双曲线历年高考真题100题 原卷版

合集下载

高考数学专题复习:双曲线(含解析)

高考数学专题复习:双曲线(含解析)

高考数学专题复习:双曲线(含解析)本文存在大量的格式错误和段落问题,需要进行修正和删减。

修正后的文章如下:研究目标:1.理解双曲线的定义、几何图形、标准方程以及简单几何性质。

2.理解数形结合的思想。

3.了解双曲线的实际背景及其简单应用。

一、单选题1.设 $F_1,F_2$ 分别是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,点 $P$ 在双曲线 $C$ 的右支上,且 $F_1P=F_2P=c$,则 $\frac{c^2}{a^2-b^2}$ 的值为:A。

$1$B。

$\frac{1}{2}$C。

$\frac{1}{3}$D。

$\frac{1}{4}$答案】B解析】根据双曲线的性质求出 $c$ 的值,结合向量垂直和向量和的几何意义进行转化求解即可。

点睛】本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键。

2.设 $F_1(-1,0),F_2(1,0)$ 是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,$A(0,b)$ 为左顶点,点$P$ 为双曲线右支上一点,且 $AP=\frac{a}{2}$,则$\frac{b^2}{a^2}$ 的值为:A。

$1$B。

$\frac{1}{2}$C。

$\frac{1}{3}$D。

$\frac{1}{4}$答案】D解析】先求出双曲线的方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,再求出点 $P$ 的坐标,最后求$\frac{b^2}{a^2}$。

点睛】本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力。

双曲线的通径为 $2a$。

3.已知直线$l$ 的倾斜角为$\theta$,且$l: y=x\tan\theta$,直线 $l$ 与双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左、右两支分别交于 $A,B$ 两点,$OA\perp$轴,$OB\perp$轴(其中 $O$、$F_1,F_2$ 分别为双曲线的坐标原点、左、右焦点),则该双曲线的离心率为:A。

双曲线练习题(含答案)

双曲线练习题(含答案)

双曲线及其标准方程习题一、 单选题(每道小题 4分 共 56分 )1. 命题甲:动点P 到两定点A 、B 距离之差│|PA|-|PB|│=2a(a >0);命题乙; P 点轨迹是双曲线,则命题甲是命题乙的 [ ] A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件2.若双曲线的一个焦点是,,则等于 . . . .2kx ky =1(04)k [ ]A B C D 22---33258332583.点到点,与它关于原点的对称点的距离差的绝对值等于,则点的轨迹方程是 . .. .P (60)10P [ ]A y 11=1B y 25=1C y 6=1D y 25=12222-----x x x x 2222256125114.k 5+y 6k=1[ ]A B C D 2<是方程表示双曲线的 .既非充分又非必要条件 .充要条件.必要而非充分条件 .充分而非必要条件x k 25--5. 如果方程x 2sin α-y 2cos α=1表示焦点在y 轴上的双曲线,那么角α的终边在 [ ] A .第四象限 B .第三象限 C .第二象限 D .第一象限 6.下列曲线中的一个焦点在直线上的是 . .. .4x 5y +25=0[ ]A y 16=1B +y 16=1C x 16=1D +x 16=12222---x x y y 22229259257. 若a ·b <0,则ax 2-ay 2=b 所表示的曲线是 [ ] A .双曲线且焦点在x 轴上 B .双曲线且焦点在y 轴上 C .双曲线且焦点可能在x 轴上,也可能在y 轴上 D .椭圆 8.以椭圆的焦点为焦点,且过,点的双曲线方程为. .. .x x y y y 2222296109251150+y 25=1P(35)[ ]A y 10=1B x 6=1C x 3=1D x 2=122222----9.到椭圆的两焦点距离之差的绝对值等于椭圆短轴的点的轨迹方程是 . .. .x x x x x 2222225251697+y 9=1[ ]A y 9=1B y 9=1C y 7=1D y 9=122222----10.直线与坐标轴交两点,以坐标轴为对称轴,以其中一点为焦点且另一点为虚轴端点的双曲线的方程是 . .. .或2x 5y +20=0[ ]A y 16=1B y 84=1C y 84=1D y 84=1y 84=122222------x x x x x 2222284161001610011.以坐标轴为对称轴,过,点且与双曲线有相等焦距的双曲线方程是 .或 .或.或 .或A(34)y 20=1[ ]A y 20=1x 20=1B y 15=1x 15=1C y 20=1x 15=1D y 5=1x 10=1222222222x x y x y x y x y 22222222255510105102015---------12.与双曲线共焦点且过点,的双曲线方程是 . .. .x x x x x 2222215520916------y 10=1(34)[ ]A y 20=1B y 5=1C y 16=1D y 9=12222213. 已知ab <0,方程y=-2x +b 和bx 2+ay 2=ab 表示的曲线只可能是图中的 [ ]14.已知△一边的两个端点是、,另两边斜率的积是,那么顶点的轨迹方程是 . .. .ABC A(7,0)B(70)C [ ]A x +y =49B +x 49=1C =1D 5y 147=12222---,x 355147514749492222y y x二、 填空题(每道小题 4分 共 8分 )1.已知双曲线的焦距是,则的值等于 .x k 21+-y 5=18k 22.设双曲线,与恰是直线在轴与轴上的截距,那么双曲线的焦距等于 .x a 22--y b=1(a >0,b >0)a b 3x +5y 15=0x y 22双曲线的标准方程及其简单的几何性质1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线4.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y 24=1D.y 23-x 24=1 5.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2, |PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y 24=17.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) A.x 29-y 27=1 B.x 29-y 27=1(y >0) C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27=1(x >0) 8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( ) A .16B .18C .21D .269.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程是( )A.x 212-y 24=1B.x 24-y 212=1 C .-x 212+y 24=1 D .-x 24+y 212=1 10.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1 B.y 212-x 224=1 C.y 224-x 212=1 D.x 224-y 212=111.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线12.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43xD .y =±34x13.双曲线x 2b 2-y 2a 2=1的两条渐近线互相垂直,那么该双曲线的离心率为( )A .2B. 3C. 2D.3214.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4 D .2二、填空题15.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________. 16.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.17.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1的焦点相同,那么a =________.18.双曲线x 24+y 2b =1的离心率e ∈(1,2),则b 的取值范围是________.19.椭圆x 24+y 2a 2=1与双曲线x 2a2-y 2=1焦点相同,则a =________.20.双曲线以椭圆x 29+y 225=1的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________.双曲线及其标准方程习题答案一、单选题1. B2. C3. A4. D5. B6. C7. B8. B9. C 10. A 11. C 12. A 13. B 14. D 二、填空题1. 10 2.234双曲线的标准方程及其简单的几何性质(答案)1、[答案] D2、[答案] A [解析] 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.3、[答案] A [解析] 设动圆半径为r ,圆心为O , x 2+y 2=1的圆心为O 1,圆x 2+y 2-8x +12=0的圆心为O 2,由题意得|OO 1|=r +1,|OO 2|=r +2, ∴|OO 2|-|OO 1|=r +2-r -1=1<|O 1O 2|=4, 由双曲线的定义知,动圆圆心O 的轨迹是双曲线的一支.4、[答案] B [解析] 由题意知双曲线的焦点在y 轴上,且a =1,c =2, ∴b 2=3,双曲线方程为y 2-x 23=1. 5、[答案] C [解析] ab <0⇒曲线ax 2+by 2=1是双曲线,曲线ax 2+by 2=1是双曲线⇒ab <0. 6、[答案] C [解析] ∵c =5,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, ∴(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=4c 2,∴4a 2=4c 2-4=16,∴a 2=4,b 2=1. 7、[答案] D [解析] 由双曲线的定义知,点P 的轨迹是以F 1、F 2为焦点, 实轴长为6的双曲线的右支,其方程为:x 29-y 27=1(x >0)8、[答案] D [解析] |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8, ∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21, ∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.9、[答案] C [解析] ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,∴双曲线的焦点为(0,±4),离心率为145-45=105=2, ∴双曲线方程为:y 24-x 212=1.10、[答案] B [解析] 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0),又因为双曲线的焦点在y 轴上, ∴方程可写为y 2-λ-x 2-2λ=1.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为y 212-x 224=1.11、[答案] C [解析] ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.12、[答案] D [解析] ∵c a =53,∴c 2a 2=a 2+b 2a 2=259,∴b 2a 2=169,∴b a =43,∴a b =34.又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a b x ,∴所求双曲线的渐近线方程为y =±34x .13、[答案] C [解析] 双曲线的两条渐近线互相垂直,则渐近线方程为:y =±x ,∴b a =1,∴b 2a 2=c 2-a 2a 2=1,∴c 2=2a 2,e =ca= 2. 14、[答案] C[解析] ∵焦点坐标为(±5,0),渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.15、[答案] x 273-y 275=1 [解析] 设双曲线方程为:x 2a 2-y 2b 2=1(a >0,b >0)又点M (3,2)、N (-2,-1)在双曲线上,∴⎩⎨⎧ 9a 2-4b 2=14a 2-1b 2=1,∴⎩⎨⎧a 2=73b 2=75.16、[答案]833[解析] ∵a 2=3,b 2=4,∴c 2=7,∴c =7, 该弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833.17、[答案] 1 [解析] 由题意得a >0,且4-a 2=a +2,∴a =1.18、[答案] -12<b <0 [解析] ∵b <0,∴离心率e =4-b2∈(1,2),∴-12<b <0. 19、[答案]62 [解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62. 焦点为(0,±4),离心率e =c a =45,∴双曲线的离心率e 1=2e =85,∴c 1a 1=4a 1=85,∴a 1=52,∴b 21=c 21-a 21=16-254=394,∴双曲线的方程为y 2254-x 2394=1.20、[答案]y2254-x2394=1 [解析]椭圆x29+y225=1中,a=5,b=3,c2=16,。

双曲线练习题(含答案)

双曲线练习题(含答案)

