2014中考数学总复习专题6方案问题
中考数学复习攻略 专题6 方程与不等式的实际应用(含答案)
专题六 方程与不等式的实际应用解决方程与不等式的实际应用题的一般步骤:①认真审题,理解题意,弄清题中的已知量、未知量以及它们之间的关系;②设未知数(合理地选择未知数是解题的关键);③列方程(组)或不等式;④解方程(组)或不等式(注意:解分式方程时必须要有“验根”这一步);⑤检验,对所求结果进行检验,看是否符合题意;⑥作答.解决方程与不等式的实际应用题时,首先要认真审题,从题中找出已知量与未知量之间的关系,然后根据题意列出关系式,进而解决相关问题.在解决问题的过程中要注意方程与不等式的解是否符合题意,涉及函数要检验自变量的取值范围,当题干中出现方案设计问题或最值问题时,往往需要根据题干中的已知条件和函数的增减性来解决方案设计或最值问题.中考重难点突破一次方程(组)的实际应用【例1】(2021·陕西中考)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.【解析】设这种服装每件的标价是x 元,根据“这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等”列出方程,然后解方程即可求解.【解答】解:设这种服装每件的标价是x 元.根据题意,得10×0.8x =11(x -30).解得x =110.答:这种服装每件的标价为110元.1.现有一条长度为359 mm 的铜管料,把它锯成长度分别为39 mm 和29 mm 的两种不同规格的小铜管(要求没有余料).每锯一次损耗1 mm 的铜管料.为了使铜管料损耗最少,应分别锯成39 mm 的小铜管__6__段,29 mm 的小铜管__4__段.2.某中学组织七年级全体学生参加社会实践,若只调配45座客车若干辆,则有15人没有座位;若只调配30座客车,则用车数量将增加3辆,且空出15个座位.(1)该学校七年级总共有多少学生?(2)若同时调配45座和30座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?解:(1)设只调配45座客车x 辆,则该学校七年级共有学生(45x +15)人,只调配30座客车需要(x +3)辆.由题意,得30(x +3)-(45x +15)=15.解得x =4.∴45x +15=45×4+15=180+15=195.答:该学校七年级共有学生195人;(2)设需要调配45座客车m 辆,30座客车n 辆,由题意,得45m +30n =195.∴n =13-3m 2. 又∵m ,n 均为正整数,∴⎩⎪⎨⎪⎧m =1,n =5 或⎩⎪⎨⎪⎧m =3,n =2. 答:需调配45座客车1辆,30座客车5辆或调配45座客车3辆,30座客车2辆.分式方程的实际应用【例2】(2021·常州中考)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20 t 水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?【解析】本题考查了分式方程的应用,读懂题意,找到合适的等量关系是解决问题的关键.设该景点在设施改造后平均每天用水x t ,则在改造前平均每天用水2x t ,根据“20 t 水可以比原来多用5天”列出方程并解答.【解答】解:设该景点在设施改造后平均每天用水x t ,则在改造前平均每天用水2x t.根据题意,得20x -202x=5. 解得x =2.经检验,x =2是原方程的解,且符合题意.答:该景点在设施改造后平均每天用水2 t .3.(2021·徐州中考)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?解:设该商品打折前每件x 元,则打折后每件0.8x 元.根据题意,得400x +2=4000.8x. 解得x =50.经检验,x =50是原方程的解,且符合题意.答:该商品打折前每件50元.方程与不等式的综合应用【例3】某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?【解析】(1)设每副围棋x 元,则每副象棋(x -8)元,根据“420元购买象棋数量=756元购买围棋数量”列出方程求解即可;(2)设购买围棋m 副,则购买象棋(40-m )副,根据题意列出不等式求解即可.【解答】解:(1)设每副围棋x 元,则每副象棋(x -8)元.根据题意,得420x -8=756x .解得x =18. 经检验,x =18是原方程的解,且符合题意.∴x -8=10.答:每副围棋18元,每副象棋10元;(2)设该校购买m 副围棋,则购买(40-m )副象棋.根据题意,得18m +10(40-m )≤600.解得m ≤25.∵m 为正整数,∴m 的最大值是25.答:该校最多可再购买25副围棋.4.(2021·玉林中考)某市垃圾处理厂利用焚烧垃圾产生的热能发电.有A ,B 两个焚烧炉,每个焚烧炉每天焚烧垃圾均为100 t ,每焚烧一吨垃圾,A 焚烧炉比B 焚烧炉多发电50度,A ,B 焚烧炉每天共发电55 000度.(1)求焚烧一吨垃圾,A 焚烧炉和B 焚烧炉各发电多少度?(2)若经过改进工艺,与改进工艺之前相比每焚烧一吨垃圾,A 焚烧炉和B 焚烧炉的发电量分别增加a %和2a %,则A ,B 焚烧炉每天共发电至少增加(5+a )%,求a 的最小值.解:(1)设焚烧一吨垃圾,A 焚烧炉发电m 度,B 焚烧炉发电n 度.根据题意,得⎩⎪⎨⎪⎧m -n =50,100(m +n )=55 000. 解得⎩⎪⎨⎪⎧m =300,n =250.答:焚烧一吨垃圾,A 焚烧炉发电300度,B 发焚烧炉发电250度;(2)由题意,得改进工艺后每焚烧一吨垃圾A 焚烧炉发电300(1+a %)度,则B 焚烧炉发电250(1+2a %)度,由题意,得100×300(1+a %)+100×250(1+2a %)≥55 000[1+(5+a )%].整理,得5a ≥55.解得a ≥11.∴a 的最小值为11.一元二次方程的实际应用【例4】(2021·烟台中考)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?【解析】(1)根据日利润=每件利润×日销售量,可求出售价为60元时的原利润,设售价应定为x 元,则每件的利润为(x -40)元,日销售量为20+10(60-x )5=(140-2x )件,根据日利润=每件利润×日销售量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)设该商品需要打a 折销售,根据销售价格不超过50元,列出不等式求解即可.【解答】解:(1)设售价应定为x 元,则每件的利润为(x -40)元,日销售量为20+10(60-x )5=(140-2x )件. 由题意,得(x -40)(140-2x )=(60-40)×20.整理,得x 2-110x +3 000=0.解得x 1=50,x 2=60(舍去).答:每件售价应定为50元;(2)设该商品需要打a 折销售.由题意,得62.5×a 10≤50. 解得a ≤8.答:该商品至少需打8折销售.5.列方程(组)解应用题:某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600 m 2的矩形试验茶园,便于成功后大面积推广.如图,茶园一面靠墙,墙长35 m ,另外三面用69 m 长的篱笆围成,其中一边开有一扇1 m 宽的门(不包括篱笆).求这个茶园的长和宽.解:设茶园AB 边的长为x m ,则BC 边的长为(69+1-2x ) m .根据题意,得x (69+1-2x )=600.整理,得x 2-35x +300=0.解得x 1=15,x 2=20.当x =15时,70-2x =40>35,不符合题意,舍去;当x =20时,70-2x =30<35,符合题意.答:这个茶园的长和宽分别为30 m ,20 m .6.如图,某城建部门计划在新建的城市广场的一块长方形空地上修建一个面积为1 200 m 2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知整个长方形空地的长为50 m ,宽为40 m.(1)求四周通道的宽度;(2)某建筑公司希望用80万元的承包金额承揽这项工程,城建部门认为金额太高需要降价,经过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.解:(1)设四周通道的宽度为x m ,则停车场的长为(50-2x ) m ,宽为(40-2x ) m.由题意,得(50-2x )(40-2x )=1 200.整理,得x 2-45x +200=0.解得x 1=5,x 2=40.当x =5时,40-2x =40-2×5=30,符合题意;当x =40时,40-2x =40-2×40=-40<0,不符合题意,舍去.答:四周通道的宽度为5 m ;(2)设每次降价的百分率为a .由题意,得80(1-a )2=51.2.解得a 1=0.2=20%,a 2=1.8(不合题意,舍去).答:每次降价的百分率为20%.中考专题过关1.(2021·吉林中考)港珠澳大桥是世界上最长的跨海大桥,它由桥梁和隧道两部分组成,桥梁和隧道全长共55 km.其中桥梁长度比隧道长度的9倍少4 km.求港珠澳大桥的桥梁长度和隧道长度.解:设港珠澳大桥隧道长度为x km ,桥梁长度为y km.由题意,得⎩⎪⎨⎪⎧x +y =55,y =9x -4. 解得⎩⎪⎨⎪⎧x =5.9,y =49.1. 答:港珠澳大桥的桥梁长度和隧道长度分别为49.1 km 和5.9 km.2.(2021·郴州中考)“七·一”建党节前夕,某校决定购买A ,B 两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A 奖品比B 奖品每件多25元,预算资金为1 700元,其中800元购买A 奖品,其余资金购买B 奖品,且购买B 奖品的数量是A 奖品的3倍.