3.3.2简单的线性规划(2)教案
3.3.2简单的线性规划2课件
用钢板张数最少。
解:设需截第一种钢板x张,第二种钢板y张,则
{2x+y≥15, x+2y≥18, x+3y≥27, x≥0 y≥0
目标函数为 z=x+y
作出可行域(如图)
例题分析
{2x+y≥15, x+2y≥18,
x+3y≥27, x≥0, x∈N y≥0 y∈N
y 15
调整优值法
目标函数z= x+y x+y =0
10 B(3,9) 8 C(4,8)
A(18/5,39/5)
6 4 2
02
作出一组平行直线z=x+y,
4
6 8 12 18
2x+y=15 x+y=12 x+2y=18
x 27
x+3y=27
当直线经过点A时z=x+y=11.4, 但它不是最优整数解. 作直线x+y=12
解得交点B,的坐标B(3,9)和C(4,8) 直线x+y=12经过的整点是B(3,9)和C(4,8),它们是最优解. 答(略)
(在包括边界的情况下)
2.若区域“顶点”不是整点或不包括边界时,应先求出 该点坐标,并计算目标函数值Z,然后在可行域内适当 放缩目标函数值,使它为整数,且与Z最接近,在这条 对应的直线中,取可行域内整点,如果没有整点,继续 放缩,直至取到整点为止。
3.在可行域内找整数解,一般采用平移找解法,即打网 络、找整点、平移直线、找出整数最优解;还可以用调 整最优值法。
= 41
o
4
x
-4
练习:
2019-2020学年高中数学 3.3.2简单的线性规划教案(二)新人教A版必修5.doc
2019-2020学年高中数学 3.3.2简单的线性规划教案(二)新人教A版必修5推进新课[合作探究]师 在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题.例如,某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 产品耗时1小时,每生产一件乙产品使用4个B 产品耗时2小时,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?设甲、乙两种产品分别生产x 、y 件,应如何列式?生 由已知条件可得二元一次不等式组:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82y x y x y x师 如何将上述不等式组表示成平面上的区域?生 (板演)师 对照课本98页图3.39,图中阴影部分中的整点(坐标为整数的点)就代表所有可能的日生产安排,即当点P (x,y )在上述平面区域中时,所安排的生产任务x 、y 才有意义.进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?设生产甲产品x 件,乙产品y 件时,工厂获得利润为z,则如何表示它们的关系? 生 则z=2x+3y.师 这样,上述问题就转化为:当x 、y 满足上述不等式组并且为非负整数时,z 的最大值是多少?[教师精讲]师 把z=2x+3y 变形为z x y 3132+-=,这是斜率为32-,在y 轴上的截距为31z 的直线.当z 变化时可以得到什么样的图形?在上图中表示出来.生 当z 变化时可以得到一组互相平行的直线.(板演)师 由于这些直线的斜率是确定的,因此只要给定一个点〔例如(1,2)〕,就能确定一条直线z x y 3132+-=,这说明,32z y x =+由平面内的一个点的坐标唯一确定.可以看到直线z x y 3132+-=与表示不等式组的区域的交点坐标满足不等式组,而且当截距3z最大时,z取最大值,因此,问题转化为当直线z x y 3132+-=与不等式组确定的区域有公共点时,可以在区域内找一个点P ,使直线经过P 时截距3z最大.由图可以看出,当直线z x y 3132+-=经过直线x=4与直线x+2y-8=0的交点M (4,2)时,截距3z 最大,最大值为314.此时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元. [知识拓展]再看下面的问题:分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,先找出不等式组所表示的平面区域(即三直线所围成的封闭区域),再作直线l 0:2x+y=0.然后,作一组与直线l 0平行的直线:l:2x+y=t,t ∈R (或平行移动直线l 0),从而观察t 值的变化:t=2x+y ∈[3,12].若设t=2x+y ,式中变量x 、y 满足下列条件⎪⎩⎪⎨⎧≥≤+-≤-.1,2553,34x y x y x 求t 的最大值和最小值.分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域ABC .作一组与直线l 0平行的直线:l:2x+y=t,t ∈R (或平行移动直线l 0),从而观察t 值的变化:t=2x+y ∈[3,12].(1)从图上可看出,点(0,0)不在以上公共区域内,当x=0,y=0时,t=2x+y=0.点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线(或平行移动直线l 0)l:2x+y=t,t ∈R. 可知,当l 在l 0的右上方时,直线l 上的点(x,y)满足2x+y >0,即t >0. 而且,直线l 往右平移时,t 随之增大(引导学生一起观察此规律).在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点B (5,2)的直线l 2所对应的t 最大,以经过点A (1,1)的直线l 1所对应的t 最小.所以t m a x =2×5+2=12,t min =2×1+3=3.(2)(3)[合作探究]师 诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.t=2x+y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于t=2x+y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示. 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z=2x+y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题.那么,满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. 课堂小结用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设t=0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. 布置作业1.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1 000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6 000元,运费不超过2 000元,那么此工厂每月最多可生产多少千克产品?分析:将已知数据列成下表:甲原料(吨) 乙原料(吨) 费用限额成本1 000 1 500 6 000 运费500 400 2 000 产品90 100 解:设此工厂每月甲、乙两种原料各x 吨、y 吨,生产z 千克产品,则⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥,2000400500,600015001000,0,0y x y x y xz=90x+100y.作出以上不等式组所表示的平面区域,即可行域,如右图:由⎩⎨⎧=+=+.2045,1232y x y x 得⎪⎪⎩⎪⎪⎨⎧==.720,712y x 令90x+100y=t ,作直线:90x+100y=0,即9x+10y=0的平行线90x+100y=t ,当90x+100y=t过点M (712,720)时,直线90x+100y=t 中的截距最大. 由此得出t 的值也最大,z m a x =90×712+100×720=440.答:工厂每月生产440千克产品.2.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大?解:设每天生产A 型桌子x 张,B 型桌子y张,则⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,93,82y x y x y x 目标函数为z=2x+3y. 作出可行域:把直线l :2x+3y=0向右上方平移至l′的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=2x+3y 取得最大值.解方程⎩⎨⎧=+=+,93,82y x y x 得M 的坐标为(2,3).答:每天应生产A 型桌子2张,B 型桌子3张才能获得最大利润.3.课本106页习题3.3A 组2.第2课时推进新课师 【例1】 已知x 、y 满足不等式组⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+,0,0,2502,3002y x y x y x 试求z=300x+900y 的最大值时的整点的坐标及相应的z 的最大值.师 分析:先画出平面区域,然后在平面区域内寻找使z=300x+900y 取最大值时的整点. 解:如图所示平面区域A O BC ,点A (0,125),点B (150,0),点C 的坐标由方程组⇒⎩⎨⎧=+=+25023002y x y x ⎪⎪⎩⎪⎪⎨⎧==,3200,3350y x 得C (3350,3200), 令t=300x+900y, 即,90031tx y +-=, 欲求z=300x+900y 的最大值,即转化为求截距t[]900的最大值,从而可求t 的最大值,因直线90031t x y +-=与直线x y 31-=平行,故作x y 31-=的平行线,当过点A (0,125)时,对应的直线的截距最大,所以此时整点A 使z 取最大值,z m a x =300×0+900×125=112 500.师 【例2】 求z=600x+300y 的最大值,使式中的x 、y 满足约束条件3x+y≤300,x+2y≤250, x≥0,y≥0的整数值.师 分析:画出约束条件表示的平面区域即可行域再解. 解:可行域如图所示.四边形A O BC ,易求点A (0,126),B (100,0),由方程组⇒⎩⎨⎧=+=+25223003y x y x ⎪⎪⎩⎪⎪⎨⎧==.5191,5369y x 得点C 的坐标为(5369,5191). 因题设条件要求整点(x,y)使z=600x+300y 取最大值,将点(69,91),(70,90)代入z=600x+300y ,可知当x=70,y=90时,z 取最大值为z m a x =600×70+300×900=69 000.