双曲线练习题(含答案)双曲线及其标准方程习题一、 单选题(每道小题 4分 共 56分 )1. 命题甲:动点P 到两定点A 、B 距离之差│|PA|-|PB|│=2a(a >0);命题乙; P 点轨迹是双曲线,则命题甲是命题乙的 [ ] A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件2.若双曲线的一个焦点是,,则等于 . . . .2kx ky =1(04)k [ ]A B C D 22---33258332583.点到点,与它关于原点的对称点的距离差的绝对值等于,则点的轨迹方程是 . .. .P (60)10P [ ]A y 11=1B y 25=1C y 6=1D y 25=12222-----x x x x 2222256125114.k 5+y 6k=1[ ]A B C D 2<是方程表示双曲线的 .既非充分又非必要条件 .充要条件.必要而非充分条件 .充分而非必要条件x k 25--5. 如果方程x 2sin α-y 2cos α=1表示焦点在y 轴上的双曲线,那么角α的终边在 [ ] A .第四象限 B .第三象限 C .第二象限 D .第一象限6.下列曲线中的一个焦点在直线上的是 . .. .4x 5y +25=0[ ]A y 16=1B +y 16=1C x 16=1D +x 16=12222---x x y y 22229259257. 若a ·b <0,则ax 2-ay 2=b 所表示的曲线是 [ ] A .双曲线且焦点在x 轴上 B .双曲线且焦点在y 轴上 C .双曲线且焦点可能在x 轴上,也可能在y 轴上 D .椭圆8.以椭圆的焦点为焦点,且过,点的双曲线方程为. .. .x x y y y 2222296109251150+y 25=1P(35)[ ]A y 10=1B x 6=1C x 3=1D x 2=122222----9.到椭圆的两焦点距离之差的绝对值等于椭圆短轴的点的轨迹方程是 . .. .x x x x x 2222225251697+y 9=1[ ]A y 9=1B y 9=1C y 7=1D y 9=122222----10.直线与坐标轴交两点,以坐标轴为对称轴,以其中一点为焦点且另一点为虚轴端点的双曲线的方程是 . .. .或2x 5y +20=0[ ]A y 16=1B y 84=1C y 84=1D y 84=1y 84=122222------x x x x x 2222284161001610011.以坐标轴为对称轴,过,点且与双曲线有相等焦距的双曲线方程是 .或 .或.或 .或A(34)y 20=1[ ]A y 20=1x 20=1B y 15=1x 15=1C y 20=1x 15=1D y 5=1x 10=1222222222x x y x y x y x y 22222222255510105102015---------12.与双曲线共焦点且过点,的双曲线方程是 . .. .x x x x x 2222215520916------y 10=1(34)[ ]A y 20=1B y 5=1C y 16=1D y 9=12222213. 已知ab <0,方程y=-2x +b 和bx 2+ay 2=ab 表示的曲线只可能是图中的 [ ]14.已知△一边的两个端点是、,另两边斜率的积是,那么顶点的轨迹方程是 . .. .ABC A(7,0)B(70)C [ ]A x +y =49B +x 49=1C =1D 5y 147=12222---,x 355147514749492222y y x二、 填空题(每道小题 4分 共 8分 )1.已知双曲线的焦距是,则的值等于 .x k 21+-y 5=18k 22.设双曲线,与恰是直线在轴与轴上的截距,那么双曲线的焦距等于 .x a 22--y b=1(a >0,b >0)a b 3x +5y 15=0x y 22双曲线的标准方程及其简单的几何性质1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( )A .双曲线B .一条直线C .一条线段D .两条射线2.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( )A .双曲线的一支B .圆C .抛物线D .双曲线4.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y24=1 D.y 23-x 24=15.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y24=17.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( )A.x 29-y 27=1B.x 29-y 27=1(y >0)C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27=1(x >0) 8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( )A .16B .18C .21D .26 9.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程是( )A.x 212-y 24=1B.x 24-y 212=1 C .-x 212+y 24=1D .-x 24+y 212=110.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1B.y 212-x 224=1C.y 224-x 212=1 D.x 224-y 212=111.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线12.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43x D .y =±34x 13.双曲线x 2b 2-y 2a 2=1的两条渐近线互相垂直,那么该双曲线的离心率为( )A .2 B. 3 C. 2 D.3214.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4 D .2 二、填空题15.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________.16.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.17.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1的焦点相同,那么a =________.18.双曲线x 24+y 2b =1的离心率e ∈(1,2),则b 的取值范围是________.19.椭圆x24+y2a2=1与双曲线x2a2-y2=1焦点相同,则a=________.20.双曲线以椭圆x29+y225=1的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________.双曲线及其标准方程习题答案一、单选题1. B2. C3. A4. D5. B6. C7. B8. B9. C 10. A 11. C 12. A 13.B 14. D二、填空题1. 10 2. 234双曲线的标准方程及其简单的几何性质(答案)1、[答案] D2、[答案] A [解析]由题意得(1+k)(1-k)>0,∴(k-1)(k+1)<0,∴-1<k<1.3、[答案] A [解析]设动圆半径为r,圆心为O,x2+y2=1的圆心为O1,圆x2+y2-8x+12=0的圆心为O2,由题意得|OO1|=r+1,|OO2|=r+2,∴|OO2|-|OO1|=r+2-r-1=1<|O1O2|=4,由双曲线的定义知,动圆圆心O的轨迹是双曲线的一支.4、[答案] B [解析]由题意知双曲线的焦点在y轴上,且a=1,c=2,∴b2=3,双曲线方程为y2-x23=1.5、[答案] C [解析]ab<0⇒曲线ax2+by2=1是双曲线,曲线ax2+by2=1是双曲线⇒ab<0.6、[答案] C [解析]∵c=5,|PF1|2+|PF2|2=|F1F2|2=4c2,∴(|PF1|-|PF2|)2+2|PF1|·|PF2|=4c2,∴4a2=4c2-4=16,∴a2=4,b2=1.7、[答案] D [解析]由双曲线的定义知,点P 的轨迹是以F1、F2为焦点,实轴长为6的双曲线的右支,其方程为:x29-y27=1(x>0)8、[答案] D [解析]|AF2|-|AF1|=2a=8,|BF2|-|BF1|=2a=8,∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21,∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26. 9、[答案] C [解析] ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,∴双曲线的焦点为(0,±4),离心率为145-45=105=2,∴双曲线方程为:y 24-x 212=1.10、[答案] B [解析] 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0),又因为双曲线的焦点在y 轴上, ∴方程可写为y 2-λ-x 2-2λ=1.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为y 212-x 224=1.11、[答案] C [解析] ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.12、[答案] D [解析] ∵c a =53,∴c2a 2=a 2+b 2a2=259,∴b 2a 2=169,∴b a =43,∴a b =34. 又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a b x ,∴所求双曲线的渐近线方程为y =±34x . 13、[答案] C [解析] 双曲线的两条渐近线互相垂直,则渐近线方程为:y =±x ,∴b a =1,∴b 2a 2=c 2-a 2a2=1,∴c 2=2a 2,e =c a = 2.14、[答案] C[解析] ∵焦点坐标为(±5,0),渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.15、[答案] x 273-y 275=1 [解析] 设双曲线方程为:x 2a 2-y 2b2=1(a >0,b >0)又点M (3,2)、N (-2,-1)在双曲线上,∴⎩⎪⎨⎪⎧ 9a 2-4b 2=14a 2-1b 2=1,∴⎩⎪⎨⎪⎧a 2=73b 2=75.16、[答案] 833 [解析] ∵a 2=3,b 2=4,∴c 2=7,∴c =7,该弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833. 17、[答案] 1 [解析] 由题意得a >0,且4-a 2=a +2,∴a =1.18、[答案] -12<b <0 [解析] ∵b <0,∴离心率e =4-b 2∈(1,2),∴-12<b <0.19、[答案] 62 [解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62.焦点为(0,±4),离心率e =c a =45,∴双曲线的离心率e 1=2e =85,∴c 1a 1=4a 1=85,∴a 1=52,∴b 21=c 21-a 21=16-254=394,∴双曲线的方程为y 2254-x 2394=1.20、[答案]y2254-x2394=1 [解析]椭圆x29+y225=1中,a=5,b=3,c2=16,。

双曲线练习题

双曲线练习题

双曲线练习题一、选择题1. 下列关于双曲线的方程中,正确的是()A. x^2 y^2 = 1B. x^2 + y^2 = 1C. y^2 x^2 = 1D. x^2 y^2 = 02. 双曲线的标准方程为 x^2/a^2 y^2/b^2 = 1(a>0,b>0),则其渐近线方程为()A. y = ±(a/b)xB. y = ±(b/a)xC. x = ±(a/b)yD. x = ±(b/a)y3. 双曲线的离心率e满足()A. 0 < e < 1B. e = 1C. e > 1D. e ≤ 14. 下列关于双曲线的焦点坐标,正确的是()A. (±c, 0)B. (0, ±c)C. (±a, 0)D. (0, ±a)二、填空题1. 双曲线的标准方程为 x^2/a^2 y^2/b^2 = 1,则其焦点到中心的距离是 _______。

2. 已知双曲线的一个焦点为(4, 0),实轴长为6,则双曲线的方程为 _______。

3. 双曲线的离心率为2,实轴长为4,则双曲线的虚轴长为_______。

三、解答题1. 已知双曲线方程为 x^2/9 y^2/16 = 1,求:(1)焦点坐标;(2)实轴长;(3)渐近线方程。

2. 设双曲线的方程为 y^2 x^2/4 = 1,求:(1)离心率;(2)焦点坐标;(3)渐近线方程。

3. 已知双曲线的两个焦点分别为(±5, 0),且离心率为2,求双曲线的标准方程。

4. 已知双曲线的实轴长为8,虚轴长为6,求双曲线的离心率。

5. 设双曲线的方程为 x^2/25 y^2/9 = 1,求:(1)焦点坐标;(2)离心率;(3)渐近线方程。

四、计算题1. 已知双曲线的一个焦点为(2, 0),且经过点P(4, 3),求双曲线的标准方程。

2. 设双曲线的方程为 4x^2 9y^2 = 36,求该双曲线与直线 y = (2/3)x + 1 的交点。

(完整版)双曲线基础练习题

(完整版)双曲线基础练习题

(完整版)双曲线基础练习题
1. 引言
该练题旨在帮助读者巩固并提高对双曲线的理解。

通过一系列的基础练题,读者将能够熟悉双曲线的基本特征、图像以及相关的数学概念。

2. 练题
2.1 双曲线图像的分析
给定下列双曲线的方程,请绘制出相应的图像,然后回答相关问题。

1. 双曲线方程:$y = \frac{1}{x}$
- 绘制出该双曲线的图像
- 该双曲线是否有渐近线?如果有,请确定其方程。

- 该双曲线是否对称于原点?解释原因。

2. 双曲线方程:$y = \frac{2}{x+1}$
- 绘制出该双曲线的图像
- 该双曲线是否有渐近线?如果有,请确定其方程。

- 该双曲线是否对称于原点?解释原因。

2.2 数学概念的应用
回答下列问题,注意要用双曲线的相关概念来解释答案。

1. 为什么双曲线的渐近线可以帮助我们理解双曲线图像的特征?
2. 双曲线的离心率是什么?如何确定一个双曲线的离心率?
3. 通过改变双曲线方程中的参数,如何调整双曲线的形状?
3. 结论
通过完成上述练习题,读者应该能够更深入地理解双曲线的基
本概念和性质。

