二次函数的应用教案试讲-推荐下载
《二次函数的应用(1)》参考教案_最新修正版
3.6 二次函数的应用(1)教材分析本节课要经历探索长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.在实际背景中解决最优化问题,不是很容易的一件事.首先,实际问题的叙述往往比较长,使人感到问题很难,其次,分析其中各个量之间的关系也不是—件轻松的事情,要想解决好这类问题,一是不要有畏难情绪,我们都可以学会解决应用问题;二是要读懂问题.明确要解决的问题是什么;三要分析问题中各个员之间的关系,把问题表示为数学的形式.在此基础上,利用我们所学过的数学知识,就可以一步一步地得到问题的解.在教学中应引导学生按照上面的步骤进行.首先要给学生自信心,然后要告诉学生如何去分析已知和未知条件,分析问题中各个量之间的关系,把实际问题抽象为数学问题,即二次函数问题,并能够运用二次函数的知识解决实际问题中的最大(小)值.教学目标(一)教学知识点能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值.(二)能力训练要求1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力.2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力.(三)情感与价值观要求1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.3.进一步体会数学与人类社会的密切联系,了解数学的价值.增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力.教学重点1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.教学难点能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积问题.教学方法教师指导学生自学法.教具准备投影片四张第一张:(记作§3.6.1A)第二张:(记作§3.6.1B)第三张:(记作§3.6.1C)第四张:(记作§3.6.1D)教学过程Ⅰ.创设问题情境,引入新课[师]本节课我们来学习用二次函数来解决实际问题.解决这类问题的关键是要读懂题目,明确要解决的是什么,分析问题中各个量之间的关系,把问题表示为数学的形式,在此基础上,利用我们所学过的数学知识,就可以一步步地得到问题的解.本节课我们将继续利用二次函数解决最大面积问题.Ⅱ.新课讲解一、例题讲解投影片;(§3.6.1A)如下图,在一个直角三角形的内部作一个长方形ABCD.其中AB和AD分别在两直角边上.(1)设长方形的一边AB =x m ,那么AD 边的长度如何表示?(2)设长方形的面积为y m 2.当x 取何值时,y 的值最大?最大值是多少?[师]分析:(1)要求AD 边的长度,即求BC 边的长度,而BC 是△EBC 中的一边,因此可以用三角形相似求出BC .由△EBC ∽△EAF ,得304040BC x AF BC EA EB =-=即所以AD=BC=43(40-x). (2)要求面积的最大值.即求函数y=AB·AD=x·43(40-x)的最大值,就转化为数学问题了.下面请大家讨论写出步骤.[生](1)∵BC//AD ,∴△EBC ∽△EAF . ∴AFBC EA EB =. 又AB =x ,BE=40-x , ∴304040BC x =-. ∴BC=43(40-x). ∴AD =BC=43(40-x)=30-43x . (2)y =AB·AD=x(30-43x)= -43x 2+30x =-43(x 2-40x+400-400) =-43(x 2-40x+400)+300 =-43(x-20)2+300 当x=20时, y 最大=300.即当x 取20 m 时,y 的值最大,最大值是300m 2.[师]很好.刚才我们先进行了分析.要求面积就需要求矩形的两条边,把这两条边分别用含x 的代数式表示出来,代入面积公式就能转化为数学问题了,大家觉得用数学知识解决实际问题很难吗?[生]不很难.[师]下面我们换一个条件.看看大家能否解决.设AD 边的长为x m ,则问题会怎样呢?与同伴交流.[生]要求面积需求AB 的边长,而AB =DC ,所以需要求DC 的长度,而DC 是△FDC 中的一边,所以可以利用三角形相似来求.解:∵DC//AB ,∴△FDC ∽△FAE .FAFD AE DC =. ∵AD=x ,FD =30-x . ∴303040x DC -=. ∴DC=34(30-x). ∴AB=DC=34(30-x). y=AB·AD=x·34(30-x) =-34x 2+40x =-34(x 2-30x+225-225) =-34(x-15)2+300. 当x=15时,y 最大=300.