(1)求A ,B 奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A 奖品的资金不少于720元,A ,B 两种奖品共100件,求购买A ,B 两种奖品的数量,有哪几种方案?解:(1)设A 奖品的单价为x 元,则B 奖品的单价为(x -25)元.由题意,得800x ×3=1 700-800x -25. 解得x =40.经检验,x =40是原方程的解,且符合题意.∴x -25=15.答:A 奖品的单价为40元,B 奖品的单价为15元;(2)设购买A 奖品的数量为m 件,则购买B 奖品的数量为(100-m )件.由题意,得⎩⎪⎨⎪⎧40×0.8×m ≥720,40×0.8×m +15×0.8×(100-m )≤1 700. 解得22.5≤m ≤25.∵m 为正整数,∴m 的值为23,24,25.∴有三种方案:①购买A 奖品23件,B 奖品77件;②购买A 奖品24件,B 奖品76件;③购买A 奖品25件,B 奖品75件.3.(2021·朝阳中考)某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于38元,经市场调查发现:该商品每天的销售量y (件)与每件售价x (元)之间符合一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)设商场销售这种商品每天获利w (元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0).由所给函数图象可知,⎩⎪⎨⎪⎧25k +b =70,35k +b =50. 解得⎩⎪⎨⎪⎧k =-2,b =120. ∴y 与x 之间的函数关系式为y =-2x +120(20≤x ≤38);(2)根据题意,得(x -20)(-2x +120)=600.整理,得x 2-80x +1 500=0.解得x =30或x =50(不合题意,舍去).答:每件商品的售价应定为30元;(3)∵y =-2x +120,∴w =(x -20)y=(x -20)(-2x +120)=-2x 2+160x -2 400=-2(x -40)2+800.∵-2<0,20≤x ≤38,∴当x =38时,w 最大=792.∴当每件商品的售价定为38元时,每天销售利润最大,最大利润是792元.。
2014中考数学复习课件6一元二次方程及应用-第一轮复习第二单元方程(组)和不等式(组)
4.已知 x1,x2 是一元二次方程 x2+2ax+b=0 的 两根, 且 x1+x2=3, x1x2=1, 则 a, b 的值分别是( A.a=-3,b=1 3 C.a=- ,b=-1 2 B.a=3,b=1 3 D.a=- ,b=1 2 D )
解析: 由根与系数的关系,得 x1 + x2 =- 2a , 3 x1x2=b,∴a=- ,b=1.故选 D. 2
第6 讲
一元二次方程及其应用
·新课标
第6 讲
一元二次方程及其应用
│考点随堂练│
考点1 一元二次方程的概念及一般形式
一 1.定义:含有________ 个未知数,并且未知数最高次数是 ________ 的整式方程 2
2 ax +bx+c=0(a≠0) 2.一般形式:
在一元二次方程的一般形式中要注意强调a≠0 另外: a、b、c分别是二次项系数、一次项系数、常数项.
应用类型 增长率 问题 利率 问题 销售利 润问题 等量关系 (1)增长率=增量÷ 基础量; (2)设 a 为原来的量,m 为平均增长率,n 为增长次数, b 为增长后的量,则____________ a(1+m)n=b ,当 m 为平均下降率 时为____________ a(1-m)n=b (1)本息和=本金+利息; (2)利息=____________________ 本金×利率×期数 (1)毛利润=售出价-进货价; (2)纯利润=售出价-进货价-其他费用; (3)利润率=利润÷ 进货价
热身考点4
一元二次方程根与系数的关系
已知一元二次方程 x2-6x-5=0 的两根分别为 a, 1 1 6 b,则 + 的值是- a b 5 .
解析:由根与系数的关系,得 a+b=6,ab=-5. 1 1 a+b 6 6 所以 + = = =- . a b ab -5 5
中考数学复习专题06 配方法题研究(原卷版)
备战2020中考数学解题方法专题研究专题6 配方法专题【方法简介】配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。
这种方法常常被用到恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。
把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.配方法的作用在于改变代数式的原有结构,是求解变形的一种手段;配方法的实质在于改变式子的非负性,是挖掘隐含条件的有力工具,配方法在代数式的化简求值、解方程、解最值问题、讨论不等关系等方面有广泛的应用.运用配方法解题的关键是恰当的“凑配”,应具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式.【真题演练】1. 用配方法解一元二次方程x2﹣4x﹣6=0,变形正确的是()A.(x﹣2)2=0 B.(x﹣4)2=22 C.(x﹣2)2=10 D.(x﹣2)2=82. 用配方法解下列方程:(1)x2+3x-4=0;(2)x(x+8)=609.3. 已知一元二次方程(x-3)2=1的两个根恰好分别是等腰三角形ABC的底边长和腰长,求△ABC的周长.4. 用配方法证明:不论x,y取何实数时,代数式x2+y2+2x-4y+7的值总不小于常数2.【名词释义】把一个式子或一个式子的某一部分化成完全平方式或几个完全平方式的和、差形式,这种方法叫“配方法”.“直接开平方法”告诉我们根据完全平方公式2222()a ab b a b ±+=±可以将一元二次方程化为形如2()(0)ax b c c +=≥的形式后求解,这就自然而然地导出了另一种解一元二次方程的解法——“配方法”.它的理论依据是完全平方公式2222()a ab b a b ±+=±.用“配方法”解一元二次方程的一般步骤:1.方程两边同除以二次项系数,化二次项系数为1;2.移项,使方程左边为二次项和一次项,右边为常数项;3.配方,方程两边都加上一次项系数一半的平方,把原方程化为2()ax b c +=的形式;4.若0c ≥,用“直接开平方法”解出;若0c <,则原方程无实数根即原方程无解.“配方法”是一种重要的数学方法,它不仅可应用于解一元二次方程,而且在数学的其它领域中也有着广泛的应用.【典例示例】例题1:有n 个方程:x 2+2x -8=0;x 2+2×2x-8×22=0;…;x 2+2nx -8n 2=0.小静同学解第1个方程x 2+2x -8=0的步骤为“①x 2+2x =8;②x 2+2x +1=8+1;③(x +1)2=9;④x +1=±3;⑤x =1±3;⑥x 1=4,x 2=-2.”(1)小静的解法是从步骤________开始出现错误的;(2)用配方法解第n 个方程x 2+2nx -8n 2=0(用含n 的式子表示方程的根).例题2:先仔细阅读材料,冉尝试解决问题完全平方公式a 2±2ab+b 2=(a±b)2及(a±b)2的值具有非负性的特点在数学学习中有着广泛的应用,例如求多项式2x 2+12x ﹣4的最小值时,我们可以这样处理:解:原式=2(x 2+6x ﹣2)=2(x 2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22因为无论x 取什么数,都有(x+3)2的值为非负数,所以(x+3)2的最小值为0,当x =﹣3时,2(x+3)2﹣22的最小值是﹣22,所以当x =﹣3时,原多项式的最小值是﹣22.解决问题:(1)请根据上面的解题思路探求:多项式x 2+4x+5的最小值是多少,并写出此时x 的值;(2)请根据上面的解题思路探求:多项式﹣3x 2﹣6x+12的最大值是多少,并写出此时x 的值.的值.【归纳总结】关于配方法主要在以下几个方面进行运用,①配方法在确定二次根式中字母的取值范围的应用,在求二次根式中的字母的取值范围时,经常可以借助配方法,通过平方项是非负数的性质而求解。
2014年中考数学总复习课件_第二部分热点题型攻略(共6种题型)
例1 (’13 重庆A卷)万州某运输公司的一艘轮 船在长江上航行,往返于万州、朝天门两地,假设 轮船在静水中的速度不变,长江的水流速度不变, 该轮船从万州出发,逆水航行到朝天门,停留一段 时间(卸货、装货、加燃料等),又顺水航行返回 万州,若该轮船从万州出发后所用的时间为 x(小 时),轮船距万州的距离为 y(千米),则下列各 图中,能够反映 y 与 x 之间函数关系的大致图象是 ( C)
为
④正确
热点题型攻略
【点评拓展】解答此类问题,首先要明白二次函数 的表达式中各系数所代表的意义以及系数正负和大 小对函数图象的影响:a>0,函数开口向上,a<0, 函数开口向下;b值的大小影响函数的开口大小,b 值越大函数开口越大;a和b值的符号同时决定了函 数图象对称轴的位置,ab>0对称轴在x轴负半轴, ab<0对称轴在x轴正半轴,当b=0时,对称轴为y 坐标轴.|c|值代表函数图象在y坐标轴上的截距,c >0时截点在y轴正半轴,c<0时截点在y轴负半 轴.其次是要清楚二次函数的顶点坐标和对称轴的 b b 4ac b2 表达式,顶点坐标为 ( , ,对称轴为 x )
y 4a 2b c 0 ,∴③错误
热点题型攻略
∵二次函数 y ax 2 bx c 图象的对称轴
x 1 ∴点 (5, y1 ) 关于对称轴的对称 ④ √ 点的坐标是 (3, y1 ) ,根据当x 1时,y随 5 x的增大而增大,∵ 3,∴ y2 y1 ,∴ 2
考虑,分析在不同的阶段运动的变化情况,
考虑函数图象的变化规律,明白每段直线所 代表的实际意义及拐点的含义和实际情况.