这些练习题不仅帮助读者熟悉双曲线的图像和方程,还能够加深对双曲线的数学概念的理解。

继续探索和练习双曲线,
将有助于读者在更高级的数学领域中应用这些概念。

高考数学专题《双曲线》习题含答案解析

高考数学专题《双曲线》习题含答案解析

专题9.4 双曲线1.(2021·江苏高考真题)已知双曲线()222210,0x y a b a b-=>>的一条渐近线与直线230x y -+=平行,则该双曲线的离心率是( )ABC .2D【答案】D 【分析】写出渐近线,再利用斜率相等,进而得到离心率【详解】双曲线的渐近线为b y x a =±,易知by x a=与直线230x y -+=平行,所以=2b e a ⇒==故选:D.2.(2021·北京高考真题)若双曲线2222:1x y C a b-=离心率为2,过点,则该双曲线的程为()A .2221x y -=B .2213y x -=C .22531x y -=D .22126x y -=【答案】B 【分析】分析可得b =,再将点代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a == ,则2c a =,b =,则双曲线的方程为222213x y a a-=,将点的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故b ,因此,双曲线的方程为2213y x -=.故选:B3.(2021·山东高考真题)已知1F 是双曲线22221x y a b-=(0a >,0b >)的左焦点,点P 在双曲线上,直线1PF 与x 轴垂直,且1PF a =,那么双曲线的离心率是()练基础A B C .2D .3【答案】A 【分析】易得1F 的坐标为(),0c -,设P 点坐标为()0,c y -,求得20by a=,由1PF a =可得a b =,然后由a ,b ,c 的关系求得222c a =,最后求得离心率即可.【详解】1F 的坐标为(),0c -,设P 点坐标为()0,c y -,易得()22221c y a b--=,解得20b y a =,因为直线1PF 与x 轴垂直,且1PF a =,所以可得2b a a=,则22a b =,即a b =,所以22222c a b a =+=,离心率为e =故选:A .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D |AB .则双曲线的离心率为( )A B C .2D .3【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解.【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22bAB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.5.(2019·北京高考真题(文))已知双曲线2221x y a-=(a >0)a =( )AB .4C .2D .12【答案】D 【解析】∵双曲线的离心率ce a==,c = ,=,解得12a = ,故选D.6.(全国高考真题(文))双曲线2222:1(0,0)x y C a b a b -=>>的离心率为2,焦点到渐近线的,则C 的焦距等于( ).A.2B. C.4D.【答案】C 【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .7.(2017·天津高考真题(文))已知双曲线的左焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),则双曲线的方程为( )A. B. C. D.【答案】D 【解析】22221(0,0)x y a b a b -=>>F A OAF △O 221412x y -=221124x y -=2213x y -=2213y x -=由题意结合双曲线的渐近线方程可得:,解得:,双曲线方程为:.本题选择D选项.8.(2021·全国高考真题(理))已知双曲线22:1(0)xC y mm-=>的一条渐近线为my+=,则C的焦距为_________.【答案】4【分析】将渐近线方程化成斜截式,得出,a b的关系,再结合双曲线中22,a b对应关系,联立求解m,再由关系式求得c,即可求解.【详解】my+=化简得y=,即ba,同时平方得2223ba m=,又双曲线中22,1a m b==,故231m m=,解得3,0m m==(舍去),2223142c a b c=+=+=⇒=,故焦距24c=.故答案为:4.9.(2019·江苏高考真题)在平面直角坐标系xOy中,若双曲线2221(0)yx bb-=>经过点(3,4),则该双曲线的渐近线方程是_____.【答案】y=.【解析】由已知得222431b-=,解得b=或b=,因为0b>,所以b=.因为1a=,所以双曲线的渐近线方程为y=.10.(2020·全国高考真题(文))设双曲线C:22221x ya b-= (a>0,b>0)的一条渐近线为y= 2222tan60cc a bba⎧⎪=⎪=+⎨⎪⎪==⎩221,3a b==2213yx-=x ,则C 的离心率为_________.【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为y =,所以b a =c e a ===1.(2018·全国高考真题(理))设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若则的离心率为( )ABC .D【答案】B 【解析】由题可知在中,在中,故选B.2.(2020·云南文山·高三其他(理))已知双曲线2221(0)x y a a-=>上关于原点对称的两个点P ,Q ,右顶点为A ,线段AP 的中点为E ,直线QE 交x 轴于(1,0)M ,则双曲线的离心1F 2F 2222:1x y C a b-=O 2F C P 1PF =C222,PF b OF c==PO a∴=2Rt POF V 222cos P O PF b F OF c∠==12PF F △22221212212cos P O 2PF F F PF b F PF F F c+-∠==223bc a c=⇒=e ∴=练提升率为( )A B .C D 【答案】D 【解析】由已知得M 为APQ V 的重心,∴3||3a OM ==,又1b =,∴c ==,即c e a ==.故选:D.3.(2020·广东天河·华南师大附中高三月考(文))已知平行于x 轴的直线l 与双曲线C :()222210,0x y a b a b-=>>的两条渐近线分别交于P 、Q 两点,O 为坐标原点,若OPQ △为等边三角形,则双曲线C 的离心率为( )A .2B .C D 【答案】A 【解析】因为OPQ △为等边三角形,所以渐近线的倾斜角为3π,所以22,3,bb b a a=∴=∴=所以2222223,4,4,2c a a c a e e -=∴=∴=∴=.故选:A4.(2021·广东广州市·高三月考)已知1F ,2F 分别是双曲线C :2213xy -=的左、右焦点,点P 是其一条渐近线上一点,且以线段12F F 为直径的圆经过点P ,则点P 的横坐标为( )A .±1B .C .D .2±【答案】C 【分析】由题意可设00(,)P x ,根据圆的性质有120F P F P ⋅= ,利用向量垂直的坐标表示,列方程求0x 即可.【详解】由题设,渐近线为y =,可令00(,)P x x ,而1(2,0)F -,2(2,0)F ,∴100(2,)F P x x =+ ,200(2,)F P x =- ,又220120403x F P F P x ⋅=-+= ,∴0x =故选:C5.(2020·广西南宁三中其他(理))圆22:10160+-+=C x y y 上有且仅有两点到双曲线22221(0,0)x y a b a b -=>>的一条渐近线的距离为1,则该双曲线离心率的取值范围是( )A .B .55(,)32C .55(,42D .1)【答案】C 【解析】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:10160C x y y +-+=,圆心()0,5,半径3因为圆C 上有且仅有两点到0bx ay -=的距离为1,所以圆心()0,5到0bx ay -=的距离d 的范围为24d <<即24<<,而222+=a b c 所以524a c <<,即5542e <<故选C 项.6.【多选题】(2021·湖南高三)已知双曲线2222:1x y C a b-=(0a >,0b >)的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若a b =,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12PF F △的内切圆圆心的横坐标x a =D .若M 为直线2a x c=(c =0的一点,则当M 的纵坐标为2MAF V 外接圆的面积最小【答案】ABD 【分析】由a b =,得到222a c =,利用离心率的定义,可判定A 正确;由双曲线的几何性质和点到直线的距离公式,可判定B 正确;由双曲线的定义和内心的性质,可判定C 不正确;由正弦定理得到2MAF V 外接圆的半径为222sin AF R AMF =∠,得出2sin AMF ∠最大时,R 最小,只需2tan AMF ∠最大,设2,a M t c ⎛⎫⎪⎝⎭,得到22tan tan()AMF NMF NMA ∠=∠-∠,结合基本不等式,可判定D 正确.【详解】对于A 中,因为a b =,所以222a c =,故C 的离心率ce a==A 正确;对于B 中,因为()1,0F c -到渐近线0bx ay -=的距离为d b ==,所以B 正确;对于C 中,设内切圆与12PF F △的边1221,,FF F P FP 分别切于点1,,A B C ,设切点1A (,0)x ,当点P 在双曲线的右支上时,可得121212PF PF PC CF PB BF CF BF -=+--=-1112A F A F =-()()22c x c x x a =+--==,解得x a =,当点P 在双曲线的左支上时,可得x a =-,所以12PF F △的内切圆圆心的横坐标x a =±,所以C 不正确;对于D 中,由正弦定理,可知2MAF V 外接圆的半径为222sin AF R AMF =∠,所以当2sin AMF ∠最大时,R 最小,因为2a a c<,所以2AMF ∠为锐角,故2sin AMF ∠最大,只需2tan AMF ∠最大.由对称性,不妨设2,a M t c ⎛⎫ ⎪⎝⎭(0t >),设直线2a x c =与x 轴的交点为N ,在直角2NMF △中,可得222=tan a c NF c NM t NMF -∠=,在直角NMA △中,可得2=tan a a NA c NM tMA N -∠=,又由22222222tan tan tan tan()1tan tan 1NMF NMA AMF NMF NMA NMF NMAa a c a c ct t a a c a c c t t--∠-∠∠=∠-∠==+∠∠--⨯+-⋅22()c a ab c a t c t-=≤-+当且仅当()22ab c a t c t -=,即t =2tan AMF ∠取最大值,由双曲线的对称性可知,当t =2tan AMF ∠也取得最大值,所以D 正确.故选:ABD .7.【多选题】(2021·重庆巴蜀中学高三月考)已知点Q 是圆M :()2224x y ++=上一动点,点()2,0N ,若线段NQ 的垂直平分线交直线MQ 于点P ,则下列结论正确的是( )A .点P 的轨迹是椭圆B .点P 的轨迹是双曲线C .当点P 满足PM PN ⊥时,PMN V 的面积3PMN S =△D .当点P 满足PM MN ⊥时,PMN V 的面积6PMN S =V 【答案】BCD 【分析】根据PM PN -的结果先判断出点P 的轨迹是双曲线,由此判断AB 选项;然后根据双曲线的定义以及垂直对应的勾股定理分别求解出PM PN ⋅的值,即可求解出PMN S △,据此可判断CD 选项.【详解】依题意,2MQ =,4MN =,因线段NQ 的垂直平分线交直线MQ 于点P ,于是得PQ PN =,当点P 在线段MQ 的延长线上时,2PM PN PM PQ MQ -=-==,当点P 在线段QM 的延长线上时,2PN PM PQ PM MQ -=-==,从而得24PM PN MN -=<=,由双曲线的定义知,点M 的轨迹是双曲线,故A 错,B 对;选项C ,点P 的轨迹方程为2213y x -=,当PM PN ⊥时,2222616PM PN PM PN PM PN MN ⎧-=⎪⇒⋅=⎨+==⎪⎩,所以132PMN S PM PN ==△,故C 对;选项D ,当PM MN ⊥时,2222316PM PN PM PN PM MN ⎧-=-⎪⇒=⎨-==⎪⎩,所以162PMN S PM MN ==△,故D 对,故选:BCD.8.(2021·全国高二课时练习)双曲线()22122:10,0x y C a b a b-=>>的焦距为4,且其渐近线与圆()222:21C x y -+=相切,则双曲线1C 的标准方程为______.【答案】2213x y -=【分析】根据焦距,可求得c 值,根据渐近线与圆2C 相切,可得圆心到直线的距离等于半径1,根据a ,b ,c 的关系,即可求得a ,b 值,即可得答案.【详解】因为双曲线()22122:10,0x y C a b a b-=>>的焦距为4,所以2c =.由双曲线1C 的两条渐近线b y x a=±与圆()222:21C x y -+=相切,可得1=又224a b +=,所以1b =,a =所以双曲线1C 的标准方程为2213x y -=.故答案为:2213x y -=9.(2021·全国高二单元测试)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,离心率为e ,若双曲线上一点P 使2160PF F ∠=︒,则221F P F F ⋅的值为______.【答案】3【分析】在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.分别运用余弦定理可求得答案.【详解】解:由已知得2124F F c ==.在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.当12PF x =+时,由余弦定理,得()222124242x x x +=+-⨯⨯,解得32x =,所以221314322F P F F ⋅=⨯⨯= .当12PF x =-时,由余弦定理,得()222124242x x x -=+-⨯⨯,无解.故2213F P F F ⋅=.故答案为:3.10.(2021·全国高二课时练习)如图,以AB 为直径的圆有一内接梯形ABCD ,且//AB CD .若双曲线1C 以A ,B 为焦点,且过C ,D 两点,则当梯形的周长最大时,双曲线1C 的离心率为______.1【分析】连接AC ,设BAC θ∠=,将梯形的周长表示成关于θ的函数,求出当30θ=︒时,l 有最大值,即可得到答案;【详解】连接AC ,设BAC θ∠=,2AB R c R ==,,作CE AB ⊥于点E ,则||2sin BC R θ=,()2||||cos 902sin EB BC R θθ=︒-=,所以2||24sin CD R R θ=-,梯形的周长221||2||||24sin 24sin 4sin 52l AB BC CD R R R R R R θθθ⎛⎫=++=++-=--+ ⎪⎝⎭.当1sin 2θ=,即30θ=︒时,l 有最大值5R ,这时,||BC R =,||AC =,1(||||)2a AC BC =-=,1=c e a .1+1. (2021·全国高考真题(理))已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为( )ABCD【答案】A 【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案.【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==,所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos 60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即e =故选:A2.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y=|OP |=( )ABCD【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P还在函数y =练真题由()22103y x x y ⎧⎪⎨->==⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==.故选:D.3.(2019·全国高考真题(理))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( )ABC .2D【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c == ,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2c OA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=,故选A .4.(2019·全国高考真题(理))双曲线C :2242x y -=1的右焦点为F ,点P 在C的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )A B C .D .【答案】A 【解析】由2,,,a b c ====.,P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在y x =上,1122PFO P S OF y ∴=⋅==△,故选A .5. (2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【详解】由已知,3c ===,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===.6.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB = ,120F B F B ⋅=,则C 的离心率为____________.【答案】2.【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =g ,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==,所以该双曲线的离心率为2c e a ====.。

历年高考题——双曲线

历年高考题——双曲线

历年高考题——双曲线1.[2013 ·全国Ⅰ ] 已知双曲线C :x2y2 1(a 0,b 0) 的离心率为5,则 C的渐近a2 b2 2线方程为.2.[2013 ·广东 ]已知中心在原点的双曲线 C 的右焦点为 F (3,0),离心率为3,则C的方2程是.3.[2014 ·全国 ] 已知双曲线 C 的离心率为2,焦点为F1, F2,点A在C上. 若F1A 2F2A ,则 cos AF2 F1 .4.[2014 ·天津 ] 双曲线x2y2 1(a 0, b 0) 的一条渐近线平行于直线l : y 2x 10 ,a2 b2双曲线的一个焦点在直线 l 上,则双曲线的方程是.5.[2014 ·北京 ] 设双曲线C经过点(2,2),且与y2x2 1 拥有同样的渐近线,则 C 的方4程为.6.[2014 ·全国Ⅰ ] 已知 F 为双曲线C : x2 my2 3m(m 0) 的一个焦点,则点F到C的一条渐近线的距离为.7.[2014 ·广东 ]若实数k知足0 k 9 ,则曲线x2y2 1与曲线x2 y2 1 25 9 k 25 k 9的相等 . ( A. 焦距 B. 实半轴长 C. 虚半轴长 D. 离心率)8.[2014 ·山东 ] 已知 a b 0 ,椭圆C1 : x2 y a2 b3的离心率之积为,则 C2的渐近线方程为2 21,双曲线 C2x2 y22 : 2b2 1,C1与C2a.x2 y21(a 0, b 0) 的左、右焦点,双曲线上存9.[2014 ·重庆 ] F1, F2分别是双曲线b2a2在一点 P ,使得 PF1 PF2 3b , PF1 PF2 9ab ,则该双曲线的离心率为. 410.[2014 ·浙江 ] 设直线 x 3y m 0( m 0) 与双曲线x2y 2 1( a 0, b 0) 的两条a 2 b2渐近线分别交于点A, B .若点 P(m,0) 知足PA PB ,则该双曲线的离心率为.11.[2015 ·广东 ] 已知双曲线 C : x2y 2 1 的离心率 e 5 ,且其右焦点为F2 (5,0) ,则a2 b2 4双曲线的方程为.12.[2015 ·全国Ⅱ ]已知A, B为双曲线E 的左、右极点,点M 在 E 上,ABM 为等腰三角形,且顶角为120 ,则 E 的离心率为.13.[2015x2 y 2F1, F2,点P在双曲线E上,·福建 ] 若双曲线E : 1 的左、右焦点分别为9 16且 PF1 3 ,则 PF2 .14.[2015 ·北京 ] 已知双曲线x2y2 1(a 0) 的一条渐近线为3x y 0 ,则a2 b2a .15.[2015 ·湖南 ] 设F是双曲线C :x2y21的一个焦点 . 若C上存在一点P,使线段a2 b2PF 的中点恰为其虚轴的一个端点,则 C 的离心率为.是双曲线 E : x 2y216.[2016 ·全国Ⅱ ] 已知 F1, F2 2 2 1的左、右焦点,点M在E上,MF1a b与 x 轴垂直,sin1,则 E 的离心率为. MF2 F132:x 217.[2016 ·浙江 ] 已知椭圆 C 1 : x2 y21(m 1) 与双曲线 C 2 2y 2 1(n 0) 的焦点mn重合, e 1 ,e 2 分别为 C 1, C 2 的离心率,则 m __ n,e 1e 2 __ 1 . (填“ >”或“ <”)18.[2016 ·山东 ] 已知双曲线 E :x 2y 222 1(a 0,b 0) . 若矩形 ABCD 的四个极点在 E ab上, AB, CD 的中点为 E 的两个焦点,且 2 AB 3 BC ,则 E 的离心率为.19.[2016 ·北京 ] 双曲线x2y 21(a 0, b 0) 的渐近线为正方形 OABC 的边 OA,OCa 2b 2所在的直线,点B 为该双曲线的焦点 . 若正方形 OABC 的变为为 2,则 a.20.[2016 ·天津 ]已知双曲线x 2y 2 1( a 0, b0) 的焦距为 2 5 ,且双曲线的一条渐a 2b 2近线与直线 2xy 0 垂直,则双曲线的方程为.。

