2018年度丰台区高三数学(理)一模试题及标准答案

合集下载

2018年普通高等学校招生全国统一考试数学试题 理(全国卷1,解析版)

2018年普通高等学校招生全国统一考试数学试题 理(全国卷1,解析版)

2018年普通高等学校招生全国统一考试数学试题理(全国卷1)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设,则A. B. C. D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.2. 已知集合,则A. B.C. D.【答案】B【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.5. 设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.6. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.8. 设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.9. 已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.11. 已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3 C. D. 4【答案】B【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离同时求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。

2018年高考全国1卷理科数学试题及答案

2018年高考全国1卷理科数学试题及答案

理科数学试题 第1页(共9页)2018年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C .{|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC -B .1344AB AC -。

2018届高三第三次统一考试数学试题(理)及答案

2018届高三第三次统一考试数学试题(理)及答案

2017-2018学年高中三年级第三次统一考试**数学试卷(理) 第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|||2}A x Z x =∈≤,2{|1}B y y x ==-,则A B 的子集个数为( )A .4B . 8C . 16D .32 2.已知复数534iz i=+(i 是虚数单位),则z 的共轭复数z 对应的点在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限3.“lg lg m n >”是“11()()22m n<”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 4.设随机变量(1,1)XN ,其正态分布密度曲线如图所示,那么向正方形ABCD 中随机投掷10000个点,则落入阴影部分的点的个数的估计值是( ) 注:若2(,)XN μσ,则()0.6826P X μσμσ-<<+≈,(22)0.9544P X μσμσ-<<+≈.A .6038B .6587 C.7028 D .75395.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,现自上而下取第1,3,9节,则这3节的容积之和为( ) A .133升 B .176升 C.199 升 D .2512升 6.将函数()cos(2)4f x x π=-的图像向平移8π个单位,得到函数()g x 的图像,则下列说法不正确...的是( ) A .1()62g π=B .()g x 在区间57(,)88ππ上是增函数 C.2x π=是()g x 图像的一条对称轴 D .(,0)8π-是()g x 图像的一个对称中心7.设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 作倾斜角为3π的直线与y 轴和双曲线的右支分别交于点A 、B ,若11()2OA OB OF =+,则该双曲线的离心率为( )A .2B 28.在ABC △中,点P 满足2BP PC =,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若AM mAB =,(0,0)AN nAC m n =>>,则2m n +的最小值为( )A .3B .4 C.83 D .1039.若2017(12018)x -=220170122017a a x a x a x +++()x R ∈,则2017122017201820182018a a a+++的值为( )A .20172018B .1 C. 0 D .1-10.在三棱锥P ABC -中,PA ⊥平面ABC ,23BAC π∠=,3AP =,AB =Q 是边BC 上的一动点,且直线PQ 与平面ABC 所成角的最大值为3π,则三棱锥P ABC -的外接球的表面积为( ) A .45π B .57π C. 63π D .84π11.记数列{}n a 的前n 项和为n S .已知11a =,1()2()n n n n S S a n N *+-=∈,则2018S =( ) A .10093(21)- B .10093(21)2- C.20183(21)- D .20183(21)2-12.已知函数2()22ln x f x x e x=-与()2ln g x e x mx =+的图像有4个不同的交点,则实数m 的取值范围是( )A .(4,0)-B .1(,2)2 C. 1(0,)2D .(0,2)第Ⅱ卷(共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.阅读下面程序框图,运行相应程序,则输出i 的值为 .14.设x ,y 满足约束条件1020330x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,则||3y z x =+的最大值为 . 15.已知一几何体的三视图如图所示,则该几何体的体积为 .16.已知椭圆的焦点为1(,0)F c -,2(,0)F c,其中40cos c xdx π=,直线l 与椭圆相切于第一象限的点P ,且与x ,y 轴分别交于点A ,B ,设O 为坐标原点,当AOB △的面积最小时,1260F PF ∠=︒,则此椭圆的方程为 .三、解答题 :本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17. 在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c 且sin ()sin sin b B c b C a A +-=. (1)求角A 的大小; (2)若3sin sin 8B C =,且ABC △的面积为a . 18. 如图,四边形ABCD 是矩形,沿对角线AC 将ACD △折起,使得点D 在平面ABC 内的摄影恰好落在边AB 上.(1)求证:平面ACD ⊥平面BCD ; (2)当2ABAD=时,求二面角D AC B --的余弦值.19. 某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为23,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的.(1)求甲、乙两位同学总共正确作答3个题目的概率;(2)若甲、乙两位同学答对题目个数分别是m ,n ,由于甲所在班级少一名学生参赛,故甲答对一题得15分,乙答对一题得10分,求甲乙两人得分之和X 的期望. 20. 已知抛物线2:C y x =-,点A ,B 在抛物线上,且横坐标分别为12-,32,抛物线C 上的点P 在A ,B 之间(不包括点A ,点B ),过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率k 的取值范围; (2)求|||PA PQ ⋅的最大值.21. 已知函数2()(1)2x t f x x e x =--,其中t R ∈. (1)讨论函数()f x 的单调性;(2)当3t =时,证明:不等式1122()()2t f x x f x x x +-->-恒成立(其中1x R ∈,10x >). 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程已知直线l 的极坐标方程为sin()4πρθ+=O 为原点,极轴为x 轴的非负半轴建立平面直角坐标系,曲线1C 的参数方程为12cos 22sin x y ϕϕ=-+⎧⎨=-+⎩(ϕ为参数).(1)求直线l 的直角坐标方程和曲线1C 的普通方程;(2)若曲线2C 为曲线1C 关于直线l 的对称曲线,点A ,B 分别为曲线1C 、曲线2C 上的动点,点P 坐标为(2,2),求||||AP BP +的最小值. 23.选修4-5:不等式选讲已知函数()3|||31|f x x a x =-++,g()|41||2|x x x =--+. (1)求不等式()6g x <的解集;(2)若存在1x ,2x R ∈,使得1()f x 和2()g x 互为相反数,求a 的取值范围.试卷答案一、选择题1-5:CACBB 6-10: DCADB 11、12:AC二、填空题13. 4 14. 1 15.1123π+ 16.221159x y+=三、解答题17.(1)由sin ()sin sin b B c b C a A +-=,由正弦定理得22()b c b c a +-=,即222b c bc a +-=,所以2221cos 22b c a A bc +-==,∴3A π=. (2)由正弦定理simA sin sin a b c B C ==,可得sin sin a B b A =,sin sin a Cc A=, 所以1sin 2ABCS bc A =△1sin sin sin 2sin sin a B a C A A A =⋅⋅2sin sin 2sin a B C A==又3sin sin 8B C =,sin A =2=4a =. 18.(1)设点D 在平面ABC 上的射影为点E ,连接DE ,则DE ⊥平面ABC ,∴DE BC ⊥.∵四边形ABCD 是矩形,∴A B B C ⊥,∴BC ⊥平面ABD ,∴B C A D ⊥.又AD CD ⊥,所以AD ⊥平面BCD ,而AD ⊂平面ACD ,∴平面ACD ⊥平面BCD .(2)以点B 为原点,线段BC 所在的直线为x 轴,线段AB 所在的直线为y 轴,建立空间直角坐标系,如图所示.设AD a =,则2AB a =,∴(0,2,0)A a ,(,0,0)C a . 由(1)知AD BD ⊥,又2ABAD=,∴30DBA ∠=︒,60DAB ∠=︒, ∴cos AE AD DAB =⋅∠12a =,32BE AB AE a =-=,sin DE AD DAB =⋅∠=,∴3(0,)2D a,∴1(0,)2AD a =-,(,2,0)AC a a =-. 设平面ACD 的一个法向量为(,,)m x y z =,则00m AD m AC ⎧⋅=⎪⎨⋅=⎪⎩,即102220ay az ax ay ⎧-+=⎪⎨⎪-=⎩, 不妨取1z =,则y =x =(23,m =. 而平面ABC 的一个法向量为(0,0,1)n =, ∴cos ,m n ||||m nm n ⋅==14=.故二面角D AC B --的余弦值为14.19.(1)由题意可知共答对3题可以分为3种情况:甲答对1题乙答对2题;甲答对2题乙答对1题;甲答对3题乙答对0题.故所求的概率12224233621()()33C C P C C =⋅2112423361()3C C C C +⋅30343362131()()33135C C C +⋅=. (2)m 的所有取值有1,2,3.1242361(1)5C C P m C ===,2142363(2)5C C P m C ===,34361(3)5C P m C ===,故131()1232555E m =⨯+⨯+⨯=.由题意可知2(3,)3n B ,故2()323E n =⨯=.而1510X m n =+,所以()15()10()50E X E m E n =+=.20.(1)由题可知11(,)24A --,39(,)24B -,设2(,)p p P x x -,1322p x -<<,所以 21412p p x k x -+=+12p x =-+∈(1,1)-,故直线AP 斜率k 的取值范围是(1,1)-. (2)直线11:24AP y kx k =+-,直线93:042BQ x ky k ++-=,联立直线AP ,BQ 方程可知点Q 的横坐标为223422Q k k x k --=+,||PQ =()Q p x x -22341()222k k k k --=+-+2=1||)2p PA x =+)k =-,所以3||||(1)(1)PA PQ k k ⋅=-+,令3()(1)(1)f x x x =-+,11x -<<,则2'()(1)(24)f x x x =---22(1)(21)x x =--+,当112x -<<-时'()0f x >,当112x -<<时'()0f x <,故()f x 在1(1,)2--上单调递增,在1(,1)2-上单调递减. 故max 127()()216f x f =-=,即||||PA PQ ⋅的最大值为2716.21.(1)由于'()()x xf x xe tx x e t =-=-.1)当0t ≤时,0xe t ->,当0x >时,'()0f x >,()f x 递增,当0x <时,'()0f x <,()f x 递减;2)当0t >时,由'()0f x =得0x =或ln x t =.① 当01t <<时,ln 0t <,当0x >时,'()0f x >,()f x 递增,当ln 0t x <<时,'()0f x <,()f x 递减, 当ln x t <时,'()0f x >,()f x 递增; ② 当1t =时,'()0f x >,()f x 递增; ③当1t >时,ln 0t >.当ln x t >时,'()0f x >,()f x 递增, 当0ln x t <<时,'()0f x <,()f x 递减, 当0x <时,'()0f x >,()f x 递增.综上,当0t ≤时,()f x 在(,0)-∞上是减函数,在(0,)+∞上是增函数; 当01t <<时,()f x 在(,ln )t -∞,(0,)+∞上是增函数,在(ln ,0)t 上是减函数; 当1t =时,()f x 在(,)-∞+∞上是增函数;当1t >时,()f x 在(,0)-∞,(ln ,)t +∞上是增函数,在(0,ln )t 上是减函数. (2)依题意1212()()f x x f x x +--1212()()x x x x >--+,1212()()f x x x x ⇔+++1212()()f x x x x >-+-恒成立.设()()g x f x x =+,则上式等价于1212()()g x x g x x +>-, 要证明1212()()g x x g x x +>-对任意1x R ∈,2(0,)x ∈+∞恒成立,即证明23()(1)2xg x x e x x =--+在R 上单调递增,又'()31x g x xe x =-+, 只需证明310x xe x -+≥即可.令()1x h x e x =--,则'()1xh x e =-,当0x <时,'()0h x <,当0x >时,'()0h x >,∴min ()(0)0h x h ==,即x R ∀∈,1x e x ≥+,那么,当0x ≥时,2x xe x x ≥+,所以31x xe x -+≥2221(1)0x x x -+=-≥;当0x <时,1x e <,31x xe x x -+=1(3)0x e x-+>,∴310xxe x -+≥恒成立.从而原不等式成立.22.解:(1)∵sin()4πρθ+=sin cos θρθ= 即cos sin 4ρθρθ+=,∴直线l 的直角坐标方程为40x y +-=;∵12cos 22sin x y ϕϕ=-+⎧⎨=-+⎩,∴曲线1C 的普通方程为22(1)(2)4x y +++=.(2)∵点P 在直线4x y +=上,根据对称性,||AP 的最小值与||BP 的最小值相等. 曲线1C 是以(1,2)--为圆心,半径2r =的圆. ∴min 1||||AP PC r =-23==.所以||||AP BP +的最小值为236⨯=.23.解:(1)∵()g x =33,2151,24133,4x x x x x x ⎧⎪-+≤-⎪⎪---<≤⎨⎪⎪->⎪⎩,当2x ≤-时,336x -+<解得1x >-,此时无解.当124x -<≤时,516x --<,解得75x >-,即7154x -<≤. 当14x <时,336x -<,解得3x <,即134x <<,综上,()6g x <的解集为7{|3}5x x -<<. (2)因为存在1x ,2x R ∈,使得12()()f x g x =-成立.所以{|(),}y y f x x R =∈{|(),}y y g x x R =-∈≠∅.又()3|||31|f x x a x =-++|(33)(31)||31|x a x a ≥--+=+, 由(1)可知9()[,)4g x ∈-+∞,则9()(,]4g x -∈-∞.所以9|31|4a +≤,解得1351212a -≤≤. 故a 的取值范围为135[,]1212-.。