即当AD 的长为15 m 时,长方形的面积最大,最大面积是300 m 2二、做一做投影片:(§3.6.1B)某建筑物的窗户如下图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15 m ,当x 等于多少时,窗户通过的光线最多(结果精确到0.01 m)?此时,窗户的面积是多少?[师]通过刚才的练习,这个问题自己来解决好吗?[生]可以.分析:x 为半圆的半径,也是矩形的较长边,因此x 与半圆面积和矩形面积都有关系.要求透过窗户的光线最多,也就是求矩形和半圆的面积之和最大,即2xy+2πx 2最大,而由于4y+4x+3x+πx =7x+4y+πx=15,所以y=4715x x π--.面积S=21πx 2+2xy=21πx 2+2x·4715x x π--=21πx 2+2)715(x x x π--=-3.5x 2+7.5x ,这时已经转化为数学问题即二次函数了,只要化为顶点式或代入顶点坐标公式中即可.解:∵7x+4y-πx =15,∴y=4715x x π--. 设窗户的面积是S(m 2),则S=21πx 2+2xy =21πx 2+2x·4715x x π-- =21πx 2+2)715(x x x π-- =-3.5x 2+7.5x=-3.5(x 2-715x) =-3.5(x-3921575)14152+). ∴当x =1415≈1.07时, S 最大=3921575≈4.02. 即当x≈1.07 m 时,S 最大≈4.02 m 2,此时.窗户通过的光线最多.[师]大家做得非常棒.三、议一议[师)我们已经做了不少用二次函数知识解决实际问题的例子,现在大家能否根据前面的例子作一下总结,解决此类问题的基本思路是什么呢?与同伴进行交流.[生]首先是理解题目,然后是分析已知量与未知量,转化为数学问题.[师]看来大家确实学会了用数学知识解决实际问题,基本思想如下:投影片:(§3.6.1C)解决此类问题的基本思路是:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)做函数求解;(5)检验结果的合理性,拓展等.在总结思路之前,大家已经做得相当出色了,相信以后会更上一层楼的.Ⅲ.课堂练习投影片:(§3.6.1D)1.一养鸡专业户计划用116 m长的竹篱笆靠墙(如下图)围成一个长方形鸡舍,怎样设计才能使围成的长方形鸡舍的面积最大?最大为多少?解:设AB长为x m,则BC长为(116-2x)m,长方形面积为Sm2,根据题意得S=x(116-2x)=-2x2+116x=-2(x2-58x+292-292)=-2(x-29)2+1682.当x=29时,S有最大值1682,这时116-2x=58.即设计成长为58 m,宽为29 m的长方形时,能使围成的长方形鸡舍的面积最大,最大面积为1682 m2.Ⅳ.课时小结本节课我们进一步学习了用二次函数知识解决最大面积问题,增强了应用意识,获得了利用数学方法解决实际问题的经验,并进一步感受了数学模型思想和数学的应用价值.Ⅴ.课后作业习题3.12Ⅵ.活动与探究已知矩形的长大于宽的2倍,周长为12,从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形的一边所成的角的正切值等于21.设梯形的面积为S ,梯形中较短的底边长为x ,试写出梯形面积关于x 的函数关系式,并指出自变量x 的取值范围.分析:因为射线与矩形一边所成的角的正切值等于21,但没有说明射线与矩形的哪一边所成角的正切值,故本题应考虑两种情况,如下图:板书设计§3.6 二次函数的应用(1)一、1.例题讲解(投影片§3.6.1A)2.做一做(投影片§3.6.1B)3.议一议(投影片§3.6.1C)二、课堂练习(投影片§3.6.1D)三、课时小结四、课后作业。
浙教版数学九年级上册2.4《二次函数的应用》教案1
浙教版数学九年级上册2.4《二次函数的应用》教案1一. 教材分析浙教版数学九年级上册2.4《二次函数的应用》是学生在学习了二次函数的图象与性质的基础上进行的一个单元。
本节内容主要让学生掌握二次函数在实际生活中的应用,例如:最大(小)值问题、三点共线问题等。
通过这些实例,让学生体会数学与生活的紧密联系,提高学生运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了二次函数的基本知识,对二次函数的图象与性质有一定的了解。
但学生在应用二次函数解决实际问题时,往往会因为对实际问题的理解不深而难以找到解决问题的突破口。
因此,在教学过程中,教师需要引导学生深入理解实际问题,找出问题中的关键信息,从而运用二次函数的知识解决问题。
三. 教学目标1.知识与技能:使学生掌握二次函数在实际生活中的应用,学会如何运用二次函数解决最大(小)值问题、三点共线问题等。
