数轴典型例题
数轴的概念及应用经典练习题
祖π数学
新人教 七年级上册
之精讲精练 1
【知识点】数轴的概念
知识要点:(1)规定了 、 、 的直线叫做数轴.
(2)数轴上的点与有理数之间的关系:一般地,设a 是一个正数,则数轴上表示a 的点在原点的 ,与原点的距离是 个单位长度;表示-a 的点在原点的 ,与原点的距离是 个单位长度.
(3)数轴上的点表示的有理数,沿着数轴正方向越往右,数越 .
【典型例题】
1.如图,数轴上点A 表示的数是 .
2.如图,数轴上表示-2.75的点是 .
3.在数轴上表示-2,0,6.3,15
的点中,在原点右边的点有 . 4.在数轴上,表示-1与-4两点之间有理数的点有( )
A .3个
B .2个
C .1个
D .无数个
5.数轴上的点A 对应的数为-1,那么与A 点相距3个单位长度的点所对应的有理数为 .
6.数轴上表示数5-和表示14-的两点之间的距离是__________.
7.数轴上的点A 对应数为-2,与B 点对应数为-7,则AB 的长度为______;点A 为 -2,那么与B 点对应数为7,则AB 的长度为___ ___.
8.在数轴上A 点表示-31,B 点表示2
1,则离原点较近的点是 点. 9.指出数轴上点A ,B ,C ,D 表示的数.
10.画数轴,并在数轴上表示下列各数:2,-2.5,0,13
,-4.
11.画出数轴并表示下列有理数: -5,+3 ,0 ,3
2 ,4
12.画出数轴,并用数轴上的点表示下列各数:-5,212,0,4,
2
9,-1.5。
专题09 难点探究专题:数轴上的动点问题压轴题五种模型全攻略(原卷版)
专题09 难点探究专题:数轴上的动点问题压轴题五种模型全攻略【考点导航】目录【典型例题】 .................................................................................................................................................. 1 【考点一 数轴上的动点中求运动的时间问题】 ............................................................................................. 1 【考点二 数轴上的动点中求定值问题】......................................................................................................... 3 【考点三 数轴上的动点中找点的位置问题】 ................................................................................................. 5 【考点四 数轴上的动点中几何意义最值问题】 ............................................................................................. 7 【考点五 数轴上的动点规律探究问题】 (9)【典型例题】【考点一 数轴上的动点中求运动的时间问题】例题:(2023秋·江苏徐州·七年级校考期末)如图数轴上有两个点AB 、,分别表示的数是2 ,4.请回答以下问题:(1)A 与B 之间距离为___________;(2)若点P 从A 点出发,以每秒5个单位长度的速度向右作匀速运动,点Q 从B 出发,以每秒3个单位长度的速度向右作匀速运动,P Q ,同时运动,设运动的时间为t 秒; ①当点P 运动多少秒时,点P 和点Q 重合?②当点P 运动多少秒时,P Q ,之间的距离为3个单位长度?【变式训练】1.(2023春·安徽安庆·七年级统考期末)已知如图,数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运t t>秒.动时间为()0(1)数轴上点B表示的数是___________;当点P运动到AB的中点时,它所表示的数是__________.(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发.求:①当点P运动多少秒时,点P追上点Q?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?2.(2023秋·河北沧州·七年级统考期末)综合与实践:A、B、C三点在数轴上的位置如图所示,点C表示的数为6,BC=4,AB=12.(1)数轴上点A表示的数为,点B表示的数为;(2)动点P,Q同时从A,C出发,点P以每秒4个单位长度的速度沿数轴向右匀速运动.点Q以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒;①求数轴上点P,Q表示的数(用含t的式子表示);②t为何值时,P,Q两点重合;③请直接写出t为何值时,P,Q两点相距5个单位长度.3.(2023秋·湖北武汉·七年级统考期末)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示12-,点B表示12,点C表示20,我们称点A和点C在数轴上相距32个长度单位,记L=.动点M从点A出发,沿着“折线数轴”的正方向运动,同时,动点N从点C出发,沿着“折线数为32AC轴”的负方向运动,它们在水平轴AO,BC上的速度都是2单位/秒,在O,B之间的上行速度为1单位/秒,下行速度为3单位秒.设运动的时间为t秒.t=秒时,M,N两点在数轴上相距多少个单位长度?(1)当4(2)当M,N两点相遇时,求运动时间t的值.(3)若“折线数轴”上定点P与O,B两点相距的长度相等,且存在某一时刻t,使得两点M,N与点P相距的长度之和等于6,请直接写出t的值为____________.【考点二数轴上的动点中求定值问题】2().130a b【变式训练】1.阅读下面的材料:(>),则线段AB的长(点A到点B的距离)如图①,若线段AB在数轴上,A,B点表示的数分别为a,b b a=-.可表示为AB b a【考点三数轴上的动点中找点的位置问题】例题:已知在纸面上有一数轴(如图所示).(1)操作一:折叠纸面,使表示数1的点与表示数﹣1的点重合,则此时表示数4的点与表示数的点重合;(2)操作二:折叠纸面,使表示数6的点与表示数﹣2的点重合,回答下列问题:①表示数9的点与表示数的点重合;②若这样折叠后,数轴上的A,B两点也重合,且A,B两点之间的距离为10(点A在点B的左侧),求A,B两点所表示的数分别是多少?③在②的条件下,在数轴上找到一点P,设点P表示的数为x.当P A+PB=12时,直接写出x的值.【变式训练】1.已知在数轴上A,B两点对应数分别为﹣2,6.(1)请画出数轴,并在数轴上标出点A、点B;(2)若同一时间点M从点A出发以1个单位长度/秒的速度在数轴上向右运动,点N从点B出发以3个单位长度/秒的速度在数轴上向左运动,点P从原点出发以2个单位长度/秒的速度在数轴上运动.①若点P向右运动,几秒后点P到点M、点N的距离相等?②若点P到A的距离是点P到B的距离的三倍,我们就称点P是【A,B】的三倍点.当点P是【B,A】的三倍点时,求此时P对应的数.2.如图,已知A B,为数轴上的两个点,点A表示的数是60-,点B表示的数是20.(1)直接写出线段AB的中点C对应的数;(2)若点D在数轴上,且30BD=,直接写出点D对应的数;(3)若熊大从点A出发,在数轴上每秒向右前进8个单位长度;同时熊二从点B出发,在数轴上每秒向左前进12个单位长度它们在点E处相遇,求点E对应的数;(4)若熊大从点A出发,在数轴上每秒向左前进8个单位长度;同时熊二从点B出发,在数轴上每秒向左前进12个单位长度,当它们在数轴上相距20个单位长度时,求熊大所在位置点F对应的数.-,3.(2023秋·山东滨州·七年级统考期末)如图,已知A,B为数轴上的两个点,点A表示的数是90点B表示的数是30.(1)直接写出线段AB的中点C对应的数;BD=,直接写出点D对应的数;(2)若点D在数轴上,且50(3)若李明从点A出发,在数轴上每秒向右前进8个单位长度;同时王聪从点B出发,在数轴上每秒向左前进12个单位长度它们在点E处相遇,求点E对应的数;(4)若李明从点A出发,在数轴上每秒向左前进8个单位长度;同时王聪从点B出发,在数轴上每秒向左前进12个单位长度,当它们在数轴上相距20个单位长度时,求李明所在位置点F对应的数.【考点四数轴上的动点中几何意义最值问题】例题:(2023春·湖北武汉·七年级校联考阶段练习)数形结合是解决数学问题的重要思想方法.例如,代数【变式训练】1.(2022秋·江苏·七年级期中)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合的几何意义知:当﹣2≤x ≤1时,|x ﹣1|+|x +2|恒有最小值3,所以要使|x ﹣1|+|x +2|=4成立,则点P 必在﹣2的左边或1的右边,且到表示数﹣2或1的点的距离均为0.5个单位. 故方程|x ﹣1|+|x +2|=4的解为:x 1=﹣2﹣0.5=﹣2.5,x 2=1+0.5=1.5. 阅读以上材料,解决以下问题:(1)填空:|x ﹣3|+|x +2|的最小值为 ;(2)已知有理数x 满足:|x +3|+|x ﹣10|=15,有理数y 使得|y ﹣3|+|y +2|+|y ﹣5|的值最小,求x ﹣y 的值. (3)试找到符合条件的x ,使|x ﹣1|+|x ﹣2|+…+|x ﹣n |的值最小,并求出此时的最小值及x 的取值范围.【考点五 数轴上的动点规律探究问题】例题:(2022秋·河北沧州·七年级统考期末)一电子跳蚤落在数轴上的某点k 0处,第一步从k 0向左跳一个单位到k 1,第二步从k 1向右跳2个单位到k 2,第三步由k 2处向左跳3个单位到k 3,第四步由k 3向右跳4个单位k 4…按以上规律跳了100步后,电子跳蚤落在数轴上的数是0,则k 0表示的数是( ) A .0 B .100 C .50 D .﹣50【变式训练】1.(2022秋·广东佛山·七年级校考阶段练习)一只跳蚤在数轴上从0点开始,第1次向右跳2个单位,紧接着第2次向左跳4个单位,第3次向右跳6个单位,第4次向左跳8个单位,…,依此规律跳下去,当它跳第100次落下时,落点处表示的数为 .2.(2022秋·湖南长沙·七年级校考阶段练习)如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动:第一次将点A 向左移动3个单位长度到达点1A ,第2次将点1A 向右平移6个单位长度到达点2A ,第3次将点2A 向左移动9个单位长度到达点3A ⋯则第6次移动到点6A 时,点6A 在数轴上对应的实数是 ;按照这种规律移动下去,至少移动 次后该点到原点的距离不小于41.3.(2022秋·七年级课时练习)如图,数轴上O 、A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点1A 处,第2次从1A 点跳动到1A O 的中点2A 处,第3次从2A 点跳动到2A O 的中点3A 处,按照这样的规律继续跳动到点456,,,...,n A A A A (3n ≥,n 是整数)处,问经过这样2021次跳动后的点与O 点的距离是 .。
关于数轴的数学题
数轴是一种数学工具,用于表示实数集及其顺序关系。
以下是一些关于数轴的数学题目:
1.数轴上点A表示的数是-5,若将点A向右平移3个单位到点B,则点B
表示的数是_______.