返回目录
热点题型攻略
类型二 二次函数图象性质
2 y ax bx c 例 (’13 烟台)如图是二次函数
2024年中考数学总复习考点梳理专题六综合与实践
且∠ACB=90°,
∴∠ABC=45°,
第1题图
专题六 综合与实践
由题意知,△A1B1C1为等腰直角三角形, 且∠A1C1B1=90°, ∴∠A1B1C1=45°, ∴∠ABC=∠A1B1C1.
课上,老师让同学们以“折一个长方体盒子”为主题开 展实践活动.如图①,这是一张长为30 cm,宽为12 cm的矩形 硬纸板.
第1题解图②
专题六 综合与实践
在Rt△ACD中,CD=1,AC=4,
∴AD= AC 2 CD2 42 12 15 ,
∴AM=MD= 15 ,CG=MD= 15 .
2
2
在Rt△BDM中,BM= BD2 DM 2 42 ( 15 )2 7,
2
2
∴BG=BM-GM=BM-CD=
7 2
-1=
5,
2
在Rt△BCG中,BC= BG2 CG2 ( 5)2 ( 15 )2 10 .
2
2
第1题解图②
专题六 综合与实践
1. (2023广东20题)综合与实践
主题:制作无盖正方体形纸盒
素材:一张正方形纸板.
步骤1:如图①,将正方形纸板 的边长三等分,画出九个相同的
第1题图
小正方形,并剪去四个角上的小正方形;
第2题图
专题六 综合与实践
(2)创新小组计划制作一个有盖的长方体盒子.为了合理使用材 料,设计了如图③所示的裁剪方案,空白部分为裁剪下来的边 角料,其中左侧两个空白部分为正方形,右侧两个空白部分为 矩形,问能否折出底面积为104 cm2的有盖盒子(盒盖与盒底的大 小形状完全相同)?如果能,请求出盒子的体积;如果不能,请 说明理由.
=∠ABD.若CD=1,则求BC的长. 问题2:如解图②所示,连接AD,
精品 2014年中考数学总复习--方程与不等式
方程:含有未知数的等式叫做方程。
方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
解方程:求方程的解或方判断方程无解的过程叫做解方程。
一元一次方程一元一次方程的标准形式:ax+b=0二 方程与不等式2.1 一元一次方程 二元一次方程(组)一元一次不等式(组)例1.若12x m =是方程21423x m x m---=的解,求代数式 ()211428142m m m ⎛⎫-+--- ⎪⎝⎭的值.例2.解下列方程(组):(1)1)23(2151=--x x (2)⎩⎨⎧=-=+52332y x y x例3.解下列一元一次不等式,并把解集在数轴上表示出来。
(1)24)2(28-<+-x x ; (2)312211--≥--x x例4.求不等式组:⎪⎩⎪⎨⎧<+-+--≤+137621)3(410)8(2x x x x 的非负整数解.例5.已知关于x 的不等式a x a ->-10)2(的解集是x>3,求a 的值.方程组的解:方程组中各方程的公共解叫做方程组的解。
解方程组:求方程组的解或判断方程组无解的过程叫做解方程组二元一次方程组: 一般形式:⎨⎧=+=+222111c y b x a c y b x a 12121,,,,,c c b b a a例6.某部队奉命派甲连跑步前往90千米外的A 地,1小时45分后,因任务需要,又增派乙连乘车前往支援,已知乙连比甲连每小时快28千米,恰好在全程的31处追上甲连.求乙连的行进速度及追上甲连的时间?例7.某电厂规定该厂家属区的每户居民如果一个月的用电量不超过A 度,那么这个月这户只需交 10 元用电费,如果超过A 度,则这个月除了仍要交10元用电费外,超过部分还要按每度0.5元交费.①该厂某户居民2月份用电90度,超过了规定的A 度,则超过部分应该交电费多少元(用A 表示)? ②下表是这户居民3月、4月的用电情况和交费情况:根据上表数据,求电厂规定A 度为多少?例8.某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元,甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价. (2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?列方程(组)解应用题的一般步骤审题: 设未知数; 不等式与不等式的性质 不等式:表示不等关系的式子。
中考数学复习:专题1-6 例谈因式分解的方法与技巧
专题06 例谈因式分解的方法与技巧【专题综述】 因式分解是初中代数中一种重要的恒等变形,是处理数学问题重要的手段和工具,也是中考和数学竞赛试题中比较常见的题型。
对于特殊的因式分解,除了掌握提公因式法、公式法、分组分解法、十字相乘法等基本方法外,还应根据多项式的具体结构特征,灵活选用一些特殊的方法和技巧。
这样不仅可使问题化难为易,化繁为简,复杂问题迎刃而解,而且有助于培养探索求新的学习习惯,提高数学思维能力。
【方法解读】一、巧拆项:在某些多项式的因式分解过程中,若将多项式的某一项(或几项)适当拆成几项的代数和,再用基本方法分解,会使问题化难为易,迎刃而解。
例1:因式分解 32422+++-b a b a【举一反三】因式分解:611623+++x x x二、巧添项:在某些多项式的因式分解过程中,若在所给多项式中加、减相同的项,再用基本方法分解,也可谓方法独特,新颖别致。
例2:因式分解444y x +【举一反三】因式分解 4323+-x x三、巧换元:在某些多项式的因式分解过程中,通过换元,可把形式复杂的多项式变形为形式简单易于分解的多项式,会使问题化繁为简,迅捷获解。
例3:因式分解24)6)(43(22+---+x x x x【举一反三】因式分解2)1()2)(2(-+-+-+xy y x xy y x四、展开巧组合:若一个多项式的某些项是积的形式,直接分解比较困难,则可采取展开重组合,然后再用基本方法分解,可谓匠心独具,使问题巧妙得解。
例4:因式分解)()(2222n m xy y x mn +++【举一反三】因式分解 22)()(my nx ny mx -++五、巧用主元:对于含有两个或两个以上字母的多项式,若无法直接分解,常以其中一个字母为主元进行变形整理,可使问题柳暗花明,别有洞天。
例5:因式分解xy x y x x x 2232234-++-【举一反三】因式分解abc bc c b ac c a ab b a 2222222++++++【强化训练】1.因式分解:(5)(2)()()12x x x x +-+-+-..2.阅读下面解题过程,然后回答问题.分解因式: 223x x +-.解:原式=22113x x ++--=()2214x x ++- = ()214x +-=()()1212x x +++-= ()()31x x +-上述因式分解的方法称为”配方法”.请你体会”配方法”的特点,用“配方法”分解因式: 243y y -+.3.因式分解:(1)(a +b )2+6(a +b )+9; (2)(x ﹣y )2﹣9(x +y )2;(3)a 2(x ﹣y )+b 2(y ﹣x ). (4)(x 2-5)2+8(5-x 2)+16.4.下面是某同学对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程.解:设x 2-4x =y ,原式=(y +2)(y +6)+4=y 2+8y +16=(y +4)2=(x 2-4x +4)2.(1)该同学因式分解的结果是否彻底?_______________. (填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果__________________.(2)请你模仿以上方法尝试对多项式(x 2-2x )(x 2-2x +2)+1进行因式分解.5.先阅读,再因式分解:x 4+4=(x 4+4x 2+4)-4x 2=(x 2+2)2-(2x )2=(x 2-2x +2)(x 2+2x +2),按照这种方法把多项式x 4+324因式分解.6.问题背景:对于形如2120+3600x x -这样的二次三项式,可以直接用完全平方公式将它分解成()260x -,对于二次三项式21203456x x -+,就不能直接用完全平方公式分解因式了.此时常采用将2120x x -加上一项260,使它与2120x x -的和成为一个完全平方式,再减去260,整个式子的值不变,于是有: 2120+3456x -=22226060603456x x -⨯+-+=()260144x --=()226012x --=()()60+126012x x ---=()()4872x x --问题解决:(1)请你按照上面的方法分解因式: 2140+4756x x -;(2)已知一个长方形的面积为228+12a ab b +,长为+2a b ,求这个长方形的宽.7.因式分解:(x –3) (x +4) +3x =__________.8.x 3+3x 2—4 (拆开分解法)9.先阅读下列材料,再解答下列问题:材料:因式分解:(x +y )2+2(x +y )+1.解:将“x +y ”看成整体,令x +y =A ,则原式=A 2+2A +1=(A +1)2再将“A ”还原,得:原式=(x +y +1)2.上述解题中用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x ﹣y )+(x ﹣y )2=__________.(2)因式分解:(a +b )(a +b ﹣4)+4(3)证明:若n 为正整数,则式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.10.已知22610340m n m n +-++=,则m n +=______.。