2.过程与方法:通过实际问题的解决,培养学生运用数学知识解决实际问题的能力,提高学生的数学素养。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,增强学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:二次函数在实际生活中的应用。
2.难点:如何引导学生找出实际问题中的关键信息,运用二次函数的知识解决问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生深入理解二次函数在实际中的应用。
2.案例教学法:分析典型问题,让学生学会分析问题、解决问题的方法。
3.小组讨论法:鼓励学生分组讨论,培养学生的团队合作精神。
4.启发式教学法:引导学生主动思考,提高学生解决问题的能力。
六. 教学准备1.准备相关的实际问题,用于引导学生运用二次函数的知识解决问题。
2.准备PPT,用于展示二次函数在实际中的应用实例。
七. 教学过程1.导入(5分钟)教师通过一个生活实例引入本节内容,如:一个长方形的面积固定,长和宽的关系如何表示?引导学生思考二次函数在实际中的应用。
九年级数学上册《二次函数的应用》教案、教学设计
-通过动画展示二次函数图像的平移、伸缩等变换,使学生直观地感受图像的性质。
3.设计具有梯度的问题,引导学生逐步深入地掌握二次函数的知识。
-从简单的二次函数图像识别,到求解实际问题中的二次函数,逐步提高问题的难度。
4.采用小组合作、讨论交流的学习方式,促进学生之间的思维碰撞,共同解决难题。
5.学会运用二次函数的知识,解决生活中的实际问题,提高数学应用能力。
(二)过程与方法
在本章节的学习过程中,学生将通过以下方法培养数学思维与解决问题的能力:
1.通过小组合作、讨论交流,培养学生的合作意识和团队精神。
2.利用数形结合的方法,引导学生观察、分析二次函数的图像,培养学生直观想象和逻辑推理能力。
5.反思与总结:
-请同学们在作业本上写下本节课的学习心得,包括对二次函数的理解、学习过程中的困惑以及解题方法的总结。
-教师在批改作业时,应及时给予反馈,鼓励学生持续反思,不断提高。
4.通过小组合作,培养学生互相尊重、团结协作的品质,增强集体荣誉感。
5.引导学生认识到数学知识在实际生活中的重要性,培养学生的社会责任感和使命感。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了线性方程、不等式等知识,对于函数的概念也有初步的理解。在此基础上,学生对二次函数的学习将面临以下挑战:
-完成课后作业中的基础题,旨在让学生通过实际操作,加深对二次函数图像特征的理解。
2.提高作业:
-选做课本第chapter页的提高题,涉及二次函数在实际问题中的应用,如最值问题、面积计算等,以提升学生解决问题的能力。
-设计一道综合性的应用题,要求学生运用本节课所学知识,结合生活实际,解决实际问题。
《二次函数的应用》教案
《二次函数的应用》教案1教学目标知识与技能1.会利用二次函数的性质解决抛物线型实际问题.2.使学生体验建模思想、数形结合思想.3.培养学生分析实际问题、解决实际问题的能力.数学思考与问题解决经历构建平面直角坐标系解决抛物线型实际问题的过程,在此过程中培养建模思想,共同探究实际问题的解决方法.情感与态度在共同的探究过程中增强用数学的意识,发展应用观点.重点难点重点:建立平面直角坐标系解决抛物线型实际问题.难点:建立函数模型.教学设计导入新课通过多媒体展示生活中的抛物线图片,如喷出的水柱,投出的篮球运动路线,桥拱等.提问:这些图像的形状有什么共同特点?探究新知出示教材第41页例1.问题1:对于例题,你联想到用什么数学知识去解决?答:二次函数.问题2:求篮球运动员出手时的髙度是多少,应用二次函数知识解决时应该求什么?答:求该点的纵坐标.问题3:求坐标的前提是什么?答:在平面直角坐标系中.问题4:对于本题又该怎样解决?答:先建立平面直角坐标系,求出抛物线的表达式,再求篮球运动员出手点的纵坐标.师:同学们回答得非常正确,下面就请同学们独立思考,然后小组讨论,看哪种建坐标系的方法简单可行,并把解题步骤写在练习本上.学生思考、讨论,教师引导,巡回检査.学生建坐标系的方案有如下几种.教师让学生展示每种坐标系下的解题过程,充分发挥生的主体性,最后展示第一种方案的完整答案,并总结解题方法.巩固练习出示教材第42页“做一做”,让学生独立做出答案.教师巡回检査,搜寻发现的问题.展示学生答案,表扬学生的解题过程,在完整答案的基础上,点明个别学生出现的问题,以防学生以后再次犯错.课堂小结学生谈本节的收获.布置作业教材第4243莨习题A组、B组.《二次函数的应用》教案2教学目标知识与技能会利用二次函数解决实际应用的最值问题.数学思考与问题解决在经历探索实际问题中两个变量之间的函数关系的过程中培养数学建模思想.