2.数轴点A、B所表示的数为−1、3,则A、B两点间的距离是____.
3.在数轴上与原点的距离小于10的点对应的数是____.
4.数轴上点A表示的数是−5,若将点A向右平移3个单位到点B,则点B
表示的数是____.
5.在数轴上与原点的距离小于8的点对应的数是____.
6.数轴上点A表示的数是−3,若将点A向右平移2个单位到点B,则点B
表示的数是____.
7.在数轴上与−4相距3个单位长度的点有____个,所表示的数是____.
8.数轴上与原点的距离小于9且大于5的整数点所表示的数是____.
9.数轴上点A表示的数是−3,若将点A向右平移2个单位到点B,则点B
表示的数是____.
10.在数轴上与原点的距离小于10的点对应的数是____.
答案:
1.2
2.4
3.−9<x<10
4.2或−8
5.−7<x<9
6.1或−5
7.2;−1或−7
8.−4、−3、−2、−1、0、1、2、3、4、5
9.1或−1
10.−9<x<10.。
利用数轴化简绝对值
利用数轴化简绝对值1. 如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c ++--+的值. 2.数a b ,在数轴上对应的点如右图所示,试化简a b b a b a a ++-+-- 3.实数a b c ,,在数轴上的对应点如图,化简a c b a b a c +--++-4.实数a 、b 、c 在数轴上的位置如图所示,则代数式的值等于( ).(A ) (B ) (C ) (D ) 5.已知有理数c b a ,,在数轴上的对应点的位置如图所示:那么求a c c b b a -+---的值6.有理数c b a ,,在数轴上对应的点(如下图),图中O 为原点,化简a c b b a b a --+++-。
7.a 、b 、c 的大小关系如图所示,求a b b c c a ab ac a b b c c a ab ac -----++----的值. 8.若用A 、B 、C 、D 分别表示有理数a 、b 、c ,0为原点。
如图所示,已知a<c<0,b>0。
化简下列各式:(1)||||||a c b a c a -+---;(2)||||||a b c b a c -+---+-+;(3)2||||||c a b c b c a +++---1、(数形结合思想)已知a 、b 、c 在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( )A .-3aB . 2c -aC .2a -2bD . B2、已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( )四.是正数 B .是负数 C .是零 D .不能确定符号5、(非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值.绝对值的提高练习一.知识点回顾1、 绝对值的几何意义:在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.2、 绝对值运算法则:一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即:3、 绝对值性质:任何一个实数的绝对值是非负数.二. 典型例题分析:例1、 a ,b 为实数,下列各式对吗若不对,应附加什么条件请写在题后的横线上。
数轴典型例题及答案
《数轴》典型例题例1下列各图中,表示数轴得就是()。
分析:画数轴时,数轴得三要素—-原点、正方向、单位长度就是缺一不可得,所以应当用这三要素检查每个图形,判断就是否画得正确。
解:A图没有指明正方向;B图中,1与-1表示得一个单位长度不相等,在同一数轴上,单位长度必须一致;C图中没有原点;D图中三要素齐全.∴A、B、C三个图画得都不就是数轴,只有D图画得就是数轴、例2在所给得数轴上画出表示下列各数得点:ﻫ分析:第一步画数轴,第二步在数轴上找出相对应得点,每个正有理数都可用数轴上原点右边得一个点来表示,例如2、3.5,可用数轴上分别位于原点右边2个单位,3、5个单位得点表示。
每一个负有理数都可用数轴上原点左边得一个点来表示,解:说明:数轴上表示数得点可用大写字母标出,写在数轴上方所对应数得上面,原点用O标出,它表示数0.数轴上原点得位置要根据需要来确定,不一定要居中、单位长度应根据需要来确定,1cm得长度可以表示1个单位长度,也可以表示2个,5个,10个…单位长度,但在同一数轴上,单位长度必须一致,不可随意改变.例3画一条数轴,并把-6,1,0,,表示在数轴上。
分析由于要表示得最左边得数就是-6,最右边得数就是,所以在画数轴时在原点得两侧各画六个单位即可。
解如图所示说明: 在画数轴时选取单位长度应因表示得数而定、例4指出数轴上A、B、C、D、E各点分别表示什么数.分析:表示正数得点都在原点得右侧,表示负数得点都在原点得左侧.要特别注意相邻两个负整数点之间得等分点所表示得数,例如:-2,-3之间得A点就是表示,而不就是、解:O表示0,A表示,B表示1,C表示,D表示-4,E表示—0、5、例5下面说法中错误得就是[]、A.数轴上原点得位置就是任意取得,不一定要居中;B。
数轴上单位长度得大小要根据实际需要选取。
1厘米长得线段可以代表1个单位长度,也可以代表2个、5个、10个、100个、…单位长度,但一经取定,就不可改动;C、如果a〈b,那么在数轴上表示a得点比表示b得点距离原点更近;D.所有得有理数都可以用数轴上得点表示,但不能说数轴上所有得点都表示有理数、解:当a,b都就是正数时,C得结论成立;当a,b不都就是正数时,例如a=-10,b=2,此时—10<2,也满足条件a<b,但表示a得点与原点得距离(10)比表示b得点与原点得距离(2)远,C得结论不成立.∴C错。
数轴上点的运动规律
【例题1】A、B两地有一条长度是300km的公路,甲车从A地出发开往B地,速度为90km/h , 与此同时,乙车从B地出发开往A地,速度为60km/h(1)问:甲乙两车出发几小时后相遇?(2)问:出发几小时后,两车相距50千米?(思考题)参考图1,若A点表示的数是2a - b,B点表示的数是2b - a,那么A、B之间的距离是_____________ (用含有a、b的代数式表示)(4)P点出发时,在A、B之间有一个小球,以每秒10个单位的速度同时出发, 在A、B之间来回滚动,直到P、Q相遇时,小球才停止运动。
问:这个过程中,小球滚动的距离是多少个单位长度?【方法总结】①数轴上位置已经确定的点,叫做定点;位置不断变化的点,叫做动点。
②数轴上两个动点重合,就好比马路上两辆车相遇,可以转化成相遇问题。
③数轴上反方向运动的两个点,就好比马路上两辆车相对行驶,相遇之前距离越来越小,相遇之后距离越来越大。
(图1)如果我们换个位置,B在左边,A在右边,就会变成下面这样:(变形1)a — b------- 1------------ 1--------------------- 1------------- > (图2)B O A此时a b,A、B两点之间的距离,我们可以用a-b来表示。
A O B也就是说,在数轴上两点之间的距离,其实就是两个数的差,说具体一点,就是用较大的数减去较小的数,就等于两个点之间的距离。
由于数轴上的点从左到右越来越大,所以较大的数在右边,较小的数在左边如图所示,数轴上A、B两点分别表示a、b两个数,并且(a • 4)2・|8一b卜0,现有一点P从A出发,以每秒2个单位的速度向右移动,与此同时,有一点Q从B出发,以每秒4个单位的速度向左动。
(1)a= _______ , b= _______ , A与B之间的距离是 _________ 个单位长度。
(2)问:几秒后,P、Q两个点重合?我们在计算数轴上两点之间的距离时,对于大部分初学者,可以先这样问问自己:①这两个点,哪个表示的是大数?哪个表示的是小数?②我要用哪个数减去哪个数?(3)问:几秒后,P、Q两个点之间的距离是4个单位长度?数轴上“点”的运动规律在数轴上,A点表示的数是a,B点表示的数是b,显然这两个数里面b a,A、B两点之间的距离我们可以用b-a来表示。