高考数学《双曲线》专题检测试卷(含答案)

高考数学《双曲线》专题检测试卷(含答案)

高考数学《双曲线》专题检测试卷一、单项选择题(共8小题,每小题5分,共40分)1.过点()1,2P -的直线与双曲线2214x y -=的公共点只有1个,则满足条件的直线有()A .2条B .3条C .4条D .5条2.双曲线E :2213y x -=的左,右顶点分别为,A B ,曲线E 上的一点C 关于x 轴的对称点为D ,若直线AC 的斜率为m ,直线BD 的斜率为n ,则mn =()A .3B .3-C .13D .13-3.双曲线222:1(0)y C x a a-=>的上焦点2F 到双曲线一条渐近线的距离为2a ,则双曲线两条渐近线的斜率之积为()A .4-B .4C .2-D .24.若双曲线2222:1(0,0)x y C a b a b-=>>,右焦点为F ,点E 的坐标为(,b c a b ,则直线OE (O 为坐标原点)与双曲线的交点个数为()A .0个B .1个C .2个D .不确定5.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,过焦点2F 且垂直于x 轴的弦为AB ,若190AF B ∠= ,则双曲线的离心率为()A .522B 1-C 1D .2226.已知双曲线C :221169x y -=的左,右焦点分别为1F ,2F ,过2F 的直线与双曲线C 的右支交于A ,B 两点,且6AB =,则1F AB 的周长为()A .20B .22C .28D .367.已知点P 是双曲线2211620x y -=右支上的一点,点A B 、分别是圆22(6)4x y ++=和圆22(6)1x y -+=上的点.则PA PB -的最小值为()A .3B .5C .7D .98.双曲线2222:1(0,0)y x a b a bΓ-=>>的两焦点分别为12,F F ,过2F 的直线与其一支交于A ,B两点,点B 在第四象限.以1F 为圆心,Γ的实轴长为半径的圆与线段11,AF BF 分别交于M ,N 两点,且12||3||,AM BN F B F B =⊥,则Γ的渐近线方程是()A.y =B.y x =C.y x =D.y x=二、多项选择题(共3小题,每小题6分,共18分)9.已知双曲线C :()2220mx y m -=>,左右焦点分别为12,F F ,若圆()2248x y -+=与双曲线C 的渐近线相切,则下列说法正确的是()A .双曲线C的离心率e =B .若1PF x ⊥轴,则1PF =C .若双曲线C 上一点P 满足122PF PF =,则12PF F的周长为4+D .存在双曲线C 上一点P ,使得点P 到C10.已知双曲线2222 :1(0)x y M a b a b-=>>的焦距为4,两条渐近线的夹角为60︒,则下列说法正确的是()A .MB .M 的标准方程为2212x y -=C .M的渐近线方程为y =D .直线20x y +-=经过M 的一个焦点11.已知椭圆22122:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为1e ,椭圆1C 的上顶点为M ,且12π6MF F =∠,双曲线2C 和椭圆1C 有相同的焦点,且双曲线2C 的离心率为2e ,P 为曲线1C 与2C 的一个公共点.若12π2F PF ∠=,则()A.21e e =B.12e e =C .221294e e +=D .22211e e -=三、填空题(共3小题,每小题5分,共15分)12.双曲线C :()222210,0x y a b a b-=>>的两个焦点为1F 、2F,点)A在双曲线C 上,且满足120AF AF ⋅=,则双曲线C 的标准方程为__________.13.已知双曲线1C :()22210y x b b-=>与椭圆2C:(2221x y a a +=>有公共的焦点1F ,2F ,且1C 与2C 在第一象限的交点为M ,若12MF F △的面积为1,则a 的值为__________.14.设1F 、2F 为双曲线Γ:()222109x ya a -=>左、右焦点,且Γ,若点M 在Γ的右支上,直线1F M 与Γ的左支相交于点N ,且2MF MN =,则1F N =__________.四、解答题(共5小题,共77分)15.设双曲线2222:1(0,0)x y a b a bΓ-=>>,斜率为1的直线l 与Γ交于,A B 两点,当l 过Γ的右焦点F 时,l 与Γ的一条渐近线交于点(P -.(1)求Γ的方程;(2)若l 过点(1,0)-,求||AB .16.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为2(1)求双曲线C 的方程;(2)直线():1,0l y k x k =+>与双曲线C 有唯一的公共点,求k 的值.17.已知双曲线C :22221x y a b-=(0a >,0b >)的右顶点()1,0E ,斜率为1的直线交C 于M 、N 两点,且MN 中点()1,3Q .(1)求双曲线C 的方程;(2)证明:MEN 为直角三角形;(3)若过曲线C 上一点P 作直线与两条渐近线相交,交点为A ,B ,且分别在第一象限和第四象限,若AP PB λ= ,1,23λ⎡⎤∈⎢⎥⎣⎦,求AOB V 面积的取值范围.18.某高校的志愿者服务小组受“进博会”上人工智能展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏.如下图:A 、B 两个信号源相距10米,O 是AB 的中点,过O 点的直线l 与直线AB 的夹角为45︒.机器猫在直线l 上运动,机器鼠的运动轨迹始终满足;接收到A 点的信号比接收到B 点的信号晚08v 秒(注:信号每秒传播0v 米).在时刻0t 时,测得机器鼠距离O 点为4米.(1)以O 为原点,直线AB 为x 轴建立平面直角坐标系(如图),求时刻0t 时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线l 不超过1.5米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?19.已知离心率为72的双曲线1C :()222210,0x y a b a b -=>>过椭圆2C :22143x y +=的左,右顶点A ,B .(1)求双曲线1C 的方程;(2)()()0000,0,0P x y x y >>是双曲线1C 上一点,直线AP ,BP 与椭圆2C 分别交于D ,E ,设直线DE 与x 轴交于(),0Q Q x ,且20102Q x x λλ⎛⎫=<< ⎪⎝⎭,记BDP △与ABD △的外接圆的面积分别为1S ,2S参考答案15.(1)2214y x -=(2)82316.(1)22124x y -=(2)k =2.17.(1)2213y x -=(2)证明略(3)⎦18.(1)(4,0)(2)没有“被抓”风险19.(1)22143x y -=(2)⎫+∞⎪⎪⎝⎭。

《双曲线》练习试题经典(含答案解析)

《双曲线》练习试题经典(含答案解析)

《双曲线》练习题一、选择题:1.已知焦点在x轴上的双曲线的渐近线方程是y=±4x,则该双曲线的离心率是(A)A.17B.15C.174 D.1542.中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为(B)A.x2﹣y2=1 B.x2﹣y2=2 C.x2﹣y2=D.x2﹣y2=3.在平面直角坐标系中,双曲线C过点P(1,1),且其两条渐近线的方程分别为2x+y=0和2x﹣y=0,则双曲线C的标准方程为(B)A.B.C.或D.4.1(a>b>01有相同的焦点,则椭圆的离心率为( A )A B C D5.已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.设双曲线=1(0<a<b)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为(A)A.2 B.C.D.7的圆相切,则双曲线的离心率为( A )A B C D8.双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为(B)A.3B.62 C.63D.339.已知双曲线221(0,0)x ym nm n-=>>的一个焦点到一条渐近线的距离是2,一个顶点到它的一条渐近线的,则m等于( D )A .9B .4C .2D .,310.已知双曲线的两个焦点为F 1(-10,0)、F 2(10,0),M 是此双曲线上的一点,且满足12120,||||2,MF MF MF MF ==则该双曲线的方程是( A )A.x 29-y 2=1 B .x 2-y 29=1 C.x 23-y 27=1D.x 27-y 23=1 11.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( C )A .4 2B .83C .24D .4812.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是( C ) A .28 B .14-82 C .14+8 2D .8 213.已知双曲线﹣=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( D ) A .﹣=1B .﹣=1 C .﹣=1 D .﹣=114.设双曲线﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 2为圆心,|F 1F 2|为半径的圆与双曲线在第一、二象限内依次交于A ,B 两点,若3|F 1B |=|F 2A |,则该双曲线的离心率是( C ) A . B .C .D .215.过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若|AB|=4,则这样的直线共有( C )条。

双曲线经典练习题总结(带答案)

双曲线经典练习题总结(带答案)

双曲线经典练习题总结(带答案)1.选择题1.以椭圆x^2/169 + y^2/64 = 1的顶点为顶点,离心率为2的双曲线方程为C,当顶点为(±4,0)时,a=4,c=8,b=√(a^2+c^2)=4√5,双曲线方程为x^2/16 - y^2/20 = 1;当顶点为(0,±3)时,a=3,c=6,b=√(a^2+c^2)=3√5,双曲线方程为y^2/9 - x^2/5 = 1,所以答案为C。

2.双曲线2x^2 - y^2 = 8化为标准形式为x^2/4 - y^2/8 = 1,所以实轴长为2a = 4,答案为C。

3.若a>1,则双曲线2x^2/a^2 - y^2 = 1的离心率的取值范围是C。

由双曲线方程得离心率e = √(a^2+1)/a,所以c^2 =a^2+b^2 = a^2(a^2+1)/(a^2-1),代入离心率公式得√(a^2+1)/a = 2,解得a = 2,所以答案为C。

4.已知双曲线C:2x^2/a^2 - 2y^2/b^2 = 1(a>0,b>0)的离心率为2,则点(4,0)到C的渐近线的距离为D。

由双曲线方程得离心率e = √(a^2+b^2)/a = 2,所以b^2 = 3a^2,又因为点(4,0)到渐近线的距离为c/a,所以c^2 = a^2+b^2 = 4a^2,代入双曲线方程得4x^2/a^2 - 2y^2/3a^2 = 1,化简得y^2 = 6x^2/5,所以渐近线方程为y = ±√(6/5)x,代入点(4,0)得距离为2√5,所以答案为D。

5.双曲线C:x^2/4 - y^2/16 = 1的右焦点坐标为F(6,0),一条渐近线的方程为y = x,设点P在第一象限,由于|PO| = |PF|,则点P的横坐标为4,纵坐标为3,所以△PFO的底边长为6,高为3,面积为9,所以答案为A。

6.若双曲线C:2x^2/a^2 - 2y^2/b^2 = 1(a>0,b>0)的一条渐近线被圆(x-2)^2 + y^2 = 4所截得的弦长为2,则b^2 = a^2-4,圆心为(2,0),半径为2,设截弦的两个交点为P和Q,则PQ = 2,所以PQ的中点M在圆上,即M为(5/2,±√(3)/2),所以PM = √(a^2-25/4)±√(3)/2,由于PM = PQ/2 = 1,所以(a^2-25/4)+(3/4) = 1,解得a = √(29)/2,所以答案为B。

新课标解析几何(双曲线)历年高考题精选

新课标解析几何(双曲线)历年高考题精选

新课标解析几何(双曲线)历年高考题精选新课标双曲线历年高考题精选 1.若双曲线的渐近线方程为y=±3x, 它的一个焦点是(10,0), 则双曲线的方程为———— 2. y23.以双曲线4xa225yb22?1的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是4.设双曲线x2?2?1(a?0,b?0)的离心率为3,且它的一条准线与抛物线y?4x 的准线重合,则此双曲线的方程为A.12?y224x2?1 y2 B.x248?y296?1C.x23?2y32?1 32x2D.x2323?y26?1 94495.(04北京春理3)双曲线4?9?1的渐近线方程是 A. y??62x B. y???y2x C. y??x D. y??x 6.下列曲线中离心率为7.双曲线8.设双曲线xa22的是A.x22?y24?1B. 422222xyxyD.?1C.??1??146410x24?x2-y22212=1的焦点到渐近线的距离为( ) ?1(a?0,b?0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为yb?29.已知双曲线x2y222?1的准线经过椭圆x24?yb22?1的焦点,则b=( ) 10. (2008重庆文)若双曲线3?16yp2?1的左焦点在抛物线y=2px的准线上,则p的值为(C )(A)2 2 (B)3 (C)4 (D)42 1 11.(2008江西文)已知双曲线为x2xa22?yb22?1(a?0,b?0)的两条渐近线方程为y??33x,若顶点到渐近线的距离为1,则双曲线方程4?3y42?1.112.(2008山东文)已知圆C:x2?y2?6x?4y?8?0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为13.已知双曲线x2x24?2?yy2122?1?1的离心率是3。