情感与态度在共同探究问题中增强用数学的意识,发展应用观点.重点难点重点:利用二次函数解决实际生活中的最值问题.难点:利用二次函数解决综合性的问题.教学设计一、导入新课如图所示,张伯伯准备利用现有的一面墙和40m长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场,你能算出四个矩形的总面积吗?二、自主探究,合作交流1.如上题:(例1)(1)设毎个小矩形垂直于墙的一边的长为x m,试用x表示小矩形的另一边的长.(2)设四个小矩形的总面积为ycm2,请写出用x表示y的函数表达式.(3)你能利用公式求出所得函数的图像的顶点坐标,并说出:y的最大值?(4)你能画出这个函数的图像并借助图像说出y的最大值吗?2.例2教材第44页例2.3.例3教材第44页例3.分析:设生产x档次的产品,则产品提髙了(x-1)个档次,每提髙一个档次,产品利润增加2元,提髙(x-1)个档次,产品利润增加2(x-1)元,那么产品销量就减少4(x-1)件,现在的销量就变为[80-40(x-1)]件.所求获得的利润是每件获得的利润乘销量.4.例4(教材第44页“做一做”)分析:开关转过的一个角度对应一个所用燃气量,这就相当于一个点的坐标.任选三个点的坐标设二次函数的一般式即可求解.5.课堂练习课本第45页练习.三、课堂小结本节课你有什么收获?有什么困惑?(1)求最值的方法;(2)应注意的问题.四、布置作业必做题:教材第45页习题A组第1,2题.选做题:教材第46页B组第1、2题.《二次函数的应用》教案3教学目标知识与技能1.进—步体会运用函数知识解决问题的步骤.2.能熟练运用二次函数和其他知识相结合解决数学综合性问题.数学思考与问题解决经历一元二次方程和函数关系问题的探究过程,学习用联系的观点看待问題的思考方法.情感与态度体会解决问题方法的多样性,形成合作交流的意识及独立思考的习惯.重点难点重点:运用二次函数和其他数学知识解决综合性问题.难点:熟练运用函数和其他数学知识解决综合性问题教学设计创设情境,引人新课前面我们已经学习了二次函数在现实生活中的应用:解决抛物线型的问题,解决最值问题,实际上现实生活中还有许许多多的问题要用二次函数的知识去解决.二次函数和其他知识相联系的问题更是比比皆是.请看下面的图片.出示图片:一个交通事故的现场.探究新知1.出示教材第46页“做一做”.同学们,现在请你作为一名交警,你能解决这两个问题吗?分析:对于s 甲=0.1x +0.01x 2,已知s 甲=12,求x 就是已知二次函数图像上点的纵坐标求横坐标的问题,这里的函数和实际问题联系起来,求出的坐标要进行取舍.解:(1)当s 甲=12m 时,12=0.1x +0.01x 2. 解这个方程得:X 1=-40(舍去),x 2=30.甲车的行驶速度是30km /h ,小于.40km /h .所以甲车不违章超速.(2)当纪s 乙=10m 时,10= 14x .∴x =40.当s 乙=12m 时,12= 1 4x .∴x =48.即乙车的行驶速度在40km /h<x<48k m /h 范围内,而乙车的限速为40km /h ,所以乙车违章超速.问题:在解决这个问题的时候,用到了什么方法?从这个事例当中,我们可以体会到,当二次函数:y =ax 2+b x +c 的某函数值y =m 时,就可以利用一元二次方程ax 2+b x +c =m 来求对应的值.这样,就把一元二次方程和二次函数联系起来了.2.出示教材第47页例4.本题的图形是三角形相似的一个基本图形,用三角形相似对应边成比例列出表达式是解决本题的第一步.BE AB=.=,即31-x∴x2-x+3解的x=,x=444416第(1)问能求出x的值,则表示CF的值可能等于3解法1:(1)假设CF=34,设BE=x,则EC=1-x.在正方形ABCD中,∠AEF=90°,∴∠BAE=∠CEF,∴△Rt ABE∽△Rt ECF.∴CF EC x1 4∴x2-x+3=0.4∵=(-1)2-4×1×34=-2<0,33=0无实根.因此假设CF=不成立.即CF的长不可能等于.444(2)结合(1),x(1-x)=316时,即16x2-16x+3=0.13133.∴当BE=或BE=时,均有CF=.12解法2.教材第47页.这是同学们讨论交流得出的两种解法,第一种是用方程来解决,要先假设CF=34,如果3,现在方程无解,说明不存在CF=;第44二种方法是二次函数和一元二次方程相结合来说明第(1)问中CF能否为34.从本例可以看出,一元二次方程与二次函数联系紧密,用二次函数可以更方便、更广泛地解决一些问题.课堂小结学习本节课后你的收获是什么?布置作业教材第48页A组题,第49页B组题.。
浙教版数学九年级上册2.4《二次函数的应用》教案
浙教版数学九年级上册2.4《二次函数的应用》教案一. 教材分析《二次函数的应用》是浙教版数学九年级上册第2.4节的内容,主要目的是让学生掌握二次函数在实际问题中的应用。