人教版初中七年级数学上册《数轴》练习题
人教版初中七年级数学上册《数轴》例题数轴的概念虽简单,但初学者也会因疏忽犯下一些小错误,而数轴作为中学数学的基本工具又是非常重要的,这里通过一些例题来纠正一些容易出现的典型错误一、数轴概念例1 回答问题:下图中哪一个表示数轴?不是数轴的请说出原因.分析:数轴的三要素原点、正方向和单位长度,这三者对于数轴来说是缺一不可.解:根据数轴的三要素:图(1)是数轴,它是具备了原点、正方向和单位长度的直线.图(2)不是数轴,因为单位长度不一致.图(3)不是数轴,因为没有原点和单位长度.图(4)不是数轴,因为它是射线,不是直线.图(5)不是数轴,有两处错误,一是没有标明正方向;二是负数的排序错误,从原点向左依次应是-1,-2,-3,….说明:识别一个图形是否是数轴,方法是第一,这个图形是一条直线;第二,这条直线要满足三要素.即原点、正方向和单位长度,缺一不可.二、数轴及数轴上的点例2在所给的数轴上画出表示下列各数的点:分析:第一步画数轴,第二步在数轴上找出相对应的点,每个正有理数都可用数轴上原点右边的一个点来表示,例如2、3.5,可用数轴上分别位于原点右边2个单位,3.5个单位的点表示.每一个负有理数都可用数轴上原点左边的一个点来表示,解:说明:数轴上表示数的点可用大写字母标出,写在数轴上方所对应数的上面,原点用O 标出,它表示数0.数轴上原点的位置要根据需要来确定,不一定要居中.单位长度应根据需要来确定,1 cm 的长度可以表示1个单位长度,也可以表示2个,5个,10个…单位长度,但在同一数轴上,单位长度必须一致,不可随意改变.变式练习:指出数轴上A 、B 、C 、D 、E 各点分别表示什么数.参考答案:O 表示0,A 表示322-,B 表示1,C 表示413,D 表示-4,E 表示-0.5. 三、数轴上的点与原点的关系例3 填空(1)数轴上表示2的点在原点的_____边,与原点的距离是____个单位长度.(2)数轴上表示-2的点在原点的____边,与原点的距离是___个单位长度.(3)数轴上在原点右边距原点3.7个单位长度的点表示数_______.(4)数轴上在原点左边距原点85个单位长度的点表示数______. (5)数轴上距原点2个单位长度的点有_____个,它们分别表示数______. 分析:数轴上,表示正数的点都在原点的右边,表示负数的点都在原点的左边.距离不会是负数.答案:(1)右,2 (2)左,2 (3)3.7 (4)85- (5)2,+2和-2 说明:①可以画数轴来加深认识.②数轴上表示3的点在原点的右边,表示-3的点在原点的左边,它们与原点的距离都是3个单位长度;同样,数轴上表示2 018的点在原点的右边,表示-2 018的点在原点的左边,它们与原点的距离都是2 018个单位长度.即如果a表示一个正数,则数轴上表示数a的点在原点的右边,它与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度.③如果a表示一个正数,数轴上距原点a个单位长度的点有2个,它们分别是数a和-a.。
《数轴》典型例题
《数轴》典型例题例1下列各图中,表示数轴的是( ).分析:画数轴时,数轴的三要素——原点、正方向、单位长度是缺一不可的,所以应当用这三要素检查每个图形,判断是否画的正确.解:A图没有指明正方向;B图中,1和-1表示的一个单位长度不相等,在同一数轴上,单位长度必须一致;C图中没有原点;D图中三要素齐全.∴A、B、C三个图画的都不是数轴,只有D图画的是数轴.例2在所给的数轴上画出表示下列各数的点:分析:第一步画数轴,第二步在数轴上找出相对应的点,每个正有理数都可用数轴上原点右边的一个点来表示,例如2、3.5,可用数轴上分别位于原点右边2个单位,3.5个单位的点表示.每一个负有理数都可用数轴上原点左边的一个点来表示.解:说明:数轴上表示数的点可用大写字母标出,写在数轴上方所对应数的上面,原点用O标出,它表示数0.数轴上原点的位置要根据需要来确定,不一定要居中.单位长度应根据需要来确定,1 cm 的长度可以表示1个单位长度,也可以表示2个,5个,10个…单位长度,但在同一数轴上,单位长度必须一致,不可随意改变.例3 画一条数轴,并把-6,1,0,212-,215表示在数轴上. 分析 由于要表示的最左边的数是-6,最右边的数是215,所以在画数轴时在原点的两侧各画六个单位即可.解 如图所示说明: 在画数轴时选取单位长度应因表示的数而定.例4 指出数轴上A 、B 、C 、D 、E 各点分别表示什么数.分析:表示正数的点都在原点的右侧,表示负数的点都在原点的左侧.要特别注意相邻两个负整数点之间的等分点所表示的数,例如:-2,-3之间的A 点是表示322-,而不是313-. 解:O 表示0,A 表示322-,B 表示1,C 表示413,D 表示-4,E 表示-0.5.例5 下面说法中错误的是 [ ].A .数轴上原点的位置是任意取的,不一定要居中;B .数轴上单位长度的大小要根据实际需要选取.1厘米长的线段可以代表1个单位长度,也可以代表2个、5个、10个、100个、…单位长度,但一经取定,就不可改动;C .如果a <b ,那么在数轴上表示a 的点比表示b 的点距离原点更近;D .所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数.解:当a ,b 都是正数时,C 的结论成立;当a ,b 不都是正数时,例如a =-10,b =2,此时-10<2,也满足条件a <b ,但表示a的点与原点的距离(10)比表示b的点与原点的距离(2)远,C的结论不成立.∴C错.说明:因为有理数包含正数、负数和0,所以用字母表示数时,这个字母就可以代表正数、负数或0.在分析问题时,忘记字母代表的数可能是负数或0经常是造成错误的原因.。
人教版-数学-七年级上册-《数轴》典型例题
《数轴》典型例题知识点:数轴例1下列各图中,表示数轴的是( ).分析:画数轴时,数轴的三要素——原点、正方向、单位长度是缺一不可的,所以应当用这三要素检查每个图形,判断是否画的正确.解:A图没有指明正方向;B图中,1和-1表示的一个单位长度不相等,在同一数轴上,单位长度必须一致;C图中没有原点;D图中三要素齐全.∴A、B、C三个图画的都不是数轴,只有D图画的是数轴.变式练习:下面说法中错误的是( ).A.数轴上原点的位置是任意取的,不一定要居中;B.数轴上单位长度的大小要根据实际需要选取.1厘米长的线段可以代表1个单位长度,也可以代表2个、5个、10个、100个、…单位长度,但一经取定,就不可改动;C.如果a<b,那么在数轴上表示a的点比表示b的点距离原点更近;D.所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数.参考答案:C.例2在所给的数轴上画出表示下列各数的点:分析:第一步画数轴,第二步在数轴上找出相对应的点,每个正有理数都可用数轴上原点右边的一个点来表示,例如2、3.5,可用数轴上分别位于原点右边2个单位,3.5个单位的点表示.每一个负有理数都可用数轴上原点左边的一个点来表示,解:说明:数轴上表示数的点可用大写字母标出,写在数轴上方所对应数的上面,原点用O 标出,它表示数0.数轴上原点的位置要根据需要来确定,不一定要居中.单位长度应根据需要来确定,1 cm 的长度可以表示1个单位长度,也可以表示2个,5个,10个…单位长度,但在同一数轴上,单位长度必须一致,不可随意改变.例3 画一条数轴,并把-6,1,0,212-,215表示在数轴上。
分析 由于要表示的最左边的数是-6,最右边的数是215,所以在画数轴时在原点的两侧各画六个单位即可。
解 如图所示说明: 在画数轴时选取单位长度应因表示的数而定。