师 【例3】 已知x 、y 满足不等式⎪⎩⎪⎨⎧≥≥≥+≥+,0,0,12,22y x y x y x 求z=3x+y 的最小值.师 分析:可先找出可行域,平行移动直线l 0:3x+y=0找出可行解,进而求出目标函数的最小值.解:不等式x+2y≥2表示直线x+2y=2上及其右上方的点的集合; 不等式2x+y≥1表示直线2x+y=1上及其右上方的点的集合. 可行域如右图所示.作直线l 0:3x+y=0,作一组与直线l 0平行的直线l:3x+y=t(t ∈R). ∵x 、y 是上面不等式组表示的区域内的点的坐标. 由图可知:当直线l:3x+y=t 通过P (0,1)时,t 取到最小值1,即z min=1.师 评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解.师 课堂练习:请同学们通过完成练习来掌握图解法解决简单的线性规划问题.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x[教师精讲]师 (1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y解:不等式组表示的平面区域如右图所示: 当x=0,y=0时,z=2x+y=0, 点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线l:2x+y=t,t ∈R.可知在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大. 所以z m a x =2×2-1=3.(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如右图所示.从图示可知直线3x+5y=t 在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t 最小,以经过点(89,817)的直线所对应的t 最大. 所以z min =3×(-2)+5×(-1)=-11,z m a x =3×89+5×817=14.[知识拓展]某工厂生产甲、乙两种产品.已知生产甲种产品1 t ,需耗A 种矿石10 t 、B 种矿石5 t 、煤4 t ;生产乙种产品需耗A 种矿石4 t 、B 种矿石4 t 、煤9 t.每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1 000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360 t 、B 种矿石不超过200 t 、煤不超过300 t ,甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大?师 分析:将已知数据列成下表:解:设生产甲、乙两种产品分别为x t 、y t ,利润总额为z 元,那么⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+;0,0,36094,20045,300410y x y x y x y x目标函数为z=600x+1 000y.作出以上不等式组所表示的平面区域,即可行域. 作直线l:600x+1 000y=0, 即直线:3x+5y=0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=600x+1 000y 取最大值. 解方程组⎩⎨⎧=+=+,36094,20045y x y x得M 的坐标为x=29360≈12.4,y=291000≈34.4. 答:应生产甲产品约12.4 t ,乙产品34.4 t ,能使利润总额达到最大.课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). (2)设t=0,画出直线l 0.(3)观察、分析,平移直线l 0,从而找到最优解. (4)最后求得目标函数的最大值及最小值.以实际问题为背景的线性规划问题其求解的格式与步骤: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义 布置作业课本第105页习题3.3A 组3、4.第3课时推进新课 师 【例5】 营养学家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06kg 的蛋白质,0.06 kg 的脂肪.1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足营养学家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少克?师 分析:将已知数据列成下表:食物/kg 碳水化合物/kg 蛋白质/kg 脂肪/kg A 0.105 0.07 0.14 B 0.105 0.14 0.07若设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,如何列式?生 由题设条件列出约束条件①⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0,y 0,x 0.06,0.07y 0.14x 0.06,0.14y 0.07x 0.075,0.105y 105x .0其目标函数z=28x+21y.二元一次不等式组①等价于②⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+.0,0,6714,6147,577y x y x y x y x师 作出二元一次不等式组②所表示的平面区域,即可行域.请同学们在草稿纸上完成,再与课本上的对照.生 考虑z=28x+21y,将它变形为2834z x y +-=,这是斜率为34-、随z 变化的一族平行直线.28z 是直线在y 轴上的截距,当28z取得最小值时,z 的值最小.当然直线与可行域相交,即在满足约束条件时目标函数z=28x+21y 取得最小值.由图可见,当直线z=28x+21y 经过可行域上的点M 时,截距z[]28最小,即z 最小. 解方程组⎩⎨⎧=+=+6714,577y x y x 得点M(71,74),因此,当71=x ,74=y 时,z=28x+21y 取最小值,最小值为16.由此可知每天食用食物A 约143克,食物B 约571克,能够满足日常饮食要求,又使花费最低,最低成本为16元.师 【例6】 在上一节课本的例题(课本95页例3)中,若根据有关部门的规定,初中每人每年可收取学费1 600元,高中每人每年可收取学费2 700元.那么开设初中班和高中班各多少个,每年收取的学费总额最多?学段 班级学生数 配备教师数 硬件建设/万元 教师年薪/万元初中 45 2 26/班 2/人 高中 40 3 54/班 2/人师 由前面内容知若设开设初中班x 个,高中班y 个,收取的学费总额为z 万元, 此时,目标函数z=0.16×45x+0.27×40y,可行域如下图把z=7.2x+10.8y 变形为54532z x y +-=,得到斜率为-32-,在y 轴上截距为545z,随z 变化的一组平行直线.由图可以看出,当直线z=7.2x+10.8y 经过可行域上的点M 时,截距545z最大,即z 最大. 解方程组⎩⎨⎧=+=+402,30y x y x 得点M (20,10),因此,当x=20,y=10时,z=7.2x+10.8y 取最大值,最大值为252.由此可知开设20个初中班和10个高中班时,每年收取的学费总额最多,为252万元. 师 【例7】 在上一节例4中(课本96页例4),若生产1车皮甲种肥料,产生的利润为10 000元,若生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?生 若设生产x 车皮甲种肥料,y 车皮乙种肥料,能够产生的利润z 万元.目标函数z=x+0.5y,可行域如下图:把z=x+0.5y 变形为y=-2x+2z,得到斜率为-2,在y 轴上截距为2z,随z 变化的一组平行直线.由图可以看出,当直线y=-2x+2z 经过可行域上的点M 时,截距2z 最大,即z 最大.解方程组⎩⎨⎧=+=+104,661518y x y x 得点M(2,2),因此当x=2,y=2时,z=x+0.5y 取最大值,最大值为3.由此可见,生产甲、乙两种肥料各2车皮,能够产生最大的利润,最大利润为3万元. [教师精讲]师 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义. 课堂小结 用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);(2)设t=0,画出直线l 0;(3)观察、分析,平移直线l 0,从而找到最优解;(4)最后求得目标函数的最大值及最小值. 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义.布置作业课本第105页习题3.3 B 组1、2、3板书设计第1课时简单线性规划问题图1课堂小结 线性规划问题的相关概念图2第2课时简单线性规划问题例1课堂小结 例3例2第3课时简单线性规划问题例5课堂小结例7例6。
《3.3.2简单的线性规划问题》教案
简单的线性规划学习内容总析线性规划位于不等式和直线方程的结合点上,是培养学生转化能力和熟练运用数形结合能力的重要内容。
这一节的知识内容形成了一条结构紧密的知识链条:以二元一次不等式(组)表示的平面区域为基础,根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法解决简单的线性规划问题。
学情总析本节内容是在学习了直线方程、二元一次不等式(组)所表示的平面区域的基础上,强调应用转化思想和数形结合思想来解决线性规划问题。
三维教学目标知识与技能:①了解线性规划的意义以及约束条件、线性目标函数、可行域、最优解等相关的基本概念;②在巩固二元一次不等式(组)所表示的平面区域的基础上,能从实际优化问题中抽象出约束条件和目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;③掌握对一些实际优化问题建立线性规划数学模型并运用图解法进行求解的基本方法和步骤。
过程与方法:①培养学生的形象思维能力、绘图能力和探究能力;②强化数形结合的数学思想方法;③提高学生构建(不等关系)数学模型、解决简单实际优化问题的能力。
情感、态度与价值观:①在感受现实生产、生活中的各种优化、决策问题中体验应用数学的快乐;②在运用求解线性规划问题的图解方法中,感受动态几何的魅力;③在探究性练习中,感受多角度思考、探究问题并收获探究成果的乐趣。
教学重点及应对策略1、教学重点:根据实际优化问题准确建立目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;2、应对策略:将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题,然后借助直线方程的知识进行解决。