本节内容是在学生已经学习了二次函数的图象和性质的基础上进行的,通过本节内容的学习,使学生能够运用二次函数解决一些实际问题,提高他们的数学应用能力。
二. 学情分析九年级的学生已经掌握了二次函数的基本知识,对二次函数的图象和性质有一定的了解。
但是,将二次函数应用于实际问题中,解决实际问题,对他们来说还是一个新的领域。
因此,在教学过程中,教师需要引导学生将已知的二次函数知识与实际问题相结合,通过解决实际问题,提高他们的数学应用能力。
三. 教学目标1.知识与技能:使学生能够理解二次函数在实际问题中的应用,能够将实际问题转化为二次函数问题,并通过二次函数解决实际问题。
2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力,提高他们的数学素养。
3.情感态度与价值观:使学生能够体验到数学在生活中的应用,增强他们对数学的兴趣和信心。
四. 教学重难点1.重点:使学生能够理解二次函数在实际问题中的应用。
2.难点:如何将实际问题转化为二次函数问题,并通过二次函数解决实际问题。
五. 教学方法采用问题驱动的教学法,通过解决实际问题,引导学生运用二次函数知识,提高他们的数学应用能力。
同时,采用小组合作学习的方式,培养学生的合作精神和团队意识。
六. 教学准备1.教师准备:教师需要准备一些实际问题,用于引导学生运用二次函数知识解决实际问题。
2.学生准备:学生需要复习二次函数的基本知识,对二次函数的图象和性质有一定的了解。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生思考如何利用二次函数知识解决这些问题。
2.呈现(10分钟)教师呈现一些实际问题,并与学生一起分析这些问题,将实际问题转化为二次函数问题。
3.操练(10分钟)教师引导学生运用二次函数知识解决呈现的实际问题,学生进行练习,巩固所学知识。
二次函数的应用教案
二次函数的应用教案教案:二次函数的应用一、教学目标:1.理解二次函数的概念及其一般式;2.掌握二次函数的图像特点;3.学会利用二次函数解决实际问题;4.培养学生的逻辑思维和问题解决能力。
二、教学准备:1.教学工具:多媒体设备、黑板、教材等;2.教学素材:二次函数的图像、实际问题等。
三、教学过程:1.导入与展示(10分钟)引导学生复习二次函数的基本概念,并展示一些二次函数的图像,让学生感受二次函数的基本特点。
2.探究与讨论(15分钟)通过讨论和思考,引导学生找出二次函数图像中的关键要素:顶点、对称轴、开口方向等,并与函数表达式进行关联。
3.案例分析(20分钟)将二次函数的解释和实际问题相结合,通过一些实际案例,引导学生理解二次函数的应用。
比如:抛物线的应用、最值问题、几何问题等。
4.讲解与总结(20分钟)讲解二次函数的一般式及其性质,通过展示一些典型的例题和解题方法,引导学生掌握二次函数的解题技巧。
5.练习与巩固(20分钟)给学生一些练习题,让学生动手解答,帮助学生巩固所学知识。
6.拓展与应用(15分钟)通过一些扩展问题和应用题,培养学生的批判性思维和问题解决能力。
7.总结与作业(10分钟)总结二次函数的基本特点和解题方法,布置相应的作业,让学生自主巩固所学内容。
四、教学评估及反思:通过学生的课堂表现、练习情况以及课后作业的完成情况,来评估学生对二次函数应用的理解和掌握程度。
根据评估结果,及时调整教学策略,加强薄弱环节的讲解和练习。
教学反思:二次函数是高中数学中的重要内容,掌握好二次函数的应用对于学生的数学学习和解决实际问题非常关键。
本课在教学过程中注重结合实际问题,引导学生思考和探究,并通过一些典型问题的分析和解答,帮助学生更好地理解和掌握二次函数的应用。
同时,在教学过程中注重培养学生的解决问题的能力,引导学生发展批判性思维和创新思维。
通过及时反馈和评估,不断优化教学,提高教学效果。
《二次函数的应用》教学设计
《二次函数的应用》教学设计教学设计:二次函数的应用(2)一、教学目标1.理解二次函数在现实生活中的应用。
2.掌握将实际问题转化成二次函数模型的能力。
3.能够解决实际问题,并给出相应的解释。
二、教学内容1.理解二次函数在现实生活中的应用。
a.抛物线的形状和参数意义。
b.坐标轴划分的表示方法。
2.实际问题转化成二次函数模型的能力。
a.确定问题中的自变量、因变量和关系。
b.用实际数据进行模型的构建。
c.利用二次函数的性质和模型求解问题。
3.解决实际问题,并给出相应的解释。
a.利用二次函数模型预测未知数据。
b.利用二次函数图像分析问题。
三、教学过程1.导入新课,复习二次函数的基本概念和性质。
2.引入二次函数在现实生活中的应用,并进行示例分析。
示例:一辆汽车从静止开始行驶,行驶的距离和时间的关系可用二次函数表示。
已知汽车在5秒时行驶了20米,在10秒时行驶了45米,请问汽车在15秒和20秒时行驶了多少米?a.确定自变量和因变量:自变量为时间,因变量为距离。
