方位角计算表格及于象限角的关系

合集下载

坐标方位角和象限角的关系表-概述说明以及解释

坐标方位角和象限角的关系表-概述说明以及解释

坐标方位角和象限角的关系表-概述说明以及解释1.引言1.1 概述在几何学和数学中,坐标方位角和象限角是两个重要的概念。

坐标方位角是指向任意点在直角坐标系中与正向X 轴的夹角,通常用弧度或度数表示;而象限角是指一个角落在某一象限内的角度,从正向X 轴逆时针旋转而来,范围通常是0 到360。

本文将探讨坐标方位角与象限角之间的关系,分析它们在数学和几何中的重要性。

通过对这两个角度概念的深入研究,我们可以更好地理解空间中位置和方向的表示方式,并且在实际问题中进行角度计算和图形分析。

在本文的结论部分,我们将总结这两种角度概念的关系,提供一些应用举例并展望未来可能的研究方向。

通过本文的阅读,读者可以更全面地了解坐标方位角和象限角的关系,为进一步学习和研究奠定基础。

1.2文章结构1.2 文章结构本文主要分为引言、正文和结论三个部分。

在引言部分中,将对坐标方位角和象限角的概念进行概述,介绍本文的结构以及文章撰写的目的。

在正文部分中,将详细讨论坐标方位角的定义和范围,象限角的定义和性质,以及两者之间的关系。

在结论部分中,将对文章进行总结,提出相关的应用举例,并展望未来的研究方向。

通过这样的结构安排,读者可以系统地了解和掌握坐标方位角和象限角的知识,并进一步探讨其在实际问题中的应用和发展前景。

1.3 目的本文旨在探讨坐标方位角和象限角之间的关系,帮助读者更深入地理解这两个概念在数学中的应用和意义。

通过对坐标方位角和象限角的定义、范围以及性质进行详细分析,我们将揭示它们之间的联系,并探讨它们在解决实际问题中的应用。

通过本文的阐述,读者可以更好地理解和运用坐标方位角和象限角,从而提高数学解题的能力和水平。

通过具体的应用举例,我们将展示坐标方位角和象限角在实际问题中的运用,帮助读者更好地理解其实际意义。

最后,我们将展望未来研究的方向,为进一步深入研究和探讨坐标方位角和象限角的相关问题提供思路和指导。

通过本文的阐述,我们希望读者可以全面了解和掌握坐标方位角和象限角的知识,从而更好地运用于实际生活和学习中。

坐标方位角与象限角的关系

坐标方位角与象限角的关系

坐标方位角与象限角的关系
坐标方位角和象限角是两种表示向量在平面直角坐标系中位置的方式。

它们的关系如下:
1. 第一象限的坐标方位角等于第四象限的象限角。

2. 第二象限的坐标方位角等于第三象限的象限角。

3. 坐标轴上的向量没有坐标方位角和象限角。

4. 如果向量终点在原点的左侧或下方,则其坐标方位角需要加上180°,而象限角需要加上π。

5. 如果向量的x坐标为负数,则其坐标方位角需要加上180°,而象限角需要加上π。

6. 如果向量的y坐标为负数,则其坐标方位角需要加上360°,而象限角需要加上2π。

综上所述,坐标方位角和象限角之间的关系取决于向量在平面直角坐标系中所处的象限和坐标轴方向。

方位角计算公式.

方位角计算公式.

一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13)上式右端,若<,用“+”号,若,用“-”号。

2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。

所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。

为了说明直线所在的象限,在前应加注直线所在象限的名称。

四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。

象限角和坐标方位角之间的换算公式列于表1-4。

表1-4 象限角与方位角关系表象限象限角与方位角换算公式第一象限(NE)=第二象限(SE)=-第三象限(SW)=+第四象限(NW)=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。

设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。

水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。

设三点相关位置如图1-17()所示,应有=++ (1-14)设三点相关位置如图1-17()所示,应有=++-=+- (1-15)若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16)显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17)上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。

二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。

坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。

如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。

方位角计算公式

方位角计算公式

一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13> 上式右端,若<,用“+”号,若,用“-”号。

2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。

所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。

为了说明直线所在的象限,在前应加注直线所在象限的名称。

四个象限的名称分别为北东<NE)、南东<SE)、南西(SW>、北西(NW>。

象限角和坐标方位角之间的换算公式列于表1-4。

象限角与方位角换算公式==-=+=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。

设地面有相邻的、、三点,连成折线<图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。

水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。

设三点相关位置如图1-17(>所示,应有=++ (1-14>设三点相关位置如图1-17(>所示,应有=++-=+- (1-15>若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16>显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17>上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。