变式练习:指出数轴上A 、B 、C 、D 、E 各点分别表示什么数.参考答案:O 表示0,A 表示322-,B 表示1,C 表示413,D 表示-4,E 表示-0.5.。
数轴上的动点问题(一)教师版1
数轴上的动点问题(一)教师版 一、知识要点1、数轴上两点间的距离:A 点对应的数为a ,B 点对应的数为b ,则线段AB的长度为b a -;2、数轴两点对应线段的中点:求中点,平均数如图,A 点对应的数为a ,B 点对应的数为b ,则线段AB 的中点M 对应的数为2a b+; 解:设M 点对应的数为x (请在图中标记x ).则有:MA= ,BM= ,∵M 为线段AB 的中点,∴MA=BM ,∴ ,∴x = ,即点M 对应的数为 . (a 、b 的平均数)二、典型例题例1.小涛在纸上画一条数轴后,折叠纸面,使数轴上表示1的点与表示-3的点重合,若数轴上A 、B 两点之间的距离为2014(A 在B 的左侧),且A 、B 两点经上述折叠后重合,则A 点表示的数为( C )A .-1006B . -1007C . -1008D . -1009练习1一条数轴由点A 处对折,表示数-50的点恰好与表示数5的点重合,则点A 表示的数是 .解:-22.5例2.已知数轴上点A 、B 对应的数分别为-8、16.点P 、点Q 为两个动点,点P 从A 点以6个单位长度每秒向右运动,点Q 同时从B 点以2个单位长度每秒向左运动.(1)设运动时间t ,运动t 秒后,点P 对应的数是 ,点Q 对应的数是 . (2)当点P 与点Q 的距离为4个单位时,求t(1)-8+6t 16-2t (2) 26)216()68-=--+t t (解得411=t , 415=t练习2(武珞路2015期中)已知点A 、B 在数轴上表示的数分别为a 、b 且满足|a -2|与(b -90)2互为相反数 (1) a 值为_________,b 值为_________(2) 一只电子狗P 从点A 出发,向右匀速运动,速度为每秒1个单位长度;另一电子狗Q 从点B 出发,向左运动运动,速度为每秒3个单位长度,且Q 比P 先运动2秒.已知在原点O 处有病毒,若电子狗遇到病毒则停止运动,未遇到病毒则继续运动,问电子狗P 经过多少时间,有P 、Q 两只电子狗相距70个单位长度?解:(1) a =2,b =9 (2) t=3或68例3.已知数轴上点A 、B 对应的数分别为-3、9(1) 数轴上是否存在点M ,使得MA =2MB ?若存在,请求出点M 所对应的数;若不存在,说明理由x(2) 点P 、点Q 为两个动点,点P 从A 点以3个单位长度每秒向右运动,点Q 同时从B 点以2个单位长度每秒向左运动,若AP +BQ =2PQ ,求时间t 解:(1) 设M 对应的数为x当M 在A 、B 之间时,MA =x +3,MB =9-x ∴x +3=2(9-x ),x =5当M 在B 点右侧时,MA =x +3,MB =x -9 ∴x +3=2(x -9),x =21 (2) 设运动的时间为t P 对应的数为:-3+3t Q 对应的数为:9-2t∴PQ =|-3+3t -(9-2t )|=|5t -12| ∴3t +2t =2|5t -12|=|10t -24| 当3t +2t =10t -24时,t =524 当3t +2t +10t -24=0时,t =58 练习3(梅苑2016期中)已知数轴上点A 、B 对应的数分别为b a ,,且满足()0632=-++b a(1)填空:=a,=b 。
七年级 数轴上的动点问题典型例题
七年级数轴上的动点问题典型例题一、问题描述1.小明和小红分别从数轴上的点A(3)和点B(-1)开始,以相同的速度向相对方向前进。
已知小明和小红分别以每秒2个单位和每秒3个单位的速度前进,问多长时间后他们会相遇?2.小明和小红分别从数轴上的点A(3)和点B(-1)开始,以相同的速度向相对方向前进。
已知小明和小红分别以每秒2个单位和每秒3个单位的速度前进,问多长时间后他们会相距6个单位?3.小华从数轴上的点A(3)出发,以每秒4个单位的速度向右前进;小明从数轴上的点B(-1)出发,以每秒5个单位的速度向左前进。
问多长时间后他们会相遇?4.数轴上的点A、B、C分别表示3艘船在同一时刻的位置。
A、B船以每小时15公里的速度向左,C船以每小时20公里的速度向右。
问多长时间后他们会相遇?二、解题思路1.我们需要明确小明和小红分别在数轴上的运动方向和速度,查看问题中的关键数据,我们可以发现小明和小红以相对方向运动,因此速度的合成应该是小明和小红速度之差。
那么根据问题描述,小明和小红的速度差为3-2=1个单位/秒,因此他们相遇的时间应该是数轴上两点之间的距离除以他们的速度之差,即\( \frac{3-(-1)}{3-2} =\frac{4}{1} = 4\) 秒。
2.我们来解决小明和小红相距6个单位的问题。
同样根据他们速度之差的关系,我们知道他们每秒之间的距离是1个单位,那么相距6个单位就需要6秒的时间,即\(6 \div 1 = 6\) 秒。
3.对于小华和小明相遇的问题,我们同样需要计算他们的速度之差,即5-4=1个单位/秒,然后计算他们的相遇时间,即\( \frac{(-1)-3}{5-4} = \frac{-4}{1} = -4\) 秒。
但是,由于数轴上无法出现负的时间,因此小华和小明在4秒后相遇。
4.我们解决三艘船的相遇问题。
根据题目描述,我们发现三艘船的速度和运动方向不同,因此要分别计算船与船之间的相遇时间。
2.2用数轴上的点表示有理数
第 - 1 - 页 共 2 页2.2 用数轴上的点表示有理数一、知识要点1、数轴:规定了正方向、原点和单位长度的直线叫做数轴。
2、数轴三要素:原点、正方向、单位长度。
二、典型例题例1、当10个人站成一排,如何用数学知识快速地指出所要指的人。
一条街道,每户的门牌号码有什么意义?从上述方法中,你是否启发出,如何将我们所学过的数进行排列呢? 在小学里我们曾经用以下方法表示正数与零。
我们可以模仿上述表示方法,依次加入负数,步骤如下:1、画一条水平的直线,并在这条直线上任取一点表示0,称为原点(origin)。
2、把从原点向右的方向规定为正方向(用箭头表示),向左的方向规定为负方向。
3、取适当的长度(如0.5cm )为单位长度,在直线上从原点向右每隔一个单位长度取一点,依次表示1,2,3,…。
从原点向左每隔一个单位长度取一点,依次表示-1,-2,-3,… 像这样规定了原点、正方向、单位长度的直线叫做数轴(number axis)。
你了解数轴了吗?你认为在数轴上可以表示多少个数?所有的有数是否都可以在数轴上表示出来?在数轴上表示数是建立了一个什么与什么的对应关系?解答:(1)(2)(3)(4)(5)都不正确(注意数轴的三要素缺一不可)。
例3、指出下面数轴上A 、B 、C 、D 、E 各点表示什么数?例4、把和下列各有理数对应的点画在数轴上:2,1-,23,0,54-,5.3,并比较大小。
有了数轴以后,全体有理数都能用从左到右排列在数轴上的点表示出来,排列在右边的点表示的数比排列在左面的点表示的数大;负数和正数、零、负数的大小关系可以归纳为:(1) 任何负数小于任何正数; (2) 任何负数都小于零;(3) 在数轴上的点表示负数时,右面的点表示的负数总比左面的点表示的负数大。
● ● ● ●● ●● ● ● ● 3 21 7 6 5 4 0 98 0 2 4.5 ●- 2 -例5、在数轴上,原点与原点右边的点表示的数是( )A 、正数B 、负数C 、整数D 、非负数 例6、通过数轴判断,下面的说法错误的是( )A 、数轴上的点表示一个数B 、数轴上表示+3的点只有一个C 、数轴上到原点的距离等于2个单位长度的点表示的数是2D 、-5是可以用数轴上原点左边第5个单位长度的点表示。
数轴的认识典型例题及答案