【中考备战策略】2014中考数学(人教版)总复习课件:专题六 综合型问题
理解:如图①,在△ABC 中,CD 是 AB 边上的中 线,那么△ACD 和△BCD 是“友好三角形”,并且 S△ACD=S△BCD.
应用: 如图②, 在矩形 ABCD 中, AB=4, BC=6,
点 E 在 AD 上,点 F 在 BC 上,AE=BF,AF 与 BE 交于点 O.
(1)求证:△ AOB 和△ AOE 是“友好三角形”; (2)连接 OD, 若△AOE 和△DOE 是“友好三角 形”,求四边形 CDOF 的面积.
考点三 运动型问题 例 3 (2013· 襄阳 )如图,已知抛物线 y=ax2+bx+ c 与 x 轴的一个交点 A 的坐标为(-1,0),对称轴为直线 x=- 2. (1)求抛物线与 x 轴的另一个交点 B 的坐标; (2)点 D 是抛物线与 y 轴的交点,点 C 是抛物线上 的另一点.已知以 AB 为一底边的梯形 ABCD 的面积 为 9,求此抛物线的解析式,并指出顶点 E 的坐标;
温馨提示 解答阅读理解型题的关键在于阅读,核心在于理 解,目的在于应用 .解题的策略是:理清阅读材料的脉 络,归纳总结重要条件、数学思想方法以及解题的方 法技巧,构建相应的数学模型来完成解答 .
2.解图表信息题关键是“识图”和“用图”.解 题时,要求通过认真阅读、观察和分析图象、图形、 表格来获取信息,根据信息中数据或图形的特征,找 出数量关系或弄清函数的对应关系,研究图形的性质, 进行推理、论证、计算,从而解决实际问题.图表信 息问题往往出现在“方程 (组 )、不等式 (组 )、函数、统 计与概率”等知识应用题中,审题时注意把握图表中 的信息.
∴S△AOE=S△FOB,∴S△AOD=S△ABF. ∴S
四边形
CDOF = S
矩形
1 ABCD - 2S△ABF = 4×6 - 2× 2
【配套K12】中考数学 专题复习六 求最短路径问题
中考数学专题复习学案六求最短路径问题【专题思路剖析】知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
“饮马问题”,“造桥选址问题”。
考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
这类问题在中考中出现的频率很高,一般与垂线段最短、两点之间线段最短关系密切解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【典型例题赏析】类型1 利用“垂线段最短”求最短路径问题例题1:(2015•辽宁省盘锦,第15题3分)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为.考点:轴对称-最短路线问题;菱形的性质.分析:连接BD,与AC的交点即为使△PBE的周长最小的点P;由菱形的性质得出∠BPC=90°,由直角三角形斜边上的中线性质得出PE=BE,证明△PBE是等边三角形,得出PB=BE=PE=1,即可得出结果.解答:解:连接BD,与AC的交点即为使△PBE的周长最小的点P;如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=DA=2,∴∠BPC=90°,∵E为BC的中点,∴BE=BC=1,PE=BC=1,∴PE=BE,∵∠DAB=60°,∴∠ABC=120°,∴∠PBE=60°,∴△PBE是等边三角形,∴PB=BE=PE=1,∴PB+BE+PE=3;故答案为:3.点评:本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.【方法点评】本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点.【变式练习】(2015•福建第16题 4分)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A 长度的最小值是.考点:翻折变换(折叠问题)..分析:首先由勾股定理求得AC的长度,由轴对称的性质可知BC=CB′=3,当B′A有最小值时,即AB′+CB′有最小值,由两点之间线段最短可知当A、B′、C三点在一条直线上时,AB′有最小值.解答:解:在Rt△ABC中,由勾股定理可知:AC===4,由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC﹣B′C=4﹣3=1.故答案为:1.点评:本题主要考查的是轴对称的性质、勾股定理和线段的性质,将求B′A的最小值转化为求AB′+CB′的最小值是解题的关键.类型2 利用“两点之间线段最短”求最短路径问题例题2:(2015•四川凉山州第26题5分)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.考点:菱形的性质;坐标与图形性质;轴对称-最短路线问题..分析:点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.解答:解:连接ED,如图,∵点B的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(﹣1,0),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().点评:此题考查菱形的性质,关键是根据一次函数与方程组的关系,得出两直线的解析式,求出其交点坐标.【方法点评】“两点(直线同侧)一线型”在直线上求一点到两点的和最短时,利用轴对称的知识作一点关于直线的对称点,连接对称点与另一点与直线的交点就是所求的点;“一点两线型”求三角形周长最短问题,作点关于两直线的对称点,连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形;“两点两线型”求四边形的周长最短类比“一点两线型”即可.【变式练习】(2015•营口,第10题3分)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25° B.30° C.35° D.40°考点:轴对称-最短路线问题.分析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴CM+DN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.类型3、求圆上点,使这点与圆外点的距离最小的方案设计在此问题中可根据圆上最远点与最近点和点的关系可得最优设计方案。
人教版九年级数学中考总复习 专题六 方案设计题 含解析及答案