b.确定关系:汽车行驶的距离和时间之间存在二次函数关系。
c.用已知数据构建二次函数模型:设汽车行驶的距离为y,时间为x,则有二次函数y=ax^2+bx+c。
根据已知数据,在x=5时,y=20;在x=10时,y=45将这两个点代入二次函数模型,可以得到两个方程:20=25a+5b+c45=100a+10b+c解这个方程组,可以得到a=0.5,b=0.5,c=0。
d.利用二次函数模型求解问题:当x=15时,代入二次函数模型,求得y=57.5当x=20时,代入二次函数模型,求得y=90。
e.解释结果:汽车在15秒时行驶了57.5米,在20秒时行驶了90米。
3.练习:学生独立解决类似问题。
示例:一个烟花发射器以一定的角度发射烟花,烟花的高度与时间的关系可用二次函数表示。
已知烟花在1秒时高度为10米,在3秒时高度为30米,请问烟花在5秒和7秒时的高度分别是多少?a.确定自变量和因变量:自变量为时间,因变量为高度。
北师大版九年级数学下册:2.4《二次函数的应用》教案
北师大版九年级数学下册:2.4《二次函数的应用》教案一. 教材分析北师大版九年级数学下册第2.4节《二次函数的应用》主要介绍了二次函数在实际生活中的应用,包括二次函数图像的识别和利用二次函数解决实际问题。
这部分内容是学生在学习了二次函数的性质和图像后,对二次函数知识的进一步拓展,使学生能够将所学知识应用到实际生活中,提高解决实际问题的能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识和图像,对二次函数有一定的理解。
但学生在解决实际问题时,可能会对将理论知识和实际问题相结合感到困难。
因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解二次函数在实际生活中的应用;2.学会利用二次函数解决实际问题;3.提高学生的数学应用能力。
四. 教学重难点1.二次函数在实际生活中的应用;2.利用二次函数解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生思考;通过案例分析,使学生理解二次函数在实际生活中的应用;通过小组合作,让学生在讨论中解决问题,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的案例和问题;2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)通过一个实际问题引出二次函数的应用,例如:一个农场计划种植两种作物,种植面积为固定的10亩。
如果种植苹果树,每亩收益为2000元;如果种植梨树,每亩收益为3000元。
请问如何分配种植苹果树和梨树的面积,才能使总收益最大?2.呈现(10分钟)呈现教材中的案例,让学生了解二次函数在实际生活中的应用。
例如,教材中有一个关于抛物线形跳板的问题,通过二次函数来求解跳板的长度。
3.操练(10分钟)让学生根据教材中的案例,尝试解决实际问题。
例如,教材中有一个关于二次函数图像的问题,让学生根据图像信息,求解相关参数。
4.巩固(10分钟)通过小组合作,让学生解决一些实际问题。
九年级数学下册《二次函数的应用》教案、教学设计
3.拓展作业:
(1)针对优秀生,布置一些具有挑战性的题目,如研究二次函数图像的变换规律、探讨二次方程与二次不等式之间的关系等。
(2)鼓励学生利用网络、书籍等资源,了解二次函数在其他学科领域的应用,拓宽知识视野。
(三)情感态度与价值观
在本章节的教学中,学生将形成以下情感态度与价值观:
1.培养学生对数学学习的兴趣,激发他们探索数学问题的热情,增强自信心和自主学习的意识。
2.通过解决实际生活中的问题,使学生感受到数学与现实生活的紧密联系,认识数学的价值,提高学习的积极性。
3.培养学生的团队合作意识,让他们在交流、互助中学会尊重他人,培养良好的人际沟通能力。
2.运用问题驱动法,设计具有挑战性的问题和实际案例,激发学生的兴趣和求知欲,培养其独立思考、合作交流的能力。
3.利用数形结合的方法,结合图像和解析式,帮助学生形象地理解二次函数的几何意义,提高解决问题的直观感知能力。
4.通过分类讨论、逐步推进的解题策略,培养学生的逻辑思维和条理性。
5.组织课堂讨论和小组活动,鼓励学生分享解题心得,提高表达和沟通能力。
九年级数学下册《二次函数的应用》教案、教学设计
一、教学目标
(一)知识与技能
在本章节《二次函数的应用》的教学中,学生将掌握以下知识与技能:
1.理解二次函数的定义及其图像特点,能够识别并写出一般形式的二次函数表达式。
2.学会运用二次函数的顶点式、交点式等不同形式进行问题求解,掌握求解二次方程的方法。
3.能够利用二次函数解决实际生活中的问题,如最值问题、范围问题等,并能够解释其几何意义。