2018年北京高考卷数学(理科)试题附详细标准答案

2018年北京高考卷数学(理科)试题附详细标准答案

2018年北京高考卷数学(理科)试题附详细标准答案一、选择题(本大题共8小题,每小题5分,共40分)1. 设集合A={x|2<x<3},集合B={x|x²3x+2=0},则A∩B=()A. {1}B. {2}C. {1, 2}D. ∅2. 若复数z满足|z|=1,则|z1|的最大值为()A. 0B. 1C. √2D. 23. 在等差数列{an}中,若a1=3,a3+a5=18,则数列的前5项和为()A. 25B. 35C. 45D. 554. 已知函数f(x)=x²+2ax+a²+2(a为常数),若f(x)在区间(∞,1)上单调递减,则a的取值范围为()A. a≤0C. a≤1D. a≥15. 设平面直角坐标系xOy中,点A(2,3),点B在直线y=3上,则线段AB的中点轨迹方程为()A. y=3B. x=2C. y=3xD. x=3y6. 若sinθ+cosθ=1/2,则sinθ·cosθ的值为()A. 3/4B. 1/4C. 1/4D. 3/47. 在三角形ABC中,a=3,b=4,cosB=3/5,则三角形ABC的面积为()A. 2√6B. 3√6C. 4√6D. 5√68. 设函数f(x)=x²2ax+a²+1(a为常数),若f(x)在区间[1,+∞)上单调递增,则a的取值范围为()A. a≤1B. a≥1D. a≥0二、填空题(本大题共6小题,每小题5分,共30分)9. 已知数列{an}是等差数列,若a1=1,a3+a5=10,则a4的值为______。

10. 若复数z满足|z|=1,则|z1|+|z+1|的最大值为______。

11. 在等比数列{bn}中,b1=2,b3=16,则数列的公比为______。

12. 已知函数f(x)=x²+2x+a(a为常数),若f(x)在区间(∞,1)上单调递减,则a的取值范围为______。

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2018年北京市丰台区高考数学一模试卷(理科)

2018年北京市丰台区高考数学一模试卷(理科)