教学难点及应对策略1、教学难点:①借助线性目标函数的几何含义准确理解线性目标函数在y轴上的截距与z最值之间的关系;②用数学语言表述运用图解法求解线性规划问题的过程。
2、应对策略:在理论解释的同时,可用动画进行演示辅助理解。
教学过程设计。
《简单的线性规划》教学设计2
《简单的线性规划》教学设计一、内容和内容解析线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。
涉及更多个变量的线性规划问题不能用初等方法解决。
本节课为该单元的第3课时,主要内容是线性规划的相关概念和简单的线性规划问题的解法.重点是如何根据实际问题准确建立目标函数,并依据目标函数的几何含义运用数形结合方法求出最优解。
与其它部分知识的联系,表现在:二、目标和目标解析本课时的目标是:1.了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等相关概念.了解线性规划模型的特征:一组决策变量表示一个方案;约束条件是一次不等式组;目标函数是线性的,求目标函数的最大值或最小值.熟悉线性约束条件(不等式组)的几何表征是平面区域(可行域).体会可行域与可行解、可行域与最优解、可行解与最优解的关系.2.掌握实际优化问题建立线性规划模型并运用数形结合方法进行求解的基本思想和步骤.会从实际优化问题中抽象、识别出线性规划模型.能理解目标函数的几何表征(一族平行直线).能依据目标函数的几何意义,运用数形结合方法求出最优解和线性目标函数的最大(小)值,其基本步骤为建、画、移、求、答.3.培养学生数形结合的能力.对模型中z的最小值的求解,通过对式子的变形,变为,利用数形结合思想,把看作斜率为的平行直线系在y轴上的截距.平移直线,使其与y轴的交点最高,观察图象直线经过M(4,2),得出最优解x=4,y=2.三、教学问题诊断分析线性规划问题的难点表现在三个方面:一是将实际问题抽象为线性规划模型;二是线性约束条件和线性目标函数的几何表征;三是线性规划最优解的探求.其中第一个难点通过第1课时已基本克服;第二个难点线性约束条件的几何意义也在第2课时基本解决,本节将继续巩固;第三个难点的解决必须在二元一次不等式(组)表示平面区域的基础上,继续利用数形结合的思想方法把目标函数直观化、可视化,以图解的形式解决之.将决策变量x,y以有序实数对(x,y)的形式反映,沟通问题与平面直角坐标系的联系,一个有序实数对就是一个决策方案.借助线性目标函数的几何意义准确理解线性目标函数在y轴上的截距与z的最值之间的关系;以数学语言表述运用数形结合得到求解线性规划问题的过程。
简单的线性规划教学设计(二) 人教课标版(优秀教案)
《简单的线性规划》教学设计(二)【教学目标】巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.【重点难点】理解二元一次不等式表示平面区域是教学重点.如何扰实际问题转化为线性规划问题,并给出解答是教学难点.【教学步骤】一、新课引入我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用.线性规划 先讨论下面的问题设2z x y =+,式中变量x 、y 满足下列条件 4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩①求z 的最大值和最小值.我们先画出不等式组①表示的平面区域,如图中 ABC ∆内部且包括边界.点(0,0)不在这个三角形区域内,当0,0x y == 时,20z x y =+=,点(0,0)在直线0:20l x y +=上.作一组和0l 平等的直线:2,l x y t t R +=∈可知,当l 在0l 的右上方时,直线l 上的点(,)x y 满足20x y +>.即0t >,而且l 往右平移时,t 随之增大,在经过不等式组①表示的三角形区域内的点且平行于l 的直线中,以经过点(5,2)A 的直线l ,所对应的t 最大,以经过点(1,1)B 的直线1l ,所对应的t 最小,所以max 25212z =⨯+=min 2113z =⨯+=在上述问题中,不等式组①是一组对变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,所以又称线性约束条件.2x y +是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫做目标函数,由于2z x y =+又是x 、y 的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数2z x y =+在=0线性约束条件①下的最大值和最小值问题.线性约束条件除了用一次不等式表示外,有时也有一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题,满足线性约束条件的解(,)x y 叫做可行解,由所有可行解组成的集合叫做可行域,在上述问题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.【应用举例】例.解下列线性规划问题:求2z x y =+的最大值和最小值,使式中的x 、y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩解:先作出可行域,见图中表示的区域,且求得11(,),(1,1),(2,1)22A B C ---. 作出直线0:20l x y +=,再将直线0l 平移,当0l 的平行线1l 过 B 点时,可使2z x y =+达到最小值,当0l 的平行线2l 过C 点 时,可使2z x y =+达到最大值.∴min min 2(1)(1)3,22(1)3z z =⨯-+-=-=⨯+-= 通过这个例子讲清楚线性规划的步骤,即:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找出最优解所对应的点;第三步:解方程的最优解,从而求出目标函数的最大值或最小值.例.解线性规划问题:求3z x y =+的最大值,使式中的x 、满足约束条件 23247600x y x y y x y +≤⎧⎪-≤⎪⎪≤⎨⎪≥⎪≥⎪⎩ 解:作出可行域,见图,五边形OABCD 表示的平面区域. 作出直线0:30l x y +=将它平移至点B ,显然,点B的坐标是可行域中的最优解, 它使3z x y =+达到最大值,解方程组72324x y x y -=⎧⎨+=⎩得点B 的坐标为(9,2). x yO =1x +y =x y =-1y CB Ax yO =7x -y 876C B A D =0x +y 3=6y =24x +y 2312∴max 39229z =⨯+=这个例题可在教师的指导下,由学生解出.在此例中,若目标函数设为3z x y =+,约束条件不变,则z 的最大值在点(3,6)C 处取得.事实上,可行域内最优解对应的点在何处,与目标函数(0,0)z ax by a b =+≠≠所确定的直线0:0l ax by +=的斜率a b -有关.就这个例子而言,当0l 的斜率为负数时,即0a b -<时,若23a b -=-(直线2324x y +=的斜率)时,线段上所有点都是使z 取得最大值(如本例);当203a b-<-<时,点C 处使取得最大值(比如:3z x y =+时),若0a b->,可请同学思考. 二、随堂练习.求725z x y =+的最小值,使式中的x 、y 满足约束条件251551000x y x y x y +≥⎧⎪+≥⎪⎨≥⎪⎪≥⎩ .求1015z x y =+的最大值,使式中x 、y 满足约束条件2243236010011x y x y x y +≤⎧⎪+≤⎪⎨≤≤⎪⎪≤≤⎩ 答案.5,1x y ==时,min 60z =..6,9x y ==时,max 195z =.三、总结提炼.线性规划的概念..线性规划的问题解法.四、布置作业.求3z x y =+的最大值,使式中的x 、y 满足条件23247600x y x y y x y +≤⎧⎪-≤⎪⎪≤⎨⎪≥⎪≥⎪⎩ .求160252z x y =+的最小值,使x 、y 满足下列条件0704294530x y x y x y x y≤≤⎧⎪≤≤⎪⎪+≤⎨+≥⎪⎪⎪⎩ 答案.3,6x y ==时,max 21z =.在可行域内整点中,点(5,0)使z 最小,min 1034z =扩展资料线性规划的解课本题中出现的线性规划都有唯一的最优解,其实线性规划的解有许多不同的情况,除了有唯一的最优解的情况外,还有 ()无可行解,从而无最优解.这就是约束条件不等式组无解的情况. ()有无穷多个最优解例.已知x 、y 满足4335251x y x y x -≤⎧⎪+≤⎨⎪≥⎩,求4z x y =-的最大值我们用图解法求解. 由于目标函数等高线和可行域的边界线43x y -=平行,沿着目标函数值增加方向平行移动目标函数的等高线,最终停留在直线43x y -=-上,所以线段AB 上的所有点都是最优解.线性规划如果有最优解,只会是有唯一最优解或者有无穷多个最优解这两种情况,不会出现其他情况,这就是下面的命题.命题:如果线性规划有两个不同的最优解12P P ,那么对任意1201,(1)P P P λλλ<<=+-是最优解.这个命题的证明可以在任何一本线性规划的书中找到,这里就不再证明了.事实上证明是平凡的,只要注意到P 在线段12P P 上,利用线性性质,读者就可以自己证明.()有可行解,无最优解.例.已知4300x y x y -≥-⎧⎪≥⎨⎪≥⎩,求2z x y =+的最大值. 我们用图解法求解.从图中可以看出随着目标函数等高线的移动,目标函数值会越来越大,没有上界.有的书上为整数 为整数称之为无界解.无界解的情况只会出现在可行域是开区域的时候.如果可行域是闭区域,就一定是有界的,于是有命题 如果统性规划可行域是闭区域,那么一定有最优解.只要注意到线性函数是连续函数,上面的命题就是“有界闭区域上连续函数可以达到最大值或最小值”这一定理的一个推理.从上面的例子中我们可以看出,如果有最优解,那么就有可行域的顶点是最优解.所以也可以通过比较可行域顶点的目标函数值来求线性规划的最优解.例如:4335251x y x y x -≤⎧⎪+≤⎨⎪≥⎩,求2z x y =+的最大值,中的顶点(5,2)A 的目标函数值是12;(1,1)B 的目标函数值是3;(1,4.4)C 的目标函数值是6.4于是通过比较可以知道(5,2)A 是最优解.线性规划的单纯形算法,就是一种从顶点到顶点并使得目标函数值不断改进的迭代算法,由于可行域的顶点只有有限多个,所以经过有限次送代就可以求出线性规划的最优解.单纯形算法可以求解一般的(变量多于两个)线性规划问题.许多实际问题中变量和约束的个数都很多,有些规模比较大的问题中变量和约束的个数甚至可以上万,这样的问题当然是无法用手工计算的,需要用计算机和专门的软件求解.