数轴的认识参考答案典题探究例1.在数轴上自左向右的顺序是()A.负数B.负数、0、正数C.正数、负数考点:数轴的认识.专题:运算顺序及法则.分析:数轴是规定了原点(0点)、方向和单位长度的直线,在数轴上,所有负数都在原点的左边,所有正数都在原点的右边,据此解答即可.解答:解:根据分析,在数轴上自左向右的顺序是负数、0、正数,故选:B.点评:此题主要考查了数轴的认识.例2.下图中,()是数轴.A.B.C.考点:数轴的认识.专题:数的认识.分析:数轴是规定了原点、正方向、单位长度的直线,根据数轴的定义及特点进行解答即可.解答:解:A、数轴是规定了原点、正方向、单位长度的直线,而此直线没有正方向,故本选项错误.B、因为﹣1>﹣2,2>1,所以﹣1应在﹣2的右边,2在1的右边,故本选项错误;C、数轴是规定了原点、正方向、单位长度的直线,符合数轴的定义,故本选项正确;故选:C.点评:本题考查了数轴的定义及特点,即数轴是规定了原点、正方向、单位长度的直线叫做数轴,数轴上右边的数总比左边的大.例3.如图,用一条直线上的点来表示数,那么0.12所在的位置应该是下列选项中的()A.S的右边B.R和S之间C.Q和R之间D.P和Q之间E.P的左边考点:数轴的认识.专题:数的认识.分析:根据数轴上数的特点,右边的数总比左边的数大,,所以,故0.12应该在即P 点的左边,此题得解. 解答: 解:根据数轴上右边的数总比左边的数大,且:,所以0.12应该在P 点的左边.故选:E . 点评: 掌握数轴上数的特点是解决此题的关键.例4﹣3、2.4、1、﹣0.2、+都在同一条数轴上,离0最近的数是 ﹣0.2 ,﹣3在0的 左 边.考点: 数轴的认识;负数的意义及其应用. 专题: 数的认识. 分析: 画出数轴,再根据数轴进行求解;在数轴上,首先确定原点0的位置和单位长度,且从左到右的顺序就是数从小到大的顺序,所有的负数都在0的左边,越往左数越小,正数都在0的右边,越往右数越大. 解答: 解:如图:由图可知:离0最近的是﹣0.2;﹣3在0的左边. 故答案为:﹣0.2,左. 点评: 此题考查在数轴上表示正负数,所有的负数都在0的左边,正数都在0的右边.演练方阵A 档(巩固专练)1.在下面所画的数轴中,请选出正确的数轴( )A. B . C . D .考点:数轴的认识.分析:在数轴上,首先确定原点0的位置和单位长度,且从左到右的顺序就是数从小到大的顺序,所有的负数都在0的左边,越往左数越小,正数都在0的右边,越往右数越大;方向向右.逐个分析,即可得解.解答:解:A、缺少单位长度和正负数值;B、﹣1和﹣2位置颠倒;C、是正确的数轴;D、方向错误.故选:C.点评:考查了数轴的认识.解答此题要明确:首先确定原点0的位置和单位长度,且从左到右的顺序就是数从小到大的顺序,方向向右.2.数轴上,﹣3在﹣2的()边.A.左B.右考点:数轴的认识.分析:在数轴上,从左到右的顺序就是数从小到大的顺序,﹣3在﹣2的左边.解答:解:﹣3在﹣2的左边.故选A.点评:此题考查在数轴上,数的排列顺序.3.如图所示,点M表示的数是()A.2.5B.﹣1.5C.﹣2.5D.1.5考点:数轴的认识.分析:我们知道数轴是规定了原点(0点)、方向和单位长度的直线,点M在原点的左边,距原点(0点)2.5个单位长,它表示﹣2.5.解答:解:点M在原点的左边,距原点(0点)2.5个单位长,它表示﹣2.5;故选:C点评:本题是考查数轴的认识.4.数轴上,﹣3在﹣2的()边.A.左B.右C.无法确定考点:数轴的认识.专题:整数的认识.分析:数轴是规定了原点(0点),方向和单位长度的直线,正数原点(0点)右边,负数位于左边,﹣3和﹣2都位于原点的左边,﹣3表示离开原点3个单位长度,﹣2表示离开原点2个单位长度,﹣3距离原来点要比﹣2远,据此可判断选择.解答:解:如图,﹣3和﹣2都位于原点的左边,﹣3表示离开原点3个单位长度,﹣2表示离开原点2个单位长度,因此,在数轴上,﹣3在﹣2的左边;故选:A.点评:本题是考查数轴的认识,本题可以根据数的大小来判断,也可以画数轴判断.5.下面两个括号内的数分别是()A.﹣1和1B.﹣1和1.25C.﹣和1D.﹣和1考点:数轴的认识.专题:综合填空题.分析:由图可知,图中数轴0~﹣1之间被平均分成3等份,根据分数的意义,每一份即为单位“1”的,代表的数值单位为,因为第一个要填的数在“0”的左面,所以是﹣,在1~2之间被平均分成了4份,其中每一份即为单位“1”的,代表的数值单位为,因为要填的第二个数在1的右面,所以是1.25或1;据此选择即可.解答:解:由分析可得:故选:D.点评:本题通过数轴考查了学生对于分数的意义的理解.6.下列图形中不是完整的数轴的是()A.B.C.D.考点:数轴的认识.分析:我们知道数轴是规定了原点、正方向和单位长度的直线,也就是说完整的数轴应有原点(0)、正方向和单位长度,少了就不是完整的数轴.据此解答.解答:解:数轴是规定了原点、正方向和单位长度的直线,B缺少原点,不是完整的数轴;故选:B点评:本题是考查数轴的认识,原点、正方向和单位长度是数轴的“三要素”,缺一不可.7.数轴上,﹣在﹣的()边.A.左B.右C.北D.无法确定考点:数轴的认识;正、负数大小的比较.专题:数的认识.分析:在数轴上,从左到右的顺序就是数从小到大的顺序﹣在﹣的右边.解答:解:数轴上,﹣在﹣的左边,故选:A.点评:此题考查在数轴上数的排列顺序.越往左边,数越小,越往右边数越大.8.数轴上有,﹣1和三个点,这三个点中()最接近0.A.B.﹣1C.考点:数轴的认识.分析:比较这三个数去掉正、负号后的大小,哪个数去掉正、负号后最小,哪个数距原点最近,也就是最接近0.解答:解:<<1,最接近0;故选:A.点评:本题是考查数轴的认识.去掉正、负号后最小的数最接近0.9.如图中直线上的点F表示()C.13A.1.1B.1考点:数轴的认识.专题:数的认识.分析:把1平均分成3份,每份是,由此即可表示出直线上的点F表示(1+),由此选择即可.解答:解:1+=1;故选:B.点评:明确每份的长度是,是解答此题的关键.10.在数轴上,0左边的数一定()它右边的数.A.大于B.小于C.无法确定考点:数轴的认识;负数的意义及其应用.专题:整数的认识;小数的认识.分析:根据数轴的概念,规定了原点、正方向、单位长度的直线叫做数轴.右边为正方向,因此,在数轴上,0左边的数一定小于它右边的数.解答:解:因为右边为数轴的正方向,所以在数轴上,0左边的数一定小于它右边的数.故选:B.点评:此题考查的目的是理解掌握数轴的概念,明确:正数大于0大于一切负数.B档(提升精练)1.已知a,b两数在数轴上对应的点如图,下列结论正确的是()A.a>b B.a b<0C.b﹣a>0D.a+b>0考点:数轴的认识.专题:数的认识.分析:本题要先观察a,b在数轴上的位置,得b<a<0,然后对四个选项逐一分析.解答:解:A、根据图示知,b<a<0,故本选项正确;B、根据图示知,b<a<0,则ab>0.故本选项错误;C、根据图示知,b<a<0,则b﹣a<0.故本选项错误;D、根据图示知,b<a<0,则a+b<0.故本选项错误;故选:A.点评:本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.2.直线上B点、C点分别表示的数是多少?下面()答案是正确的.A.0.5 0.3B.0.5 1.6C.0.5 1.3考点:数轴的认识.专题:数的认识.分析:数轴上原点左边的数表示负数,右边的数表示正数,到原点的距离表示该数的绝对值.解答:解:数轴上点B在原点的右侧,距离原点0.5个单位长度,所以它表示的数是0.5;点C在原点右侧,且距离原点1.6个单位长度,所以C点表示的数是1.6.故选:B.点评:此题考查了数轴上的点和数之间的对应关系.3.下列结论正确的有()个:①规定了原点,正方向和单位长度的直线叫数轴②最小的整数是0③正数,负数和零统称有理数④数轴上的点都表示有理数.A.0B.1C.2D.3考点:数轴的认识.专题:数的认识.分析:利用下面的基本知识解答即可:①数轴的定义是规定了原点,正方向和单位长度的直线叫数轴.②在有理数范围内没有最小的整数.③整数,分数统称有理数.④数轴上的点不仅表示有理数还表示无理数.