2018年北京市丰台区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集U ={x|x <5},集合A ={x|x −2≤0},则∁U A =( )A.{x|x ≤2}B.{x|x >2}C.{x|2<x <5}D.{x|2≤x <5}2. 已知命题p:∃x <1,x 2≤1,则¬p 为( )A.∀x ≥1,x 2>1B.∃x <1,x 2>1C.∀x <1,x 2>1D.∃x ≥1,x 2>13. 设不等式组{x −2y ≤0x −y +2≥0x ≥0表示的平面区域为Ω.则( )A.原点O 在Ω内B.Ω的面积是1C.Ω内的点到y 轴的距离有最大值D.若点P(x 0, y 0)∈Ω,则x 0+y 0≠04. 执行如图所示的程序框图,如果输出的a =2,那么判断框中填入的条件可以是( )A.n ≥5B.n ≥6C.n ≥7D.n ≥85. 在平面直角坐标系xOy 中,曲线C 的参数方程为{x =1+cosαy =sinα(α为参数).若以射线Ox 为极轴建立极坐标系,则曲线C 的极坐标方程为( )A.ρ=sinθB.ρ=2sinθC.ρ=cosθD.ρ=2cosθ6. 某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.23B.43C.2D.837. 某学校为了弘扬中华传统“孝”文化,共评选出2位男生和2位女生为校园“孝”之星,现将他们的照片展示在宣传栏中,要求同性别的同学不能相邻,不同的排法种数为( )A.4B.8C.12D.248. 设函数f(x)=sin(4x +π4)(x ∈[0,9π16]),若函数y =f(x)+a(a ∈R)恰有三个零点x 1,x 2,x 3 (x 1<x 2<x 3),则x 1+x 2+x 3的取值范围是( )A.[5π8,11π16)B.(5π8,11π16]C.[7π8,15π16)D.(7π8,15π16]二、填空题共6小题,每小题5分,共30分.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是z 1,z 2,则z2z 1=________.已知数列{a n }的前n 项和S n =n 2+n ,则a 3+a 4=________.己知抛物线M 的开口向下,其焦点是双曲线y 23−x 2=1的一个焦点,则M 的标准方程为________.在△ABC 中,a =2,c =4,且3sin A =2sin B ,则cos C =________.函数y =f(x)是定义域为R 的偶函数,当x ≥0时,函数f(x)的图象是由一段抛物线和一条射线组成(如图所示).①当x ∈[−1, 1]时,y 的取值范围是________;②如果对任意x ∈[a, b](b <0),都有y ∈[−2, 1],那么b 的最大值是________.已知C是平面ABD上一点,AB⊥AD,CB=CD=1.①若AB→=3AC→,则AB→∗CD→=________;②AP→=AB→+AD→,则|AP→|的最大值为________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.+1)−1.己知函数f(x)=2cos2x(sinxcosx(Ⅰ)求f(x)的定义域及最小正周期;(Ⅱ)求f(x)的单调递减区间.如图,在四棱锥P−ABCD中,平面PAB⊥平面ABCD,AB⊥BC,AD // BC,AD=3,PA=BC=2AB=2,PB=√3.(Ⅰ)求证:BC⊥PB;(Ⅱ)求二面角P一CD一A的余弦值;(Ⅲ)若点E在棱PA上,且BE // 平面PCD,求线段BE的长.某地区工会利用“健步行APP”开展健步走积分奖励活动.会员每天走5千步可获积分30分(不足5千步不积分),每多走2千步再积20分(不足2千步不积分).记年龄不超过40岁的会员为A类会员,年龄大于40岁的会员为B类会员.为了解会员的健步走情况,工会从A,B两类会员中各随机抽取m名会员,统计了某天他们健步走的步数,并将样本数据分为[3, 5),[5, 7),[7, 9),[9, 11),[11, 13),[13, 15),[15, 17),[17, 19),[19, 21]九组,将抽取的A类会员的样本数据绘制成频率分布直方图,B类会员的样本数据绘制成频率分布表.(Ⅱ)从该地区A 类会员中随机抽取3名,设这3名会员中健步走的步数在13千步以上(含13千步)的人数为x ,求x 的分布列和数学期望;(Ⅲ)设该地区A 类会员和B 类会员的平均积分分别为X 1和X 2,试比较X 1和X 2的大小(只需写出结论).已知函数f(x)=e x −a(lnx +1)(a ∈R).(Ⅰ)求曲线y =f(x)在点(1, f(1))处的切线方程;(Ⅱ)若函数y =f(x)在(12,1)上有极值,求a 的取值范围.已知点P(1,32)在椭圆C:x 2a 2+y 2b2=1(a >b >0)上,F(1, 0)是椭圆的一个焦点. (Ⅰ)求椭圆C 的方程;(Ⅱ)椭圆C 上不与P 点重合的两点D ,E 关于原点O 对称,直线PD ,PE 分别交y 轴于M ,N 两点,求证:以MN 为直径的圆被直线y =32截得的弦长是定值.已知无穷数列{a n }(a n ∈Z)的前n 项和为S n ,记S 1,S 2,…,S n 中奇数的个数为b n .(Ⅰ)若a n =n ,请写出数列{b n }的前5项;(Ⅱ)求证:“a 1为奇数,a i (i =2, 3, 4,…)为偶数”是“数列{b n }是单调递增数列”的充分不必要条件;(Ⅲ)若a i =b i ,i =1,2,3,…,求数列{a n }的通项公式.参考答案与试题解析2018年北京市丰台区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【答案】C【考点】补集及其运算【解析】先解出集合A={x|x≤2},然后进行补集的运算即可.【解答】A={x|x≤2},U={x|x<5};∴∁U A={x|2<x<5}.2.【答案】C【考点】命题的否定【解析】运用特称命题的否定为全称命题,以及量词和不等号的变化,即可得到所求命题的否定.【解答】由特称命题的否定为全称命题,可得命题p:∃x<1,x2≤1,的否定为¬p:∀x<1,x2>1,3.【答案】A【考点】简单线性规划【解析】画出约束条件的可行域,判断选项的正误即可.【解答】不等式组{x−2y≤0x−y+2≥0x≥0表示的可行域如图:显然O在可行域内部.4.【答案】C【考点】程序框图【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,可得答案.【解答】解:第1次执行循环体后,a =12,n =2,不满足退出循环的条件;第2次执行循环体后,a =−1,n =3,不满足退出循环的条件;第3次执行循环体后,a =2,n =4,满足退出循环的条件;第4次执行循环体后,a =12,n =5,不满足退出循环的条件;第5次执行循环体后,a =−1,n =6,不满足退出循环的条件;第6次执行循环体后,a =2,n =7,满足退出循环的条件;……第3k 次执行循环体后,a =2,n =3k +1,满足退出循环的条件;第3k +1次执行循环体后,a =12,n =3k +2,不满足退出循环的条件;第3k +2次执行循环体后,a =−1,n =3k +3,不满足退出循环的条件; ……若输出的a =2,则最后满足条件的n 值应为3的倍数多1,故选C .5.【答案】D【考点】圆的参数方程圆的极坐标方程【解析】曲线C 的参数方程消去参数,求出曲线的直角坐标方程,由此能求出曲线C 的极坐标方程.【解答】解:∵ 曲线C 的参数方程为{x =1+cosαy =sinα(α为参数). ∴ 曲线C 的直角坐标方程为(x −1)2+y 2=1,即x 2+y 2−2x =0,∴ 曲线C 的极坐标方程为ρ2−2ρcosθ=0,即ρ=2cosθ.故选D .6.【答案】A【考点】由三视图求体积柱体、锥体、台体的体积计算【解析】根据三视图判断三棱锥的底面形状和高,代入体积公式计算即可.【解答】由主视图和侧视图可知棱锥的高ℎ=2,结合侧视图和俯视图可知三棱锥的底面ABC 为直角三角形,BC =1,AB =2,AB ⊥BC,∴三棱锥的体积V=13×12×1×2×2=23,7.【答案】B【考点】排列、组合及简单计数问题【解析】根据题意,分2种情况讨论:①,四人按男女男女排列,②,四人按女男女男排列,分别计算每一种情况的排法数目,由加法原理计算可得答案.【解答】根据题意,分2种情况讨论:①,四人按男女男女排列,两名男生有A22=2种排法,两名女生有A22=2种排法,此时有2×2=4种排法,②,四人按女男女男排列,同理可得此时有4种排法则一共有4+4=8种排法;8.【答案】A【考点】正弦函数的图象【解析】根据函数f(x)=sin(4x+π4)(x∈[0,9π16]),求解内层函数的范围,可得f(x)的图象,函数y=f(x)+a(a∈R)恰有三个零点,转化为f(x)与函数y=−a有三个交点问题.即可求解.【解答】函数f(x)=sin(4x+π4)(x∈[0,9π16]),可得π4≤4x+π4≤5π2,令4x+π4=t,函数y=f(t)+a(a∈R)恰有三个零点,转化为f(t)与函数y=−a有三个交点问题.根据三角函数图象的性质可得:12(t1+t2)=π2,9π4≤t3<5π2.∴(t1+t2)=π,即x1+x2=π8那么9π4≤4x3+π4<5π2,可得:π2≤x3<9π16则x1+x2+x3的取值范围是[5π8, 11π16).二、填空题共6小题,每小题5分,共30分.【答案】−1−2i【考点】复数的运算【解析】由图形可得:A点表示的复数为i,B点表示的复数为2−i,利用复数的运算法则即可得出.【解答】由图形可得:A点表示的复数为i,B点表示的复数为2−i,∴z2z1=2−ii=(2−i)(−i)i∗(−i)=−1−2i,【答案】14【考点】数列递推式【解析】n≥2时,a n=S n−S n−1,代入即可得出.【解答】n≥2时,a n=S n−S n−1=n2+n−[(n−1)2+(n−1)]=2n.∴a3+a4=2×3+2×4=(14)【答案】x2=−8y【考点】双曲线的标准方程【解析】由双曲线方程求出其焦点坐标,可得抛物线焦点坐标,则抛物线方程可求.【解答】由双曲线y23−x2=1,得a2=3,b2=1,∴c2=a2+b2=4,得c=(2)∴双曲线y23−x2=1的下焦点F(0, −2),即抛物线M的焦点为(0, −2),可得p2=2,p=(4)∴M的标准方程为x2=−2py=−8y.【答案】−1 4【考点】余弦定理【解析】根据题意,由正弦定理可得3a=2b,分析可得a、b的值,由余弦定理即可得答案.【解答】根据题意,在△ABC中,3sin A=2sin B,则有3a=2b,又由a=2,则b=3,则cosC=a2+b2−c22ab =4+9−162×2×3=−14;【答案】[1, 2],−2【考点】由y=Asin(ωx+φ)的部分图象确定其解析式【解析】①根据f(x)是偶函数,图象关于y轴对称,结合图象可得y的取值范围.②当x≥0时,设抛物线的方程为y=ax2+bx+c,求解解析式,根据f(x)是定义域为R的偶函数,可得x<0的解析式,令y=1,可得x对应的值,结合图象可得b的最大值.【解答】根据f(x)是偶函数,图象关于y轴对称,当x∈[−1, 1]时,值域为x∈[0, 1]时相同,可得y的取值范围是[1, 2].(1)当x≥0时,设抛物线的方程为f(x)=ax2+bx+c,图象过(0, 1),(1, 2),(3, −2),带入计算可得:a=−1,b=2,c=1,∴f(x)=−x2+2x+1,当x<0时,−x>(0)∴f(−x)=−x2−2x+1即f(x)=−x2−2x+(1)令y=1,可得1=−x2−2x+(1)解得:x=−(2)结合图象可得b的最大值为−(2)故答案为:[1, 2];−(2)【答案】−34,2【考点】平面向量数量积的性质及其运算律【解析】根据向量的几何意义作出几何图形,得出各点的位置关系,从而得出答案.【解答】①∵AB→=3AC→,∴C为AB的靠近A的三等分点,∴AB=32BC=32,AC=12BC=12,∵AD⊥AB,CD=1,∴∠ACD=60∘,∴AB→∗CD→=32×1×cos120∘=−34.②∵CB=CD=1,∴C位于BD的中垂线上,∴当C为BD的中点时,BD取得最大值(2)∵AB⊥AD,∴|AP→|=|AB→+AD→|=|AB→−AD→|=BD≤(2)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.【答案】(Ⅰ)由cosx≠0,即x≠π2+kπ,∴f(x)的定义域为{x|x≠π2+kπ, k∈Z}.函数f(x)=2cos2x(sinxcosx+1)−1=2sinxcosx+2cos2x−1=sin2x+cos2x=√2sin(2x+π4).∴f(x)的最小正周期T=2πω=2π2=π.由(Ⅰ)知f(x)=√2sin(2x+π4).由2kπ+π2≤2x+π4≤2kπ+3π2,k∈Z.可得:kπ+π8≤x≤kπ+5π8∴f(x)的单调递减区间为[kπ+π8, kπ+5π8],k∈Z.【考点】三角函数中的恒等变换应用【解析】(Ⅰ)根据分式中分母不能为0,可得定义域,利用二倍角公式化简即可f(x)的最小正周期;(Ⅱ)根据三角函数的单调性即可求解f(x)的单调递减区间.【解答】(Ⅰ)由cosx≠0,即x≠π2+kπ,∴f(x)的定义域为{x|x≠π2+kπ, k∈Z}.函数f(x)=2cos2x(sinxcosx+1)−1=2sinxcosx+2cos2x−1=sin2x+cos2x=√2sin(2x +π4). ∴ f(x)的最小正周期T =2πω=2π2=π.由(Ⅰ)知f(x)=√2sin(2x +π4). 由2kπ+π2≤2x +π4≤2kπ+3π2,k ∈Z .可得:kπ+π8≤x ≤kπ+5π8∴ f(x)的单调递减区间为[kπ+π8, kπ+5π8],k ∈Z .【答案】证明:(Ⅰ)∵ 在四棱锥P −ABCD 中,平面PAB ⊥平面ABCD ,AB ⊥BC ,AD // BC ,AD =3,PA =BC =2AB =2,PB =√3.∴ PA 2=PB 2+AB 2,∴ PB ⊥AB ,∴ PB ⊥平面ABCD , ∵ BC ⊂平面ABCD ,∴ BC ⊥PB .