程
M x
w EI z
EIw''= −M (x)
(6-1b)
图6-5
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
6.4 积分法计算梁的变形
对于等直梁,可以直接积分,计算梁的挠度和转角。 将式(6-1b)积分一次,得到
EIw′ = EIθ = −∫ M (x) dx + C
maxFl 2 2EI来自A xyF
θmax B
x
wmax
l
图6-7 例题 6-1 图
wm a x
Fl 3 3EI
θ max为正值,表明梁变形后,截面B顺时针转动;
wmax为正值,表明点B位移向下。
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
例题6-2 一简支梁受均布荷载q作用,如图6-8所示。试求梁的转角方程和 挠度方程, 并确定最大挠度和A、B截面的转角。设梁的弯曲刚度为EI。
A x
y
F
θmax B
x
wmax
l
进行两次积分,得到
EIw EI Flx Flx2 C
(a)
2
EIw Flx2 Fx3 Cx D

《材料力学弯曲》课件

《材料力学弯曲》课件
定义方式
弯曲应变通常用曲率半径的变化量与原始曲率半径的比值来表示,即 ΔR/R。其中 ΔR 是曲率半径的变化量,R 是原始曲率半径。
弯曲应变的计算
应变计法
通过在物体上粘贴应变片 ,并利用应变计测量应变 值,从而计算出弯曲应变 。
有限元分析法
利用有限元分析软件,建 立物体的有限元模型,通 过模拟受力情况下的变形 过程,计算出弯曲应变。
实验法
通过实验测试物体的弯曲 变形,利用相关公式计算 出弯曲应变。
弯曲应变的分布
应变分布图
通过绘制应变分布图,可以直观地了 解物体在弯曲变形过程中应变的大小 和分布情况。
应变集中
应变梯度
在弯曲变形过程中,物体不同部位上 的应变大小和方向可能不同,形成应 变梯度。
在物体受力点附近区域,应变会集中 增大,可能导致材料疲劳或断裂。
材料力学的重要性
总结词
材料力学在工程设计和实践中具有重要意义。
详细描述
在工程设计和实践中,材料力学是必不可少的学科之一。通过对材料力学的研究 ,工程师可以更好地理解材料的性能,预测其在各种工况下的行为,从而设计出 更加安全、可靠、经济的工程结构。
材料力学的基本假设
总结词
材料力学基于一系列基本假设,这些假设简 化了问题的复杂性,使得分析更为简便。
学习目标
01
02
03
04
掌握材料力学的基本概念、原 理和分析方法。
理解弯曲问题的特点和解决方 法。
能够运用所学知识解决简单的 弯曲问题。
培养分析问题和解决问题的能 力,提高力学素养。
02
材料力学基础
材料力学的定义
总结词
材料力学是一门研究材料在各种 力和力矩作用下的行为的学科。

材料力学第6章 弯曲变形部分课件

材料力学第6章 弯曲变形部分课件

§6-2 挠曲线的微分方程
( Differential equation of the deflection curve) 一、推导公式(Derivation of the formula)
1.纯弯曲时曲率与弯矩的关系(Relationship between the curvature of beam and the bending moment)
2
(4)
弯曲变形(Deflection of Beams)
Fx 2 EIw Flx C1 (3) 2
Flx Fx EIw C 1x C 2 2 6 边界条件 x 0, w 0
x 0, w 0
2 3
(4)
将边界条件代入(3)(4)两式中,可得 C1 0 梁的转角方程和挠曲线方程分别为
在简支梁中, 左右两铰支座处的
挠度 w A 和 w B 都等于0.
A
B
wA 0
在悬臂梁中,固定端处的挠度 w A 和转角 A 都应等于0.
A
wB 0
B
wA 0
A 0
弯曲变形(Deflection of Beams)
例题1 图示一抗弯刚度为 EI 的悬臂梁, 在自由端受一集中力 F 作用.试求梁的挠曲线方程和转角方程, 并确定其最大挠度 wmax 和最大转角 max
EIw M ( x )dxdx C1 x C 2
二、积分常数的确定 (Evaluating the constants of integration)
1.边界条件(Boundary conditions)
2.连续条件(Continue conditions)
弯曲变形(Deflection of Beams)

材料力学课件第六章1 弯曲变形

材料力学课件第六章1  弯曲变形
代入通解得方程组: F (0) 2 Fl (0) C 0
2 F 1 3 (0) Fl (0) 2 C (0) D 0 6 2 D0
解得: C 0, 6、确定挠曲线方程和转角方程: F EIw ' x 2 Flx 2 F Fl 2 EIw x 3 x 6 2 7、求截面位移
由方程所确定的曲率:

1 3 2 2 ( x) dw 1 dx
d w dx2 dw 1 dx
2 2
d 2w dx2
y

w x
x

3
F
因此有:
2

2
M ( x) EI
dw d 2 w M ( x) 又 1 得: 2 dx EI dx
二、画AB、DE受力图
三、变形协调条件 三、建立补充方程
v AB中 vDE中
( P RC ) L RC L2 48EI1 48EI 2
3 1 3
D
E
3 I 2 L1 P 解得:RC 3 3 I 2 L1 I1 L2 I1 L3 P 2 AB梁负担:P RC 3 3 I 2 L1 I1 L2
ห้องสมุดไป่ตู้
水平位移 2、弯曲变形的度量: (1)截面位移及特点: •横截面形心的竖向线位移 •横截面绕中性轴的角位移。 •横截面形心的水平线位移, 较竖向线位移小许多。
(2)度量变形的基本量: •挠度w: 横截面形心的竖向线位移,向上为正。 •截面转角θ :横截面绕中性轴的角位移,逆时针为正。
3、弯曲变形简化计算 (1)简化: 认为截面只有竖向位移。 y (2)简化后问题的特点: •挠曲线方程为挠度方程:

材料力学第六章

材料力学第六章

解 1)将梁上的载荷分解
wC wC1 wC2 wC3
B B1 B2 B3
2)查表得3种情形下C截面的 挠度和B截面的转角。
wC1
5ql 4 384EI
wC 2
ql 4 48EI
ql 4 wC3 16EI
B1
ql 3 24EI
B1
ql 3 16EI
B3
ql 3 3EI
wC1
wC2 wC3
3)进行变形比较,列出变形协调
条件
wB 0
4)叠加法
wB (wB )F (wB )FBy 0
MA A
MFAAy A
FAy A
A
MA A FA y
MA A AA
MA A A
F
B
C
2a (a) B
aF C
2a
Ba C
((ba))
B B (b)
F C
C
(c)
FBy F
B
FF C
BB
(c)
FBy
CC
B12 a
Fa 2l 3EI
w1 wB11 wB12
w2
B2a
Fl 2a 16 EI
w w1 w2
用叠加法求跨度中点挠度
解: wc wc1 wc2
由于 wc wc2
=

wc
1 2
wc1
1 5q0l 4 5q0l 4 2 384EI 768EI
-
解: wc wc1 wc2
当 d w 0 时,w为极值
dx
EI1
Fb 2l
x2 1
Fb 6l
(l 2
b2 )
E I 2
Fb 2l
x22

材料力学 第六章 弯曲变形

材料力学 第六章 弯曲变形
Q A
M E F A 0 .5l M 0 解得: Q E 2 P , M E 0
FA Q 0
M A F A M 0
FA
(3)计算截面A+ 和D-的剪力和弯矩
Y 0 M 0
A
同理:
FA 0 P D D
M D Q D
Q D P
Q ( x ) FA qx ql qx 0 x l 2 2 1 M ( x ) FA x qx x qlx q x 2 2 2 2 0 xl
l /2 M
ql 2
x
M ( x) |x0 0
M ( x ) |x l 0
l /2
ql 2 8
求弯矩的极值点:
O
B 1
1 — 1截面:
Q1 FB
1
M1
m2 M 1 0
Q1
FB
M 1 FB ( l x1 ) m1 m 2
4. 剪力、弯矩的正负与横向外力偶的关系
Q2 FA P
a
M 2 F A x 2 P ( x 2 a ) m1 m 2
Q1 FB
一端为固定铰支座一端为活动铰支座。 2、外伸梁 一端或两端向外伸出的简支梁。
3、悬臂梁 一端固定支座一端自由。
§6-3 剪力与弯矩
一、剪力和弯矩
步骤: (1)先求约束反力FA 、FB ; y a P1
x
m
P2
P3
x
A y
m
B
(2)由截面法求横截面上的内力; FA (如:求 m — m 截面的内力)
说明:
Q向下假设为正; M逆时针假设为正。 Q向上假设为正; M顺时针假设为正。