则n=4nx12?ny214、(2008海南、宁夏文)双曲线15. (2008重庆理)已知双曲线xa2210?yyb22?222?1的焦距为A. 32 B.42 C. 33 D. 43 xa22?1的一条渐近线为y=kx(k>0),离心率e=5k,则双曲线方程为(C ) ?1 (C)x22-y224a=1 (B)xa22?5a4b?yb22?1 (D)x225b?yb22?1 16.以知F是双曲线222的左焦点,是双曲线右支上的动点,则15的最小值为17.(2008辽宁文) 已知双曲线9y?mx?1(m?0)的一个顶点到它的一条渐近线的距离为18.(04湖南文4)如果双曲线x2,则m?( D )A.1B.2C.3 D.4 13?y212?1上一点22P到右焦点的距离为13, 那么点P到右准线的距离是??1的左右焦点分别为F1,F2,P 为C的右支上一点,且PF2?F1F2,则?PF1F2的面积916等于( C )24 36 48 96 17.(2008四川文) 已知双曲线C:xy19.设P是双曲线xa22?y29?1上一点,双曲线的一条渐近线方程为3x?2y?0,F1、F2分别是双曲线的左、右焦点, 2 若|PF1|?3,则|PF2|? A. 1或5 20.已知双曲线x2B. 6 y2 C. 7 D. 9 262?y2232?1的焦点为F1、F2,点M在双曲线上且MF1⊥x轴,则F1到直线F2M的距离为21已知双曲线x????????????1的焦点为F1、F2,点M 在双曲线上且MF1?MF2?0,则点M到x 轴的距离为yb2222.已知双曲线面积为a2xa-=1的右焦点为F,右准线与一条渐近线交于点A,△OAF的2,则两渐近线的夹角为A、30o B、45o C、60o D、90o x223. A.x?y?10x?9?0 B.x2?y2?10x?16?0C.x2?y2?10x?16?0 D.x2?y2?10x?9?0 30.设P为双曲线x?A.63 B.12 x22y212?1上的一点,F1,F2是该双曲线的两个焦点,若|PF1|:|PF2|?3:2,则△PF1F2的面积为C.123 ?1上一点D.24 24.(07四川理5)如果双曲线4?y2P 到双曲线右焦点的距离是2,那么点P到y轴的距离是225已知双曲线C:A.ab B. 22ac22?2yb22?1(a>0,b>0),以C的右焦点为圆心且与C的浙近线相切的圆的半径是a?b22222?26.过双曲线x?y?4的右焦点F作倾斜角为105的直线,交双曲线于P,Q两点,则FP?FQ 的值为______.27.(2009山东卷理)设双曲线xa?yb?1的一条渐近线与抛物线y=x+1 只有一个公共点,则双曲线的离心率为().x22 28.已知双曲线双曲线上.则PF1·PF2=( ) 2?yb22?1(b?0)的左、右焦点分别是F1、F2,其一条渐近线方程为y?x,点P(3,y0)在 3 22xy29.已知双曲线C:2?2?1?a?0,b?0?的右焦点为F,过F且斜率为3的直线交C于A、B两点,若abAF?4FB,则C的离心率为() 30.设F1和F2为双曲线的离心率为xa22?yb22?1(a?0,b?0)的两个焦点, 若F1,F2,P(0,2b)是正三角形的三个顶点,则双曲线222 x?231.(2009湖北卷理)已知双曲线?11?2?y22?1的准线过椭圆1?22x4?yb?1的焦点,则直线y?kx?2与椭圆至多有一个交点的充要条件是22??2??2?()A. K??,B. K????,?,??,?,??? ,??? C. K???? D. K???????22?????22?2?2?????2????2?32.设双曲线x2?1??xa22?yyb2?1的渐近线与抛物线y=x+1相切,则该双曲线的离心率等于( ) 2 33.双曲线6xa22?3y322?1的渐近线与圆(x?3)?y22?r(r?0)相切,则r= () 234.若双曲线?2?1?a?o?的离心率为2,则a等于( ) yb2235.设双曲线xa-2=1?a>0,b>0?的渐近线与抛物线y=x +1相切,则该双曲线的离心率等于236.已知双曲线的左、右焦点分别为,若双曲线上存在一点使,则该双曲线的离心率的取值范围是.37.过双曲线C:的一个焦点作圆的两条切线, 4 切点分别为A,B,若,则双曲线线C的离心率为2 . 38.(2009湖南卷理)已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 39.(2008湖南文) 双曲线xa22,则双曲线C 的离心率为?yb22?1(a?0,b?0)的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( C )A.(1,2]B.[2,??) C.(1,2?1]D.[2?1,??) 40.若双曲线41. (2008湖南理)若双曲线xa22xa22?yb22?1的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是3a2?yb22?1上横坐标为的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的D. (5,+?) 、(2008海南、宁夏理)过双曲线x2取值范围是( B. )A.(1,2) B.(2,+?) C.(1,5) 点为A,右焦点为F。

高中数学双曲线练习题

高中数学双曲线练习题

高中数学双曲线练习题一、选择题1. 双曲线的标准方程为 \( \frac{x^2}{a^2} - \frac{y^2}{b^2} =1 \),其中 \( a \) 和 \( b \) 分别表示什么?A. 焦点间距离的一半B. 横轴和纵轴的半轴长C. 横轴和纵轴的全轴长D. 渐近线与横轴的夹角2. 双曲线的焦点到渐近线的距离等于:A. \( a \)B. \( b \)C. \( c \)D. \( \sqrt{a^2 + b^2} \)3. 双曲线 \( \frac{x^2}{16} - \frac{y^2}{9} = 1 \) 的焦距是:A. 10B. 8C. 6D. 54. 双曲线 \( \frac{x^2}{4} - y^2 = 1 \) 上的点 \( P(x, y) \) 到右焦点的距离与到左焦点的距离之差为:A. 2B. 4C. 6D. 85. 双曲线 \( \frac{x^2}{4} - y^2 = 1 \) 的一条渐近线方程是:A. \( x + 2y = 0 \)B. \( x - 2y = 0 \)C. \( y = \frac{x}{2} \)D. \( y = -\frac{x}{2} \)二、填空题6. 若双曲线的中心在原点,焦点坐标为 \( (±c, 0) \),且 \( c = 5 \),则 \( a \) 的值为______。

7. 双曲线 \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) 的一个顶点坐标为 \( (a, 0) \),若 \( a = 3 \),则 \( b \) 的值为______。

8. 已知双曲线 \( \frac{x^2}{9} - \frac{y^2}{16} = 1 \) 上的点\( M(3, -4) \) 到其一条渐近线的距离为______。

9. 若双曲线 \( \frac{x^2}{16} - \frac{y^2}{9} = 1 \) 上的点\( P \) 到右焦点的距离为 \( 10 \),则 \( P \) 到左焦点的距离为______。

双曲线试题及答案

双曲线试题及答案

双曲线试题及答案1. 已知双曲线的方程为 \(\frac{x^2}{a^2} - \frac{y^2}{b^2} =1\),其中 \(a = 3\),\(b = 4\),求双曲线的焦点坐标。

答案:双曲线的焦点坐标为 \((\pm\sqrt{a^2 + b^2}, 0)\),代入 \(a = 3\) 和 \(b = 4\),得到焦点坐标为 \((\pm 5, 0)\)。

2. 双曲线 \(\frac{x^2}{9} - \frac{y^2}{16} = 1\) 的渐近线方程是什么?答案:双曲线的渐近线方程为 \(y = \pm\frac{b}{a}x\),代入\(a = 3\) 和 \(b = 4\),得到渐近线方程为 \(y =\pm\frac{4}{3}x\)。

3. 如果一个双曲线的中心在原点,且通过点 \((2, 3)\),并且其一条渐近线方程为 \(y = 2x\),求双曲线的方程。

答案:设双曲线方程为 \(\frac{x^2}{a^2} - \frac{y^2}{b^2}= 1\),由于渐近线方程为 \(y = 2x\),可知 \(\frac{b}{a} = 2\)。

将点 \((2, 3)\) 代入方程得 \(\frac{4}{a^2} - \frac{9}{b^2} =1\)。

联立 \(b = 2a\) 解得 \(a = 1\),\(b = 2\),因此双曲线方程为 \(x^2 - \frac{y^2}{4} = 1\)。

4. 已知双曲线 \(\frac{x^2}{16} - \frac{y^2}{9} = 1\) 与直线\(y = mx + 1\) 相交,求直线的斜率 \(m\) 的取值范围。

答案:将直线方程代入双曲线方程,得到 \(\frac{x^2}{16} -\frac{(mx + 1)^2}{9} = 1\)。

整理得 \((9 - 16m^2)x^2 - 32mx -70 = 0\)。

双曲线历年高考真题100题 原卷版

双曲线历年高考真题100题  原卷版

1高考真题一、单选题A .221913x y -=B .221139x y -=C .2213x y -=D .2213y x -=A .2B .C .D .1A .B .3C .D .A .B .C .D .A .B .C .D .3A .(1,3)B .(]1,3 C .(3,+∞)D .[)3,+∞ A . B . C . D .A .(√2,2)B .(√2,√5)C .(2,5)D .(2,√5)A .3B .C .D .A .B .2C .3D .6A .2 BC .32D .12 A . B .5 C . D .A .22124x y -=B .22142-=x yC .22146x y -=D .221410x y -=A .221090x y x +-+=B .2210160x y x +-+=C .2210160x y x +++=D .221090x y x +++=A.B .12 C.D .24ABCDA .√2B .√3C .√3+12D .√5+12A .By=0 C .="0" D±y=0ABC.D. A .12m > B .1m ≥ C .1m > D .2m >A .12B.2C .1 DA .22182x y +=B .221126x y +=3C .221164x y +=D .221205x y +=A .12或32B .23或2 C .12或2 D .23或32A .2 B.C .4 D. A .4 B .3C .2D .1ABC .2D .3A.ab B .22b a + C .a D .bA .221520x y -=B .221205x y -=C .D .A .(0,)B .(1,)C .(,1)D .(,+∞)A .2B .2C .4D .4A .B .C .D .A .a 2=B .a 2=3C .b 2=D .b 2=2A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等A.14y x=±B.13y x=±C.12y x=±D.y x=±A.y=±2x B.y=C.12y x=±D.y=A.B.C.D.ABC.2 D.3A.22154x y-=B.22145x y-=C.22136x y-=D.22163x y-=A.1 B.2 C.3 D.4A.B.2CD.1A.B.C.D.A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=145AB .54C .43D .53A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >A .22=14y x -B .22=14x y -C .22=14y x -D .22=14x y -AB .2CDA .2 B.C .4D.A .14B .13C.4D.3A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -=A .13 B .1 2C .2 3D .3 2得的弦长为2,则C 的离心率为 ( ) A .2 BCDA.223=1 44x y-B.224=1 43x y-C.22=1 44x y-D.22=1 412x y-A.y=B.y=C.2y x=±D.2y x=±A.32B.3 C.D.4A.22139x y-=B.22193x y-=C.221412x y-=D.221124x y-=A.(√2,+∞)B.(√2,2)C.(1,√2)D.(1,2)A.221412x y-=B.221124x y-=C.2213xy-=D.2213yx-=A.221412x y-=B.22179x y-=C.22188x y-=D.221124x y-=A.220x-25y=1 B.25x-220y=1 C.280x-220y=1 D.220x-280y=1A.(1,0)(0,1)-6B.(,1)(1,) -∞-+∞C.(⋃D.(,(2,) -∞+∞A.2B.C.4D.A.3 B.2CDA.14B.35C.34D.45二、填空题7P,Q,其焦点是F1,F2,则四边形F1P F2Q的面积是________.三、解答题已知双曲线的两条渐近线分别为.(1)求双曲线的离心率;89(1)求12,C C 的方程;已知中心在原点的双曲线C 的一个焦点是,一条渐近线的方程是.(Ⅰ)求双曲线C 的方程; (Ⅱ)若以为斜率的直线与双曲线C 相交于两个不同的点M ,N ,线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.(Ⅰ)求点P 的轨迹方程; (Ⅱ)设d 为点P 到直线l : 12x =的距离,若22PM PN =,求PM d的值.(Ⅰ)求双曲线C 的标准方程及其渐近线方程;(Ⅱ)如题(21)图,已知过点()11,M x y 的直线1l : 1144x x y y +=与过点()22,N x y (其中21x x ≠)的直线2l :的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求·OG OH 的值.10(1)求双曲线C 的方程;(2)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF的面积为求直线l 的方程第3小题满分7分.已知双曲线2212x C y -=:.(1)求双曲线C 的渐近线方程;(2)已知点M 的坐标为(01),.设P 是双曲线C 上的点,Q 是点P 关于原点的对称点. 记·MP MQ λ=.求λ的取值范围;(3)已知点D E M ,,的坐标分别为(21)(21)(01)---,,,,,,P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为DEM 截直线l 所得线段的长.试将s 表示为直线l 的斜率k 的函数.(1)设F 是C 的左焦点,M 是C 右支上一点. 若|MF|=2,求过M 点的坐标;(2)过C 的左顶点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的 面积; (3)设斜率为的直线l2交C 于P 、Q 两点,若l 与圆相切,求证:OP ⊥OQ ;(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.11(Ⅰ)求该双曲线的方程;(Ⅱ)如图,点A的坐标为(0),B是圆22(1x y +=上的点,点M 在双曲线右支上,求MA MB +的最小值,并求此时M 点的坐标(Ⅰ)若2322,,2a a a +成等差数列,求数列{a n }的通项公式;(Ⅱ)设双曲线2221n y x a -=的离心率为n e ,且253e =,证明:121433n nn n e e e --++⋅⋅⋅+>.(Ⅰ)求E 的方程;(Ⅱ)试判断以线段MN 为直径的圆是否过点F ,并说明理由.四、双空题。