4.掌握二次函数与一元二次方程、不等式之间的关系,能够进行简单的综合应用。
二次函数试讲教案
二次函数试讲教案【篇一:二次函数入职试讲讲义】二次函数专题复习讲义一、学习目标:1.通过知识讲解,让学生理解二次函数的意义,理解二次函数与一元二次方程的关系。
2.通过习题的练习,使学生掌握用描点法画出二次函数的图像,掌握确定抛物线的开口方向、顶点坐标和对称轴的方法。
3.通过习题的讲解与练习,让学生灵活运用实际问题的分析确定二次函数的表达式,会根据二、重难点:二次函数解决实际问题,二次函数与其它知识结合的有关问题三、教学方法:讲练结合四、教学过程(一).二次函数的定义、图像与性质题型一二次函数的定义2一般地,如果y=ax+bx+c(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;②二次函数y=ax2+bx+c(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,y=ax2+bx+c变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数;③二次函数y=ax2+bx+c(a≠0)与一元二次方程y=ax2+bx+c(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次方程。
例1 ①判断一个函数是否为二次函数下列函数中,是二次函数的是()a.y=68x+1 b.y=8x+1c.②求二次函数中的未知数若函数y=(m-2)xm -22y=88y=-2+1xx d.+5x+1是关于x的二次函数,则m的值为。
探究提高:1.判断一个函数是否为二次函数的方法和步骤(1)先将函数进行整理,使其右边是含有自变量的代数式,左边是因变量; (2)判断右边含自变量的代数式是否为整式; (3)判断二次项的系数是否为零。
2.假设一个函数是二次函数,求二次函数中未知数的方法和步骤 (1)使得二次项系数不为0; (2)x的最高指数等于2; (3)综合求解。
《二次函数的应用》教案
《二次函数的应用》教案教学目标一、知识与技能1.巩固并熟练掌握二次函数的性质.2.能够运用二次函数的性质解决实际问题.3.能够分析和表示实际问题中变量之间的二次函数关系,并会运用二次函数求实际问题中的最大值或最小值.增强解决问题的能力.二、能力目标建立二次函数模型,进一步体会如何应用二次函数的有关知识解决一些生活实际问题,进而提高理解实际问题、从数学角度抽象分析实际问题和运用数学知识解决实际问题的能力.三、情感态度与价值观1.从实际生活中认识到:数学来源于生活,数学服务于生活.2.培养学生的独立思考的能力和合作学习的精神,在动手、交流过程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成.3.经历求最大面积的探索过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.教学重点能利用实际问题列出二次函数的解析式,并能利用二次函数的性质求出最大值和最小值.教学难点能利用几何图形的有关知识求二次函数的解析式.教学过程一、相关知识回顾1.函数223y x x =+-的最值是,是最(填“大”或者“小”)值.2.说说你是如何做的?3.将函数2245y x x =+-化成顶点式,并指出顶点坐标,对称轴.二、新课引入1.合作讨论,解决问题:如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角的边上. (1)如果设矩形的一边AB =x m ,那么AD 边的长度如何表示?(2)设矩形的面积为y m 2,当x 取何值时,y 的值最大?最大值是多少?解:(1)设AD 的长度为a m ,则:BC =a mBC ∥AD (已知) ∴403040a x -= ∴3304a x =- 即3304AD x =-(2)∵223(30)433043(20)300(040)4y x ax x x x x x =⋅=⋅-=-+=--+<< 当20300x y ==最大时,2.变式训练,灵活运用议一议:如果把上题中的矩形改为如图所示的位置,其他条件不变,那么矩形的最大面积是多少?你是怎样知道的?小组成员之间相互讨论.解:由勾股定理可得,这个三角形的斜边长为50m易求得斜边上的高为24m .设矩形的一边 m AD x =,另一边AB =a m ,则有242450a x -= 解得:122425a x =-所以2212242512(25)300(050)25y x ax x x x =⋅=-=--+<< 因此,当25=x 时,300=最大y3.归纳总结解决问题的路和方法整理(1)数据(常量、变量)提取;(2)自变量、因变量识别;(3)构建函数解析式,并求出自变量的取值范围;(4)利用函数(或图像)的性质求最大(或最小)值.4.