解答:解:①数轴的定义是规定了原点,正方向和单位长度的直线叫数轴.②在有理数范围没有最小的整数.③整数,分数统称有理数.④数轴上的点不仅表示有理数还表示无理数.所以①只有1个答案的说法是正确的.故选:B.点评:本题考查了数轴的定义及有理数的概念,及数轴上的点表示哪些数,考查了学生的判断能力.4.在数轴上,A点和B点所表示的数分别为﹣2和1,若使A点表示的数是B点表示的数的3倍,应把A点()A.向左移动5个单位B.向右移动5个单位C.向右移动4个单位D.向左移动1个单位或向右移动5个单位考点:数轴的认识.专题:数的认识.分析:B点所表示的数是1,若使A点表示的数是B点表示的数的3倍,也就是说点A是3,也就是把现在的点A﹣2向右移动5个单位.解答:解:画图表示如下:所以向右移动5个单位.故选:B.点评:本题考查了学生数轴上点的位置移动引起数值的变化,考查了学生的空间想象能力.5.在数轴上点a对应的数﹣2,与点a相距2个单位的数是()A.﹣4,1B.﹣4,0C.﹣4D.1考点:数轴的认识.专题:整数的认识.分析:此题注意考虑两种情况:当点在已知点的左侧;当点在已知点的右侧.根据题意先画出数轴,便可直观解答.解答:解:故选:B.点评:由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.6.数轴上有,﹣1,三个点,这三个点中()最接近0.A.﹣1B.C.考点:数轴的认识.分析:在数轴上正数位于原点(0点)的右边,负数位于左边,一个数去掉性质符号就表示该数表示的点到原点(0点)的距离,只要比较这三个数去掉性质符号后的大小即可判定哪个点最接近0.解答:解:<<1,因此,表示的点最接近0;故选:B.点评:本题是考查数轴的认识.一个数的性质符号只表示它表示的点在原点(0点)的哪边,不能表示该点距原点(0点)的远近.7.数轴上,﹣在﹣的()边.A.左B.右C.北考点:数轴的认识;负数的意义及其应用.分析:利用数轴,根据这两个数的大小来判断,数大的在右边,小的在左边.解答:解:﹣<﹣,所以﹣在﹣的左边;故选:A.点评:本题考查了利用数轴进行负数的大小比较.8.数轴上,﹣2.5在﹣1.5的()边.A.左B.右C.无法确定考点:数轴的认识.专题:数的认识.分析:在数轴上表示出这个数,再观察即可求解.解答:解:﹣2.5和﹣1.5在数轴上:﹣2.5在﹣1.5的左边.故选:A.点评:本题也可以先确定这两个负数的大小关系,再根据在数轴上,从左到右的顺序就是数从小到大的顺序得解.9.数轴上,﹣20在﹣18的()边.A.左B.右C.无法确定考点:数轴的认识.专题:数的认识.分析:在数轴上,从左到右的顺序就是数从小到大的顺序,﹣20在﹣18的左边.解答:解:数轴上,﹣20在﹣18的左边.故选:A.点评:此题考查在数轴上,数的排列顺序.10.B 点在0 和1 之间(如图),B 点最有可能表示的数是()A.0.1B.0.3C.0.5D.0.8考点:数轴的认识.分析:根据数轴得到0.5<B<1,然后根据选择项只要在区间是0.5到1上的数即可选择.解答:解:由数轴可知0.5<B<1,选项中只有0.8在该范围.故选:D.点评:此题主要考查了利用数轴估算数的大小,同时要求学生能够比较一些数的近似值的大小.C档(跨越导练)1.在数轴上有、、0.2、﹣1四个点,这四个点中()离原点最接近.A.B.C.0.2D.﹣1考点:数轴的认识.专题:数的认识.分析:由于要求四个数的点中距离原点最接近的点,所以求这四个点与原点的距离进行比较即可求解.解答:解:与原点的距离是,与原点的距离是,0.2与原点的距离是0.2,﹣1与原点的距离是1,因为<0.2<<1,所以这四个点中离原点最接近.故选:A.点评:本题考查了数轴的认识,关键是得到四个点与原点的距离.2.在数轴上,左边的数一定()它右边的数.A.大于B.小于C.等于考点:数轴的认识.分析:在数轴上,0点的左边是负数,右边是正数,从左向右数字越来越大,由此得解.解答:解:数轴上原点的左边是负数,原点的右边是正数,从左向右,数字逐渐变大.所以,在数轴上,左边的数一定小于它右边的数.故选:B.点评:此题考查了数轴的认识,原点记作0,左边是负数,右边是正数,当数不断扩大时,数轴可向两边不断延伸;数轴上有无数个点,任意一点总有一个与它相对应的数.3.一个点从数轴的原点开始,先向右移动3个单位长度,再向左移7个单位长度,这时点对应的数是()A.3B.1C.﹣2D.﹣4考点:数轴的认识.专题:运算顺序及法则.分析:数轴上的点平移和其对应的数的大小变化规律:左减右加.解答:解:根据题意,得0+3﹣7=﹣4.故选:D.点评:考查了数轴上点的平移和数的大小变化规律.4.若a>b,在数轴上点A表示数a,点B表示数b,则有()A.点A在点B的左边B.点A在原点的右边,点B在原点的左边C.点A在点B的右边D.点A和点B均在原点左边考点:数轴的认识.专题:数的认识.分析:根据数轴的有序性,直接判断.解答:解:因为数轴上,右边的点表示的数总比左边的大,从数轴可以看出,表示数a的A点在表示数b的B点的右边,所以点A在点B的右边.故选:C.点评:数轴上的点表示的数,从左到右,由小到大,依次排列.5.在数轴上,一个点从原点出发,向右移动5个长度单位表示的数是()A.5B.﹣5C.2.5D.﹣2.5考点:数轴的认识.专题:整数的认识.分析:数轴是规定了原点(0点)、方向和单位长度的直线,在原点(0点)左边的点所表示的数都是负数,右边的点表示的数都是正数.在数轴上,一个点从原点出发,向右移动5个长度单位表示的数是+5或5.解答:解:在数轴上,一个点从原点出发,向右移动5个长度单位表示的数是+5或5;故选:A点评:本题是考查数轴的认识.6.在数轴上,大于﹣2.5且小于3.2的整数有()A.3个B.4个C.5个D.6个考点:数轴的认识;正、负数大小的比较.专题:数的认识.分析:在数轴上,大于﹣2.5的整数是﹣2.5右边的整数数,小于3.2的整数是3.2左边的整数,这个范围的整数有:﹣2、﹣1、0、1、2、3.解答:解:在数轴上,大于﹣2.5且小于3.2的整数有:﹣2、﹣1、0、1、2、3;故选:D.点评:本题是考查数轴的认识、正、负数的大小比较、整数的意义等.注意,整数包括正整数、零和负整数.7.在数轴上,﹣6在﹣5的()A.左边B.右边C.同一点上考点:数轴的认识.专题:数的认识.分析:数轴是规定了原点((0点)、方向和单位长的直线,在数轴上原点(0点)的左边是负数,从原点(0点)向左分别是﹣1、﹣2、﹣3﹣、﹣4、﹣5、﹣6…,右边是正数,从原点(0点)向右分别是+1、+2、+3﹣、+4、+5、+6…由此可见,在数轴上,﹣6在﹣5的左边.解答:解:在数轴上,﹣6在﹣5的左边;故选:A.点评:数轴是规定了原点((0点)、方向和单位长的直线,在数轴上从左到右的方向就是数从小到大的顺序,﹣6小于﹣5,在﹣5的左边.8.在数轴上()A.0比所有负数大,所以0是正数B.越是左边的数越大C.越往右边的数越大考点:数轴的认识.专题:整数的认识.分析:在数轴上,正数在0的右边,负数在0的左边,右边的数总是大于左边的数,由此进行判断.解答:解:A、0比所有的负数都大,但0既不是正数,也不是负数,本选项错误;B、C:数轴上,右边的数比左边的数大,所以越是左边的数越小,而越往右边的数越大;所以B选项错误,C选项正确.故选:C.点评:本题考查了数轴的认识,数轴上右边的数总是大于左边的数,0既不是正数,也不是负数.9.如图:A、B、C三个点中,与“0”距离最近的点所代表的数是()A.﹣5B.1.5C.﹣2.5考点:数轴的认识.分析:在数轴上,点到“0”的距离指的是两点之间的长度,长度越小,距离越近;在0的左边距离越近代表的数越大,在0的右边距离越近代表的数越小,逐个分析,即可得解.解答:解:A、A点的数是﹣5,到“0”的距离是5;B、B点的数是1.5,到“0”的距离就是1.5;C、C点的数是﹣2.5,到“0”的距离是2.5;1.5<2.5<5;所以B点与“0”距离最近;故选:B.点评:考查了数轴的认识.解答此题要明确:数轴上的点表示的数,有正有负,但到“0”的距离是指长度大小.10.一个点从数轴上的“0”开始,先向右移动4个单位长度,再向左移动6个单位长度,这时点所对的数是()A.4B.2C.﹣10D.﹣2考点:数轴的认识.专题:数的认识.分析:根据向右为“+”、向左为“﹣”分别表示为+4和﹣6,再相加即可得出答案.解答:解:点从数轴的原点开始,向右移动4个单位长度,表示为+4,在此基础上再向左移动6个单位长度,表示为﹣6,则到达的终点表示的数是(+4)+(﹣6)=﹣2,故选:D.点评:本题考查了数轴和有理数的表示方法,注意:点从数轴的原点开始,向右移动4个单位长度表示为+4,再向左移动6个单位长度表示为﹣6.。