对于规模不是太大(如几十个变量)的线性规划,现在常用的数学软件如Mathematica ,Matlab 都可以解.下面介绍如何用Mathematica 解线性规划.用Mathematica 解线性规划用的是ConstrainedMax 或者ConstrainedMin 函数,这两个函数的格式如下:ConstrainedMin [目标函数{约束条件},{变量}]ConstrainedMax [目标函数{约束条件},{变量}]由于ConstrainedMin 软件是用C 语言编写的,所以它的函数带有C 语言的风格.{}表示表格,ConstrainedMax 和ConstrainedMin 函数中都有两个表格,第一个表格是约束条件的表,第二个表格是变量表,表格中的项用逗号分隔.要指出的是由于一般的线性规划中的变量都是非负变量,这两个函数的变量也要求有非负约束,但是非负约束可以不在约束条件表格中列出.例如求解线性规划v x y z =++的最小值250,0,0x y x z x y z +≥⎧⎪+≤⎨⎪≥≥≥⎩只要输入[2]:In ConstrainedMin =[,{2,5},{,,}x y z x y x z x y z +++>=+<=计算机就会给出计算结果[2]{2,{2,0,0}}Out x y x =->->->最优值,最优解:2,0,0x y z ===斜体的[2]:In =和[2]Out Mathematica =自动加上的In 表示输入,Out 表示输出,[2]中的2表示行号.用Mathematica 求例中的规划问题,[3]:[2,{43,3525,1},{,}]In ConstrainedMin x y x y x y x x y =+-<=-+<=>=[3]{12,{5,2}}Out x y =->->在许多实际问题中都要求线性规划的最优整数解,课本中也出现了这样的例子和习题.但是笔者以为求最优整数解不应该成为教学的重点.因为求整数解的问题属于整数规划的范畴,而整数规划和线性规划是运筹学中两个不同的分支.教材的作者显然是知道这一点的,所以在教材的处理上回避了如何去求整数解这个问题.作者这样做一方面告诉大家求整数解不应该成为教学的重点,另一方面也给学生留下了一个自由发展的空间.事实上对于课本上出现的这样非常简单的问题只要在非整数优解的附近找出整数可行解,通过比较它们目标函数值的大小就可以求出最优整数解,学生完全可以自己想办法解决.在科普杂志《科学的美国人》()Scientific American 年第期上有一篇介绍线性规划的文章,文章用了下面的一个例子(本文中的数量单位有改动):某啤酒厂生产两种啤酒,其中淡色啤酒桶,啤酒桶.粮食、啤酒花和麦芽是三种有约束的资源,每天分别可以提供斤、两和斤.假设生产一桶淡色啤酒需要粮食斤、啤酒花两、麦芽斤;生产一桶啤酒需要粮食斤、啤酒花两、麦芽斤.售出后每桶淡色啤酒可获利元,每桶啤酒可获利元.问等于多少时工厂的利润最大.这个例子的线性规划模型是max 1323z A B =+51548044160203511900,0A B A B A B A B +≤⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩ 和课本中的例子相比较这个例子有两个优点,一是它的数据更接近实际数据,有真实感,同时由于数字较大求出的最优解不是整数的问题被相对淡化了;另一方面例子中三种约束的单位不同,这在实际问题中经常出现,例子可以告诉学生列规划时并不需要统一各种约束条件的单位.笔者建议在教学中可以使用类似的例子.探究活动利润的线性规划[问题]某企业年的利润为万元年的利润为万元年的利润为元,请你根据以上信息拟定两个不同的利润增长直线方程,从而预年企业的利润,请问你帮该企业预测的利润是多少万? [分析]首先应考虑在平面直角坐标系中如何描述题中信息:“年的利润为万元年的利润为万元年的利润为万元”,在确定这三点坐标后,如何运用这三点坐标,是仅用其中的两点,还是三点信息的综合运用,运用时要注意有其合理性、思考的方向可以考虑将通过特殊点的直线、平行某个线段的直线、与某些点距离最小的直线作为预测直线等等.建立平面直角坐标系,设年的利润为万元对应的点为()年的利润为万元及年的利润为万元分别对应点()和(),那么①若将过两点的直线作为预测直线1l ,其方程为:25y x =+,这样预测年的利润为万元. ②若将过两点的直线作为预测直线2l ,其方程为:352y x =+,这样预测年的利润为万元. ③若将过两点的直线作为预测直线3l ,其方程为:6y x =+,这样预测年的利润为万元.④若将过及线段的中点315(,)22的直线作为预测直线4l ,其方程为:553y x =+,这样预测年的利润为.万元.⑤若将过及ABC ∆的重心20(1,)3(注:203为年的年平均利润)的直线作为预测直线5l ,其方程为:553y x =+,这样预测年的利润为.万元. ⑥若将过及ABC ∆的重心20(1,)3的直线作为预测直线6l ,其方程为:41633y x =+,这样预测年的利润为.万元.⑦若将过且以线段的斜率1BC k =为斜率的直线作为预测直线,则预测直线7l 的方程为:5y x =+,这样预测年的利润为万元. ⑧若将过且以线段的斜率32AC k =为斜率的直线作为预测直线,则预测直线8l 的方程为:31123y x =+,这样预测年的利润为万元. ⑨若将过点且以线段的斜率2AB k =为斜率的直线,作为预测直线,则预测直线9l 的方程为:24y x =+,这样预测年的利润为万元.⑩若将过且以线段的斜率AB k 与线段的斜率AC k 的平均数为斜率的直线作为预测直线,则预测直线10l 的方程为:754y x =+,这样预测年的利润为万元. 如此这样,还有其他方案,在此不—一列举.[思考]()第⑤种方案与第④种方案的结果完全一致,这是为什么?()第⑦种方案中,BC k 的现实意义是什么?()根据以上的基本解题思路,请你思考新的方案.如方案⑥中,过ABC ∆的重心20(1,)3,找出以m 为斜率的直线中与两点的距离的平方和最小的直线作为预测直线.()根据以上结论及你自己的答案估计一下利润的范围,你预测的利润频率出现最多的是哪一个值?你认为将你预测的结论作怎样的处理,使之得到的利润预测更为有效?如果不要求用线性预测,你能得出什么结果?习题精选一、填空题.点P 到直线4310x y -+=的距离等于4,且在不等式230x y +-<表示的平面区域内,则点P 的坐标为__。
3.3.2 简单的线性规划(2)教师版
3.3.2简单的线性规划(二)教学目标分析:知识目标:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力; 情感目标:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。
重难点分析:重点:利用图解法求得线性规划问题的最优解;难点:把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。
互动探究:一、课堂探究:1、复习引入(1)二元一次不等式0Ax By c ++>在平面直角坐标系中表示直线0Ax By c ++=某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)(2)目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解:探究一、“阅读与思考”——错在哪里?思考:若实数,x y 满足1311x y x y ≤+≤⎧⎨-≤-≤⎩;求42x y +的取值范围.答案:24210x y ≤+≤. 例1、已知变量,x y 满足430352501x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩. (1)求y z x =的最小值;(2)求22z x y =+的取值范围.答案:(1)min 2()5y z x ==;(2)229z ≤≤.例2、设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,求m 的值.答案:3m =.练习:已知变量,x y 满足6003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,设z ax y =+的最大值为39a +,最小值为33a -,求实数a 的取值范围.答案:11a -≤≤.例3、已知平面区域D 由以(1,3),(5,2),(3,1)A B C 为顶点的三角形内部及边界组成.若在区域D 上有无穷多个点(,)x y 可使目标函数z x my =+取得最小值,则m =A .-2B .-1C .1D .4解:依题意,令0z =,可得直线0x my +=的斜率为1m-,结合可行域可知当直线0x my +=与直线AC 平行时,线段AC 上的任意一点都可使目标函数z x my =+取得最小值,而直线AC 的斜率为-1,所以1m =,选C练习:已知变量,x y 满足4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,设(0)z ax y a =+>,若当z 取得最大值时对应的点有无数个,求a 的值.答案:35. 反思总结:1、 本节课你学到了哪些知识点?2、 本节课你学到了哪些思想方法?3、 本节课有哪些注意事项?课外作业:补充:1、设,αβ是方程220(,)x ax b a b R ++=∈的两根,且(0,1),(1,2)αβ∈∈,则21b a --的取值范围是( ). A.1(,1) 4 B.1(,1)2 C.11(,)24- D.11(,) 22- 解:设2()2f x x ax b =++,因为(0,1),(1,2)αβ∈∈,由一元二次方程根的分布可知:(0)0(1)0(2)0f f f >⎧⎪<⎨⎪>⎩,即201204220b a b a b >⎧⎪++<⋅⋅⋅⋅⎨⎪++>⎩①,若把①看作线性约束条件,那么目标函数21b k a -=-,其几何意义为可行域内点(,)a b 与点(1,2)连线l 的斜率.作出可行域,如图8,易得当l 过点(3,1)-时,k 取得最小值14,当l 过点(1,0)-时,k 取得最大值1,所以21(,1)14b a -∈-,故应选A. 说明:在线性约束条件下,对于形如(,)y b k a b R x a-=∈-的目标函数的取值问题,通常转化为求点(,)x y 、(,)a b 之间连线斜率的取值;结合图形易知,可行域的顶点是求解斜率取值问题的关键点。
简单的线性规划(教案)
§3.3.2简单的线性规划(教案)---一节校际公开课的设计,实施,反思【教学目标】1.知识与技能:掌握线性规划问题的图解法,培养学生数形结合水平,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际问题中抽象出简单的线性规划问题的过程,学会用数学语言去表达实际问题,通过经历图解法解决问题的过程掌握图解法;3.情态与价值:通过对现实中优化问题的解决,让学生体会数学知识在解决资源分配,生产安排,人力布局等方面的强大作用.培养学生的理性精神。