(Ⅱ)以B 为原点,BC 为x 轴,BA 为y 轴,BP 为z 轴,建立空间直角坐标系, A(0, 1, 0),C(2, 0, 0),D(3, 1, 0),P(0, 0, √3), CD →=(1, 1, 0),CP →=(−2, 0, √3),CA →=(−2, 1, 0), 设平面PCD 的法向量n →=(x, y, z),则{n →∗CD →=x +y =0n →∗CP →=−2x +√3z =0 ,取x =√3,得n →=(√3,−√3, 2), 平面CDA 的法向量m →=(0, 0, 1), 设二面角P −CD −A 的平面角为θ, 则cosθ=|m →∗n →||m →|∗|n →|=√10=√105. ∴ 二面角P −CD −A 的余弦值为√105.(Ⅲ)平面PCD 的法向量n →=(√3,−√3, 2),设E(a, b, c),PE →=λPA →,则(a, b, c −√3)=(0, λ, −√3λ), ∴ E(0, λ, √3−√3λ),BE →=(0, λ,√3−√3λ), ∵ 点E 在棱PA 上,且BE // 平面PCD ,∴ BE →⋅n →=0−√3λ+2√3−2√3λ=0,解得λ=23, ∴ E(0, 23, √33),∴ 线段BE 的长|BE →|=(23)(√33)=√73.【考点】直线与平面平行二面角的平面角及求法 【解析】(Ⅰ)推导出PB ⊥AB ,从而PB ⊥平面ABCD ,由此能证明BC ⊥PB .(Ⅱ)以B 为原点,BC 为x 轴,BA 为y 轴,BP 为z 轴,建立空间直角坐标系,利用向量法能求出二面角P −CD −A 的余弦值.(Ⅲ)求出平面PCD 的法向量n →=(√3,−√3, 2),由点E 在棱PA 上,且BE // 平面PCD ,求出E(0, 23, √33),由此能求出线段BE 的长.【解答】证明:(Ⅰ)∵ 在四棱锥P −ABCD 中,平面PAB ⊥平面ABCD ,AB ⊥BC ,AD // BC ,AD =3,PA =BC =2AB =2,PB =√3.∴ PA 2=PB 2+AB 2,∴ PB ⊥AB ,∴ PB ⊥平面ABCD , ∵ BC ⊂平面ABCD ,∴ BC ⊥PB .(Ⅱ)以B 为原点,BC 为x 轴,BA 为y 轴,BP 为z 轴,建立空间直角坐标系, A(0, 1, 0),C(2, 0, 0),D(3, 1, 0),P(0, 0, √3), CD →=(1, 1, 0),CP →=(−2, 0, √3),CA →=(−2, 1, 0), 设平面PCD 的法向量n →=(x, y, z),则{n →∗CD →=x +y =0n →∗CP →=−2x +√3z =0 ,取x =√3,得n →=(√3,−√3, 2), 平面CDA 的法向量m →=(0, 0, 1), 设二面角P −CD −A 的平面角为θ, 则cosθ=|m →∗n →||m →|∗|n →|=√10=√105. ∴ 二面角P −CD −A 的余弦值为√105.(Ⅲ)平面PCD 的法向量n →=(√3,−√3, 2),设E(a, b, c),PE →=λPA →,则(a, b, c −√3)=(0, λ, −√3λ), ∴ E(0, λ, √3−√3λ),BE →=(0, λ,√3−√3λ), ∵ 点E 在棱PA 上,且BE // 平面PCD ,∴ BE →⋅n →=0−√3λ+2√3−2√3λ=0,解得λ=23, ∴ E(0, 23, √33),∴ 线段BE 的长|BE →|=(23)(√33)=√73.【答案】(Ⅰ)∵ 10m =0.01,∴ m =10(00) ∵ nm =0.2,∴ n =200,∴ a =400,∴ m =1000,a =4(00)(Ⅱ)由频率分布直方图得从该地区A 类会员中随机抽取1名会员, 健步走的步数在13千步以上(含13千步)的概率为25, ∴ X ∼N(3, 25),P(X =0)=C 30×(35)3(25)0=27125, P(X =1)=C 31×(35)2×(25)=54125, P(X =2)=C 32×(35)×(25)2=36125, P(X =3)=C 33×(35)0×(25)3=8125,∴ X 的分布列为:∵ X ∼N(3, 25),∴ E(X)=3×25=65.(Ⅲ)该地区A 类会员和B 类会员的平均积分分别为X 1和X 2,则X 1<X 2.【考点】离散型随机变量及其分布列 【解析】(Ⅰ)由A 类会员的样本数据绘制成的频率分布直方图和B 类会员的样本数据绘制成的频率分布表,能求出m ,a .(Ⅱ)由频率分布直方图得从该地区A 类会员中随机抽取1名会员,健步走的步数在13千步以上(含13千步)的概率为25,X ∼N(3, 25),由此能求出X 的分布列和数学期望. (Ⅲ)该地区A 类会员和B 类会员的平均积分分别为X 1和X 2,则X 1<X 2.【解答】(Ⅰ)∵ 10m =0.01,∴ m =10(00)∵ nm =0.2,∴ n =200,∴ a =400,∴ m =1000,a =4(00)(Ⅱ)由频率分布直方图得从该地区A 类会员中随机抽取1名会员, 健步走的步数在13千步以上(含13千步)的概率为25, ∴ X ∼N(3, 25),P(X =0)=C 30×(35)3(25)0=27125, P(X =1)=C 31×(35)2×(25)=54125, P(X =2)=C 32×(35)×(25)2=36125, P(X =3)=C 33×(35)0×(25)3=8125,∴ X 的分布列为:∵ X ∼N(3, 25),∴ E(X)=3×25=65.(Ⅲ)该地区A 类会员和B 类会员的平均积分分别为X 1和X 2,则X 1<X 2.【答案】(Ⅰ)f′(x)=e x −ax ,故f′(1)=e −a ,f(1)=e −a ,故切线方程是:y −e +a =(e −a)(x −1), 即y =(e −a)x ;(Ⅱ)若函数y =f(x)在(12,1)上有极值, 则f′(x)=e x −ax 在(12,1)上有零点, 即y =e x 和y =ax 在(12, 1)有交点,画出函数即y =e x 和y =ax 的图象,如图示:显然a >0,结合图象得:f′(12)⋅f′(1)<0,解得:√e 2<a <e . 【考点】利用导数研究函数的极值 【解析】(Ⅰ)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;(Ⅱ)问题转化为f′(x)=e x −ax 在(12,1)上有零点,结合图象得到关于a 的不等式,解出即可. 【解答】(Ⅰ)f′(x)=e x −ax ,故f′(1)=e −a ,f(1)=e −a ,故切线方程是:y −e +a =(e −a)(x −1), 即y =(e −a)x ;(Ⅱ)若函数y =f(x)在(12,1)上有极值, 则f′(x)=e x −ax 在(12,1)上有零点, 即y =e x 和y =ax 在(12, 1)有交点,画出函数即y =e x 和y =ax 的图象,如图示:显然a >0,结合图象得:f′(12)⋅f′(1)<0,解得:√e 2<a <e .【答案】(I )由题意可得:1a 2+94b 2=1,c =1,a 2=b 2+c 2, 联立解得a 2=4,b 2=(3) ∴ 椭圆C 的方程为:x 24+y 23=(1)(II)证明:设直线DE 的方程为:ty =x ,D(x 1, y 1),E(x 2, y 2).联立{ty =x x 24+y 23=1 ,可得:y 2=123t 2+4. D(√3t√3t 2+4√3√3t 2+4),E(√3t √3t 2+4√3√3t 2+4). 直线PD 的方程为:y −32=√3−3√3t 2+44√3t−2√3t 2+4−1),可得M(0, 32√3−3√3t 2+44√3t−2√3t 2+4).直线PE 的方程为:y −32=√3+3√3t 2+443t+2√3t 2+4−1),可得N(0, 32√3+3√3t 2+443t+2√3t 2+4).以MN 为直径的圆的方程为:x 2+(y −32+√3−3√3t 2+44√3t−2√3t 2+4)(y−32√3+3√3t 2+44√3t+2√3t 2+4)=0,∴ 把y =32代入可得:x 2+48−9(3t 2+4)48t 2−4(3t 2+4)=(0)即x 2=2736. 解得x =±3√34. 因此被直线y =32截得的弦长=3√32是定值.【考点】 椭圆的定义 【解析】(I )由题意可得:1a 2+94b 2=1,c =1,a 2=b 2+c 2,联立解出即可得出. (II)设直线DE 的方程为:ty =x ,D(x 1, y 1),E(x 2, y 2).联立{ty =x x 24+y 23=1,可得:y 2=123t 2+4.可得D(√3t √3t 2+4√3√3t 2+4,E(√3t √3t 2+4√3√3t 2+4.利用点斜式可得直线PD 的方程,可得M(0, 32−√3−3√3t 2+44√3t−2√3t 2+4).利用点斜式可得直线PE 的方程,可得N(0, 32−√3+3√3t 2+44√3t+2√3t 2+4).以MN 为直径的圆的方程为:x 2+(y −32√3−3√3t 2+44√3t−2√3t 2+4)(y−32+√3+3√3t 2+44√3t+2√3t 2+4)=0,把y =32代入即可证明.【解答】(I )由题意可得:1a 2+94b 2=1,c =1,a 2=b 2+c 2, 联立解得a 2=4,b 2=(3) ∴ 椭圆C 的方程为:x 24+y 23=(1)(II)证明:设直线DE 的方程为:ty =x ,D(x 1, y 1),E(x 2, y 2).联立{ty =x x 24+y 23=1 ,可得:y 2=123t 2+4. D(√3t √3t 2+4√3√3t 2+4),E(√3t √3t 2+4√3√3t 2+4).直线PD 的方程为:y −32=√3−3√3t 2+44√3t−2√3t 2+4−1),可得M(0, 32√3−3√3t 2+44√3t−2√3t 2+4).直线PE 的方程为:y −32=√3+3√3t 2+443t+2√3t 2+4−1),可得N(0, 32√3+3√3t 2+443t+2√3t 2+4).以MN 为直径的圆的方程为:x 2+(y −32+√3−3√3t 2+44√3t−2√3t 2+4)(y−32√3+3√3t 2+44√3t+2√3t 2+4)=0,∴ 把y =32代入可得:x 2+48−9(3t 2+4)48t 2−4(3t 2+4)=(0)即x 2=2736. 解得x =±3√34. 因此被直线y =32截得的弦长=3√32是定值.【答案】 (I)a n =n ,S n =n(n+1)2.∴ S 1=1,S 2=3,S 3=6,S 4=10,S 5=15. ∴ b 1=1,b 2=2,b 3=2,b 4=2,b 5=3. 证明:(II)(充分性)∵ a 1是奇数,a i (i =2, 3, 4…)为偶数, ∴ 对于任意i ∈N ∗,S i 都是奇数, ∴ b n =n ,∴ 数列{b n }是单调递增数列. (不必要性)当数列{a n }中只有a 2是奇数,其余项都是偶数时,S 1为偶数,S i (i =2, 3, 4…)均为奇数, ∴ b n =n −1,数列{b n }是单调递增数列,∴ “a 1为奇数,a i (i =2, 3, 4,…)为偶数”是“数列{b n }是单调递增数列”的不必要条件. 综上,:“a 1为奇数,a i (i =2, 3, 4,…)为偶数”是“数列{b n }是单调递增数列”的充分不必要条件.(Ⅲ)(1)当a k 为奇数时,若S k 为偶数,若a k+1是奇数,则S k+1为奇数,∴ b k+1=b k +1=a k +1为偶数,与a k+1=b k+1矛盾; 若a k+1为偶数,则S k+1为偶数,∴ b k+1=b k =a k 为奇数,与a k+1=b k+1矛盾. ∴ 当a k 为奇数时,S k 不能为偶数; (2)当a k 为偶数,若S k 为奇数,若a k+1为奇数,则S k+1为偶数,∴ b k+1=b k =a k 为偶数,与a k+1=b k+1矛盾,若a k+1为偶数,则S k+1为奇数,∴ b k+1=b k +1=a k +1为奇数,与a k+1=b k+1矛盾, ∴ 当a k 为偶数时,S k 不能是奇数. 综上,a k 与S k 同奇偶,∵ a 1=b 1=S 1为偶数,且0≤b 1≤1,∴ b 1=a 1=0, ∵ a 2=b 2≤b 1+1=1,且b 2≥0,∴ b 2=a 2=0, 以此类推,得到a n =0. 【考点】 数列递推式 【解析】(I )推导出a n =n ,S n =n(n+1)2.由此能写出数列{b n }的前5项.(II)先证充分性,推导出b n =n ,从而数列{b n }是单调递增数列;再证不必要性,当数列{a n }中只有a 2是奇数,其余项都是偶数时,S 1为偶数,S i (i =2, 3, 4…)均为奇数,b n=n−1,数列{b n}是单调递增数列,由此能证明:“a1为奇数,a i(i=2, 3, 4,…)为偶数”是“数列{b n}是单调递增数列”的充分不必要条件.(Ⅲ)当a k为奇数时,推导出S k不能为偶数;当a k为偶数,推导出S k不能是奇数,从而a k与S k同奇偶,由此得到a n=0.【解答】(I)a n=n,S n=n(n+1).2∴S1=1,S2=3,S3=6,S4=10,S5=15.∴b1=1,b2=2,b3=2,b4=2,b5=3.证明:(II)(充分性)∵a1是奇数,a i(i=2, 3, 4…)为偶数,∴对于任意i∈N∗,S i都是奇数,∴b n=n,∴数列{b n}是单调递增数列.(不必要性)当数列{a n}中只有a2是奇数,其余项都是偶数时,S1为偶数,S i(i=2, 3, 4…)均为奇数,∴b n=n−1,数列{b n}是单调递增数列,∴ “a1为奇数,a i(i=2, 3, 4,…)为偶数”是“数列{b n}是单调递增数列”的不必要条件.综上,:“a1为奇数,a i(i=2, 3, 4,…)为偶数”是“数列{b n}是单调递增数列”的充分不必要条件.(Ⅲ)(1)当a k为奇数时,若S k为偶数,若a k+1是奇数,则S k+1为奇数,∴b k+1=b k+1=a k+1为偶数,与a k+1=b k+1矛盾;若a k+1为偶数,则S k+1为偶数,∴b k+1=b k=a k为奇数,与a k+1=b k+1矛盾.∴当a k为奇数时,S k不能为偶数;(2)当a k为偶数,若S k为奇数,若a k+1为奇数,则S k+1为偶数,∴b k+1=b k=a k为偶数,与a k+1=b k+1矛盾,若a k+1为偶数,则S k+1为奇数,∴b k+1=b k+1=a k+1为奇数,与a k+1=b k+1矛盾,∴当a k为偶数时,S k不能是奇数.综上,a k与S k同奇偶,∵a1=b1=S1为偶数,且0≤b1≤1,∴b1=a1=0,∵a2=b2≤b1+1=1,且b2≥0,∴b2=a2=0,以此类推,得到a n=0.。