高中数学椭圆双曲线抛物线历年真题及详解

高中数学椭圆双曲线抛物线历年真题及详解

【考点8】椭圆、双曲线、抛物线2009年考题1、(2009湖北高考)已知双曲线1412222222=+=-b y x y x 的准线经过椭圆(b>0)的焦点,则b=( )A .3 B.5 C.3 D.2选C.可得双曲线的准线为21a x c =±=±,又因为椭圆焦点为2(4,0)b ±-所以有241b -=.即b2=3故b =3.2、(2009陕西高考)“0m n >>”是“方程221mxny +=”表示焦点在y 轴上的椭圆”的()(A)充分而不必要条件 (B)必要而不充分条件(C)充要条件 (D) 既不充分也不必要条件【解析】选C.将方程221mxny +=转化为22111x y m n+=, 根据椭圆的定义,要使焦点在y 轴上必须 满足110,0,m n>>且11n m >,故选C .3、(2009湖南高考)抛物线28y x =-的焦点坐标是( )A .(2,0)B .(- 2,0) C.(4,0) D.(- 4,0) 【解析】选B.由28y x =-,易知焦点坐标是(,0)(2,0)2p-=-,故选B. 4、(2009全国Ⅰ)已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B , 若3FA FB =,则||AF =( )(A )2(B) 2 (3 (D)3【解析】选A.过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =,故2||3BM =.又由椭圆的第二定义,得222||233BF==||2AF ∴=5、(2009江西高考)设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为( )A.32B .2 C.52D .3【解析】选B.由3tan623c b π==有2222344()c b c a ==-,则2c e a==,故选B. 6、(2009江西高考)过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为( )A .22B .33C.12D.13【解析】选B.因为2(,)b P c a -±,再由1260F PF ∠=有232,b a a=从而可得33c e a ==,故选B.7、(2009浙江高考)过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( ) A.2B .3C.5D.10【解析】选C.对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,则有22222222(,),,a b a b abab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭, 因222,4,5ABBC a b e =∴=∴=.8、(2009山东高考)设双曲线12222=-by a x 的一条渐近线与抛物线y=x2+1 只有一个公共点,则双曲线的离心率为( ).A.45B. 5C.25 D .5【解析】选D.双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y xa y x ⎧=⎪⎨⎪=+⎩,消去y,得210b xx a -+=有唯一解,所以△=2()40ba-=, 所以2b a =,2221()5c a b b e a a a+===+=,故选D .9、(2009山东高考)设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△O AF(O 为坐标原点)的面积为4,则抛物线方程为( ). A .24y x =±B .28y x =± C. 24y x = D . 28y x =【解析】选B.抛物线2(0)y ax a =≠的焦点F 坐标为(,0)4a ,则直线l 的方程为2()4ay x =-,它与y 轴的交点为A (0,)2a -,所以△OAF 的面积为1||||4242a a⋅=,解得8a =±.所以抛物线方程为28y x =±,故选B.10、(2009安徽高考)6 )(A )22124x y -= (B)22142x y -= (C)22146x y -= (D )221410x y -=【解析】选B.由6e =得222222331,1,222c b b a a a =+==,选B. 11、(2009天津高考)设双曲线)0,0(12222>>=-b a by a x 的虚轴长为2,焦距为32,则双曲线的渐近线方程为()Ax y 2±=Bx y 2±= C x y 22±= Dx y 21±=【解析】选C.由已知得到2,3,122=-===b c a c b,因为双曲线的焦点在x 轴上,故渐近线方程为x x a b y 22±=±=. 12、(2009宁夏、海南高考)双曲线24x -212y =1的焦点到渐近线的距离为( )(A )3 (B)2 (C 3(D)1【解析】选A.双曲线24x -212y =1的焦点(4,0)到渐近线3y x =的距离为34023d ⨯-==选A.13、(2009宁夏、海南高考)设已知抛物线C 的顶点在坐标原点,焦点为F(1,0),直线l 与抛物线C 相交于A,B 两点。

新课标双曲线历年高考题精选(精)

新课标双曲线历年高考题精选(精)

新课标双曲线历年高考题精选1.(05上海理5假设双曲线的渐近线方程为y=±3x, 它的一个焦点是(10,0, 那么双曲线的方程为————2.(07福建理6以双曲线221916x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是 3.(07上海理8以双曲线15422=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是4.(07天津理4设双曲线22221(00x y a b a b-=>>,抛物线24y x =的准线重合,那么此双曲线的方程为(A.2211224x y -=B.2214896x y -=C.222133x y -= D.22136x y -= 5.(04北京春理3双曲线x y 22 491-=的渐近线方程是( A.y x =±32B.y x =±23 C. y x =±94D.y x =±496.(2021安徽卷理以下曲线中离心率为的是A .22124x y -=B .22142x y -=C .22146x y -=D .221410x y -=7.(2021宁夏海南卷理双曲线24x -212y =1的焦点到渐近线的距离为(8.(2021天津卷文设双曲线0,0(12222>>=-b a by a x 的虚轴长为2,焦距为32,那么双曲线的渐近线方程为(9.(2021湖北卷文双曲线1412222222=+=-by x y x 的准线经过椭圆(b >0的焦点,那么b =(10. (2021重庆文假设双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,那么p 的值为(C (A2 (B3 (C411.(2021江西文双曲线22221(0,0x y a b a b -=>>的两条渐近线方程为3y x =±,假设顶点到渐近线的距离为1,那么双曲线方程为 223144x y -= .112.(2021山东文圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,那么适合上述条件的双曲线的标准方程为221412x y -=13.(2021安徽文双曲线22112x y n n -=-n = 414、(2021海南、宁夏文双曲线221102x y -=的焦距为( DD. 15. (2021重庆理双曲线22221x y a b-=(a >0,b >0的一条渐近线为y =kx (k >0,离心率e ,那么双曲线方程为 (C(A 22x a-224y a =1 (B222215x y a a -= (C222214x y b b -= (D222215x y b b -=16.(2021辽宁卷理以知F 是双曲线的左焦点,是双曲线右支上的动点,那么的最小值为17.(2021辽宁文双曲线22291(0y m x m -=>的一个顶点到它的一条渐近线的距离为15,那么m =( D A .1B .2C .3 D .4 18.(04湖南文4如果双曲线1121322=-y x 上一点P 到右焦点的距离为13, 那么点P 到右准线的距离是(17.(2021四川文双曲线22:1916x y C -=的左右焦点分别为12,F F ,P 为C 的右支上一点,且212PF FF =,那么12PFF ∆的面积等于( C (A24 (B36 (C48 (D9619.(04天津理4设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,假设3||1=PF ,那么=||2PFA. 1或5B. 6C. 7D. 920.(05全国Ⅱ理6双曲线136=-的焦点为F 1、F 2,点M 在双曲线上且MF 1⊥x 轴,那么F 1到直线F 2M 的距离为21(05全国Ⅲ理9双曲线2212y x -=的焦点为12F F 、,点M 在双曲线上且120MF MF ⋅= ,那么点M 到x 轴的距离为( 22.(05湖南理7双曲线22a x -22b y =1(a >0,b >0的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点,那么两渐近线的夹角为(A 、30º B 、45º C 、60º D 、90º23.(07福建理6以双曲线221916x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( A .221090x y x +-+= B .2210160x y x +-+= C .2210160x y x +++= D .221090x y x +++=30.(07辽宁理11设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,假设12||:||3:2PF PF =,那么12PFF △的面积为(A .B .12C .D .2424.(07四川理5如果双曲线12422=-y x 上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是25(07陕西理7双曲线C :12222=-by c a (a >0,b >0,以C 的右焦点为圆心且与C 的浙近线相切的圆的半径是 A.ab B.22b a + C.a D.b26.(07重庆理16过双曲线224x y -=的右焦点F 作倾斜角为105 的直线,交双曲线于P Q ,两点,那么FP FQ 的值为______.27.(2021山东卷理设双曲线122=-ba 的一条渐近线与抛物线y=x 2+1 只有一个公共点,那么双曲线的离心率为( .28.(2021四川卷文、理双曲线0(12222>=-b by x 的左、右焦点分别是1F 、2F ,其一条渐近线方程为x y =,点,3( 0y P 在双曲线上.那么1PF ·2PF =(29.(2021全国卷Ⅱ理双曲线(222210,0x y C a b a b-=>>:的右焦点为F ,过F 且斜率C 于A B 、两点,假设4AF FB =,那么C 的离心率为 (30.(2021江西卷文设1F 和2F 为双曲线22221x y a b-=(0,0a b >>的两个焦点, 假设12F F ,,(0,2P b 是正三角形的三个顶点,那么双曲线的离心率为31.(2021湖北卷理双曲线22122x y -=的准线过椭圆22214x y b+=的焦点,那么直线2y kx =+与椭圆至多有一个交点的充要条件是( A.11,22K ⎡⎤∈-⎢⎥⎣⎦B.11,,22K ⎛⎤⎡⎫∈-∞-+∞⎪⎥⎢⎝⎦⎣⎭ C. K ⎡∈⎢⎣⎦ D. ,K ⎛⎫∈-∞+∞⎪⎪⎝⎦⎣⎭32.(2021全国卷Ⅰ理设双曲线22221x y a b-=(a >0,b >0的渐近线与抛物线y=x 2 +1相切,那么该双曲线的离心率等于( 33.(2021全国卷Ⅱ文双曲线13622=-y x 的渐近线与圆0(3(222>=+-r r y x 相切,那么r = (34.(2021福建卷文假设双曲线(222213x y a o a -=>的离心率为2,那么a 等于(35.(2021全国卷Ⅰ文设双曲线(222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,那么该双曲线的离心率等于(36.(2021重庆卷理双曲线的左、右焦点分别为,假设双曲线上存在一点使,那么该双曲线的离心率的取值范围是 .37.(2021湖南卷文过双曲线C :的一个焦点作圆的两条切线, 切点分别为A ,B ,假设(O 是坐标原点,那么双曲线线C 的离心率为 2 .38.(2021湖南卷理以双曲线C 的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,那么双曲线C 的离心率为39.(2021湖南文双曲线0,0(12222>>=-b a b y ax 的右支上存在一点,它到右焦点及左准线的距离相等,那么双曲线离心率的取值范围是( CA .(1B .+∞C .(11]D .1,+∞ 40.(2021浙江文、理假设双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,那么双曲线的离心率是(41. (2021湖南理假设双曲线22221x y a b-=(a >0,b >0上横坐标为32a的点到右焦点的距离大于它到左准线的距离,那么双曲线离心率的取值范围是( B.A.(1,2B.(2,+∞C.(1,5D. (5,+∞(2021海南、宁夏理过双曲线221916x y -=的右顶点为A ,右焦点为F 。