【教学重点】利用图解法求得线性规划问题的最优解;【教学难点】把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。
【教学流程】【教学过程】一.复习引入:1.二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)代点确定,通常代如下几点(0,0),(1,0),(0,1)2.二元一次不等式组表示的几何意义是什么?二.问题情景:例 一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t 硝酸盐18t ;生产1车皮乙种肥料需要的主要原料是磷酸盐1t,硝酸盐15t,现库存磷酸盐10t 、硝酸盐66t .若生产1车皮甲种肥料,产生的利润为10 000元;生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润? 三 建立模型解:设x,y 分别为计划生产甲乙两种混合肥料的车皮数,设利润为Z,于是满足以下条件:41018156600x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩(1) Z=x+0.5y (2)四 分析Z 随x 和y 的变化是如何变化:把(2)式等价变形为y=-2x+2Z,联系前面学过的一次函数:y=kx+b 可知,b=2Z,又因为一次函数的图象是直线如下图从图中分析可知:当直线与y 轴交点越向上时,b 的值越大,越向下是时,b 的值越小.取z=0,z=1,z=2等等可得到一系列平行直线得到的结论是:y=-2x+z表示一簇直线,z 的值随着直线y=-2x平行移动时与y 轴交点不同而变化,所以我们能够由(1)确定的区域内在平行移动直线y=-2x就可找到z 的最大值点和最小值点五 解决问题 1.在直角坐标系中可表示成如图的平面区域(阴影部分)通过平移参照直线可知使目标函数最大值点在M(2,2)所以Zmax=3万元 2 问题变式 在(1)的约束条件下,求目标函数Z=5x+y,Z=x+2y,Z=4x+y 的最大值3.随堂练习y=-2xy=-2x+1y=-2x+4Z=x+2yy=-2x+zZ=5x+yZ=4x+y1、求y x z -=的最大值、最小值,使x 、y 满足条件⎪⎩⎪⎨⎧≥≥≤+002y x y x2、设y x z +=2,式中变量x 、y 满足 ⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x六 形成一般规律解决线性规划问题的一般方法: ⑴ 建立约束条件和目标函数 ⑵ 画出可行域与参照直线 ⑶ 平行移动参考直线寻找最值点 ⑷ 求交点和最值结论1线性目标函数的最大值、最小值一般在可行域的顶点处取得.结论2线性目标函数的最大值、最小值也可能在可行域的边界上取得,即满足条件的最优解有无数多个.现摘录如下(1)对于一次函数y=kx+b 中当交点在y 轴上越高时b 值越大,但是在有些线性规划问题中,并不一定是交点越高,z 的值越大,有时能够相反,这点未给学生交待清楚,造成学生误认为只要交点越高,z 就越大的理解(2)在作图不是很严格情况下出现不确定最值点在何处时,最好是把各个交点代入检验以确保答案准确,要教给学会防止出错的方法,不能仅依赖作图来找答案 (3)开始阶段要着重向学生强调作图规范和准确以给学生做好示范,强调图解法就是靠准确作图找到最优点 八 教学反思(1) 在教学设计中,我考虑到湖北省必修教材教学顺是14523的顺序,不是12345的顺序,这样就给线性规划教学带来一定的困难,因为斜率未学,导致不能用斜率和截距知识来说明目标函数的变化趋势.所以只能从前面学过的一次函数角度来突破,从教学实际看,学生基本听懂了目标函数的变化趋势.(2) 考虑到本节课的重点是建模和解模两个环节,所以在建模开始时着重强调了列表法分析题中各个数据,对于初学线性规划问题的学生来讲,养成用表格方法去分析,对以后解题有很大作用(3)在解决了基本问题后设置了3个变式,用来强调目标函数最值点取决于目标函数系数和可行域的形状,特别是对于无穷解的设计,以为学生以后解题做好铺垫.。
简单的线性规划教案
《简单的线性规划(2)》教案新乡市外国语学校数学组赵洁一、教学目标1、知识目标⑴了解线性规划的意义以及线性约束条件、目标函数、可行解、可行域、最优解等基本概念。
⑵了解线性规划问题的图解法,并能应用它解决一些简单的实际问题。
2、能力目标⑴培养学生分析问题,探索问题,将实际问题转化为数学问题的数学建模能力。
⑵培养学生运用数形结合思想解题的能力和化归能力。
3、情感目标⑴让学生体验数学来源于生活并服务于生活,体验数学在建设节约型社会中的作用,激发学生学习和使用数学的兴趣,培养学生的社会责任心和使命感。
⑵让学生体验数学活动中充满着探索与创造,培养学生勤于思考、勇于探索的精神。
二、教学重难点1、教学重点利用图解法求出最优解2、教学难点根据实际问题中的己知条件、找出约束条件和目标函数,并利用图解法求出最优解三、教学方法“双标前移,主体探究”四、教学过程(一)创设情境:某公司承担了每天至少搬运280吨水泥的任务,已知该公司有6辆A 型卡车和4辆B型卡车,又知A型卡车每辆每天的运载量为30吨,成本费为0.9千元;B型卡车每辆每天的运载量为40吨 ,成本费为1千元。
问题1:设每天派出A型卡车x 辆,B型卡车y辆,公司每天所花费为Z千元,写出x,y应满足的条件以及Z与x,y之间的函数关系。
(二)导入新课:问题2:假设你是公司的总经理,为使公司所花的成本最少,每天应派出A型卡车,B型卡车各多少辆?(三)自学目标检测:设z=0.9x+y 式中x、y满足条件30x+40y≥2800≤x≤60≤y≤4求z的最小值。
(1)作出不等式组在直角坐标系所表示的区域。
(2)将z=0.9x+y中的z看作参数,z=0.9x+y可化成y=-0.9x+z,当z取不同值时,y=-0.9x+z表示________________,z的几何意义是_________________________,当直线过____点时z取最小值,最小值为____。
(四)学识目标达标:某公司承担了每天至少搬运280吨水泥的任务,已知该公司有6辆A型卡车和4辆B型卡车,又知A型卡车每辆每天的运载量为30吨,成本费为0.9千元;B型卡车每辆每天的运载量为40吨 ,成本费为1千元。
3.3.2简单线性规划(1_2)--上课用
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,
3.3.2简单的线性规划
3.3.2 简单的线性规划【教学分析】线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它能解决科学研究、工程设计、经济管理等许多方面的实际问题。
简单的线性规划关心的是两类问题:一是人力、物力、资金等资源一定条件下,如何使用它们来完成最多的任务;是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成,突出体现了优化的思想。
【三维目标】1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。
【重点难点】教学重点:用图解法解决简单的线性规划问题教学难点:准确求得线性规划问题的最优解【课时安排】【教学过程】第1课时1.课题导入[复习提问]1、二元一次不等式0>++C By Ax 在平面直角坐标系中表示什么图形?2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项?3、熟记“直线定界、特殊点定域”方法的内涵。
2.讲授新课在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。
1、下面我们就来看有关与生产安排的一个问题:引例:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么?(1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组:2841641200x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩ (1)(2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。
3.3.2简单的线性规划问题(2)
解:设每天调出的A型车x辆,
B型车y辆,公司所花的费用为 z元,则
y
4x+5y=30
x+y=10
x=8
{
x≤8 y≤4 x+y≤10 4x+5y≥30 x,y∈N* Z=320x+504y
4 3 2 1 0 1 2 3 4 5 6 7 8
y=4
X
作出可行域 作出可行域中的整点,
可行域中的整点(5,2)使Z=320x+504y取得最 小值,且Zmin=2608元
320x+504y=0
方法归纳:运用线性规划解决问题时,必须清楚目标函数的几何意义。 y A(2,4)
ห้องสมุดไป่ตู้
练习3:
B(-1,2)
如图1所示,已知△ABC中的三顶点 A(2,4) ,B(-1,2),C(1,0),点P(x,y) 0 C(0,1) 在△ABC内部及边界运动, 请你探究并讨论以下问题: (图1) ① z=x+y 在_____处有最大值___,在____处有最小值____; ② z=x-y 在___处有最大值____,在____处有最小值____; ③ 你能否设计一个目标函数,使得其取最优解的 情况有无穷多个? ④ 请你分别设计目标函数,使得最值点分别 在A处、B处、C处取得? ⑤ (思考)若目标函数是 z=x2+y2 , 你知道其几何意义吗?你能否借助其几何意义求得
x
zmin和zmax
y 1 2y 3 呢? 或z ?如果是 z x x 1
课堂小结:
二元一次不等式 表示平面区域 直线定界, 特殊点定域 约束条件 目标函数 简单的线性规划 可行解 可行域
应 用
求解方法:最优解 图解法; 应用题 设-列-解-联-答
高中数学必修五第三章:3.2简单的线性规划(2)教案
课题: 3.3.2 简单的线性规划(2)第课时总序第个教课设计课型:新讲课编写不时间:年月日履行时间:年月日教课目的:批1.知识与技术:掌握线性规划问题的图解法,并能应用它解决一些简单的实质注问题;2.过程与方法:经历从实质情境中抽象出简单的线性规划问题的过程,提升数学建模能力;3.神态与价值:引起学生学习和使用数学知识的兴趣,发展创新精神,培育实事求是、理论与实质相联合的科学态度和科学道德。
教课要点:利用图解法求得线性规划问题的最优解教课难点:把实质问题转变成线性规划问题,并给出解答,解决难点的要点是依据实质问题中的已知条件,找出拘束条件和目标函数,利用图解法求得最优解。