专题六方案设计题专题提升演练1.一位园艺设计师计划在一块形状为直角三角形且有一个内角为60°的绿化带上种植四种不同的花卉,要求种植的四种花卉组成面积分别相等、形状完全相同的几何图案.某同学为此提供了如图所示的四种设计方案.其中可以满足园艺设计师要求的有()A.2种B.3种C.4种D.1种2.小明设计了一个利用两块相同的长方体木块测量一张桌子高度的方案,首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73 cmB.74 cmC.75 cmD.76 cm3.某化工厂,现有A种原料52 kg,B种原料64 kg,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3 kg,B种原料2 kg;生产1件乙种产品需要A种原料2 kg,B种原料4 kg,则生产方案的种数为()A.4B.5C.6D.74.某市有甲、乙两家液化气站,他们的每罐液化气的价格、质量都相同.为了促销,甲站的液化气每罐降价25%销售;乙站的液化气第1罐按原价销售,从第2罐开始以7折优惠销售,若小明家购买8罐液化气,则最省钱的方法是买站的.5.从边长为a的大正方形纸板中间挖去一个边长为b的小正方形后,其截成的四个相同的等腰梯形(如图①)可以拼成一个平行四边形(如图②).现有一张平行四边形纸片ABCD(如图③),已知∠A=45°,AB=6,AD=4.若将该纸片按图②的方式截成四个相同的等腰梯形,然后按图①的方式拼图,则得到的大正方形的面积为 .+6√26.某市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍. (1)求温馨提示牌和垃圾箱的单价各是多少元;(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10 000元,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少元.设温馨提示牌的单价是x 元, 则垃圾箱的单价是3x 元,由题意得2x+3×3x=550,解得x=50.故温馨提示牌的单价是50元,垃圾箱的单价是150元. (2)设购买温馨提示牌m 个, 则购买垃圾箱(100-m )个,由题意得50m+150(100-m )≤10000, 解得m ≥50.又100-m ≥48,∴m ≤52.∵m 为整数,∴m 的取值为50,51,52. 方案一:当m=50时,100-m=50,即购买50个温馨提示牌和50个垃圾箱,其费用为50×50+50×150=10000(元); 方案二:当m=51时,100-m=49,即购买51个温馨提示牌和49个垃圾箱,其费用为51×50+49×150=9900(元);方案三:当m=52时,100-m=48,即购买52个温馨提示牌和48个垃圾箱,其费用为52×50+48×150=9800(元).∵10000>9900>9800,∴方案三所需资金最少,最少是9800元.7.某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人. (1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童. ①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1 200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.设该旅行团中成人x 人,少年y 人,根据题意,得{x +y +10=32,x =y +12,解得{x =17,y =5,故该旅行团中成人17人,少年5人.(2)①由题意得,所需门票的总费用是:100×8+100×0.8×5+100×0.6×(10-8)=1320(元). ②设可以安排成人a 人,少年b 人带队, 则1≤a ≤17,1≤b ≤5. 当10≤a ≤17时,若a=10,则费用为100×10+100×0.8×b ≤1200,解得b ≤52, ∴b 的最大值是2,此时a+b=12,费用为1160元. 若a=11,则费用为100×11+100×0.8×b ≤1200,解得b ≤54, ∴b 的最大值是1,此时a+b=12,费用为1180元.若a ≥12,则100a ≥1200,即成人门票至少需要1200元,不合题意,舍去.当1≤a<10时,若a=9,则费用为100×9+100×0.8×b+100×0.6×1≤1200,解得b ≤3, ∴b 的最大值是3,a+b=12,费用为1200元.若a=8,则费用为100×8+100×0.8×b+100×0.6×2≤1200,解得b ≤72,∴b 的最大值是3,a+b=11<12,不合题意,舍去.同理,当a<8时,a+b<12,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人.其中成人10人,少年2人时购票费用最少.。
人教版中考数学总复习微专题六 几何最值问题 模型三 线段和差——造桥选址
微专题六 几何最值问题
目录
01 基本模型 02 针对训练 03 针对巩固
返回目录
基本模型
图示
问题概述:A,B两地在一条河的两岸,现要在河上造一座桥 MN.桥造在何处才能使从A到B的路径AMNB最短?(假定河的 模型总结 两岸是平行的直线,桥要与河垂直) 解决方法:过点B作BB′⊥l2,且BB′等于河宽,连接AB′交 l1于点M,作MN⊥l1交l2于点N,则MN就是桥所在的位置
返回目录
谢谢
返回目录
返回目录
针对训练 例3 如图W-6-5,已知直线a∥b,且a与b之间的距离为4, 点A到直线a的距离为2,点B到直线b的距离为3,试在直线a上 找一点C,直线b上找一点D,满足CD⊥a,AC+CD+DB的长度和 最短,且AC+DB=8.求AB的长度.
返回目录
解:如答图W-6-5,过点A作AE⊥a,使得线段AE=4,连接 EB交直线b于点D,过点D作DC⊥b交直线a于点C,连接AC,过 点B作BF⊥AE交AE的延长线于点F. ∵CD=AE=4,CD∥AE, ∴四边形AEDC是平行四边形. ∴AC=ED. ∴AC+CD+BD=ED+BD+CD=BE+CD, 此时AC+CD+DB的值最小. 由题意,得AF=2+4+3=9,EF=9-4=5,BE=AC+BD=8. ∴BF= BE2-EF2= 82-52= 39, ∴AB= BF2 + AF2= 39 + 81=2 3至点A′,使得AA′=35 m,连 接A′B,交公路b于点D,过点D作CD⊥公路a于点C,连接AC, BD,过点B作BF⊥AA′,交AA′的延长线于点H. 则天桥建在CD处能使由A经过天桥走到B的路程最短,最短路 线的长为AC+CD+DB=A′B+CD. 由题意,得AB=100,AH=20+25+35=80, A′H=80-35=45. ∴BH= AB2-AH2= 1002-802=60. ∴A′B= BH2 + A′H2= 602 + 452=75. ∴这个最短距离为A′B+CD=75+35=110(m).
2014中考数学总复习课件第1部分教材知识梳理(第6单元圆)
第六单元
圆
2.垂径定理的应用类型 (1)如图②,基于圆的对称性,下列五 个结论: ①������������=������������; ②������������=������������; ③AE=BE; ④AB⊥CD;⑤CD 是直径,只要满足其中的 两个,另外三个结论一定成立.
第六单元
圆
考点3
弦、弧与圆心角关系
1.定理:在同一个圆中,如果圆心角相等,那么 它们所对的弧⑩ 相等 ,所对的弦也⑪ 相等 . 2.推论:在同圆或等圆中,如果两个圆心角以及 这两个角所对的弧、所对的弦、所对弦的弦心距 中,有一组量相等,那么其余各组量也分别相等.
考点链接 返回目录
第六单元
圆
温馨提示 ◆ 等圆:能够完全重合的圆;
图② (2 ) 设 OA 为 r, OE (弦心距) 为 d, AB 为 2a,
2 2
由 OE⊥AB 得,AE=a,从而在 Rt△AOE 中,满足 r
2
=d +a ,利用勾股定理可以对半径,弦,弦心距
考点链接 例题链接
“知二求一”.
第六单元
圆
方法指导 ◆ 垂径定理及其推论是证明两条线段相 等,两条弧相等及两直线垂直的重要依据 之一,在有关弦长、弦心距的计算中常常 需要过圆心作垂直于弦的线段,构造直角 三角形.
考点链接 返回目录
第六单元
圆
考点1
点与圆的位置关系
如图,圆O的半径为r;
如果点A在圆上,那么OA=r;
如果点P在圆内,那么OP<r; 如果点Q在圆外,那么OQ>r.
考点链接 返回目录
第六单元
圆
考点2
直线与圆的位置关系
相交 相切 相离
中考数学复习讲义课件 专题6 实际应用问题
(1)若制作三种产品共计需要 25 小时,所获利润为 450 元,求制作展板、宣 传册和横幅的数量; [分析] 设制作展板数量为 x 件,横幅数量为 y 件,则宣传册数量为 5x 件, 根据题意列出二元一次方程组求解即可;
解:设制作展板的数量为 x 件,横幅的数量为 y 件,则制作宣传册的数量为
根据题意,得12x00=2×2x9-0030.解得 x=60.