福建高考数学双曲线专项练习题附答案

福建高考数学双曲线专项练习题附答案

福建高考数学双曲线专项练习题附答案1.已知M-2,0,N2,0,|PM|-|PN|=3,则动点P的轨迹是A.双曲线B.双曲线左边一支C.双曲线右边一支D.一条射线2.若双曲线方程为x2-2y2=1,则它的右焦点坐标为A. B. C. D.,03.2021大纲全国,文11双曲线C:=1a>0,b>0的离心率为2,焦点到渐近线的距离为,则C的焦距等于A.2B.2C.4D.44.过双曲线=1a>0,b>0的右焦点F作圆x2+y2=a2的切线FM切点为M,交y轴于点P.若M为线段FP的中点,则双曲线的离心率是A. B. C.2 D.5.已知双曲线的两个焦点为F1-,0,F2,0,M是此双曲线上的一点,且满足=0,||||=2,则该双曲线的方程是A.-y2=1B.x2-=1C.=1D.=16.已知双曲线C的离心率为2,焦点为F1,F2,点A在C上.若|F1A|=2|F2A|,则cosAF2F1=A. B. C. D.7.2021福建莆田模拟已知双曲线=1的右焦点的坐标为,0,则该双曲线的渐近线方程为.8.A,B是双曲线C的两个顶点,直线l与双曲线C交于不同的两点P,Q,且与实轴所在直线垂直.若=0,则双曲线C的离心率e= .9.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点4,-.1求双曲线方程;2若点M3,m在双曲线上,求证:=0;3在2的条件下求△F1MF2的面积.10.2021福建厦门模拟双曲线=1a>0,b>0的一条渐近线方程是y=x,坐标原点到直线AB 的距离为,其中Aa,0,B0,-b.1求双曲线的方程;2若B1是双曲线虚轴在y轴正半轴上的端点,过点B作直线交双曲线于点M,N求时,直线MN的方程.11.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为A. B.2 C.4 D.812.已知点P是双曲线=1a>0,b>0右支上一点,F1,F2分别为双曲线的左、右焦点,点I 为PF1F2的内心,若+λ成立,则λ的值为A. B. C. D.13.若点O和点F-2,0分别为双曲线-y2=1a>0的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为A.[3-2,+∞B.[3+2,+∞C. D.14.2021浙江,文17设直线x-3y+m=0m≠0与双曲线=1a>0,b>0的两条渐近线分别交于点A,B.若点Pm,0满足|PA|=|PB|,则该双曲线的离心率是.15.2021湖南,文20如图,O为坐标原点,双曲线C1:=1a1>0,b1>0和椭圆C2:=1a2>b2>0均过点P,且以C1的两个顶点和C2的两个焦点为顶点的四边形是面积为2的正方形.1求C1,C2的方程;2是否存在直线l,使得l与C1交于A,B两点,与C2只有一个公共点,且||=||?证明你的结论.16.已知双曲线E:=1a>0,b>0的两条渐近线分别为.1求双曲线E的离心率;2如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点A,B分别在第一、四象限,且△OAB的面积恒为8.试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程;若不存在,说明理由.1.C 解析:|PM|-|PN|=3<4,∴由双曲线定义知,其轨迹为双曲线的一支又|PM|>|PN|,∴点P的轨迹为双曲线的右支.2.C 解析:双曲线的标准方程为x2-=1,a2=1,b2=.∴c2=a2+b2=.∴c=,故右焦点坐标为.3.C 解析:e=2,∴=2.设焦点F2c,0到渐近线y=x的距离为,渐近线方程为bx-ay=0,.∵c2=a2+b2,∴b=.由=2,得=2,=4,解得c=2.焦距2c=4,故选C.4.A 解析:如图所示,在Rt△OPF中,OMPF,且M为PF的中点,则△POF为等腰直角三角形.所以△OMF也是等腰直角三角形.所以有|OF|=|OM|,即c=a.故e=.5.A 解析:由=0,可知.可设||=t1,||=t2,则t1t2=2.在△MF1F2中,=40,则|t1-t2|===6=2a.解得a=3.故所求双曲线方程为-y2=1.6.A 解析:双曲线的离心率为2,=2,∴a∶b∶c=1∶∶2.又∴|AF1|=4a,|AF2|=2a,∴|F1F2|=2c=4a,∴cos∠AF2F1==,选A.7.2x±3y=0解析:因为右焦点坐标是,0,所以9+a=13,即a=4.所以双曲线方程为=1.所以渐近线方程为=0,即2x±3y=0.8. 解析:如图所示,设双曲线方程为=1,取其上一点Pm,n,则Qm,-n,由=0可得a-m,-n·m+a,-n=0,化简得a2-m2+n2=0.又=1可得b=a,故双曲线的离心率为e=.9.1解:因为e=,所以可设双曲线方程为x2-y2=λ.因为双曲线过点4,-,所以16-10=λ,即λ=6.所以双曲线方程为=1.2证明:由1可知,在双曲线中a=b=,所以c=2.所以F1-2,0,F22,0.所以=-2-3,-m,=2-3,-m,则=9-12+m2=m2-3.因为点3,m在双曲线上,所以9-m2=6,即m2=3.所以=m2-3=0.3解:由2知△F1MF2的高h=|m|=,由△F1MF2的底边|F1F2|=4,则=6.10.解:1设直线AB:=1,由题意,所以所以双曲线方程为=1.2由1得B0,-3,B10,3,设Mx1,y1,Nx2,y2,易知直线MN的斜率存在.设直线,所以所以3x2-kx-32=9.整理得3-k2x2+6kx-18=0,①所以x1+x2=,y1+y2=kx1+x2-6=,x1x2=,y1y2=k2x1x2-3k·x1+x2+9=9.因为=x1,y1-3,=x2,y2-3, ·=0,所以x1x2+y1y2-3y1+y2+9=0,即+9-+9=0,解得k2=5,所以k=±,代入①有解,所以.11.C 解析:设等轴双曲线方程为x2-y2=mm>0,因为抛物线的准线为x=-4,且|AB|=4,所以|yA|=2.把坐标-4,2代入双曲线方程得m=x2-y2=16-12=4,所以双曲线方程为x2-y2=4,即=1.所以a2=4,所以实轴长2a=4.12.B 解析:设△PF1F2内切圆半径为r,根据已知可得×|PF1|×r=×|PF2|×r+×2c×r,整理可得|PF1|=|PF2|+2λc.由双曲线的定义可得|PF1|-|PF2|=2a,则2λc=2a,故λ=.13.B 解析:由a2+1=4,得a=,则双曲线方程为-y2=1.设点Px0,y0,则=1,即-1.=x0x0+2+=+2x0+-1=,x0≥,∴当x0=时,取最小值3+2.故的取值范围是[3+2,+∞.14. 解析:双曲线=1的两条渐近线方程分别是y=x和y=-x.由解得A,由解得B.设AB中点为E,则E.由于|PA|=|PB|,所以PE与直线x-3y+m=0垂直,而kPE=,于是=-1.所以a2=4b2=4c2-a2.所以4c2=5a2,解得e=.15.解:1设C2的焦距为2c2,由题意知,2c2=2,2a1=2.从而a1=1,c2=1.因为点P在双曲线x2-=1上,所以=1.故=3.由椭圆的定义知2a2==2.于是a2==2.故C1,C2的方程分别为x2-=1,=1.2不存在符合题设条件的直线.①若直线l垂直于x轴,因为l与C2只有一个公共点,所以直线l的方程为x=或x=-.当x=时,易知A,B,-,所以||=2,||=2.此时,||≠||.当x=-时,同理可知,||≠||.②若直线l不垂直于x轴,设l的方程为y=kx+m.由得3-k2x2-2kmx-m2-3=0.当l与C1相交于A,B两点时,设Ax1,y1,Bx2,y2,则x1,x2是上述方程的两个实根,于是y1y2=k2x1x2+kmx1+x2+m2=.由得2k2+3x2+4kmx+2m2-6=0.因为直线l与C2只有一个公共点,所以上述方程的判别式Δ=16k2m2-82k2+3m2-3=0.化简,得2k2=m2-3,因此=x1x2+y1y2=≠0,于是+2-2,即||≠||,故||≠||.综合①,②可知,不存在符合题设条件的直线.16.解法一:1因为双曲线E的渐近线分别为y=2x,y=-2x,所以=2,所以=2,故c=a,从而双曲线E的离心率e=.2由1知,双曲线E的方程为=1.设直线l与x轴相交于点C.当lx轴时,若直线l与双曲线E有且只有一个公共点,则|OC|=a,|AB|=4a,又因为△OAB的面积为8,所以|OC|·|AB|=8,因此a·4a=8,解得a=2,此时双曲线E的方程为=1.若存在满足条件的双曲线E,则E的方程只能为=1.以下证明:当直线l不与x轴垂直时,双曲线E:=1也满足条件.设直线l的方程为y=kx+m,依题意,得k>2或k<-2,则C.由得y1=,同理得y2=,由S△OAB=|OC|·|y1-y2|得,=8,即m2=4|4-k2|=4k2-4.由得,4-k2x2-2kmx-m2-16=0.因为4-k2<0,Δ=4k2m2+44-k2m2+16=-164k2-m2-16,又m2=4k2-4,所以Δ=0,即l与双曲线E有且只有一个公共点.因此,存在总与l有且只有一个公共点的双曲线E,且E的方程为=1.解法二:1同解法一.2由1知,双曲线E的方程为=1.设直线l的方程为x=my+t,Ax1,y1,Bx2,y2.依题意得-2或k<-2.由得,4-k2x2-2kmx-m2=0,因为4-k2<0,Δ>0,所以x1x2=,又因为△OAB的面积为8,所以|OA|·|OB|·sinAOB=8,由已知sinAOB=,所以=8,化简得x1x2=4.所以=4,即m2=4k2-4.由1得双曲线E的方程为=1,由得,4-k2x2-2kmx-m2-4a2=0,因为4-k2<0,直线l与双曲线E有且只有一个公共点当且仅当Δ=4k2m2+44-k2m2+4a2=0,即k2-4a2-4=0,所以a2=4,所以双曲线E的方程为=1.当lx轴时,由△OAB的面积等于8可得l:x=2,又易知l:x=2与双曲线E:=1有且只有一个公共点.综上所述,存在总与l有且只有一个公共点的双曲线E,且E的方程为=1.感谢您的阅读,祝您生活愉快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双曲线历年高考真题一、单选题1.(2015·天津高考真题(文))已知双曲线22221(0,0)x y a b a b -=>>的一个焦点为(2,0)F ,且双曲线的渐近线与圆()2223x y -+=相切,则双曲线的方程为( )A .221913x y -=B .221139x y -=C .2213x y -=D .2213y x -=2.(2014·全国高考真题(文))已知双曲线的离心率为2,则A .2B .C .D .13.(2014·全国高考真题(理))已知为双曲线:的一个焦点,则点到的一条渐近线的距离为( )A .B .3C .D .4.(2014·山东高考真题(理))已知,椭圆1C 的方程为,双曲线2C 的方程为22221x y a b-=,1C 与2C 的离心率之积为,则2C 的渐近线方程为( )A .B .C .D .5.(2014·重庆高考真题(理))设分别为双曲线的左、右焦点,双曲线上存在一点使得则该双曲线的离心率为 A .B .C .D .36.(2008·福建高考真题(文))双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( ) A .(1,3)B .(]1,3C .(3,+∞)D .[)3,+∞7.(2008·全国高考真题(文))设ABC 是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( ) A .B .C .D .8.(2008·全国高考真题(理))设a >1,则双曲线x 2a 2−y 2(a+1)2=1的离心率e 的取值范围是( ) A .(√2,2)B .(√2,√5)C .(2,5)D .(2,√5)9.(2009·湖北高考真题(文))已知双曲线(b >0)的焦点,则b=() A .3B .C .D .10.(2009·全国高考真题(文))双曲线的渐近线与圆相切,则( )A .B .2C .3D .611.(2009·福建高考真题(文))若双曲线()22213x y a o a-=>的离心率为2,则a 等于( )A .2B C .32D .112.(2009·山东高考真题(理))设双曲线的一条渐近线与抛物线y=x +1只有一个公共点,则双曲线的离心率为( ) A .B .5C .D .13.(2009·安徽高考真题(理) ) A .22124x y -=B .22142-=x yC .22146x y -=D .221410x y -=14.(2007·福建高考真题(理))以双曲线221916x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( )A .221090x y x +-+=B .2210160x y x +-+=C .2210160x y x +++=D .221090x y x +++=15.(2007·辽宁高考真题(理))设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12:3:2PF PF =,则12PF F 的面积为( )A .B .12C .D .2416.(2010·全国高考真题(理))已知1F 、2F 为双曲线C :221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则P 到x 轴的距离为A B .2C D17.(2010·辽宁高考真题(理))设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) A .√2 B .√3 C .√3+12D .√5+1218.(2010·浙江高考真题(文))(10)设O 为坐标原点,1F ,2F 是双曲线2222x y 1a b-=(a>0,b >0)的焦点,若在双曲线上存在点P ,满足∠1F P 2F =60°,∣OP ∣,则该双曲线的渐近线方程为A .B y=0C .="0"D ±y=019.(2007·四川高考真题)如果双曲线22142x y -=上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( )A B C .D .20.(2013·北京高考真题(文))双曲线221y x m-=的充分必要条件是( ) A .12m >B .1m ≥C .1m >D .2m >21.(2013·福建高考真题(文))双曲线221x y -=的顶点到其渐近线的距离等于( )A .12B .2C .1 D22.(2012·山东高考真题(理))已知椭圆2222:1(0)x y C a b a b +=>>.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为A .22182x y +=B .221126x y +=C .221164x y +=D .221205x y +=23.(2011·福建高考真题(理))设圆锥曲线τ的两个焦点分别为12,F F ,若曲线τ上存在点P 满足1122::PF F F PF 4:3:2=,则曲线τ的离心率等于A .12或32B .23或2 C .12或2 D .23或3224.(2011·安徽高考真题(文))A .2B .C .4D .25.(2011·湖南高考真题(文))设双曲线()222109x y a a -=>的渐近线方程为320x y ±=,则a 的值为( ) A .4B .3C .2D .126.(2007·浙江高考真题(理))已知双曲线22221()00a x y a bb >-=>,的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,12·4PF PF ab =,则双曲线的离心率是( )A B C .2 D .327.(2007·陕西高考真题(理))已知双曲线C :12222=-by c a (a >0,b >0),以C 的右焦点为圆心且与C 的浙近线相切的圆的半径是A.ab B .22b a + C .a D .b28.(2014·天津高考真题(理))已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为A .221520x y -=B .221205x y -=C .D .29.(2011·重庆高考真题(文))(5分)(2011•重庆)设双曲线的左准线与两条渐近线交于A ,B 两点,左焦点为在以AB 为直径的圆内,则该双曲线的离心率的取值范围为( ) A .(0,)B .(1,)C .(,1)D .(,+∞)30.(2011·天津高考真题(文))已知双曲线﹣=1(a >0,b >0)的左顶点与抛物线y 2=2px 的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为( ) A .2B .2C .4D .431.(2013·重庆高考真题(文))设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1、B 1和A 2、B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( ) A .B .C .D .32.(2011·浙江高考真题(理))已知椭圆C 1:=1(a >b >0)与双曲线C 2:x 2﹣=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点.若C 1恰好将线段AB 三等分,则( ) A .a 2=B .a 2=3C .b 2=D .b 2=233.