教课器具:三角板,投影仪教课方法:经历从实质情境中抽象出简单的线性规划问题的过程,提升数学建模能力教课过程:1. 课题导入[复习引入 ]:1、二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧全部点构成的平面地区(虚线表示地区不包含界限直线)2、目标函数 ,线性目标函数,线性规划问题, 可行解,可行域,最优解:2. 解说新课线性规划在实质中的应用:线性规划的理论和方法主要在两类问题中获得应用,一是在人力、物力、资本等资源必定的条件下,怎样使用它们来达成最多的任务;二是给定一项任务,怎样合理安排和规划,能以最少的人力、物力、资本等资源来达成该项任务下边我们就来看看线性规划在实质中的一些应用:[ 典范解说 ]例 5 营养学家指出,成人优秀的平时饮食应当起码供给0.075kg 的碳水化合物, 0.06kg 的蛋白质,0.06kg 的脂肪,1kg 食品 A 含有 0.105kg 碳水化合物, 0.07kg蛋白质,0.14kg脂肪,花销28元;而1kg 食品 B 含有 0.105kg碳水化合物,0.14kg 蛋白质, 0.07kg 脂肪,花销 21 元。
为了知足营养专家指出的平时饮食要求,同时使花销最低,需要同时食用食品 A 和食品 B 多少 kg ?指出 : 要达成一项确立的任务 , 怎样兼顾安排 , 尽量做到用最少的资源去达成它 , 这是线性规划中最常有的问题之一 .例 6在上一节例 3 中,若依据相关部门的规定,初中每人每年可收取学费 1 600 元,高中每人每年可收取学费 2 700 元。
3.3.2 简单的线性规划问题(二)
巩固练习一
咖啡馆配制两种饮料.甲种饮料每杯含奶粉9g 、咖啡4g、糖 3g,乙种饮料每杯含奶粉4g 、咖啡5g、糖10g.已知每天原料 的使用限额为奶粉3600g ,咖啡2000g 糖3000g,如果甲种饮 料每杯能获利0.7元,乙种饮料每杯能获利1.2元,每天在原料 的使用限额内饮料能全部售出,每天应配制两种饮料各多少 杯能获利最大? 解:将已知数据列为下表:
教师年薪 万元
2/人
2/人
初中
高中
分别用数学关系式和图形表示上述限制条件。若 根据有关部门的规定,初中每人每年可收学费1600 元,高中每人每年可收学费2700元。那么开设初中 班和高中班多少个?每年收费的学费总额最多?
解:设开设初中班x个,高中班y个。因办学规模以 20~30个班为宜,所以, 20≤x+y≤30
小结
巩固练习二
某厂拟生产甲、乙两种适销产品,每件销售收入分 别为3000元、2000元,甲、乙产品都需要在A、B两 种设备上加工,在每台A、B上加工1件甲所需工时分 别为1h、2h,A、B两种设备每月有效使用台数分别 为400h和500h。如何安排生产可使收入最大? 设每月生产甲产品x件,生产乙产品y件,每月收 入为z,目标函数为Z=3x+2y,满足的条件是
y _
目标函数为:z =0.7x +1.2y
把直线l向右上方平移至l1的位置时, _00 4 直线经过可行域上的点C,且与原点 3 _00 距 离最大, 此时z =0.7x +1.2y取最大值 7 _ x + 12 y = 0 解方程组
C _ ( 200 , 240 ) 3 _ x + 10 y = 3000
由图可以看出,当直线经过可行域上的点M时, 截距2z最大,即z最大。 容易求得M点的坐标为 (2,2),则Zmin=3
3.3.2简单的线性规划(第2课时)教学设计07
简单的线性规划(第2课时)教学设计一 教学目标1 知识与技能:通过典型例题的教学,掌握线性规划的意义以及约束条件、线性目标函数、可行域、最优解等相关的基本概念;在巩固二元一次不等式(组)所表示的平面区域的基础上,能从实际优化问题中抽象出约束条件和目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;掌握对一些实际优化问题建立线性规划数学模型并运用图解法进行求解的基本方法和步骤。
通过对含参线性规划及整数最优解的教学,完善了知识结构。
2 过程与方法:培养学生的形象思维能力、绘图能力和探究能力;强化数形结合的数学思想方法;提高学生构建(不等关系)数学模型、解决简单实际优化问题的能力3 情感态度与价值观:在感受现实生产、生活中的各种优化、决策问题中体验应用数学的快乐;在运用求解线性规划问题的图解方法中,感受动态几何的魅力;在探究性练习中,感受多角度思考、探究问题并收获探究成果的乐趣。
模型、解决简单实际优化问题的能力二 教学重点。
难点重点:对含参线性规划及整数最优解的解决,并依据目标函数的几何含义直观地运用图解法求出最优解。
难点:对含参线性规划求解过程中的涉及的分类讨论及求整数最优解的时整数最优解的确定。
三 教学方法:启导教学法、引探教学法四、教学过程设计1 例题讲解【设计思路】本环节的教学设计意在实现:② 典型的含参问题引入课题,在复习的同时又解决了新问题;②通过引例既帮助学生复习如何从动态的变化中找到问题的本质。
③通过变式教学从解决“唯一最优解”到“有无穷多个最优解”,拓展了视野,提升了解决问题的能力。
【例1】433525,12x y x y x z x ay a -≤-⎧⎪+≤⎨⎪≥⎩=+已知1.当取得最大值时的最优解唯一,求的取值范围.2z x ay a =+2.当取得最大值时有无穷多个最优解,求的取值范围.【几个结论】 1.线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得。
高一数学必修五导学案:3 3 2简单的线性规划2
简单的线性规划导学案一、自学准备与知识导学线性规划的两类重要实际问题:第一种类型是给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大,收到的效益最大;第二种类型是给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源量最小二、学习交流与问题探讨1.产品安排问题例1 某工厂生产甲、乙两种产品.已知生产甲种产品1 t,需耗A种矿石10 t、B种矿石5 t、煤4 t;生产乙种产品需耗A种矿石4 t、B种矿石4 t、煤9 t.每1 t甲种产品的利润是600元,每1 t乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过360 t、B种矿石不超过200 t、煤不超过300 t,甲、乙两种产品应各生产多少(精确到0.1 t),能使利润总额达到最大?2.物资调运问题例2 已知甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨.煤矿应怎样编制调运方案,能使总运费最少?3.下料问题例3 要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:今需要A 、B 、C 三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?规律总结简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域; (3)在可行域内求目标函数的最优解(4)根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解 三、练习检测与拓展延伸 1.在不等式⎩⎨⎧≤+-≥-+0153042y x y x 表示的区域内,满足目标函数y x t +=取得最小值的整数点),(y x 是 ( ) A.)2,3( B.)3,2( C.)2,1(D.)1,2(2.某厂生产甲、乙两种产品,产量分别为45个、50个,所用原料为A 、B 两种规格的金属板,每张面积分别为2m 2、3 m 2,用A 种金属板可造甲产品3个,乙产品5个,用B 种金属板可造甲、乙产品各6个,则A 、B 两种金属板各取多少张时,能完成计划并能使总用料面积最省?( )A .A 用3张,B 用6张 B .A 用4张,B 用5张C .A 用2张,B 用6张D .A 用3张,B 用5张3.若y x ,都是非负整数,则满足5≤+y x 的点共有________个;4.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元.5.某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少(精确到吨),能使利润总额最大?四、小结与提高。
高中数学 3.3.2简单的线性规划教案(二)新人教A版必修5(1)
3.3.2简单线性规划问题教学过程推进新课[合作探究]师 在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题.例如,某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 产品耗时1小时,每生产一件乙产品使用4个B 产品耗时2小时,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?设甲、乙两种产品分别生产x 、y 件,应如何列式?生 由已知条件可得二元一次不等式组:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82y x y x y x师 如何将上述不等式组表示成平面上的区域?生 (板演)师 对照课本98页图3.39,图中阴影部分中的整点(坐标为整数的点)就代表所有可能的日生产安排,即当点P (x,y )在上述平面区域中时,所安排的生产任务x 、y 才有意义.进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?设生产甲产品x 件,乙产品y 件时,工厂获得利润为z,则如何表示它们的关系? 生 则z=2x+3y.师 这样,上述问题就转化为:当x 、y 满足上述不等式组并且为非负整数时,z 的最大值是多少?[教师精讲]师 把z=2x+3y 变形为z x y 3132+-=,这是斜率为32-,在y 轴上的截距为31z 的直线.当z 变化时可以得到什么样的图形?在上图中表示出来.生 当z 变化时可以得到一组互相平行的直线.(板演)师 由于这些直线的斜率是确定的,因此只要给定一个点〔例如(1,2)〕,就能确定一条直线z x y 3132+-=,这说明,32z y x =+由平面内的一个点的坐标唯一确定.可以看到直线z x y 3132+-=与表示不等式组的区域的交点坐标满足不等式组,而且当截距3z最大时,z取最大值,因此,问题转化为当直线z x y 3132+-=与不等式组确定的区域有公共点时,可以在区域内找一个点P ,使直线经过P 时截距3z最大.由图可以看出,当直线z x y 3132+-=经过直线x=4与直线x+2y-8=0的交点M (4,2)时,截距3z 最大,最大值为314.