2018年高考全国一卷理科数学答案及解析

2018年高考全国一卷理科数学答案及解析

2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。

1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。

B 、新农村建设后,其他收入增加了一倍以上。

C 、新农村建设后,养殖收入增加了一倍。

D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。

2018届北京市丰台区高三年级一模数学(理)试题(解析版)

2018届北京市丰台区高三年级一模数学(理)试题(解析版)

2018届北京市丰台区高三年级一模数学(理)试题一、单选题1.已知全集U={x|x<5},集合{}|20 A x x =-≤,则U C A = A. {}| 2 x x ≤ B. {}| 2 x x C. {}|2 5 x x D. {}|2 5 x x ≤【答案】C【解析】 由题意,集合{}{}|20 | 2 A x x x x =-≤=≤,所以U C A = {}|2 5 x x <<,故选C .2.已知命题p : ∃x <1, 21x ≤,则p ⌝为 A. ∀x ≥1, 21x B. ∃x <1, 21xC. ∀x <1, 21x D. ∃x ≥1, 21x【答案】C【解析】 根据全称命题与存在性命题之间的关系,可知命题2:1,1p x x ∃<≤的否定为21,1x x ∀,故选C .3.设不等式组-20{+20 0x y x y x ≤-≥≥表示的平面区域为Ω.则A. 原点O 在Ω内B. Ω的面积是1C. Ω内的点到y 轴的距离有最大值D. 若点P(x 0,y 0) ∈Ω,则x 0+y 0≠0 【答案】A【解析】 由题意,画出不等式组坐标表示的平面区域, 如图所示,原点O 在Ω内是成立的;区域Ω的面积不确定,所以不成立, 区域Ω到y 轴的距离无最大值. 令z x y =+,即y x z =-+,当取原点()0,0O 时,目标函数z x y =+取得最小值,此时min 0z =,故选A .4.执行如图所示的程序框图,如果输出的a=2,那么判断框中填入的条件可以是A. n≥5B. n≥6C. n≥7D. n≥8 【答案】C【解析】 执行如图所示的程序框图, 可得:第一循环1,22a n ==;第二循环1,3a n =-=;第三循环2,4a n ==; 第四循环1,52a n ==;第五循环1,6a n =-=;第六循环2,7a n ==, 此时输出2a =,所以判断框应填入7n ≥,故选C .5.在平面直角坐标系xO y 中,曲线C 的参数方程为1{x cos y sin αα=+=(α为参数).若以射线Ox 为极轴建立极坐标系,则曲线C 的极坐标方程为 A. ρ=sin θ B. ρ=2sin θ C. ρ=cos θ D. ρ=2cos θ 【答案】D 【解析】 由1{x cos y sin αα=+=(α为参数)得曲线C 普通方程为()2211x y -+=,又由{x cos y sin ρθρθ==,可得曲线C 的极坐标方程为2cos ρθ=,故选D .6.某三棱锥的三视图如图所示,则该三棱锥的体积为A.23 B. 43 C. 2 D. 83【答案】A【解析】 由给定的三视图可知,该几何体表示一个底面为一个直角三角形,且两直角边分别为1和2,所以底面面积为11212S =⨯⨯= 高为2h =的三棱锥,所以三棱锥的体积为11212333V Sh ==⨯⨯=,故选A .7.某学校为了弘扬中华传统“孝”文化,共评选出2位男生和2位女生为校园“孝”之星,现将他们的照片展示在宣传栏中,要求同性别的同学不能相邻,不同的排法种数为A. 4B. 8C. 12D. 24 【答案】B【解析】 由题意,现对两位男生全排列,共有222A =种不同的方式,其中两个男生构成三个空隙,把两位女生排在前两个空隙或后两个空隙中,再进行全排列,共有2224A ⨯=,所以满足条件的不同的排法种数共有248⨯=种,故选B . 8.设函数()9=sin(4x+)0,416f x x ππ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,若函数()()y f x a a R =+∈恰有三个零点x 1, x 2, x 3 (x 1 <x 2 <x 3),则x 1 + x 2 + x 3的取值范围是A. 511,816ππ⎡⎫⎪⎢⎣⎭B. 511,816ππ⎛⎤⎥⎝⎦ C. 715,816ππ⎡⎫⎪⎢⎣⎭ D. 715,816ππ⎛⎤⎥⎝⎦ 【答案】A 【解析】 由90,16x π⎡⎤∈⎢⎥⎣⎦,则54,442x πππ⎡⎤+∈⎢⎥⎣⎦, 又由函数()y f x a =+恰有三个零点123,,x x x ,即()y f x =与y a =-的图象有三个交点, 其中2344344x x πππ+++=,可得2358x x π+=, 又14,442x πππ⎡⎫+∈⎪⎢⎣⎭,解得1016x π≤<,所以123511816x x x ππ≤++<,即123511,816x x x ππ⎡⎫++∈⎪⎢⎣⎭,故选A .点睛:本题考查了三角函数的图象与性质及函数与方程的应用,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,根据三角函数的基本形式即()sin y A wx ϕ=+,后利用三角函数的性质求解.二、填空题9.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A,B 对应的复数分别是12,z z ,则21z z =_______.【答案】12i --【解析】 由题意,根据复数的表示可知12,2z i z i ==-,所以()()()212212i i z i i z i i i -⋅--===--⋅-. 10.已知数列{}n a 的前n 项和n S =2n +n ,则34a a +=______.【答案】14 【解析】由题意可知,数列{}n a 满足()()221112n nna S S n n n nn-⎡⎤=-=+--+-=⎣⎦, 所以34232414a a +=⨯+⨯=.11.己知抛物线M 的开口向下,其焦点是双曲线2213y x -=的一个焦点,则M 的标准方程为______.【答案】28x y =-【解析】 由双曲线的方程2213y x -=,可知2c == ,所以其下焦点的坐标为()0,2F -,设抛物线的方程为22(0)x py p =->,则22p=,所以4p =, 所以抛物线的方程为28x y =-.点睛:本题考查了圆锥曲线的几何性质的应用及抛物线方程的求解,其中解答中涉及到双曲线的标准方程及其简单的几何性质、抛物线的标准方程和焦点坐标的应用,其中熟记圆锥曲线的几何性质是解答的关键.12.在△ABC 中,a=2,c=4,且3sin A =2sin B,则cos C=______. 【答案】14-【解析】 由题意3sin 2sin A B =,根据正弦定理可知32a b =,又2a =,所以332b a ==, 在ABC ∆中,由余弦定理可得2222222341cos 22234a b c C ab +-+-===-⨯⨯. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.13.函数y = f(x)是定义域为R 的偶函数,当x≥0时,函数f(x)的图象是由一段抛物线和一条射线组成(如图所示).①当[]1,1x ∈-时,y 的取值范围是______;②如果对任意[],x a b ∈ (b <0),都有[]2,1y ∈-,那么b 的最大值是______. 【答案】 []1,2 2-【解析】 由图象可知,当0x =时,函数在[]1,1-上的最小值min 1y =, 当1x =±时,函数在[]1,1-上的最小值max 2y =, 所以当[]1,1x ∈-,函数()y f x =的值域为[]1,2;当[]0,3x ∈时,函数()()212f x x =--+,当[)3,x ∈+∞时,函数()5f x x =-, 当()1f x =时, 2x =或7x =, 又因为函数为偶函数,图象关于y 轴对称,所以对于任意[],(0)x a b b ∈<,要使得[]2,1y ∈-,则a R ∈, 7b =-或2b =-, 则实数b 的最大值是2b =-.点睛:本题主要考查函数的奇偶性和函数的图象的应用,意在考查考生对概念的理解能力与应用能力、数形结合能力,求解此类函数图象判断题的关键:一是从已知函数图象过特殊点,列出关于参数的方程,从而求出参数的值;二是利用特殊点法来判断图象.本题还可以利用函数的单调性来判断函数的图象.总之,有关函数的图象判断题,利用“特殊点”与“函数的性质”,即可轻松破解.14.已知C 是平面ABD 上一点, AB AD ⊥, 1CB CD ==. ①若3AB AC =,则AB CD ⋅=____;②若AP AB AD =+,则AP 的最大值为____. 【答案】 34-2 【解析】 由题意,(1)中,因为3AB AC =,所以C 为线段AB 的三等分点, 因为1CB CD ==,所以31,22AB AC ==,如图所示, 则()3130cos 224AB CD AB AD AC AB AD AB AC π⋅=⋅-=⋅-⋅=-⨯=-,(2)中,因为AP AB AD =+, 所以222222AP AB AD AB AD AB AD AB AD BD BD =+=++⋅=+==,如图所示,当点C 是线段BD 的中点时,此时BD 取得最大值, 此时最大值为2BD BC CB =+=,所以AP 的最大值为2.点睛:本题考查了平面向量的线性运算法则和向量的数量积的运算,对于平面向量的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.三、解答题15.己知函数()2sin =2cos 11cos x f x x x ⎛⎫+-⎪⎝⎭(Ⅰ)求f(x)的定义域及最小正周期; (Ⅱ)求f(x)的单调递减区间. 【答案】(1) π{|π,}2x x k k Z ≠+∈, πT =;(2) ()f x 的单调递减区间为ππ[π,π)82k k ++, π5π(π,π]28k k ++ ()k Z ∈.【解析】试题分析:(Ⅰ)根据三角恒等变换的公式,化简()π24f x x ⎛⎫=+ ⎪⎝⎭,即可得到函数的最小正周期;(Ⅱ)根据三角函数的图象与性质,即可得到函数的单调区间. 试题解析:(Ⅰ)由 cos 0x ≠得, ππ2x k ≠+, ()k Z ∈, 所以()f x 的定义域为π{|π,}2x x k k Z ≠+∈.因为()2sin 21cos 1cos x f x x x ⎛⎫=+⋅-⎪⎝⎭22sin cos 2cos 1x x x =+-sin2cos2x x =+ π24x ⎛⎫=+ ⎪⎝⎭.所以()f x 的最小正周期为2ππ2T ==. (Ⅱ)由 ππ3π2π22π242k x k +≤+≤+, 可得 π5πππ88k x k +≤≤+, 所以()f x 的单调递减区间为ππ[π,π)82k k ++, π5π(π,π]28k k ++ ()k Z ∈. 16.如图,在四棱锥P 一ABCD 中,平面PAB⊥平面ABCD, AB⊥BC, AD//BC,AD=3,PA=BC=2AB=2,PB(Ⅰ)求证:BC⊥PB;(Ⅱ)求二面角P 一CD 一A 的余弦值;(Ⅲ)若点E 在棱PA 上,且BE//平面PCD ,求线段BE 的长.【答案】(1)见解析;(2);(3) 【解析】试题分析:(Ⅰ)根据面面垂直的性质定理,证得BC ⊥平面PAB ,进而证得所以BC ⊥PB ;(Ⅱ)建立空间直角坐标系B xyz -,得到向量,CD PC 的坐标,再得到平面ABCD 的一个法向量为()0,0,1n =,利用向量的夹角公式,即可得到二面角的余弦值;(Ⅲ)由点E 在棱PA ,所以A E A P λ=,得到所以,)AE λ=(,()BE λ=-,再根据BE 与平面PCD 的法向量的数量积等于零,即可求解λ的值. 试题解析:(Ⅰ)证明:因为平面PAB ⊥平面ABCD , 且平面PAB ⋂平面ABCD AB =, 因为BC ⊥AB ,且BC ⊂平面ABCD 所以BC ⊥平面PAB . 因为PB ⊂平面PAB , 所以BC ⊥PB .(Ⅱ)解:在△PAB 中,因为2PA =, PB = 1AB =, 所以222PA AB PB =+,所以PB ⊥AB . 所以,建立空间直角坐标系B xyz -,如图所示. 所以()1,0,0A -, ()0,0,0B , ()0,2,0C ,()1,3,0D -, (P ,()1,1,0CD =-, (0,2,PC =.易知平面ABCD 的一个法向量为()0,0,1n =. 设平面PCD 的一个法向量为(),,m x y z =, 则0{m CD m PC ⋅=⋅=,即{2x y y ==,令2z =,则)2m =.设二面角P CD A --的平面角为α,可知α为锐角,则cos cos ,5n m n m n m α⋅====⋅, 即二面角P CD A --.(Ⅲ)解:因为点E 在棱PA ,所以AE AP λ=, []0,1λ∈.因为=1AP (,所以)AE λ=(,()BE BA AE λ=+=-. 又因为//BE 平面PCD ,m 为平面PCD 的一个法向量,所以0BE m ⋅=)120λλ-+=,所以1=3λ.所以23BE ⎛=-⎝⎭,所以7BE BE == 17.某地区工会利用 “健步行APP ”开展健步走积分奖励活动.会员每天走5千步可获积分30分(不足5千步不积分),每多走2千步再积20分(不足2千步不积分).记年龄不超过40岁的会员为A 类会员,年龄大于40岁的会员为B 类会员.为了解会员的健步走情况,工会从,A B 两类会员中各随机抽取m 名会员,统计了某天他们健步走的步数,并将样本数据分为[)3,5, [)5,7, [)7,9, [)9,11, [)11,13, [)13,15,[)15,17, [)17,19, []19,21九组,将抽取的A 类会员的样本数据绘制成频率分布直方图, B 类会员的样本数据绘制成频率分布表(图、表如下所示).(Ⅰ)求m 和a 的值;(Ⅱ)从该地区A 类会员中随机抽取3名,设这3名会员中健步走的步数在13千步以上(含13千步)的人数为X ,求X 的分布列和数学期望;(Ⅲ)设该地区A 类会员和B 类会员的平均积分分别为1X 和2X ,试比较1X 和2X 的大小(只需写出结论).【答案】(Ⅰ)1000,400;(Ⅱ)分布列见解析,65;(Ⅲ)12X X <. 【解析】试题分析:(Ⅰ)根据题意,根据上表的数据,即可求解m 和a 的值;(Ⅱ)由题意从该地区A 类会员中随机抽取1名会员,健步走的步数在13千步以上的概率为25,根据二项分布求得各自的概率,列出分布列,即可求解数学期望; (Ⅲ)根据平均分的计算公式,即可作出比较. 试题解析: (Ⅰ)因为 100.01m=,所以 1000m =. 因为0.2nm=,所以 200n =,所以400a =. 所以 1000m =, 400a =.(Ⅱ)由频率分布直方图可得,从该地区A 类会员中随机抽取1名会员,健步走的步数在13千步以上(含13千步)的概率为25.所以23,5X N ⎛⎫~ ⎪⎝⎭, ()3033227055125P X C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭; ()21133254155125P X C ⎛⎫⎛⎫==⨯⨯=⎪ ⎪⎝⎭⎝⎭; ()12233236255125P X C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭; ()0333328355125P X C ⎛⎫⎛⎫==⨯⨯=⎪ ⎪⎝⎭⎝⎭. 所以, X 的分布列为()26355E X =⨯=. (Ⅲ)12X X <.18.已知函数()()()=e ln 1xf x a x a R -+∈.(Ⅰ)求曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)若函数()y f x =在1,12⎛⎫⎪⎝⎭上有极值,求a 的取值范围.【答案】(1) ()e y a x =-;(2) ⎫⎪⎪⎝⎭. 【解析】试题分析:(1)由题意()e xaf x x='-,因为()1e f a =-, ()1e f a '=-,利用点斜式方程即可求解切线的方程;(Ⅱ)由()e x af x x='-,分0a ≤和0a >讨论,即可得出函数单调性,求得函数有极值的条件,求得实数a 的取值范围. 试题解析:函数()f x 的定义域为()0,+∞, ()e xaf x x='-. (Ⅰ)因为()1e f a =-, ()1e f a '=-, 所以曲线()y f x =在点()()1,1f 处的切线方程为()()()e e 1y a a x --=--, 即()e y a x =-.(Ⅱ)()e xa f x x='-.(ⅰ)当0a ≤时,对于任意1,12x ⎛⎫∈⎪⎝⎭,都有()0f x '>, 所以函数()f x 在1,12⎛⎫⎪⎝⎭上为增函数,没有极值,不合题意. (ⅱ)当0a >时,令()e xa g x x =-,则()2e 0xa g x x=+>'. 所以()g x 在1,12⎛⎫⎪⎝⎭上单调递增,即()f x '在1,12⎛⎫⎪⎝⎭上单调递增, 所以函数()f x 在1,12⎛⎫⎪⎝⎭上有极值,等价于()10,{ 10.2f f >⎛⎫< ⎪⎝⎭''所以e 0, 20.a a -><所以e 2a <<. 所以a的取值范围是⎫⎪⎪⎝⎭.19.已知点31,2P ⎛⎫⎪⎝⎭在椭圆C : 22221(0)x y a b a b +=>>上, ()1,0F 是椭圆的一个焦点.(Ⅰ)求椭圆C 的方程;(Ⅱ)椭圆C 上不与P 点重合的两点D , E 关于原点O 对称,直线PD , PE 分别交y 轴于M , N 两点.求证:以MN 为直径的圆被直线32y =截得的弦长是定值. 【答案】(Ⅰ)22143x y +=.(Ⅱ)见解析. 【解析】试题分析:(Ⅰ)依题意,得到1c =,利用定义得到2a =,即可求解椭圆的标准方程; (Ⅱ)设(),D mn ,(),E m n --,根据直线方程,求解,M N 的坐标,可得GM GN ⊥,利用 0GM GN ⋅=,求得t 的值,即可得到弦长为定值. 试题解析:(Ⅰ)依题意,椭圆的另一个焦点为()1,0F '-,且1c =.因为24a ==,所以2a =,b =,所以椭圆C 的方程为22143x y +=. (Ⅱ)证明:由题意可知D , E 两点与点P 不重合.因为D , E 两点关于原点对称,所以设(),D m n , (),E m n --, ()1m ≠±. 设以MN 为直径的圆与直线32y =交于33,,,(0)22G t H t t ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭两点, 所以GM GN ⊥.直线PD : ()332121n y x m --=--. 当0x =时, 33212n y m -=-+-,所以3320,12n M m ⎛⎫- ⎪-+ ⎪- ⎪⎝⎭. 直线PE : ()332121n y x m +-=-+. 当0x =时, 33212n y m +=-++,所以3320,12n N m ⎛⎫+ ⎪-+ ⎪+ ⎪⎝⎭. 所以32,1n GM t m ⎛⎫- ⎪=-- ⎪- ⎪⎝⎭, 32,1n GN t m ⎛⎫+ ⎪=-- ⎪+ ⎪⎝⎭, 因为GM GN ⊥,所以0GM GN ⋅=,所以()22249041n GM GN t m -⋅=+=-. 因为22143m n +=,即223412m n +=, 224933n m -=-, 所以2304t -=,所以t =所以32G ⎫⎪⎪⎝⎭,32H ⎛⎫ ⎪ ⎪⎝⎭,所以GH = 所以以MN 为直径的圆被直线32y =点睛:本题主要考查椭圆的方程与性质、直线与圆锥曲线的位置关系,解答此类题目,通常利用,,a b c 的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.20.已知无穷数列{}()n n a a Z ∈的前n 项和为n S ,记1S , 2S ,…, n S 中奇数的个数为n b .(Ⅰ)若n a = n ,请写出数列{}n b 的前5项;(Ⅱ)求证:"1a 为奇数, i a (i = 2,3,4,...)为偶数”是“数列{}n b 是单调递增数列”的充分不必要条件;(Ⅲ)若i i a b =,i=1, 2, 3,…,求数列{}n a 的通项公式. 【答案】(1)见解析;(2)见解析;(3) 0n a =.【解析】试题分析:(Ⅰ)代入n 的值,即可求得1=1b , 2=2b , 3=2b , 4=2b , 5=3b . (Ⅱ)根据题意,先证充分性和不必要性,分别作出证明.(Ⅲ)分当k a 为奇数和当k a 为偶数,两种情况进而推导数列的通项公式. 试题解析:(Ⅰ)解: 1=1b , 2=2b , 3=2b , 4=2b , 5=3b . (Ⅱ)证明:(充分性) 因为1a 为奇数, ()2,3,4,i a i =为偶数,所以,对于任意*i N ∈, i S 都为奇数. 所以n b n =.所以数列{}n b 是单调递增数列. (不必要性)当数列{}n a 中只有2a 是奇数,其余项都是偶数时, 1S 为偶数, ()2,3,4,i S i =均为奇数,所以1n b n =-,数列{}n b 是单调递增数列. 所以“1a 为奇数, ()2,3,4,i a i =为偶数”不是“数列{}n b 是单调递增数列”的必要条件;综上所述,“1a 为奇数, ()2,3,4,i a i =为偶数”是“数列{}n b 是单调递增数列”的充分不必要条件.(Ⅲ)解:(1)当k a 为奇数时,如果k S 为偶数,若1k a +为奇数,则1k S +为奇数,所以111k k k b b a +=+=+为偶数,与11k k a b ++=矛盾; 若1k a +为偶数,则1k S +为偶数,所以1k k k b b a +==为奇数,与11k k a b ++=矛盾. 所以当k a 为奇数时, k S 不能为偶数. (2)当k a 为偶数时, 如果k S 为奇数,若1k a +为奇数,则1k S +为偶数,所以1k k k b b a +==为偶数,与11k k a b ++=矛盾; 若1k a +为偶数,则1k S +为奇数,所以111k k k b b a +=+=+为奇数,与11k k a b ++=矛盾. 所以当k a 为偶数时, k S 不能为奇数. 综上可得k a 与k S 同奇偶. 所以n n S a -为偶数.因为11n n n S S a ++=-为偶数,所以n a 为偶数. 因为111a b S ==为偶数,且101b ≤≤,所以110b a ==. 因为22111a b b =≤+=,且20b ≥,所以220b a ==. 以此类推,可得0n a =.点睛:本题考查学生对新定义的理解能力和使用能力,本题属于偏难问题,反映出学生对于新的信息的的理解和接受能力,本题考查数列的有关知识及归纳法证明方法,即考查了数列求值,又考查了归纳法证明和对数据的分析研究,考查了学生的分析问题能力和逻辑推理能力,本题属于拔高难题,特别是第二两步难度较大,适合选拔优秀学生.。