数轴与相反数
数轴与相反数【知识要点】1.数轴:规定了原点,正方向和单位长度的直线叫数轴。
2. 利用数轴比较大小:数轴上右边的数总比左边的数大。
1. 相反数:只有符号不同的两个数叫相反数。
0的相反数是0。
2. 判断互为相反数的两种方法:①从式子上看,若0a b +=,则a b 与互为相反数; ②从直观上看a a -与是互为相反数。
【典型例题】例1 如下图所示,数轴中正确的是( )例2 把下列各数在数轴上表示出来,并且从小到大用“<”连接起来: -2,132,0,14-,1,142-,152。
例3 已知A 、B 是数轴上的点。
(1)若点A 表示-3,以点A 出发,沿数轴移动4个单位长度到达B 点,则B 点表示的数是 。
(2)若将点A 向左移动3个单位长度,再向右移动5个单位长度,这时点A 表示的数是0,那么点A 原来表示的数是 。
例4 试比较a 与a -的大小.例5 点M 在数轴上原点左边,离原点213个单位的一个点,如把点M 沿着数轴向右移动7个单位,到达点M ',则点M '表示什么数?数轴与相反数练习一、选择题1.下列所画数轴中正确的是( )A B C D 2.下面说法中正确的是( )①在―4与―3之间没有负数; ②在0与1之间有无数个数; ③在―4与―3之间没有其他整数; ④在0与1之间没有负数. A 、①②③B 、②③④C 、①③④D 、①②④B-11ACD-1 0 13.下面说法正确的是( )A 、任何一个有理数都可以用数轴上的点表示出来B 、数轴上右边的数表示正数,左边的数表示负数C 、数轴上离开原点距离越远的点所表示的数越大D 、0是最小的正整数4.如果一个数的相反数是非负数,那么这个数一定是( ) A 、正数B 、负数C 、非正数D 、非负数5.下列说法正确的是( ) A 、()2+-是-2的相反数 B 、()2--是-2的相反数 C 、-2的相反数是()2+- D 、+3的相反数是()3--二、填空题1.分别写出下列各数的相反数:-2,212+,0,-1.9,π-,472.+3的相反数是 ,-3的相反数是 ,()3+-的相反数是 ,()3-+的相反数是 . 3.2-a 的相反数是 ,a -2的相反数是 . 4.用“>”或“<”填空.(1)若a 是正数,则a - 0 (2)若a 是负数,则a - 0 (3)若a -是正数,则a 0 (4)若a -是负数,则a 05.在数轴上用点A 表示-3,则点A 到原点的距离是 ,到原点的距离等于3的点表示的数为 .6.比较下列各组数的大小:(1)3.5 0; (2)-2.8 0;(3)65- 75-;(4)-1.95 -1.59; (5)75 76-;(6)31- 0.3;(7)7.1 1117-;(8)7.1 1117.三、解答题1.在下图中,点A 、B 、C 、D 、E 、F 、O 各表示什么数?2.在数轴上把数+31、-2.5、0、211表示出来,并用“<”把它们连接起来.A EB OC FD 12 33.在数轴上画出表示大括号内的一组数的点:(1){}5000,10000,5000-; (2){}0,0001.0,0003.0-4.若a 为有理数,试确定2a a 与在数轴上的位置,且比较其大小。
初一数学类型(数轴折叠)的题目
折叠数轴1. 已知在纸面上有一数轴(如图),折叠纸面.(1)若表示﹣1的点与表示3的点重合,回答以下问题:①表示5的点与表示数的点重合;(2)若点D表示的数为x,则当x为时,|x+1|与|x﹣2|的值相等.2,已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣3表示的点与数_________ 表示的点重合;(2)若﹣1表示的点与5表示的点重合,回答以下问题:①3表示的点与数_________ 表示的点重合;②若数轴上A、B两点之间的距离为9(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?(3)若数轴上A、B两点之间的距离为c个单位长度,点A表示的有理数数a,并且A、B 两点经折叠后重合,请写出此时折线与数轴的焦点表示的有理数是多少?3,已知在纸面上有一数轴,折叠纸面.(1)若1表示的点与-1表示的点重合,则-2表示的点与数表示的点重合。
(2)若-2表示的点与4表示的点重合,回答一下问题:①数7对应的点与数对应的点重合;②若数轴上A、B两点之间的距离为2019(点A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?(3)点C在数轴上,将它向右移动4个单位,再向左2个单位后,若新位置与原位置到原点的距离相等,则C原来表示的数是多少?请列式计算,说明理由。
模块一:数轴中的折叠问题【典型例题】1.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数表示的点重合;(2)若﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间的距离为9(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?【基础巩固】2.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:,B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(2分)(3)若将数轴折叠,使A点与-3表示的点重合,则B点与数表示的点重。
第一讲 数轴-----折叠问题
模块一:数轴中的折叠问题【典型例题】1.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数 表示的点重合;(2)若﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数 表示的点重合;②若数轴上A 、B 两点之间的距离为9(A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少?【基础巩固】2.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A 、B 两点的位置,分别写出它们所表示的有理数 A : ,B : ;(4分)(2)观察数轴,与点A 的距离为4的点表示的数是: ;(2分)(3)若将数轴折叠,使A 点与-3表示的点重合,则B 点与数 表示的点 重合(2分)(4)若数轴上M 、N 两点之间的距离为2010(M 在N 的左侧),且M 、N 两点经过(3)中折 叠后互相重合,则M 、N 两点表示的数分别是:M: , N: .(4分)B A 0-6-5-4-3-2-154321【思维升级】15.(2013秋•开县校级月考)已知在纸面上有一数轴(如图),折叠纸面.(1)若表示数1的点与表示数﹣1的点重合,则表示﹣2的点与表示数的点重合;(2)若表示数﹣1的点与表示数3的点重合,回答以下两个问题:①表示数5的点与表示数的点重合;②若数轴上A、B两点之间的距离为m(A在B的左侧),且A、B两点经折叠后重合,直接写出A、B两点表示的数(用含m的式子表示)是多少?16.(2014秋•潜江校级期中)已知在纸面上有一数轴(如图),折叠纸面.(1)若折叠后,数1表示的点与数﹣1表示的点重合,则此时数﹣3表示的点与数表示的点重合;(2)若折叠后,数5表示的点与数﹣1表示的点重合,则此时数7表示的点与数表示的点重合;若这样折叠后,数轴上有A,B两点也重合,且A,B两点之间的距离为9(A在B的左侧),则A点表示的数为,B点表示的数为5.5.(3)若A,B(A在B的左侧)两点以数﹣1表示的点折叠重合,已知A表示x,用x表示B点表示的数.。