(2013·湖北高考真题(理))已知,则双曲线的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等34.(2013·全国高考真题(文))已知双曲线2222:1x y C a b-=(0,0)a b >>,则C 的渐近线方程为( ) A .14y x =±B .13y x =±C .12y x =±D .y x =±35.(2013·北京高考真题(理))若双曲线22221x y a b-=,则其渐近线方程为( )A .y=±2xB .y=C .12y x =±D .y x = 36.(2013·福建高考真题(理))双曲线的顶点到渐进线的距离等于( )A .B .C .D .37.(2011·全国高考真题(理))设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为AB C .2D .338.(2011·山东高考真题(理))已知双曲线()222210,0x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -=39.(2008·辽宁高考真题)已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15,则m =( ) A .1B .2C .3D .440.(2009·宁夏高考真题(理))双曲线221412x y -=的焦点到渐近线的距离为( )A .B .2C D .1 41.(2016·天津高考真题(文))已知双曲线的焦距为,且双曲线的一条渐近线与直线垂直,则双曲线的方程为A .B .C .D .42.(2015·广东高考真题(理))已知双曲线C :﹣=1的离心率e=,且其右焦点为F 2(5,0),则双曲线C 的方程为( ) A .﹣=1B .﹣=1C .﹣=1 D .﹣=143.(2015·湖南高考真题(文))若双曲线22221x y a b-=的一条渐近线经过点()3,4-,则此双曲线的离心率为( )A B .54C .43D .5344.(2015·湖北高考真题(理))将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >45.(2015·安徽高考真题(理))下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是A .22=14y x -B .22=14x y -C .22=14y x -D .22=14x y -46.(2015·全国高考真题(理))已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A B .2C D47.(2014·全国高考真题(文))双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,焦点C 的焦距等于( ).A .2B .C .4D .48.(2014·全国高考真题(理))已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则21cos AF F ∠= ( )A .14B .13C .4D .349.(2017·天津高考真题(理))已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,离.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -=50.(2017·全国高考真题(文))已知F 是双曲线C :2213y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF 的面积为 A .13B .1 2C .2 3D .3251.(2018·全国专题练习)若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为 ( )A .2B CD .352.(2016·天津高考真题(理))已知双曲线222=14x y b-(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为A .223=144x y -B .224=143x y -C .22=144x y -D .22=1412x y -53.(2018·全国高考真题(文))双曲线22221(0,0)x y a b a b-=>>其渐近线方程为A .y =B .y =C .y x =D .y x = 54.(2018·全国高考真题(理))已知双曲线C :2213x y -=,O 为坐标原点,F为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN 为直角三角形,则|MN |=A .32B .3C .D .455.(2018·天津高考真题(理))已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为A.22139x y-=B.22193x y-=C.221412x y-=D.221124x y-=56.(2017·全国高考真题(文))若a>1,则双曲线x2a2−y2=1的离心率的取值范围是()A.(√2,+∞)B.(√2,2)C.(1,√2)D.(1,2) 57.(2017·天津高考真题(文))(陕西省西安市长安区第一中学上学期期末考)已知双曲线22221(0,0)x ya ba b-=>>的左焦点为F,点A在双曲线的渐近线上,OAF△是边长为2的等边三角形(O为原点),则双曲线的方程为()A.221412x y-=B.221124x y-=C.2213xy-=D.2213yx-=58.(2014·江西高考真题(文))过双曲线22221x yCa b-=:的右顶点作x轴的垂线与C的一条渐近线相交于A.若以C的右焦点为圆心、半径为4的圆经过A O O、两点(为坐标原点),,则双曲线C的方程为()A.221412x y-=B.22179x y-=C.22188x y-=D.221124x y-=59.(2012·湖南高考真题(理))已知双曲线C :22xa-22yb=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C的方程为A.220x-25y=1 B.25x-220y=1 C.280x-220y=1 D.220x-280y=160.(2015·重庆高考真题(理))设双曲线22221x ya b-=(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于a则该双曲线的渐近线斜率的取值范围是()A.(1,0)(0,1)-B.(,1)(1,)-∞-+∞C .(⋃D .(,(2,)-∞+∞61.(2011·安徽高考真题(理)) 双曲线2228x y -=的实轴长是A .2B .C .4D .62.(2012·浙江高考真题(文))如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A .3B .2C D63.(2012·全国高考真题(文))已知F 1、F 2为双曲线C :x²-y²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= A .14B .35C .34D .45二、填空题64.(2015·浙江高考真题(理))双曲线2212x y -=的焦距是 ,渐近线方程是 .65.(2015·上海高考真题(文))已知双曲线、的顶点重合,的方程为,若的一条渐近线的斜率是的一条渐近线的斜率的2倍,则的方程为 .66.(2015·上海高考真题(理))已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C 的渐近线方程为y =,则2C 的渐近线方程为 .67.(2010·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是y =,它的一个焦点与抛物线216y x =的焦点相同.则双曲线的方程为 .68.(2011·上海高考真题(理))设m 为常数,若点(0,5)F 是双曲线2219y xm -=的一个焦点,则m =___________69.(2013·辽宁高考真题(文))已知F 为双曲线22:1916x y C -=的左焦点,,P Q 为C 上的点,若PQ 的长等于虚轴长的2倍,点()5,0A 在线段PQ 上,则PQF ∆的周长为________.70.(2009·重庆高考真题(理))已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12(,0),(,0)F c F c -,若双曲线上存在一点P 使1221sin sin PF F aPF F c∠=∠,则该双曲线的离心率的取值范围是__________.71.(2015·江苏高考真题)在平面直角坐标系中,为双曲线右支上的一个动点.若点到直线的距离大于c 恒成立,则实数c的最大值为72.(2015·全国高考真题(文))已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,(A ,当APF ∆周长最小时,该三角形的面积为 .73.(2015·山东高考真题(文))过双曲线C :22221x y a b-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为- . 74.(2015·全国高考真题(文))已知双曲线过点,且渐近线方程为12y x =±,则该双曲线的标准方程为____________________.75.(2017·山东高考真题(文))在平面直角坐标系xoy 中,双曲线的右支与焦点为F 的抛物线22(0)x py p => 交于,A B 两点,若AF +BF =4OF ,则该双曲线的渐近线方程为_________.76.(2017·北京高考真题(文))若双曲线221y x m-=,则实数m =__________.77.(2017·江苏高考真题)在平面直角坐标系xOy 中,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 ,F 2 ,则四边形F 1 P F 2 Q 的面积是________.78.(2011·江西高考真题(文))若双曲线22116y x m -=的离心率e =2,则m =________.79.(2016·江苏高考真题)在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是____________.80.(2015·湖南高考真题(理))设F 是双曲线C :22x a-22y b =1(a >0,b >0)的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为________.81.(2017·上海高考真题)设双曲线22219x y b-=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =________82.(2017·全国高考真题(文))(2017新课标全国III 文科)双曲线22219x y a -=(a >0)的一条渐近线方程为35y x =,则a =______________. 83.(2018·全国专题练习)已知双曲线C :22221(0,0)x y a b a b-=>>的右顶点为A ,以A为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线于交M 、N 两点,若60MAN ∠=,则C 的离心率为__________.84.(2018·上海高考真题)双曲线2214x y -=的渐近线方程________.85.(2018·北京高考真题(文))若双曲线2221(0)4x y a a -=>,则a =_________.86.(2018·江苏高考真题)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(c,0)F ,则其离心率的值是________.三、解答题87.(2014·福建高考真题(理)) 已知双曲线的两条渐近线分别为.(1)求双曲线的离心率;(2)如图,为坐标原点,动直线分别交直线于两点(分别在第一,四象限),且的面积恒为8,试探究:是否存在总与直线有且只有一个公共点的双曲线?若存在,求出双曲线的方程;若不存在,说明理由.88.(2014·湖南高考真题(文))如图,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)y x C a b a b +=>>均过点(3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形.(1)求12,C C 的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且OA OB AB +=?证明你的结论.89.(2008·天津高考真题(文)) 已知中心在原点的双曲线C 的一个焦点是,一条渐近线的方程是.(Ⅰ)求双曲线C 的方程; (Ⅱ)若以为斜率的直线与双曲线C 相交于两个不同的点M ,N ,线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围. 90.(2008·重庆高考真题(文))如图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 2.PM PN -=(Ⅰ)求点P 的轨迹方程; (Ⅱ)设d 为点P 到直线l : 12x =的距离,若22PM PN =,求PM d的值.91.(2010·重庆高考真题(文))已知以原点O 为中心, )F为右焦点的双曲线C的离心率2e =. (Ⅰ)求双曲线C 的标准方程及其渐近线方程;(Ⅱ)如题(21)图,已知过点()11,M x y 的直线1l : 1144x x y y +=与过点()22,N x y (其中21x x ≠)的直线2l :的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求·OG OH 的值. 92.(2008·湖北高考真题(文))已知双曲线2222:1(0,0)x y C a b a b-->>的两个焦点为:(2,0),:(2,0),F F P -点的曲线C 上.(1)求双曲线C 的方程;(2)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF的面积为求直线l 的方程93.(2008·上海高考真题(文))本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.已知双曲线2212x C y -=:.(1)求双曲线C 的渐近线方程;(2)已知点M 的坐标为(01),.设P 是双曲线C 上的点,Q 是点P 关于原点的对称点. 记·MP MQ λ=.求λ的取值范围;(3)已知点D E M ,,的坐标分别为(21)(21)(01)---,,,,,,P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为DEM 截直线l 所得线段的长.试将s 表示为直线l 的斜率k 的函数.94.(2012·上海高考真题(文))在平面直角坐标系中,已知双曲线.(1)设F 是C 的左焦点,M 是C 右支上一点. 若|MF|=2,求过M 点的坐标;(2)过C 的左顶点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的 面积; (3)设斜率为的直线l2交C 于P 、Q 两点,若l 与圆相切,求证:OP ⊥OQ ;95.(2014·辽宁高考真题(理))圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P . (1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.96.(2009·重庆高考真题(文))已知以原点为中心的双曲线的一条准线方程为,离心率.(Ⅰ)求该双曲线的方程;(Ⅱ)如图,点A的坐标为(0),B是圆22(1x y +=上的点,点M 在双曲线右支上,求MA MB +的最小值,并求此时M 点的坐标97.(2016·四川高考真题(理))已知数列{n a }的首项为1,n S 为数列{n a }的前n 项和,11n n S qS +=+,其中q>0,*n N ∈.(Ⅰ)若2322,,2a a a +成等差数列,求数列{a n }的通项公式;(Ⅱ)设双曲线2221n y x a -=的离心率为n e ,且253e =,证明:121433n n n n e e e --++⋅⋅⋅+>.98.(2010·四川高考真题(理))已知定点A (-1,0),F (2,0),定直线l :x =12,不在x 轴上的动点P 与点F 的距离是它到直线l 的距离的2倍.设点P 的轨迹为E ,过点F 的直线交E 于B 、C 两点,直线AB 、AC 分别交l 于点M 、N (Ⅰ)求E 的方程;(Ⅱ)试判断以线段MN 为直径的圆是否过点F ,并说明理由.四、双空题99.(2014·北京高考真题(理))设双曲线经过点(2,2),且与2214y x -=具有相同渐近线,则的方程为_________;渐近线方程为_________.100.(2018·北京高考真题(理))已知椭圆22221(0)x y M a b a b+=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.。

相关文档
最新文档