丰台区2018届高三期末数学(理)试题及答案(官方版)

丰台区2018届高三期末数学(理)试题及答案(官方版)

丰台区2017—2018学年度第一学期期末练习 高三数学(理科) 2018.01第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合{101}A =-,,,2{|1}B x x =<,则A B =U (A) {11}-,(B) {101}-,,(C) {|11}x x -≤≤(D) {|1}x x ≤(2)“1x >”是“21x >”的(A) 充分而不必要条件(B) 必要而不充分条件(C) 充分必要条件(D) 既不充分也不必要条件(3)在极坐标系Ox 中,方程sin ρθ=表示的曲线是(A) 直线(B) 圆(C) 椭圆(D)双曲线(4)若x ,y 满足110x y x y x +≤⎧⎪-≤⎨⎪≥⎩,,, 则2z x y =-的最大值是(A) 2- (B) 1- (C) 1(D) 2(5)执行如图所示的程序框图,如果输入的x 的值在区间[2 1.5)--,那么输出的y 属于(A) [00.5), (B) (00.5], (C) (0.51],(D) [0.51),(6)某三棱锥的三视图如图所示,则该三棱锥最长的棱的棱长为(A) 2 (B)(C) (D) 3否是开始 结束输入xx=x+1by=xx ≥0?输出y(7)过双曲线22221(0x y a a b-=>,0)b >的一个焦点F 作一条与其渐近线垂直的直线,垂足为A ,O 为坐标原点,若OF OA 21=,则此双曲线的离心率为 (A)2 (B)3 (C) 2(D)5(8)全集={()|}U x y x y ∈∈Z Z ,,,非空集合S U ⊆,且S 中的点在平面直角坐标系xOy 内形成的图形关于x 轴、y 轴和直线y x =均对称.下列命题:①若(13)S ∈,,则(13)S --∈,; ②若(04)S ∈,,则S 中至少有8个元素; ③若(00)S ∉,,则S 中元素的个数一定为偶数; ④若{()|4}x y x y x y S +=∈∈⊆Z Z ,,,,则{()|||||4}x y x y x y S +=∈∈⊆Z Z ,,,. 其中正确命题的个数是(A) 1 (B) 2 (C) 3(D) 4第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i 1iz -=++,则||z = A .0 B .12 C .1 D .22.已知集合2{|20}A x x x =-->,则A =R ðA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->UD .{|1}{|2}x x x x -U ≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a =,则5a = A .12- B .10- C .10 D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =uu rA .3144AB AC -uu u r uuu r B .1344AB AC -uuu r uuu rC .3144AB AC +uu u r uuu rD .1344AB AC +uuu r uuu r7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则FM FN?uuu r uuu r A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y :-=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN = A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。

(完整版)2018年高考全国一卷理科数学答案及解析

(完整版)2018年高考全国一卷理科数学答案及解析

2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。

1、设z=,则|z |=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z |=1 【考点定位】复数2、已知集合A={x|x 2-x —2>0},则A =A 、{x|—1〈x 〈2}B 、{x|—1x 2}C 、{x|x 〈-1}∪{x |x>2}D 、{x|x —1}∪{x |x 2} 【答案】B【解析】由题可得C R A={x |x 2-x-2≤0},所以{x|—1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。

B 、新农村建设后,其他收入增加了一倍以上。

C 、新农村建设后,养殖收入增加了一倍。

D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%, 【考点定位】简单统计4、记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=A 、-12B 、-10C 、10D 、12 【答案】B【解析】3*(a 1+a 1+d+a 1+2d )=( a 1+a 1+d ) (a 1+a 1+d+a 1+2d+a 1+3d ),整理得: 2d+3a 1=0 ; d=—3 ∴a 5=2+(5-1)*(—3)=—10 【考点定位】等差数列 求和5、设函数f (x)=x 3+(a-1)x 2+ax ,若f (x)为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为:A 、y=-2xB 、y=-xC 、y=2xD 、y=x 【答案】D【解析】f (x )为奇函数,有f (x )+f (-x )=0整理得: f (x )+f (-x)=2*(a —1)x 2=0 ∴a=1 f (x )=x 3+x求导f ‘(x )=3x 2+1 f ‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=A 、—-B 、—-C 、—+D 、- 【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB —AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。

高考数学一轮复习 考点32 数列的综合问题必刷题 理(含解析)-人教版高三全册数学试题

高考数学一轮复习 考点32 数列的综合问题必刷题 理(含解析)-人教版高三全册数学试题

考点32 数列的综合问题1.(市房山区2019年高考第一次模拟测试理)《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.4771.)A.天B.天C.天D.天【答案】C【解析】设蒲的长度组成等比数列{a n},其a1=3,公比为,其前n项和为A n,则A n=.莞的长度组成等比数列{b n},其b1=1,公比为2,其前n项和为B n.则B n,由题意可得:,整理得:2n+=7,解得2n=6,或2n=1(舍去).∴n=≈2.6.∴估计2.6日蒲、莞长度相等.故选:C.2.(某某乌鲁木齐市2018届高三第三次诊断性测验)已知数列,满足,,,则数列的前10项的和为A.B.C.D.【答案】D【解析】由a n +1﹣a n 2,所以数列{a n }是等差数列,且公差是2,{b n }是等比数列,且公比是2. 又因为=1,所以a n =+(n ﹣1)d =2n ﹣1. 所以b 2n ﹣1=•22n ﹣2=22n ﹣2.设,所以=22n ﹣2,所以4,所以数列{∁n }是等比数列,且公比为4,首项为1.由等比数列的前n 项和的公式得:其前10项的和为(410﹣1).故选:D .3.(某某省“皖南八校”2018届高三第三次(4月)联考)删去正整数数列 中的所有完全平方数,得到一个新数列,这个数列的第2018项是( ) A .B .C .D .【答案】B 【解析】由题意可得,这些数可以写为:,第个平方数与第个平方数之间有个正整数,而数列共有项,去掉个平方数后,还剩余个数,所以去掉平方数后第项应在后的第个数,即是原来数列的第项,即为,故选B.4.(华大新高考联盟2018届高三上学期11月教学质量测评理)已知等比数列{}n a 的前n 项和为n S ,,则42S S =( ) A .2 B .3C .4D .5【答案】B 【解析】由可得312a a =,所以22q =,又因为,所以选B.5.(某某省2017届高三高考冲刺预测卷六理)最近各大城市美食街火爆热开,某美食店特定在2017年元旦期间举行特大优惠活动,凡消费达到88元以上者,可获得一次抽奖机会.已知抽奖工具是一个圆面转盘,被分为6个扇形块,分别记为1,2,3,4,5,6,其面积成公比为3的等比数列(即扇形块2是扇形块1面积的3倍),指针箭头指在最小的1区域内时,就中“一等奖”,则一次抽奖抽中一等奖的概率是( ) A .140B .1121C .1364D .11093【答案】C 【解析】由题意,可设1,2,3,4,5,6 扇形区域的面积分别为,则由几何概型得,消费88 元以上者抽中一等奖的概率,故选C.6.(某某省钟祥市2019届高三高考第一次模拟考试理)对于实数x ,[x]表示不超过x 的最大整数,已知正数列{a n }满足S n =12(a n n 1a +),n ∈N*,其中S n 为数列{a n }的前n 项的和,则[]=______.【答案】20 【解析】由题可知0n S >,当1n >时,化简可得,当所以数列2{}n S 是以首项和公差都是1的等差数列,即又1n >时,记一方面另一方面所以2021S << 即[]20S = 故答案为207.(市某某区2019届高三第一次(3月)综合练习一模)天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的某某石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______.【答案】2433402 【解析】第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块, 则依题意得:每环的扇面形石块数是一个以9为首项,9为公差的等差数列, 所以,a n =9+(n -1)×9=9n , 所以,a 27=9×27=243, 前27项和为:=3402.8.(某某省某某师大附中2018届高三高考考前模拟考试)在数列{a n }中,若a 4=1,a 12=5,且任意连续三项的和都是15,则a 2018=______. 【答案】9【解析】分析:将a n +a n+1+a n+2=15中n 换为n+1,可得数列{a n }是周期为3的数列.求出a 2,a 1,即可得到a 2018 详解:由题意可得a n +a n+1+a n+2=15,将n 换为a n+1+a n+2+a n+3=15,可得a n+3=a n ,可得数列{a n 是周期为3的数列.故,由a n +a n+1+a n+2=15,n 取1可得,故,故答案为9.9.(某某省武昌2018届元月调研考试)对任一实数序列,定义新序列,它的第项为,假设序列的所有项都是,且,则__________. 【答案】100. 【解析】 设序列的首项为,则序列,则它的第n 项为,因此序列A 的第项,则是关于的二次多项式,其中的系数为,因为,所以必有,故。