此时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元. [知识拓展]再看下面的问题:分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,先找出不等式组所表示的平面区域(即三直线所围成的封闭区域),再作直线l 0:2x+y=0.然后,作一组与直线l 0平行的直线:l:2x+y=t,t ∈R (或平行移动直线l 0),从而观察t 值的变化:t=2x+y ∈[3,12].若设t=2x+y ,式中变量x 、y 满足下列条件⎪⎩⎪⎨⎧≥≤+-≤-.1,2553,34x y x y x 求t 的最大值和最小值.分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域ABC .作一组与直线l 0平行的直线:l:2x+y=t,t ∈R (或平行移动直线l 0),从而观察t 值的变化:t=2x+y ∈[3,12].(1)从图上可看出,点(0,0)不在以上公共区域内,当x=0,y=0时,t=2x+y=0.点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线(或平行移动直线l 0)l:2x+y=t,t ∈R. 可知,当l 在l 0的右上方时,直线l 上的点(x,y)满足2x+y >0,即t >0. 而且,直线l 往右平移时,t 随之增大(引导学生一起观察此规律).在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点B (5,2)的直线l 2所对应的t 最大,以经过点A (1,1)的直线l 1所对应的t 最小.所以t m a x =2×5+2=12,t min =2×1+3=3.(2)(3)[合作探究]师 诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.t=2x+y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于t=2x+y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示. 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z=2x+y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题.那么,满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. 课堂小结用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设t=0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. 布置作业1.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1 000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6 000元,运费不超过2 000元,那么此工厂每月最多可生产多少千克产品?分析:将已知数据列成下表:甲原料(吨) 乙原料(吨) 费用限额成本1 000 1 500 6 000 运费500 400 2 000 产品90 100 解:设此工厂每月甲、乙两种原料各x 吨、y 吨,生产z 千克产品,则⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥,2000400500,600015001000,0,0y x y x y xz=90x+100y.作出以上不等式组所表示的平面区域,即可行域,如右图:由⎩⎨⎧=+=+.2045,1232y x y x 得⎪⎪⎩⎪⎪⎨⎧==.720,712y x 令90x+100y=t ,作直线:90x+100y=0,即9x+10y=0的平行线90x+100y=t ,当90x+100y=t过点M (712,720)时,直线90x+100y=t 中的截距最大. 由此得出t 的值也最大,z m a x =90×712+100×720=440.答:工厂每月生产440千克产品.2.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大?解:设每天生产A 型桌子x 张,B 型桌子y张,则⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,93,82y x y x y x 目标函数为z=2x+3y. 作出可行域:把直线l :2x+3y=0向右上方平移至l′的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=2x+3y 取得最大值.解方程⎩⎨⎧=+=+,93,82y x y x 得M 的坐标为(2,3).答:每天应生产A 型桌子2张,B 型桌子3张才能获得最大利润.3.课本106页习题3.3A 组2.第2课时推进新课师 【例1】 已知x 、y 满足不等式组⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+,0,0,2502,3002y x y x y x 试求z=300x+900y 的最大值时的整点的坐标及相应的z 的最大值.师 分析:先画出平面区域,然后在平面区域内寻找使z=300x+900y 取最大值时的整点. 解:如图所示平面区域A O BC ,点A (0,125),点B (150,0),点C 的坐标由方程组⇒⎩⎨⎧=+=+25023002y x y x ⎪⎪⎩⎪⎪⎨⎧==,3200,3350y x 得C (3350,3200), 令t=300x+900y, 即,90031tx y +-=, 欲求z=300x+900y 的最大值,即转化为求截距t[]900的最大值,从而可求t 的最大值,因直线90031t x y +-=与直线x y 31-=平行,故作x y 31-=的平行线,当过点A (0,125)时,对应的直线的截距最大,所以此时整点A 使z 取最大值,z m a x =300×0+900×125=112 500.师 【例2】 求z=600x+300y 的最大值,使式中的x 、y 满足约束条件3x+y≤300,x+2y≤250, x≥0,y≥0的整数值.师 分析:画出约束条件表示的平面区域即可行域再解. 解:可行域如图所示.四边形A O BC ,易求点A (0,126),B (100,0),由方程组⇒⎩⎨⎧=+=+25223003y x y x ⎪⎪⎩⎪⎪⎨⎧==.5191,5369y x 得点C 的坐标为(5369,5191).因题设条件要求整点(x,y)使z=600x+300y 取最大值,将点(69,91),(70,90)代入z=600x+300y ,可知当x=70,y=90时,z 取最大值为z m a x =600×70+300×900=69 000.师 【例3】 已知x 、y 满足不等式⎪⎩⎪⎨⎧≥≥≥+≥+,0,0,12,22y x y x y x 求z=3x+y 的最小值.师 分析:可先找出可行域,平行移动直线l 0:3x+y=0找出可行解,进而求出目标函数的最小值.解:不等式x+2y≥2表示直线x+2y=2上及其右上方的点的集合; 不等式2x+y≥1表示直线2x+y=1上及其右上方的点的集合. 可行域如右图所示.作直线l 0:3x+y=0,作一组与直线l 0平行的直线l:3x+y=t(t ∈R). ∵x 、y 是上面不等式组表示的区域内的点的坐标. 由图可知:当直线l:3x+y=t 通过P (0,1)时,t 取到最小值1,即z min=1.师 评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解.师 课堂练习:请同学们通过完成练习来掌握图解法解决简单的线性规划问题.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x[教师精讲]师 (1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y解:不等式组表示的平面区域如右图所示: 当x=0,y=0时,z=2x+y=0, 点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线l:2x+y=t,t ∈R.可知在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大. 所以z m a x =2×2-1=3.(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如右图所示.从图示可知直线3x+5y=t 在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t 最小,以经过点(89,817)的直线所对应的t 最大. 所以z min =3×(-2)+5×(-1)=-11,z m a x =3×89+5×817=14.[知识拓展]某工厂生产甲、乙两种产品.已知生产甲种产品1 t ,需耗A 种矿石10 t 、B 种矿石5 t 、煤4 t ;生产乙种产品需耗A 种矿石4 t 、B 种矿石4 t 、煤9 t.每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1 000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360 t 、B 种矿石不超过200 t 、煤不超过300 t ,甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大?师 分析:将已知数据列成下表:解:设生产甲、乙两种产品分别为x t 、y t ,利润总额为z 元,那么⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+;0,0,36094,20045,300410y x y x y x y x目标函数为z=600x+1 000y.作出以上不等式组所表示的平面区域,即可行域. 作直线l:600x+1 000y=0, 即直线:3x+5y=0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=600x+1 000y 取最大值. 解方程组⎩⎨⎧=+=+,36094,20045y x y x得M 的坐标为x=29360≈12.4,y=291000≈34.4. 答:应生产甲产品约12.4 t ,乙产品34.4 t ,能使利润总额达到最大.课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). (2)设t=0,画出直线l 0.(3)观察、分析,平移直线l 0,从而找到最优解. (4)最后求得目标函数的最大值及最小值.