二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。

坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。

如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。

方位角计算公式

方位角计算公式

⽅位⾓计算公式⼀、直线定向1、正、反⽅位⾓换算对直线⽽⾔,过始点的坐标纵轴平⾏线指北端顺时针⾄直线的夹⾓是的正⽅位⾓,⽽过端点的坐标纵轴平⾏线指北端顺时针⾄直线的夹⾓则是的反⽅位⾓,同⼀条直线的正、反⽅位⾓相差,即同⼀直线的正反⽅位⾓= (1-13)上式右端,若<,⽤“+”号,若,⽤“-”号。

2、象限⾓与⽅位⾓的换算⼀条直线的⽅向有时也可⽤象限⾓表⽰。

所谓象限⾓是指从坐标纵轴的指北端或指南端起始,⾄直线的锐⾓,⽤表⽰,取值范围为。

为了说明直线所在的象限,在前应加注直线所在象限的名称。

四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。

象限⾓和坐标⽅位⾓之间的换算公式列于表1-4。

表1-4 象限⾓与⽅位⾓关系表3、坐标⽅位⾓的推算测量⼯作中⼀般并不直接测定每条边的⽅向,⽽是通过与已知⽅向进⾏连测,推算出各边的坐标⽅位⾓。

设地⾯有相邻的、、三点,连成折线(图1-17),已知边的⽅位⾓,⼜测定了和之间的⽔平⾓,求边的⽅位⾓,即是相邻边坐标⽅位⾓的推算。

⽔平⾓⼜有左、右之分,前进⽅向左侧的⽔平⾓为,前进⽅向右侧的⽔平⾓。

设三点相关位置如图1-17()所⽰,应有=++ (1-14)设三点相关位置如图1-17()所⽰,应有=++-=+- (1-15)若按折线前进⽅向将视为后边,视为前边,综合上⼆式即得相邻边坐标⽅位⾓推算的通式:=+(1-16)显然,如果测定的是和之间的前进⽅向右侧⽔平⾓,因为有=-,代⼊上式即得通式=- (1-17)上⼆式右端,若前两项计算结果<,前⾯⽤“+”号,否则前⾯⽤“-”号。

⼆、坐标推算1、坐标的正算地⾯点的坐标推算包括坐标正算和坐标反算。

坐标正算,就是根据直线的边长、坐标⽅位⾓和⼀个端点的坐标,计算直线另⼀个端点的坐标的⼯作。

如图1所⽰,设直线AB的边长DAB和⼀个端点A的坐标XA、YA为已知,则直线另⼀个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。

(整理)方位角计算公式

(整理)方位角计算公式

一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13)上式右端,若<,用“+”号,若,用“-”号。

2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。

所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。

为了说明直线所在的象限,在前应加注直线所在象限的名称。

四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。

象限角和坐标方位角之间的换算公式列于表1-4。

表1-4 象限角与方位角关系表象限象限角与方位角换算公式=第一象限(NE)第二象限(SE)=-=+第三象限(SW )第四象限(NW)=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。

设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。

水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。

设三点相关位置如图1-17()所示,应有=++ (1-14)设三点相关位置如图1-17()所示,应有=++-=+- (1-15)若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16)显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17)上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。

二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。

坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。

如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。

每个象限中坐标方位角与象限角的关系

每个象限中坐标方位角与象限角的关系

每个象限中坐标方位角与象限角的关系下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!每个象限中坐标方位角与象限角的关系在平面直角坐标系中,角度可以通过不同的方式表示,包括方位角(极角)和象限角。

建筑工程测量:象限角与方位角的关系

建筑工程测量:象限角与方位角的关系

《建筑工程测量》
象限角与方位角的关系
一、象限角的概念
象限角由坐标纵轴的北端或南端起,顺时针或逆时针旋转至该直线方向所形成的锐角,同时加注出象限名称的角。

象限角用R表示,角值范围为0°~90°。

这里有四个要点,第一是北端或南段,第二是顺时针或逆时针,第三是锐角,第四是需要加注象限名称。

这四个要点均与方位角不同。

按照象限角的定义,依次绘制出象限角的大小,如图1。

图1 象限角的绘制
二、象限角R与方位角α的关系
首先,我们回顾一下方位角的概念,从坐标纵轴的北端顺时针旋转至该直线方向所形成的水平夹角即为方位角。

方位角用α表示,其取值范围是 0~360,而象限角就是个锐角,第一象限,二者相等;第二象限,方位角在90°~180°之间,α=180°— R;第三象限,方位角在180°~270°之间,α=180°+ R;第四象限,方位角在270°~360°,α=360°— R。

图2 象限角与方位角的关系。

方位角计算公式

方位角计算公式

一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13> 上式右端,若<,用“+”号,若,用“-”号。

2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。

所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。

为了说明直线所在的象限,在前应加注直线所在象限的名称。

四个象限的名称分别为北东<NE)、南东<SE)、南西(SW>、北西(NW>。

象限角和坐标方位角之间的换算公式列于表1-4。

象限角与方位角换算公式==-=+=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。

设地面有相邻的、、三点,连成折线<图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。

水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。

设三点相关位置如图1-17(>所示,应有=++ (1-14>设三点相关位置如图1-17(>所示,应有=++-=+- (1-15>若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16>显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17>上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。

二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。

坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。

如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。

方位角计算公式.