2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .22.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .334B .233C .324D .32二、填空题:本题共4小题,每小题5分,共20分。

2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷)

2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷)

2018年普通高等学校招生全国统一考试全国卷1 理科数学本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、本试卷分为第Ⅰ卷(选择题)和第II 卷(非选择题)两部分.第Ⅰ卷1至3页,第II卷3至5页.2、答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3、全部答案在答题卡上完成,答在本试题上无效.4、考试结束后,将本试题和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设121iz i i-=++,则z = A. 0 B. 12C. 1D.解析:2(1)22i z i i -=+=,所以|z |1=,故答案为C.2. 已知集合{}220A x x x =-->,则R C A = A. {}12x x -<<B. {}12x x -≤≤ C.}{}{2|1|>⋃-<x x x xD.}{}{2|1|≥⋃-≤x x x x解析:由220x x -->得(1)(2)0x x +->,所以2x >或1x <-,所以R C A ={}12x x -≤≤,故答案为B.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:由已知条件经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,37%274%⨯=,所以尽管种植收入所占的比例小了,但比以往的收入却是增加了.故答案为A.4. 设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A. 12- B. 10- C. 10 D. 12解析:由323s s s =+得3221433(32=2242222d d d ⨯⨯⨯⨯+⨯++⨯+)即3(63)127d d +=+,所以3d =-,52410a d =+=- 52410a d =+=-,故答案为B.5. 设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为A. 2y x =-B. y x =-C. 2y x =D. y x =解析:由()f x 为奇函数得1a =,2()31,f x x '=+所以切线的方程为y x =.故答案为D. 6. 在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=A.AC AB 4143- B. AC AB 4341- C.AC AB 4143+ D.AC AB 4341+ 解析:11131()22244EB AB AE AB AD AB AB AC AB AC=-=-=-⋅+=-故答案为A.7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A. 172B.52C. 3D. 2解析:如图画出圆柱的侧面展开图,在展开图中线段MN 的长度52即为最短长度,故答案为B.8.设抛物线x y C 4:2=的焦点为F ,过点()0,2-且斜率为32的直线与C 交于N M ,两点,则=⋅A. 5B.6C. 7D. 8解析:联立直线与抛物线的方程得M(1,2),N(4,4),所以=⋅FN FM 8,故答案为D.9.已知函数(),0,ln ,0,x e x f x x x ⎧≤=⎨>⎩,()()g x f x x a =++.若()g x 存在2个零点,则a 的取值范围是 A.[)1,0-B.[)0,+∞C.[)1,-+∞D.[)1,+∞解析:∵()()g x f x x a =++存在2个零点,即()y f x =与y x a =--有两个交点,)(x f 的图象如图,要使得y x a =--与)(x f 有两个交点,则有1a -≤即1a ≥-,故答案为 C.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AC AB ,.ABC ∆的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为321,,p p p ,则 A. 21p p = B.31p p = C. 32p p = D. 321p p p +=解析:取2AB AC ==,则BC =∴区域Ⅰ的面积为112222S =⨯⨯=,区域Ⅲ的面积为231222S ππ=⋅-=-, 区域Ⅱ的面积为22312S S π=⋅-=,故12p p =.故答案为A.11.已知双曲线13:22=-y x C ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为N M ,.若OMN ∆为直角三角形,则=MN A.23B. 3C. 32D. 4解析:渐近线方程为:2203x y -=,即y x =,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴NM k =,直线MN方程为2)y x =-.联立32)y x y x ⎧=-⎪⎨⎪=-⎩∴3(,)22N -,即ON =,∴3M O N π∠=,∴3MN =,故答案为B.12. 已知正方体的棱长为1,每条棱所在的直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A.433 B.332 C.423 D. 23解析:由于截面与每条棱所成的角都相等,所以平面α中存在平面与平面11AB D 平行(如图),而在与平面11AB D 平行的所有平面中,面积最大的为由各棱的中点构成的截面EFGHMN ,而平面EFGHMN的面积162S =⨯.故答案为A.第II 卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_______________.解析:画出可行域如图所示,可知目标函数过点(2,0)时取得最大值,max 32206z =⨯+⨯=.故答案为6.14.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_______________.解析:由已知得1121,21,n n n n S a S a ++=+⎧⎨=+⎩作差得12n n a a +=,所以{}n a 为公比为2的等比数列,又因为11121a S a ==+,所以11a =-,所以12n n a -=-,所以661(12)6312S -⋅-==--,故答案为-63.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有__________种。

北京市丰台区2018届高三3月综合练习一模数学试题文 含

北京市丰台区2018届高三3月综合练习一模数学试题文 含

丰台区2018年高三年级第二学期综合练习(一)数 学(文科)2018.03第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)复数21i=+ (A) 1i -+ (B) 1i -- (C) 1i + (D) 1i - (2)已知命题p :∃x <1,21x ≤,则p ⌝为 (A) ∀x ≥1, 21x (B) ∃x <1, 21x (C) ∀x <1, 21x (D) ∃x ≥1, 21x(3)已知0a b <<,则下列不等式中恒成立的是 (A)11a b>(B) < (C) 22a b > (D) 33a b >(4)已知抛物线C 的开口向下,其焦点是双曲线2213y x -=的一个焦点,则C 的标准方程为(A) 28y x = (B) 28x y =-(C) 2y =(D) 2x =(5)设不等式组05,05x y ≤≤⎧⎨≤≤⎩确定的平面区域为D ,在D 中任取一点(,)P x y 满足2x y +≥的概率是(A) 1112 (B) 56 (C) 2125(D)2325(6)执行如图所示的程序框图,那么输出的a 值是(A) 12-(B) 1- (C) 2 (D) 12(7)某三棱锥的三视图如图所示,则该三棱锥的体积为(A) 43 (B) 4(C) 83 (D),否是 开始 结束? 输出a侧视图俯视图正视图(8)设函数π()sin(4)4f x x =+9π([0,])16x ∈,若函数()()y f x a a =+∈R 恰有三个零点1x ,2x ,3x 123()x x x <<,则1232x x x ++的值是(A)π2(B)3π4 (C) 5π4(D) π第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(9)已知集合{|20}A x x =-≤≤,{|03}B x x =<≤,则A B =U . (10)圆心为(1,0),且与直线1y x =+相切的圆的方程是 .(11)在△ABC 中,2a =,4c =,且3sin 2sin A B =,则cos C =____. (12)已知点(2,0)A ,(0,1)B ,若点(,)P x y 在线段AB 上,则xy 的最大值为____.(13)已知定义域为R 的奇函数()f x ,当0x >时,2()(1)1f x x =--+.①当[1,0]x ∈-时,()f x 的取值范围是____;②当函数()f x 的图象在直线y x =的下方时,x 的取值范围是 . (14)已知C 是平面ABD 上一点,AB AD ⊥,1CB CD ==.①若3AB AC =,则AB CD ⋅=____;①若AP AB AD =+,则||AP 的最大值为____.三、解答题共6小题,共80分。

北京市丰台区年高三一模数学理科试题 (1)

北京市丰台区年高三一模数学理科试题 (1)

丰台区2018年第二学期期中练习高 三 数 学(理科)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的4个选项中,选出符合题目要求的一项。

(1)设集合{|11}A x R x =∈-≤≤,{|(3)0}B x R x x =∈-≤,则A B 等于 (A ) {|13}x R x ∈-≤≤ (B ) {|03}x R x ∈≤≤ (C ) {|10}x R x ∈-≤≤ (D ) {|01}x R x ∈≤≤ (2)在极坐标系中,点A (1,π)到直线cos 2=ρθ的距离是 (A )1 (B )2 (C )3 (D )4 (3)执行如图所示的程序框图,输出的x 值为(A )85 (B )2912(C )53 (D )138(4)已知函数()f x 是定义在[6,6]-上的偶函数,且(3)(1)f f >,则下列各式中 一定成立的是(A )(0)(6)f f < (B )(-3)(-2)f f > (C )(1)(3)f f -< (D )(-2)(1)f f > (5) “1m n >>”是 “log 2log 2m n <”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (6)某企业开展职工技能比赛,并从参赛职工中选1人参加该行业全国技能大 赛.经过6轮选拔,甲、乙两人成绩突出,得分情况如茎叶图所示.若甲乙两 人的平均成绩分别是x 甲,x 乙,则下列说法正确的是 (A )x x >甲乙,乙比甲成绩稳定,应该选乙参加比赛 (B )x x >甲乙,甲比乙成绩稳定,应该选甲参加比赛 (C )x x <甲乙,甲比乙成绩稳定,应该选甲参加比赛(D )x x <甲乙,乙比甲成绩稳定,应该选乙参加比赛(7)棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如 图所示,那么该几何体的体积是(A )143 (B )4 (C )103(D )3(8)如果某年年份的各位数字之和为7,我们称该年为“七巧年”.例如,今年 年份2014的各位数字之和为7,所以今年恰为“七巧年”.那么从2000年 到2999年中“七巧年”共有侧视图俯视图主视图(A )24个 (B )21个 (C )19个 (D )18个第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

丰台区2018年高三年级第二学期综合练习(一)数 学(理科)2018.03第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)设全集{|}5U x x =<,集合{|}20A x x =-≤,则U A =ð(A) {|}2x x ≤(B) {|2}x x >(C) {|25}x x << (D) {|25}x x ≤<(2)已知命题p :1x ∃<,21x ≤,则p ⌝为(A) 1x ∀≥,21x >(B) 1x ∃<,21x >(C) 1x ∀<,21x > (D) 1x ∃≥,21x >(3)设不等式组220,20,0x y x y x -+≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域为Ω,则(A) 原点O 在Ω内 (B) Ω的面积是1(C) Ω内的点到y 轴的距离有最大值(D) 若点00(,)P x y ∈Ω,则000x y +≠(4)执行如图所示的程序框图,如果输出的2a =,那么判断框中填入的条件可以是(A) 5n ≥ (B) 6n ≥ (C) 7n ≥(D) 8n ≥(5)在平面直角坐标系xOy 中,曲线C 的参数方程为1cos ,sin x y αα=+⎧⎨=⎩(α为参数).若以射线Ox 为极轴建立极坐标系,则曲线C 的极坐标方程为 (A) sin ρθ= (B) 2sin ρθ= (C) cos ρθ=(D) 2cos ρθ=(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)23(B)43 (C) 2 (D) 83正视图侧视图俯视图(7)某学校为了弘扬中华传统“孝”文化,共评选出2位男生和2位女生为校园“孝”之星,现将他们的照片展示在宣传栏中,要求同性别的同学不能相邻,不同的排法种数为 (A) 4 (B) 8 (C) 12 (D) 24 (8)设函数π()sin(4)4f x x =+9π([0,])16x ∈,若函数()()y f x a a =+∈R 恰有三个零点1x ,2x ,3x 123()x x x <<,则123x x x ++的取值范围是(A) 5π11π[,)816(B) 5π11π(,]816(C) 7π15π[,)816(D) 7π15π(,]816第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(9)如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A对应的复数分别是1z ,2z ,则21z z = ____. (10)已知数列{}n a 的前n 项和2n S n n =+,则34a a +=____.(11)已知抛物线M 的开口向下,其焦点是双曲线2213y x -=的一个焦点,则M 的标准方程为____. (12)在△ABC 中,2a =,4c =,且3sin 2sin A B =,则cos C =____. (13)函数()y f x =是定义域为R 的偶函数,当0x ≥时,函数()f x ①当[1,1]x ∈-时,y 的取值范围是____;②如果对任意[,](0)x a b b ∈<,都有[2,1]y ∈-,那么b 最大值是 .(14)已知C 是平面ABD 上一点,AB AD ⊥,1CB CD ==.①若3AB AC =u u u r u u u r ,则AB CD ⋅=u u u r u u u r____;②若AP AB AD =+u u u r u u u r u u u r,则||AP uuu r 的最大值为____.三、解答题共6小题,共80分。