经检验,x=60 是原方程的解,且符合题意.∴2x-30=90. 答:足球的单价是 60 元,篮球的单价是 90 元.
(2)根据学校实际情况,需一次性购买足球和篮球共 200 个,但要求足球和 篮球的总费用不超过 15500 元,学校最多可以购买多少个篮球? [分析] 设学校可以购买 m 个篮球,则可以购买(200-m)个足球,利用总价 =单价×数量,结合购买足球和篮球的总费用不超过 15500 元,即可得出 关于 m 的一元一次不等式,解之取其中的最大整数值即可得出结论.
由题意,得 60m+60m+50(90+m)+70(90+m)≤32000. 解得 m≤8813. ∵m 为正整数, ∴m 可以取的最大值为 88. 答:这次最多购买《西游记》88 本.
2.(2021·佳木斯)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大 粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,
[分析] 先由 DE 的坡度计算 DC 的长度,根据矩形性质得 AB 长度,再由 AF 的坡度得出 BF 的长度,根据勾股定理计算出 AF 的长度. 解:∵DE=10m,其坡度为 i1=1∶ 3, ∴在 Rt△DCE 中,DE= DC2+CE2=2DC=10, ∴DC=5. ∵四边形 ABCD 为矩形,∴AB=CD=5. ∵斜坡 AF 的坡度为 i2=1∶4,∴ABBF=14.
初中数学中考复习考点知识与题型专题讲解06 二元一次方程组(解析版)
初中数学中考复习考点知识与题型专题讲解专题06 二元一次方程组【知识要点】考点知识一二元一次方程(组)有关概念二元一次方程的概念:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
【注意】1)二元:含有两个未知数;2)一次:所含未知数的项的次数都是1。
例如:xy=1,xy的次数是二,属于二元二次方程。
2)方程:方程的左右两边必须都是整式(分母不能出现未知数)。
二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.【注意】1)在二元一次方程中,给定其中一个未知数的值,就可以求出另一个未知数的值。
2)二元一次方程有无数个解,满足二元一次方程使得方程左右相等都是这个方程的解,但并不是说任意一对数值就是它的解。
二元一次方程组的概念:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.【注意】1)二元一次方程组的“二元”和“一次”都是针对整个方程组而言的,组成方程组的各个方程不必同时含有两个未知数,如⎩⎨⎧2x +1=0,x +2y =2也是二元一次方程组。
这两个一次方程不一定都是二元一次方程,但这两个一次方程必须一共含有两个未知数。
3) 方程组中的各个方程中,相同字母必须代表同一未知量。
4)二元一次方程组中的各个方程应是整式方程。
二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
【注意】1)二元一次方程组的解是方程中每个方程的解。
2)一般情况下二元一次方程组的解是唯一的,但是有的方程组有无数个解或无解。
如:⎩⎨⎧x +y =5,4x +4y =20.有的方程组无解,如:⎩⎨⎧x +y =5,x +y =2.考点知识二 解二元一次方程组消元的思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为熟悉的一元一次方程,即可先求出一个未知数,然后再求另一个未知数。
这种将未知数的个数由多化少、逐一解决的思想,叫做消元的思想。
中考数学复习专题-动点问题整理
∴t=7,∴当t=7秒时,四边形PQCD为等腰梯形。
┌
E
F┐
动点与特殊图形
4.如图(1):在梯形ABCD中,AB∥CD,AD=BC=5cm, AB=4cm,CD=10cm,BE∥AD。 如图(2):若整个△BEC从图(1)的位置出发,以1cm/s的速度沿射线CD方向平移, 在△BEC平移的同时,点P从点D出发,以1cm/s的速度沿DA向点A运动,当 △BEC的边BE与DA重合时,点P也随之停止运动。设运动时间为t(s)(0<t≤4)
P
8
10
C
QN 4 4 t
5
y 1 2t 4 4 t
2
5
y 4 t 2 4t 5
2.(2)
Q
D M
B
∟
动点与函数
在RtABC中,C 90
A
SinA 8 10
NN
QN 8 AQ 10
P
QN 8
C
5 t 10
(1)当t为何值时,PQ∥BC? 若PQ∥BC
A 则△ AQP~△ABC
Q
D
P AQ AP AB AC
5 t 2t
B
C
10
6
t 15 13
因动点生成特殊图形(位置): 1.分类思想 2.数形结合思想 3.方程模型
动点与特殊图形
3 . 例 1 、 如 图 , 已 知 在 直 角 梯 形 ABCD 中 , AD∥BC ,
SinA 8 10
P
QN 8
N
AQ 10
B
C
QN 8
中考数学复习专题6-新概念型问题
中考数学复习专题五:新概念型问题所谓“新概念”型问题,主要是指在问题中概念了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新概念进行运算、推理、迁移的一种题型.解题策略和解法精讲“新概念型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.考点一:规律题型中的新概念例1 (永州)我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,…就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差.如2,4,6,8,10就是一个等差数列,它的公差为2.如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列.例如数列1,3,9,19,33,…,它的后一个数与前一个数的差组成的新数列是2,6,10,14,…,这是一个公差为4的等差数列,所以,数列1,3,9,19,33,…是一个二阶等差数列.那么,请问二阶等差数列1,3,7,13,…的第五个数应是 . 1.若x 是不等于1的实数,我们把 11x -称为x 的差倒数,如2的差倒数是 112-=-1,-1的差倒数为 11(1)--= 12,现已知x 1=- 13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依次类推,则x 2012= . 考点二:运算题型中的新概念例2 (菏泽)将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成a b c d ,概念a b c d=ad-bc ,上述记号就叫做2阶行列式.若1111x x x x +--+=8,则x= . 2.(株洲)若(x 1,y 1)•(x 2,y 2)=x 1x 2+y 1y 2,则(4,5)•(6,8)= .考点三:探索题型中的新概念例3 (南京)如图,A 、B 是⊙O 上的两个定点,P 是⊙O 上的动点(P 不与A 、B重合)、我们称∠APB 是⊙O 上关于点A 、B 的滑动角.(1)已知∠APB 是⊙O 上关于点A 、B 的滑动角,①若AB 是⊙O 的直径,则∠APB= °;②若⊙O 的半径是1,AB=,求∠APB 的度数;(2)已知O 2是⊙O 1外一点,以O 2为圆心作一个圆与⊙O 1相交于A 、B 两点,∠APB是⊙O 1上关于点A 、B 的滑动角,直线PA 、PB 分别交⊙O 2于M 、N (点M 与点A 、点N 与点B 均不重合),连接AN ,试探索∠APB 与∠MAN 、∠ANB 之间的数量关系.3.(陕西)如果一条抛物线y=ax 2+bx+c (a≠0)与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是 三角形;(2)若抛物线y=-x 2+bx (b >0)的“抛物线三角形”是等腰直角三角形,求b 的值;(3)如图,△OAB 是抛物线y=-x 2+b′x (b′>0)的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O 、C 、D 三点的抛物线的表达式;若不存在,说明理由.考点四:开放题型中的新概念例4 (北京)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下概念:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|;若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点).(1)已知点A(-12,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=34x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.4.