以实际问题为背景的线性规划问题其求解的格式与步骤: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义 布置作业课本第105页习题3.3A 组3、4.第3课时推进新课 师 【例5】 营养学家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06kg 的蛋白质,0.06 kg 的脂肪.1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足营养学家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少克?师 分析:将已知数据列成下表:食物/kg 碳水化合物/kg 蛋白质/kg 脂肪/kg A 0.105 0.07 0.14 B 0.105 0.14 0.07若设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,如何列式?生 由题设条件列出约束条件①⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0,y 0,x 0.06,0.07y 0.14x 0.06,0.14y 0.07x 0.075,0.105y 105x .0其目标函数z=28x+21y.二元一次不等式组①等价于②⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+.0,0,6714,6147,577y x y x y x y x师 作出二元一次不等式组②所表示的平面区域,即可行域.请同学们在草稿纸上完成,再与课本上的对照.生 考虑z=28x+21y,将它变形为2834z x y +-=,这是斜率为34-、随z 变化的一族平行直线.28z 是直线在y 轴上的截距,当28z取得最小值时,z 的值最小.当然直线与可行域相交,即在满足约束条件时目标函数z=28x+21y 取得最小值.由图可见,当直线z=28x+21y 经过可行域上的点M 时,截距z[]28最小,即z 最小. 解方程组⎩⎨⎧=+=+6714,577y x y x 得点M(71,74),因此,当71=x ,74=y 时,z=28x+21y 取最小值,最小值为16.由此可知每天食用食物A 约143克,食物B 约571克,能够满足日常饮食要求,又使花费最低,最低成本为16元.师 【例6】 在上一节课本的例题(课本95页例3)中,若根据有关部门的规定,初中每人每年可收取学费1 600元,高中每人每年可收取学费2 700元.那么开设初中班和高中班各多少个,每年收取的学费总额最多?学段 班级学生数 配备教师数 硬件建设/万元 教师年薪/万元初中 45 2 26/班 2/人 高中 40 3 54/班 2/人师 由前面内容知若设开设初中班x 个,高中班y 个,收取的学费总额为z 万元, 此时,目标函数z=0.16×45x+0.27×40y,可行域如下图把z=7.2x+10.8y 变形为54532z x y +-=,得到斜率为-32-,在y 轴上截距为545z,随z 变化的一组平行直线.由图可以看出,当直线z=7.2x+10.8y 经过可行域上的点M 时,截距545z最大,即z 最大. 解方程组⎩⎨⎧=+=+402,30y x y x 得点M (20,10),因此,当x=20,y=10时,z=7.2x+10.8y 取最大值,最大值为252.由此可知开设20个初中班和10个高中班时,每年收取的学费总额最多,为252万元. 师 【例7】 在上一节例4中(课本96页例4),若生产1车皮甲种肥料,产生的利润为10 000元,若生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?生 若设生产x 车皮甲种肥料,y 车皮乙种肥料,能够产生的利润z 万元.目标函数z=x+0.5y,可行域如下图:把z=x+0.5y 变形为y=-2x+2z,得到斜率为-2,在y 轴上截距为2z,随z 变化的一组平行直线.由图可以看出,当直线y=-2x+2z 经过可行域上的点M 时,截距2z 最大,即z 最大.解方程组⎩⎨⎧=+=+104,661518y x y x 得点M(2,2),因此当x=2,y=2时,z=x+0.5y 取最大值,最大值为3.由此可见,生产甲、乙两种肥料各2车皮,能够产生最大的利润,最大利润为3万元. [教师精讲]师 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义. 课堂小结 用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);(2)设t=0,画出直线l 0;(3)观察、分析,平移直线l 0,从而找到最优解;(4)最后求得目标函数的最大值及最小值. 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义.布置作业课本第105页习题3.3 B 组1、2、3板书设计第1课时简单线性规划问题图1课堂小结 线性规划问题的相关概念图2第2课时简单线性规划问题例1课堂小结 例3例2第3课时简单线性规划问题例5课堂小结例7例6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3.2简单的线性规划问题(第四课时)
一、设计问题,创设情境
练习1:(1)作出不等式组表示的平面区域(如图阴影部分),即可行域.
将z1=x+y变形为y=-x+z1,这是斜率为-1、随z1变化的一簇平行直线. z1是直线在y轴上的截距.当然直线要与可行域相交,即在满足约束条件时目标函数z1=x+y取得最值.
由图可见,当直线z1=x+y经过可行域上的点B时,截距z1最小.
得B点的坐标为x=,y=.
所以z1的最小值为.
同理,当直线z1=x+y与可行域的边界x+y=6重合时,z1最大为6.
(2)同理将z2=3x+y化为y=-3x+z2,这是斜率为-3的一簇平行直线.如图所示,当它过可行域上的点A(0,6)时,z2最小为6.
(3)同理将z3=x+4y化为y=-x+,它是斜率为-的一簇直线.如图所示,当直线经过可行域上的点C时,最大,即z3最大.
解方程组
得点C的坐标为x=,y=.
所以z3的最小值为.
问题1:是目标函数对应的直线的斜率与可行域中边界对应的直线的斜率的大小关系不同导致的.
练习2:解:z=ax+y可化为y=-ax+z,
因为z=ax+y在可行域中的点B处取得最小值,
所以,直线z=ax+y与可行域只有一个公共点B或与边界AB重合,或与边界BC重合.
所以-2≤-a≤-.
所以实数a的取值范围是.
练习3:学生探究一:能够把可行域中的所有“整点”都求出来.求这些最优解时,可根据可行域对x的限制条件,先令x去整数,然后代入到可行域,求出y的范围,并进一步求出y的整数值.
学生探究二:因为x,y∈N,则必有x+y∈N.又因为当x=,y=时,z1的最小值为,且直线z1=x+y应该向上方(或右方,或右上方)移动,所以相对应的z1的值大于.
所以令z1=x+y=5,即y=-x+5,代入得
即1≤x≤3,所以当或时,z1取得最小值5.
问题2:结合等量关系,将“二元”问题转化为“一元”问题求解.当可行域范围较小,包含的整点个数很少时,方法一比较简洁;反之,方法二较为简洁.
二、使用规律,解决问题
【例题】解:设需截第一种钢板x张,第二种钢板y张,则
用图形表示以上限制条件,得到如图所示的平面区域(阴影部分).
由题意,得目标函数为z=x+y.
可行域如图所示.
把z=x+y变形为y=-x+z,得到斜率为-1、在y轴上截距为z的一族平行直线.
由图能够看出,当直线z=x+y经过可行域上的点M时,截距z最小.
解方程组
得点M.而此问题中的x,y必须是整数,所以M不是最优解.经过可行域内整点且使截距z最小的直线是
y=-x+12,经过的整点是B(3,9)和C(4,8),它们是最优解.
z min=12.
答:要解得所需三种规格的钢板,且使所截两种钢板张数最小的方法有两种,第一种截法是第一种钢板3张,第二种钢板9张;第二种截法是第一种钢板4张,第二种钢板8张.两种截法都最少要两种钢板12张.
问题3:规律:(1)找出实际问题中的数量关系,根据数量关系设出合理的两个变量x,y;
(2)用x,y表示实际问题中的数量关系,得到线性约束条件和目标函数;
(3)用图解法解答线性规划问题的最优解,必要时要探求“整点”;
(4)用最优解作答实际问题.
四、变式训练,深化提升
变式训练1:解:设每天食用x kg食物A,y kg食物B,总成本为z,那么
可化为目标函数为z=28x+21y.
作出不等式组表示的平面区域,即可行域.
平移直线z=28x+21y知,当直线经过表示的点时,
z min=28×+21×=16.
答:每天食用食物A约143g,食物B约571g,能够满足日常饮食要求,又使花费最低,最低成本为16元.
问题4:条件中的不等式组对应平面区域;图形;数形结合;也和图形结合起来;表示可行域内
的点(x,y)与原点(0,0)连线的斜率;表示可行域内的点(x,y)与点(0,3)的距离.
变式训练2:解析:如图所示,可行域内的点(x,y)与原点(0,0)连线是介于直线OC和y轴之间,根据斜率的变化规律,直线OC的斜率最小为,所以的最小值为表示可行域内的点(x,y)与点P(0,3)的距离,所以结合图形能够知道点P到直线AB的距离就是的最小值为.
答案:
五、反思小结,观点提炼
问题5:数形结合;平移直线时,要根据目标函数对应直线的斜率确定该直线与可行域边界直线的相对位置关系;在图形变化的过程中,寻求对应的斜率的变化范围,等等.
当堂检测:
1. 完成一项装修工程,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2000元,设木工x人,瓦工y人,请工人的约束条件是().
A.50402000
x y
+=B.50402000
x y
+≤
C.50402000
x y
+≥D.40502000
x y
+≤
2. 已知,x y满足约束条件
04
03
28
0,0
x
y
x y
x y
≤≤
⎧
⎪≤≤
⎪
⎨
+≤
⎪
⎪≥≥
⎩
,则25
z x y
=+的最大值为().
A.19 B.18 C.17 D.16
3. 变量,x y满足约束条件
2324
212
2936
0,0
x y
x y
x y
x y
+≥
⎧
⎪+≥
⎪
⎨
+≥
⎪
⎪≥≥
⎩
则使得32
z x y
=+的值的最小的(,)
x y是().
A.(4,5)B.(3,6)C.(9,2)D.(6,4)
4.已知实数,x y满足约束条件
240
220
330
x y
x y
x y
-+≥
⎧
⎪
+-≥
⎨
⎪--≤
⎩
则目标函数2
z x y
=+的最大值为______________
5.设变量,x y满足约束条件
30
23
x y
x y
x
-+≥
⎧
⎪
+≥
⎨
⎪-≤≤
⎩
则目标函数2x y
+的最小值为______________。