方位角计算公式.

一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13)上式右端,若<,用“+”号,若,用“-”号。

2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。

所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。

为了说明直线所在的象限,在前应加注直线所在象限的名称。

四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。

象限角和坐标方位角之间的换算公式列于表1-4。

表1-4 象限角与方位角关系表象限象限角与方位角换算公式第一象限(NE)=第二象限(SE)=-第三象限(SW)=+第四象限(NW)=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。

设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。

水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。

设三点相关位置如图1-17()所示,应有=++ (1-14)设三点相关位置如图1-17()所示,应有=++-=+- (1-15)若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16)显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17)上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。

二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。

坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。

如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。

方位角和象限角的关系

方位角和象限角的关系

方位角和象限角的关系
一、方位角与象限角的关系
方位角和象限角是直角坐标系的两种表示方式,在处理坐标数据时,两者具有相互转换的关系。

1、方位角
方位角是指从正X轴正向指向目标点的角度,用角度制表示,取值范围为0°~360°(四象限)或-180°~180°(双象限),以正X 轴为参照,逆时针方向算起,东为0°,南为90°,西为180°,北为270°。

2、象限角
象限角是指从正X轴正向指向目标点,再绕目标点旋转其余部分角度,取值范围是0°~360°,以正X轴正向指向的目标点为参照,顺时针方向算起,第一象限为0°,第二象限为90°,第三象限为180°,第四象限为270°。

从上述定义可以看出,象限角比方位角多了逆时针旋转的角度,可以将象限角表示的目标点,转化为方位角,反之亦然。

- 1 -。

方位角计算公式

方位角计算公式

方位角计算公式部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13> 上式右端,若<,用“+”号,若,用“-”号。

2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。

所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。

为了说明直线所在的象限,在前应加注直线所在象限的名称。

四个象限的名称分别为北东<NE)、南东<SE)、南西(SW>、北西(NW>。

象限角和坐标方位角之间的换算公式列于表1-4。

象限角与方位角换算公式==-=+=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。

设地面有相邻的、、三点,连成折线<图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。

水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。

设三点相关位置如图1-17(>所示,应有=++ (1-14>设三点相关位置如图1-17(>所示,应有=++-=+- (1-15>若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16>显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17>上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。

二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。

坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。

方位角计算公式

方位角计算公式

一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13)上式右端,若<,用“+”号,若,用“-”号。

2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。

所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。

为了说明直线所在的象限,在前应加注直线所在象限的名称。

四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。

象限角和坐标方位角之间的换算公式列于表1-4。

表1-4 象限角与方位角关系表3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。

设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。

水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。

设三点相关位置如图1-17()所示,应有=++ (1-14)设三点相关位置如图1-17()所示,应有=++-=+- (1-15)若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16)显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17)上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。

二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。

坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。

如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方位角计算表格
序 号 a b c d e
已知A点坐标 (该点设站) Xa Ya
101359.6399 101349.5596 113804.4960 113788.4761
已知B点坐标
Xb 101467.9770 101359.6399 Yb 113745.4250 113804.4960
待测P点坐标
( X 1 X 2 ) 2 (Y1 Y 2 ) 2

方位角计算表格
△坐标增量
Xb-Xa 108.3371 10.0803 0.0000 0.0000 0.0000 Yb-Ya -59.0710 16.0199 0.0000 0.0000 0.0000 Xp-Xa 114.6577 -23.6514 0.0000 0.0000 0.0000 Yp-Ya -41.6848 4.1480 0.0000 0.0000 0.0000
坐标增量比值
Yb-Ya/Xb-Xa -0.545251811 1.589228495 #DIV/0! #DIV/0! #DIV/0! Yp-Ya/Xp-Xa -0.363558662 -0.175380739 #DIV/0! #DIV/0! #DIV/0!
计算时为25度
ab=α ab锐角 ab=180°-α ab锐角 ab=180°+α ab锐角 ab=360°-α ab锐角
注:1、使用时应注意公式中是锐角(有负号时不计算负号)如-25度,计算时为25度 2、极角β =α [已知边(控制点)方位角]-α (待测边方位角) 3、计算后的极角:负角顺时针转角,正角逆时针转角。 4、距离S=
Xp 101474.2976 101325.9082 Yp 113762.8112 113792.6241
方位角于象限关系
a b c d e f
△Xab>0 且△Yab≥0则为一象限α △Xab<0 且△Yab≥0则为二象限α △Xab<0 且△Yab<0则为三象限α △Xab>0 且△Yab<0则为四象限α △Xab=0 且△Yab>0则α ab=90° △Xab=0 且△Yab<0则α ab=270°
相关文档
最新文档