(台州)请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=- 76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a⊕b= (用a,b的一个代数式表示).考点五:阅读材料题型中的新概念例5 (常州)平面上有两条直线AB、CD相交于点O,且∠BOD=150°(如图),现按如下要求规定此平面上点的“距离坐标”:(1)点O的“距离坐标”为(0,0);(2)在直线CD上,且到直线AB的距离为p(p>0)的点的“距离坐标”为(p,0);在直线AB上,且到直线CD的距离为q(q>0)的点的“距离坐标”为(0,q);(3)到直线AB、CD的距离分别为p,q(p>0,q>0)的点的“距离坐标”为(p,q).设M为此平面上的点,其“距离坐标”为(m,n),根据上述对点的“距离坐标”的规定,解决下列问题:(1)画出图形(保留画图痕迹):①满足m=1,且n=0的点M的集合;②满足m=n的点M的集合;(2)若点M在过点O且与直线CD垂直的直线l上,求m与n所满足的关系式.(说明:图中OI长为一个单位长)5.(钦州)在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x).如f(2,3)=(3,2);②g(x,y)=(-x,-y),如g(2,3)=(-2,-3).按照以上变换有:f(g(2,3))=f(-2,-3)=(-3,-2),那么g(f(-6,7))等于()A.(7,6)B.(7,-6)C.(-7,6)D.(-7,-6)一、选择题1.(六盘水)概念:f(a,b)=(b,a),g(m,n)=(-m,-n).例如f(2,3)=(3,2),g(-1,-4)=(1,4).则g[f(-5,6)]等于()A.(-6,5)B.(-5,-6)C.(6,-5)D.(-5,6)2.(湘潭)文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1,若输入7,则输出的结果为( ) A .5 B .6 C .7 D .8点评:本题考查的是实数的运算,根据题意得出输出数的式子是解答此题的关键.3. (丽水)小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是( )A .2010B .2012C .2014D .2016二、填空题 4.规定用符号[m]表示一个实数m 的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为 . 5.概念:平面内的直线1l 与2l 相交于点O ,对于该平面内任意一点M ,点M 到直线1l 、2l 的距离分别为a 、b ,则称有序非实数对(a ,b )是点M 的“距离坐标”,根据上述概念,距离坐标为(2,3)的点的个数是( )A .2B .1C .4D .36.新概念:[a ,b]为一次函数y=ax+b (a≠0,a ,b 为实数)的“关联数”.若“关联数”[1,m-2]的一次函数是正比例函数,则关于x 的方程 11x -+1m=1的解为 . 7.如图,△ABC 是正三角形,曲线CDEF 叫做正三角形的渐开线,其中弧CD 、弧DE 、弧EF 的圆心依次是A 、B 、C ,如果AB=1,那么曲线CDEF 的长是 .8.在△ABC 中,P 是AB 上的动点(P 异于A 、B ),过点P 的直线截△ABC ,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC 的相似线,简记为P (l x )(x 为自然数).(1)如图①,∠A=90°,∠B=∠C ,当BP=2PA 时,P (l 1)、P (l 2)都是过点P 的△ABC 的相似线(其中l 1⊥BC ,l 2∥AC ),此外,还有 条;(2)如图②,∠C=90°,∠B=30°,当 BP BA= 时,P (l x )截得的三角形面积为△ABC 面积的14. 9.(铜仁地区)如图,概念:在直角三角形ABC 中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα= αα角的邻边角的对边= AC BC,根据上述角的余切概念,解下列问题: (1)ctan30°= ; (2)如图,已知tanA=34,其中∠A 为锐角,试求ctanA 的值.10.(无锡)对于平面直角坐标系中的任意两点P 1(x 1,y 1),P 2(x 2,y 2),我们把|x 1-x 2|+|y 1-y 2|叫做P 1、P 2两点间的直角距离,记作d (P 1,P 2).(1)已知O 为坐标原点,动点P (x ,y )满足d (O ,P )=1,请写出x 与y 之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P 所组成的图形;(2)设P 0(x 0,y 0)是一定点,Q (x ,y )是直线y=ax+b 上的动点,我们把d (P 0,Q )的最小值叫做P 0到直线y=ax+b 的直角距离.试求点M (2,1)到直线y=x+2的直角距离.11.(厦门)如图,在平面直角坐标系中,已知点A (2,3)、B (6,3),连接AB .如果点P 在直线y=x-1上,且点P 到直线AB 的距离小于1,那么称点P 是线段AB 的“临近点”.(1)判断点C (75,22)是否是线段AB 的“临近点”,并说明理由; (2)若点Q (m ,n )是线段AB 的“临近点”,求m 的取值范围.12.(兰州)如图,概念:若双曲线y=k x (k >0)与它的其中一条对称轴y=x 相交于A 、B 两点,则线段AB 的长度为双曲线y=k x(k >0)的对径. (1)求双曲线y= 1x的对径. (2)若双曲线y=k x(k >0)的对径是102,求k 的值. (3)仿照上述概念,概念双曲线y= k x(k <0)的对径.。
2014年中考数学总复习——方程与不等式
第 1 页 共 12 页专题复习——方程与不等式一、一元一次方程及一元二次方程(一)一元二次方程解的判断1、不解方程,由根的判别式的正负性可直接定根的情况;2、根据方程根的情况,确定方程中字母系数的取值范围;3、应用判别式证明方程根的情况(有实根、无实根、有两个不相等实根、有两个相等实根)例1 一元二次方程24320x x +-=的根的情况是( ) A 有两个相等的实数根 B 有两个不相等的实数根 C 只有一个实数根 D 没有实数根 练习:1、 已知x=1是一元二次方程20x mx n ++=的一个根,则222m mn n ++的值为2122212,-0+=x x x x x m x x m m +=⎽⎽⎽⎽⎽⎽⎽⎽2、已知是关于的一元二次方程(2m+3)的两个不相等的实数根,且满足,则的值()220(0),0(0)ax bx c a ax bx c a ++=≠++=≠3、定义:如果一元二次方程满足a+b+c=0,那么我们称这个方程为“凤凰”方程。
已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是 A. a=c B. a=b C. b=c D. a=b=c2-20=x x a a b +=+⎽⎽⎽⎽⎽⎽⎽⎽4、若一元二次方程(a+2)的两个实数根分别是3、b,则2211212,63=0x x x x x x x x ++⎽⎽⎽⎽⎽⎽5、已知是方程的两个实数根,则+的值2222=0,22=0,,b aa ab b a b a b+-+-≠6、已知实数a,b 满足且求+的值2,3101321a bad bc x x c d x xx x =--+=+--7、规定: 计算:当时,的值是多少?(二)利用一元一次方程解决实际问题例2、某书店把一本新书按标价的9折出售,仍可获利20%,若该书进价为21元,则标价为练习:1、王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取得本息和33825元,设王先生存入的本金为x元,则所列方程为2、“五一”节期间,某电器按成本价提高30%后标价,再打8折销售,售价为2080元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题突破区
专题视点· 考向解读
重点解析
真题演练
专题考点 0 2 函数方案设计
函数方案设计是指由题目提供的背景材料或图表信息, 确定函数关系式, 利 用函数图象的性质获得解决问题的具体方法. 解决此类问题的难点主要是正确 确定函数关系式, 关键还要熟悉函数的性质及如何通过不等式确定函数自变量的 取值范围.
投资收益 投资收益率= 实际投资额 ×100% )
( 2) 对同一标价的商铺, 甲选择了购铺方案一, 乙选择了购铺方案二, 那么 5 年后两 人获得的收益将相差 5 万元. 问: 甲、乙两人各投资了多少万元?
专题突破区
专题视点· 考向解读
重点解析
真题演练
【思路点拨】 利用方案的叙述可得投资的收益进行比较. 【自主解答】 ( 1) 设商铺标价为 x 万元, 则 按方案一购买, 则可获投资收益( 120% - 1)·x+ x·10% ×5= 0. 7x.