材料力学第四版课件 第六章 弯曲变形

材料力学第四版课件 第六章 弯曲变形
)F
ql
3
()
2
24 EI
Fl ()
(q
A
16 EI
3
q
A

ql

Fl
2
( )
24 EI
16 EI
例6.5:图示外伸梁,其抗弯刚度为EI,求B截 面的转角和C截面的挠度.
2
2
l
EIw 2 M 2 F
x F ( x a)
2
转角方程
b x F ( x a) C2 l 2 2
3 3
b x F ( x a) C 2x D 2 挠度方程 EIw 2 F l 6 6
F A a l C b B
(3)确定积分常数 边界条件: 在 x = 0 处, w1 0 在 x = l 处, w2 0 C点的连续条件: 在 x = a 处, w1 w2 , w1 w2 再将边界条件和连续条件分别代入 AC与CB的转角方程与闹曲轴方程中。
F B
当 x 0 时 : q 0, w 0
q
w 1 EI
1 EI
( FLx
1 2
2
1 2
Fx
2
C)
3
(
FLx

1 6
Fx
Cx D )
4.根据边界条件确定积分常数
当 x 0 时 : q 0, w 0
解得
C 0; D 0
5.得到转角方程和挠度方程,计算B截面的 挠度和转角
B
(4) 根据边界条件求积分常数 当x=0 和 x=l 时, w = 0
EIq EIw
EIw ql 12 x
3