数轴动点问题往返运动复杂例题
数轴动点问题往返运动复杂例题摘要:一、问题背景及分析二、问题解法及步骤三、复杂例题解答四、总结及扩展正文:一、问题背景及分析数轴动点问题是数学中一种典型的动态问题,它涉及到数轴上的点在给定条件下的移动。
这类问题通常需要考虑速度、时间、距离等多个因素,因此解法较为复杂。
在数轴动点问题中,有一种往返运动的情况,即动点在数轴上先向一个方向移动,到达某一位置后,再向相反方向移动。
这种往返运动的情况更加复杂,需要仔细分析。
二、问题解法及步骤对于数轴动点问题的往返运动,一般可以采用如下步骤进行求解:1.确定动点的初始位置和初始速度。
2.根据题目条件,确定动点在数轴上的移动方向和速度变化情况。
3.利用速度、时间、距离之间的关系,建立动点在数轴上的运动方程。
4.求解运动方程,得到动点在数轴上的位置随时间的变化情况。
5.根据题目要求,分析动点的往返运动情况,求解相关问题。
三、复杂例题解答例题:在数轴上,动点A 的初始位置为2,初始速度为3。
设动点A 在t 秒后与点B 相遇,且B 点在数轴上的位置是A 点在t 秒后的位置的2 倍。
问:在什么时间A 点与B 点相遇?解答:1.根据题意,可以得到A 点在t 秒后的位置为2 + 3t。
2.由题意可知,B 点在t 秒后的位置为A 点在t 秒后的位置的2 倍,即B 点的位置为4 + 6t。
3.当A 点与B 点相遇时,它们的位置相同,因此可以得到方程:2 + 3t = 4 + 6t。
4.解方程可得:t = 1。
5.因此,A 点与B 点在1 秒后相遇。
四、总结及扩展数轴动点问题的往返运动是一种较为复杂的动态问题,需要仔细分析题目条件,并建立相应的运动方程进行求解。
在实际解题过程中,还需要灵活运用数学知识和技巧,如代数法、几何法等,以提高解题效率。
数轴绝对值化简题
数轴绝对值化简题一、绝对值的基本概念1. 绝对值的定义- 绝对值表示数轴上一个数所对应的点与原点的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
- 用数学符号表示为:| a|=a,a≥0 -a,a < 02. 数轴上两点间的距离- 在数轴上,两点间的距离等于这两点所对应的数的差的绝对值。
设数轴上两点A、B对应的数分别为a、b,则AB=| a - b|。
二、典型例题解析1. 化简| x - 3|+| x+2|(x为实数)- 解题思路:- 要化简这个式子,需要根据绝对值内式子的正负性来去掉绝对值符号。
令x - 3 = 0,解得x=3;令x + 2 = 0,解得x=-2。
- 这样就将数轴分成了三个区间:x < - 2,-2≤ x < 3,x≥3。
- 当x < - 2时:- x - 3<0,x + 2<0。
- 则| x - 3|=-(x - 3)=3 - x,| x+2|=-(x + 2)=-x - 2。
- 所以| x - 3|+| x + 2|=(3 - x)+(-x - 2)=3 - x - x - 2 = 1 - 2x。
- 当-2≤ x < 3时:- x - 3<0,x + 2≥0。
- 则| x - 3|=-(x - 3)=3 - x,| x+2|=x + 2。
- 所以| x - 3|+| x + 2|=(3 - x)+(x + 2)=3 - x+x + 2 = 5。
- 当x≥3时:- x - 3≥0,x + 2>0。
- 则| x - 3|=x - 3,| x+2|=x + 2。
- 所以| x - 3|+| x + 2|=(x - 3)+(x + 2)=x - 3+x + 2 = 2x - 1。
2. 已知a < b < 0 < c,化简| a - b|+| b - c|+| c - a|- 解题思路:- 根据a、b、c的大小关系来判断绝对值内式子的正负性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数轴典型例题
例题1 选择题:如图,下面是一些同学在作业中所画的数轴.
其中,画图正确的是()
A.①②③④ B.①②③ C.② D.②③
分析图①中表示相邻两整数的点之间的距离不一致;图③中负有理数的标记不对了;困④中漏画了表示方向的箭头和长度单位.
解选C.
说明书写与画图的规范性对于学者来说是非常重要的,读者要自觉地培养良好的学习习惯.为了分析某个具体问题,在草稿纸上画图④那样的图未尝不可,但完成画数轴的作业,则切切不可.
例题2 利用数轴,比较-2.9,-3.8和-2.1的大小,用“<”把它们连结起来.
分析(l)办法是在数轴上把这三个数表示出来,并且接从左到右的顺序排列三个数.
(2)表示-2.9和-2.l的点在表示-2与-3的两个点之间,表示-3.8的点在表示-3与-4的两个点之间.
(3)-2.9与-2.1互相比较,-2.9更接近于-3,-2.1更接近于-2,这是画图时可以参考,以免画错位置的.
(4)所给的三个有理数都是精确到十分位的,所以画数轴时,单位长度的选取不宜过小.
解这三个数在数轴上的位置如下:
所以,-3.8<-2.9<-2.1.
说明初学者在数轴上表示负数时必须小心谨慎.比如在数轴上表示-2.35与-2.38,就容易把它们的位置弄颠倒.本例题“分析”中提供的办法是很有使用价值的.这里的办法实质是利用了数轴的方向性.比如,从原点向左,先是-l,然后是-2,-3,…;同样,
从原点向左,先是-0.l,再是-0.2,-0.3…;从-2向左,先是-2.1,再是-2.2,-2.3,…,-2.9;先是-2.35,再是-2.38.这样考虑,就不容易出错了.
例3 指出数轴上A、B、C、D、E各点分别表示什么数.
分析:表示正数的点都在原点的右侧,表示负数的点都在原点的左侧.要特别注意相邻
两个负整数点之间的等分点所表示的数,例如:-2,-3之间的A点是表示,而不
是.
解:O表示0,A表示,B表示1,C表示,D表示-4,E表示-0.5.
例4 下面说法中错误的是 [ ].
A.数轴上原点的位置是任意取的,不一定要居中;
B.数轴上单位长度的大小要根据实际需要选取.1厘米长的线段可以代表1个单位长度,也可以代表2个、5个、10个、100个、…单位长度,但一经取定,就不可改动;
C.如果a<b,那么在数轴上表示a的点比表示b的点距离原点更近;
D.所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数.
解:当a,b都是正数时,C的结论成立;
当a,b不都是正数时,例如a=-10,b=2,此时-10<2,也满足条件a<b,但表示a 的点与原点的距离(10)比表示b的点与原点的距离(2)远,C的结论不成立.
∴C错.
说明:因为有理数包含正数、负数和0,所以用字母表示数时,这个字母就可以代表正数、负数或0.在分析问题时,忘记字母代表的数可能是负数或0经常是造成错误的原因.
例5 比较下列各组数的大小:
分析:依据“正数都大于0,负数都小于0;正数大于一切负数.”和“在数轴上表示的两个数,右边的数总比左边的数大.”比较两个数的大小.
用通分的方法比较(5)中的两个分数的大小是很麻烦的,如果都与(中间数)比较,则可化繁为简;(6)中的两个负数,应当把小数化为分数或把分数化为小数后才便于比较.
解:
说明:分母不同的两个分数比较大小时,一般采用通分的方法.当分母比较大时,通分是比较麻烦的,这时应当考虑其他的方法和技巧.例如:借助中间数的方法;让分子相等比分母的方法,比较它们的倒数的方法等等。