专题突破区
甲 8 12
乙 6 16
丙 5 10
专题视点· 考向解读) 8x+ 6y+ 5( 20- x- y) = 120, ∴y= 20- 3x. ∴y 与 x 之间的函数关系式为 y= 20- 3x; ( 2) 由 x≥3, y= 20- 3x≥3,
2 5 20- x- ( 20- 3x) ≥3 可得 3≤x≤ 3 ,
专题突破区
专题视点· 考向解读
例1
重点解析
真题演练
(2012·无锡)某开发商进行商铺促销, 广告上写着如下条款:
投资者购买商铺后, 必须由开发商代为租赁 5 年, 5 年期满后由开发商以比原商铺 标价高 20% 的价格进行回购, 投资者可在以下两种购铺方案中做出选择: 方案一: 投资者按商铺标价一次性付清铺款, 每年可以获得的租金为商铺标价的 10% . 方案二: 投资者按商铺标价的八五折一次性付清铺款, 2 年后每年可以获得的租金 为商铺标价的 10% , 但要缴纳租金的 10% 作为管理费用. ( 1) 请问: 投资者选择哪种购铺方案, 5 年后所获得的投资收益率更高?为什么?( 注:
专题突破区
专题视点· 考向解读
重点解析
真题演练
1. 方案设计问题主要有以下几种类型: ( 1) 考查方程、不等式方案设计问题; ( 2) 函数方案设计问题; ( 3) 统计知识方案设计问题; ( 4) 测量方案设计问题; ( 5) 图形设计问题. 2. 解答方案设计问题的一般步骤: ( 1) 先弄清楚题目设计的知识点; ( 2) 结合相应的知识点的规律与设计的要求解答.
a ≤ 5 10 a ≤ 7 依题意得 12a 7(10 a) ≥ 80 10a 10(10 a) ≥100
∴3≤a≤5. ∵a 为整数, ∴a= 3、4、5.
专题突破区
专题视点· 考向解读
重点解析
真题演练
方法一: ∴共有三种方案. 方案(1) 甲 3 天、乙 7 天, 总费用 400×3+ 300×7= 3300; 方案(2) 甲 4 天、乙 6 天, 总费用 400×4+ 300×6= 3400; 方案(3) 甲 5 天、乙 5 天, 总费用 400×5+ 300×5= 3500. ∵3300 < 3400< 3500 ∴方案(1) 最省, 最省费用为 3300 元. 方法二: 则ω= 400a + 300(10- a) = 100a+ 3000 ∵100> 0, ∴ω随 a 的增大而增大. ∴当 a= 3 时, ω最小= 3300. 答: 共有 3 种租赁方案: ①甲 3 天、 乙 7 天; ②甲 4 天、 乙 6 天; ③甲 5 天、 乙 5 天. 最少租赁费用 3300 元.
最大
= 1 644( 百元) = 16. 44 万元,
答: 要使此次销售获利最大, 应采用( 2) 中方案一, 即甲种 3 辆, 乙种 11 辆, 丙种 6 辆, 最大利润为 16. 44 万元.
专题突破区
专题视点· 考向解读
重点解析
真题演练
4. 海峡两岸林业博览会连续六届在三明市成功举办, 三明市的林产品在国内外 的知名度得到了进一步提升. 现有一位外商计划来我市购买一批某品牌的木地 板, 甲、乙两经销商都经营标价为每平方米 220 元的该品牌木地板. 经过协商, 甲经销商表示可按标价的 9. 5 折优惠; 乙经销商表示不超过 500 平方米的部分 按标价购买, 超过 500 平方米的部分按标价的 9 折优惠. 请问该外商选择哪一经 销商购买更合算? 【解析】 ( 1) 设购买木地板 x 平方米, 选择甲经销商时, 所需费用 y1 元, 选择乙经 销商时, 所需费用 y2 元, 请分别写出 y1, y2 与 x 之间的函数关系式: y1= 0. 95×220x= 209x, 当 0< x≤500 时, y2= 220x, 当 x> 500 时, y2= 220×500+ 0. 9×220( x- 500) , 即 y2= 198x+ 11 000.
专题突破区
专题视点· 考向解读
重点解析
真题演练
专题考点 0 1 方程、不等式方案设计
方程、不等式方案设计问题主要是指利用方程、不等式的相关知识, 通过有 关的计算、比较获得解决问题的方法. 这类题目一般信息量较大, 因此在解决问 题时应注意认真审题, 分析题意, 弄清题目中的数量关系, 善于将实际问题转化为 数学问题解决.
∴甲材料每千克 15 元, 乙材料每千克 25 元.
专题突破区
专题视点· 考向解读
重点解析
真题演练
( 2) 设生产 A 产品 m 件, 生产 B 产品( 50- m ) 件, 则生产这 50 件产品的材料费为 15×30m + 25×10m + 15×20( 50- m ) + 25×20( 50- m ) = - 100m + 40000. 由题意: - 100m + 40000≤38000, 解得 m ≥20. 又∵50- m ≥28, 解得 m ≤22. ∴20≤m ≤22. ∴m 的值为 20, 21, 22. 共有三种方案, 如下表:
0.7 x 投资收益率为 x ×100% = 70% .
按方案二购买, 则可获投资收益 ( 120% - 0. 85) ·x+ x·10% ×( 1- 10% ) ×3= 0. 62x.
0.62 x 投资收益率为 0.85 x ×100% ≈72. 9% .
∴投资者选择方案二所获得的投资收益率更高. ( 2) 由题意得 0. 7x- 0. 62x = 5. 解得 x = 62. 5. ∴甲投资了 62. 5 万元, 乙投资了 53. 125 万元.
1 a ≥ (360 a) ① 2 W 8 A 6(360 a) ②
由①, 得 a≥120. 由②, 得 W = 2a+ 2 160. ∵k= 2> 0, ∴W 随 a 的增大而增大, ∴a= 120 时, W
最小
= 2 400,
∴B 种树苗为 360- 120= 240 棵. ∴最省的购买方案是 A 种树苗购买 120 棵, B 种树苗购买 240 棵.
专题视点· 考向解读
重点解析
真题演练
专题六
方案设计问题
专题视点·考向解读
方案设计问题涉及面较广, 内容比较丰富, 题型变化较多, 经常有探究性质的 题目出现; 不仅有代数中的方程、不等式、函数等问题, 还有几何中的测量、图 形等方面的问题, 因此在解决此专题知识时, 应该注意分析问题所涉及的知识点, 加以分析研究作答.
专题突破区
专题视点· 考向解读
重点解析
真题演练
3. 某土特产公司组织 20 辆汽车装运甲、乙、丙三种土特产共 120 吨去外地销 售. 按计划 20 辆车都要装运, 每辆汽车只能装运同一种土特产, 且必须装满, 根 据下表提供的信息, 解答以下问题. ( 1) 设装运甲种土特产的车辆数为 x, 装运乙种土特产的车辆数为 y, 求 y 与 x 之间 的函数关系式; ( 2) 如果装运每种土特产的车辆都不少于 3 辆, 那么车辆的安排方案有几种?并写 出每种安排方案. ( 3) 若要使此次销售获利最大, 应采用( 2) 中哪种安排方案?并求出最大利润的值. 土特产种类 每辆汽车运载量( 吨) 每吨土特产获利( 百元)
A( 件) B( 件)
20 30
21 29
22 28
专题突破区
专题视点· 考向解读
重点解析
真题演练
( 3) 设总生产成本为 W 元, 加工费为: 200m + 300( 50- m ) , 则 W = - 100m + 40000+ 200m + 300( 50- m ) = - 200m + 55000, ∵W 随 m 的增大而减小, 而 m = 20, 21, 22, ∴当 m = 22 时, 总成本最低, 此时 W = - 200×22+ 55000= 50600 元.
专题突破区
专题视点· 考向解读
重点解析
真题演练
2. (2013·茂名)在信宜市某“三华李”种植基地有 A , B 两个品种的树苗出售, 已 知 A 种比 B 种每株多 2 元, 买 1 株 A 种树苗和 2 株 B 种树苗共需 20 元. ( 1) 问 A, B 两种树苗每株分别是多少元? ( 2) 为扩大种植, 某农户准备购买 A , B 两种树苗共 360 株, 且 A 种树苗数量不少于 B 种数量的一半, 请求出费用最省的购买方案. 【解析】 ( 1) 设 A 种树苗每株 x 元, B 中树苗每株 y 元, 由题意,
专题突破区
专题视点· 考向解读
重点解析
真题演练
例2
(2012·十堰)某工厂计划生产 A 、B 两种产品共 50 件, 需购买甲、乙两种