材料力学课件第六章 弯曲变形6-7

材料力学课件第六章 弯曲变形6-7

+
FA
Fa 2 4EI
Fa3 wFC 6EI
q
A
B
qA
qa3 3EI
wqC
5qL4 24EI
F
B C
a
a
FA
Fa 2 4EI
Fa3 wFC 6EI
qA
qa3 3EI
wqC
5qL4 24EI
=
F 叠加
A
B
A FA qA
+
a2
(3F 4qa)
12EI
q
A
B
wC
5qa 4 24EI
Fa3 6EI
小结
1、明确挠曲线、挠度和转角的概念 2、掌握计算梁变形的积分法和叠加法 3、掌握提高粱的弯曲刚度的措施
A
B
l
q
A
B
3.增大梁的抗弯刚度 EI;主要增大I 值,在截面面积不变
的情况下,采用适当形状,尽量使面积分布在距中性轴较远
的地方。例如:工字形、箱形等。
q
qL4
wmax
0.013 EI
L
q
wmax
0.7875103 qL4 EI
L/5
L/5
q L/2 L/2
wmax
0.326103 qL4 EI
A 0
即 M Al ql 3 0 3EI 24EI
MA
1 ql 2 8
第七节 梁的刚度校核 提高梁的刚度措施
一、提高梁的刚度措施
1.调整加载方式,改善结构设计;缩短跨长:如将简支梁
改为外伸梁;或增加支座等。
2.减少梁的跨度,增加支承约束;缩短跨长:如将简支梁
改为外伸梁;或增加支座等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EIy1F(xl)3C xD 6
F Bx
B
12
§6-3 用积分法求梁的变形
4)由位移边界条件确定积分常数
x 0, A 0
x 0, yA 0
代入求解
C1F2l, D1F3l
2
6
5)确定转角方程和挠度方程
y
Ax
yB
l
F Bx
B
EI1F(xl)21F2l
2
2
E I1 yF (xl)31F2x l1F3l
梁的EI已知。
解 1)由梁的整体平衡分析可得:
y
FAx0, FAyF(), MA Fl(
2)写出x截面的弯矩方程
)A
x
yB
l
M (x ) F ( l x ) F (x l)
3)列挠曲线近似微分方程并积分
Ed d I2y2 xM(x)F(xl)
积分一次 EdI yEI1F(xl)2C
dx 2
再积分一次
6
26
6)确定最大转角和最大挠度
xl, ma xB2 F E 2,lIyma x yB3 F E 3 lI
13
§6-3 用积分法求梁的变形
例2 y
用积分法q 计算图示简支梁的解:A,B,yC。
Ax
C EI
B x M(x)1qlx1qx2, (0xl) 22
l/2 l/2
EI"yq(lxx2)
YA=ql/2
条件确定。
位移边界条件
(支承条件)
光滑连续条件
(两段梁的交界面)
~
AA
~~
~
~
A
A
A A AA
A AA A
~ ~~ ~~
~ ~~
~ ~ ~
~
~
A
A AAA
A
A AA
A
A AA A
~
~
yA 0
yA 0
A 0
yA
-弹簧变形
yAL yAR
ALAR
yAL yAR
10
解题步骤:
⒈ 建立坐标系。取梁的最左端为坐标原点,x 轴水平向 右,y 轴竖直向上;
x2
M x1F Ax y1F l x b 1,0x1a
a
b
CB 段:
M x 2 F A x 2 yF ( x 2 a ) F lx 2 F b ( x 2 a ), a x 2 l
16
§6-3 用积分法求梁的变形
3)列挠曲线近似微分方程并积分
AC 段: 0x1 a
EId2y1 dx12
1M
ρ EI z
忽略剪力对变形的影响
1 M(x)
(x) EIz
6
§6-2 挠曲线的近似微分方程
由数学知识可知:
d2y
1
dx 2
[1 ( dy )2 ]3
dx
略去高阶小量,得
1 d2y
dx 2
所以
d2 y M(x) dx2 EIz
y M (x) > 0
M (x) > 0
d2y
dx 2 > 0
5ql4 384EI
15
§6-3 用积分法求梁的变形
例3 求梁的转角方程和挠度方程,并求最大转角和最大挠度,
梁的EI已知,l=a+b,a>b。
y
解 1)由梁整体平衡分析得:
A
F Ax 0,F Ay F l ,b F By F l a
A
2)弯矩方程
F Ay x1
F DC
ymax
B B x
F By
AC 段:
1.基本概念 w
x
转角 挠度
w
挠曲线方程:
挠曲线
w f (x)
挠度y:截面形心
在w方向的位移 x
w向上为正
转角θ:截面绕中性轴转过的角度。 逆钟向为正
由于小变形,截面形心在x方向的位移忽略不计 挠度转角关系为: tan dw
dx
5
7-2
§6-2 挠曲线的近似微分方程
2.挠曲线的近似微分方程
推导弯曲正应力时,得到:
⒉ 将梁分段(与画弯矩图分段相同),分别写出每段梁 的弯矩方程;
⒊ 将弯矩方程代入挠曲线近似微分方程,并积分两次; ⒋ 根据边界条件和变形连续条件确定积分常数; ⒌ 将要求的变形的截面坐标代入转角方程和挠度方程, 求指定截面的转角和挠度。
11
§6-3 用积分法求梁的变形
例1 求梁的转角方程和挠度方程,并求最大转角和最大挠度,
挠曲线的近似微分方程为:
d2 y M(x) dx2 EIz
积分一次得转角方程为:
d2y EIz dx2 M(x)
EzI d dx y EzIM (x)d xC
再积分一次得挠度方程为:
E zyI M (x )dx C d x D x
9 7-3
§6-3 用积分法求梁的变形
积分常数C、D 由梁的位移边界条件和光滑连续
22 3 24
EIyq(lx31x4)q3lx 26 12 24
YA=ql/2
FB=ql/2
EIA
ql3 24
;
A
ql3 24EI
EB Iq 2(2 ll21 3l3)q 23l4 q 23l;4
B
ql 3 24 EI
EC Iy q 2[6 l(2 l)31 1(2 2 l)4]q 23l4 2 l;yC
FB=ql/2
2
E'IE yIq(lx21x3)C
22 3
EIq y(lx31x4)CxD 26 12
x0,y0; D0
xl,y0; 0q(l4 l4 )Cl C ql 3
2 6 12
24
14
§6-3 用积分法求梁的变形
y
q
A x C EI l/2 l/2
E'IyEIq(lx21x3)q3l
Bx
第6章 弯曲变形
§6-1 概述 §6-2 挠曲线的近似微分方程 §6-3 用积分法求梁的变形 §6-4 用叠加法求梁的变形 §6-5 梁的刚度条件及提高梁刚度的措施 §6-6 用变形比较法解简单超静定梁
1
目录
§6-1 概 述
2 7-1
§6-1 概 述
3
§6-1 概 述
4
§6-2 挠曲线的近似微分方(x) < 0
d2y
dx 2 < 0
x
O
7
§6-2 挠曲线的近似微分方程
由弯矩的正负号规定可得,弯矩的符号与挠曲 线的二阶导数符号一致,所以挠曲线的近似微分方 程为:
d2 y M(x) dx2 EIz
由上式进行积分,就可以求出梁横截面的转角 和挠度。
8
§6-3 用积分法求梁的变形
M(x1)Fl bx1
y
F
A
D C B B x
Ed d I1 1x yEI(x1)F 2l x b1 2C1
EI1 yF 6l b x1 3C1x1D1
CB 段:
ax2 l
A
F Ay
ymax
F By
x1
x2
a
b
Ed d I2y 2 22 xM (x2)F l x b 2F (x2a)
Ed dI 2 2x y E(x I2)F 2 lx 2 2 b F 2(x 2 a )2 C 2
E2I F 6 y lx b 3 2F 6(x 2 a )3 C 2x 2D 2
17
§6-3 用积分法求梁的变形
4)由边界条件确定积分常数
位移边界条件
x1 0, y1(0)0 x2 l, y2(l) 0
光滑连续条件 x1x2a, x1x2a,
相关文档
最新文档