解答应写出文字说明,演算步骤或证明过程。

(15)(本小题共13分)已知函数2sin ()2cos (1)1cos xf x x x=+-. (Ⅰ)求()f x 的定义域及最小正周期; (Ⅱ)求()f x 的单调递减区间.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,AB BC ⊥,AD BC ∥,3AD =,22PA BC AB ===,PB =(Ⅰ)求证:BC PB ⊥;(Ⅱ)求二面角P CD A --的余弦值;(Ⅲ)若点E 在棱PA 上,且BE ∥平面PCD ,求线段BE 的长.(17)(本小题共13分)某地区工会利用 “健步行APP ”开展健步走积分奖励活动.会员每天走5千步可获积分30分(不足5千步不积分),每多走2千步再积20分(不足2千步不积分).记年龄不超过40岁的会员为A 类会员,年龄大于40岁的会员为B 类会员.为了解会员的健步走情况,工会从A ,B 两类会员中各随机抽取m 名会员,统计了某天他们健步走的步数,并将样本数据分为[3,5),[5,7),[7,9),[9,11),[11,13),[13,15),[15,17),[17,19),[19,21]九组,将抽取的A 类会员的样本数据绘制成频率分布直方图,B 类会员的样本数据绘制成频率分布表(图、表如下所示).0.01步数(单位:千步)0.02 0.03 0.04 0.05 0.10.15(Ⅰ)求m 和a 的值;(Ⅱ)从该地区A 类会员中随机抽取3名,设这3名会员中健步走的步数在13千步以上(含13千步)的人数为X ,求X 的分布列和数学期望; (Ⅲ)设该地区A 类会员和B 类会员的平均积分分别为1X 和2X ,试比较1X 和2X 的大小(只需写出结论).已知函数()e (ln 1)()x f x a x a =-+∈R . (Ⅰ)求函数()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)若函数()y f x =在1(,1)2上有极值,求a 的取值范围.(19)(本小题共14分)已知点3(1,)2P 在椭圆C :22221(0)x y a b a b +=>>上,(1,0)F 是椭圆的一个焦点.(Ⅰ)求椭圆C 的方程;(Ⅱ)椭圆C 上不与P 点重合的两点D ,E 关于原点O 对称,直线PD ,PE 分别交y 轴于M ,N 两点.求证:以MN 为直径的圆被直线32y =截得的弦长是定值.(20)(本小题共13分)已知无穷数列{}()n n a a ∈Z 的前n 项和为n S ,记1S ,2S ,…,n S 中奇数的个数为n b . (Ⅰ)若n a n =,请写出数列{}n b 的前5项;(Ⅱ)求证:“1a 为奇数,(2,3,4,)i a i =L 为偶数”是“数列{}n b 是单调递增数列”的充分不必要条件; (Ⅲ)若i i a b =,1,2,3,i =L ,求数列{}n a 的通项公式.(考生务必将答案答在答题卡上,在试卷上作答无效)丰台区2018年高三年级第二学期综合练习(一)数 学(理科)2018.03第一部分 (选择题 共40分)一、 选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(9)12i -- (10)14 (11)28x y =-(12)14-(13)[1,2];2- (14)34-;2 注:第13、14题,第一空3分,第二空2分.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题共13分) 解:(Ⅰ)由 cos 0x ≠得,ππ2x k ≠+,()k ∈Z , 所以()f x 的定义域为π{|π,}2x x k k ≠+∈Z . ……………………2分因为2sin ()2(1)cos 1cos xf x x x=+⋅-22sin cos 2cos 1x x x =+-sin 2cos2x x =+ …………………… 4分π)4x =+. ……………………6分所以()f x 的最小正周期为2ππ2T ==. ……………………8分(Ⅱ)由 ππ3π2π22π242k x k +≤+≤+, ……………………10分可得 π5πππ88k x k +≤≤+,……………………11分所以()f x 的单调递减区间为ππ[π,π)82k k ++,π5π(π,π]28k k ++()k ∈Z .………………13分(16)(本小题共14分)(Ⅰ)证明:因为平面PAB ⊥平面ABCD ,且平面PAB I 平面=ABCD AB ,因为BC ⊥AB ,且BC ⊂平面ABCD所以BC ⊥平面PAB . ……………………3分 因为PB ⊂平面PAB ,所以BC ⊥PB . ……………………4分(Ⅱ)解:在△PAB 中,因为=2PA,=PB =1AB ,所以222=+PA AB PB ,所以PB ⊥AB . ……………………5分 所以,建立空间直角坐标系B xyz -,如图所示. 所以(1,0,0)A -,(0,0,0)B ,(0,2,0)C ,(1,3,0)D -,P ,(1,1,0)CD =-u u u r,(0,2,PC =u u u r.易知平面ABCD 的一个法向量为=(0,0,1)n . ……………………6分 设平面PCD 的一个法向量为=(,,)x y z m ,则00CD PC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rm m ,即2x y y =⎧⎪⎨=⎪⎩, 令=2z ,则=m . ……………………8分 设二面角P CD A --的平面角为α,可知α为锐角,则cos cos ,5α⋅=<>===⋅n m n m n m , 即二面角P CD A --的余弦值为5. ……………………10分 (Ⅲ)解:因为点E 在棱PA ,所以AE AP λ=u u u r u u u r,[0,1]λ∈. ……………………11分因为=AP u u u r(,所以=)AE λu u u r (,()BE BA AE λ=+=-u u u r u u u r u u u r. ……………………12分 又因为//BE 平面PCD ,m 为平面PCD 的一个法向量,所以0BE ⋅=u u u r m1)20λλ-+=,所以1=3λ. ……………………13分所以2(3BE =-u u u r,所以==BE BE u u u r . ……………………14分(17)(本小题共13分) 解:(Ⅰ)因为100.01m=,所以 1000m =. ……………………2分因为0.2nm=,所以 200n =,所以400a =. ……………………4分 所以 1000m =,400a =.(Ⅱ)由频率分布直方图可得,从该地区A 类会员中随机抽取1名会员,健步走的步数在13千步以上(含13千步)的概率为25. ……………………5分 所以2(3,)5X B :,03033227(0)()()55125P X C ==⨯⨯=;12133254(1)()()55125P X C ==⨯⨯=; 21233236(2)()()55125P X C ==⨯⨯=;3033328(3)()()55125P X C ==⨯⨯=. ………………7分26()355E X =⨯=. ……………………10分(Ⅲ)12X X <. ……………………13分(18)(本小题共13分)解:函数()f x 的定义域为(0,)+∞,()e x af x x'=-. ……………………1分 (Ⅰ)因为(1)e f a =-,(1)e f a '=-, ……………………3分所以曲线()y f x =在点(1,(1))f 处的切线方程为(e )(e )(1)y a a x --=--,即(e )y a x =-. ……………………5分 (Ⅱ)()e x a f x x'=-. (ⅰ)当0a ≤时,对于任意1(,1)2x ∈,都有()0f x '>, ……………………6分所以函数()f x 在1(,1)2上为增函数,没有极值,不合题意. ……………………8分 (ⅱ)当0a >时,令()e x a g x x =-,则2()e 0x ag x x'=+>. ……………………9分 所以()g x 在1(,1)2上单调递增,即()f x '在1(,1)2上单调递增, ……………………10分所以函数()f x 在1(,1)2上有极值,等价于(1)0,1()0.2f f '>⎧⎪⎨'<⎪⎩ ……………………12分所以e 0,20.a a ->⎧⎪<e a <<. 所以a的取值范围是(2. ……………………13分(19)(本小题共14分)解:(Ⅰ)依题意,椭圆的另一个焦点为)0,1(-'F ,且1=c . ……………………1分因为4)23(0)23(222222=+++=a ,所以2a =,b == ……………………3分所以椭圆C 的方程为13422=+y x . ……………………4分 (Ⅱ)证明:由题意可知D ,E 两点与点P 不重合.因为D ,E 两点关于原点对称,所以设(,)D m n ,(,)E m n --,)1(±≠m . ……………………5分 设以MN 为直径的圆与直线32y =交于33(,),(,)(0)22G t H t t ->两点, 所以GM GN ⊥. ……………………6分直线PD :)1(12323---=-x m n y . 当0=x 时,23123+---=m n y ,所以)23123,0(+---m n M . ……………………7分 直线PE :)1(12323-++=-x m n y . 当0=x 时,23123+++-=m n y ,所以)23123,0(+++-m n N . ……………………8分 所以32(,)1n GM t m -=---u u u u r ,32(,)1n GN t m +=--+u u u r , ……………………9分 因为GM GN ⊥,所以0GM GN ⋅=u u u u r u u u r, ……………………10分所以2224904(1)n GM GN t m -⋅=+=-u u u u r u u u r . ……………………11分因为13422=+n m ,即124322=+n m ,223394m n -=-, ……………………12分 所以2304t -=,所以23=t . ……………………13分所以)23,23(G ,)23,23(-H , 所以GH =.所以以MN 为直径的圆被直线23=y ……………………14分(20)(本小题共13分)(Ⅰ)解:1=1b ,2=2b ,3=2b ,4=2b ,5=3b . ……………………3分 (Ⅱ)证明:(充分性)因为1a 为奇数,(2,3,4,)i a i =L 为偶数,所以,对于任意*i ∈N ,i S 都为奇数. ……………………4分 所以n b n =. ……………………5分 所以数列{}n b 是单调递增数列. ……………………6分 (不必要性)当数列{}n a 中只有2a 是奇数,其余项都是偶数时,1S 为偶数,(2,3,4,)i S i =L 均为奇数, 所以1n b n =-,数列{}n b 是单调递增数列. ……………………7分 所以“1a 为奇数,(2,3,4,)i a i =L 为偶数”不是“数列{}n b 是单调递增数列”的必要条件;……………………8分综上所述,“1a 为奇数,(2,3,4,)i a i =L 为偶数”是“数列{}n b 是单调递增数列” 的充分不必要条件.(Ⅲ)解:(1)当k a 为奇数时,如果k S 为偶数,若1k a +为奇数,则1k S +为奇数,所以111k k k b b a +=+=+为偶数,与11k k a b ++=矛盾; 若1k a +为偶数,则1k S +为偶数,所以1k k k b b a +==为奇数,与11k k a b ++=矛盾.所以当k a 为奇数时,k S 不能为偶数. ……………………9分 (2)当k a 为偶数时,如果k S 为奇数,若1k a +为奇数,则1k S +为偶数,所以1k k k b b a +==为偶数,与11k k a b ++=矛盾; 若1k a +为偶数,则1k S +为奇数,所以111k k k b b a +=+=+为奇数,与11k k a b ++=矛盾. 所以当k a 为偶数时,k S 不能为奇数. ……………………10分 综上可得k a 与k S 同奇偶. 所以n n S a -为偶数.因为11n n n S S a ++=-为偶数,所以n a 为偶数. ……………………11分 因为111a b S ==为偶数,且101b ≤≤,所以110b a ==.因为22111a b b =≤+=,且20b ≥,所以220b a ==. ……………………12分 以此类推,可得0n a =. ……………………13分(考生务必将答案答在答题卡上,在试卷上作答无效)。

相关文档
最新文档