迁移运用,培养能力例1、某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m .当x 等于多少时,窗户通过的光线最多?(结果精确到0.01m ),此时,窗户的面积是多少?解: 74π 15x y x ++= ∴4715x x y π--= 015x <<且1570154x x π--<< ∴0 1.48x <<设窗户的面积是S m 2.则:22+ππx 22221π221157ππ22471522715225()21456S x xy x x x x x x x =+--=+⋅=-+=--+ ∴当15 1.0714x =≈时,225 4.0256S =≈最大 因此,当x 约为1.07 m 时,窗户通过的光线最多,此时窗户的面积约为4.02m 2.例2、某网络玩具店引进一批进价为20元/件的玩具,如果以单价30元销售,那么一个月内可售出180件.根据销售经验,提高单价会导致销售量的下降,即销售单价每上涨1元,月销售量会减少10件.当销售单价为多少时,该店能在一个月内获最大利润?5.归纳总结,探索规律.(1)对问题情景中的数量(提取常量、变量)关系进行梳理;(2)建立函数模型(求出解析式及相应自变量的取值范围等)(3)建立函数模型(求出解析式及相应自变量的取值范围等),解决问题用字母(参数)来表示不同数量(如不同长度的线段)间的大小联系;6.变式与拓展,灵活掌握练习1、如图,隧道横截面的下部是矩形,上部是半圆,周长为16米.(1)求截面积S (米2)关于底部宽x (米)的函数解析式,及自变量x 的取值范围? (2)试问:当底部宽x 为几米时,隧道的截面积S 最大(结果精确到0.01米)?练习题2、已知,直角三角形的两直角边的和为2,求斜边长可能达到的最小值,以及当斜边长达到最小值时两条直角边的长.1.解:∵隧道的底部宽为x ,周长为16,则隧道下部矩形的高为π284x +-故当48.4432≈+=πx 米时,S 有最大值 答:当隧道的底部宽度为4.48米时,隧道的面积最大2.解:设其中的一条直角边长为x ,则另一条直角边长为(2-x ),又设斜边长为y ,则:所以:当x =11练习3、如课本图,抛物线形悬索桥,已知悬索桥两端主塔高150m ,主塔之间的距离为900m ,是建立适当的直角坐标系,求出该抛物线形桥所对应的二次函数表达式.练习4、小妍想将一根72cm 长的彩带剪成两段,分别为成两个正方形,则她要怎么剪才能让这两个正方形的面积和最小?此时的面积和是多少?归纳小结:1.本节课我们主要学习了哪些知识?利用几何图形的性质,列出二次函数的解析式,并求最大(小)值y =。
二次函数的应用教学教案
二次函数的应用教学教案第一章:二次函数的图像与性质1.1 教学目标了解二次函数的图像特征,如开口方向、顶点坐标等。
掌握二次函数的增减性和对称性。
能够分析实际问题中的二次函数图像和性质。
1.2 教学内容二次函数的标准形式:y = ax^2 + bx + c二次函数的图像:开口方向、顶点坐标、对称轴二次函数的增减性:a的正负与开口方向的关系二次函数的对称性:对称轴和顶点的性质1.3 教学活动引入二次函数图像的实例,让学生观察和描述。
引导学生通过变换二次函数的系数来分析开口方向、顶点坐标等。
运用实际问题,让学生应用二次函数的增减性和对称性解决问题。
1.4 教学资源二次函数图像的示例图片实际问题情境的案例1.5 教学评估通过练习题让学生绘制二次函数的图像,并分析其性质。
提供实际问题,让学生应用二次函数的性质解决问题,并进行评估。
第二章:二次函数的顶点公式2.1 教学目标掌握二次函数的顶点公式:y = a(x h)^2 + k能够通过顶点公式求解二次函数的顶点和对称轴。
2.2 教学内容二次函数的顶点公式及其意义顶点公式与标准形式的关系通过顶点公式求解二次函数的顶点和对称轴2.3 教学活动引导学生通过实际问题情境,发现二次函数的顶点公式。
解释顶点公式与标准形式的关系,并引导学生如何使用。
通过练习题,让学生应用顶点公式求解二次函数的顶点和对称轴。
2.4 教学资源实际问题情境的案例二次函数的顶点公式的示例图片2.5 教学评估提供练习题,让学生应用顶点公式求解二次函数的顶点和对称轴,并进行评估。
第三章:二次函数的根与解析式3.1 教学目标了解二次函数的根与解析式的关系。
能够通过解析式求解二次函数的根。
3.2 教学内容二次函数的根的定义和性质二次函数的解析式与根的关系通过解析式求解二次函数的根3.3 教学活动引入二次函数的根的概念,并通过实际例子解释其性质。
引导学生通过解析式来求解二次函数的根。
提供练习题,让学生应用解析式求解二次函数的根。
2024北师大版数学九年级下册2.4.2《二次函数的应用》教案
2024北师大版数学九年级下册2.4.2《二次函数的应用》教案一. 教材分析《二次函数的应用》是北师大版数学九年级下册第2章《二次函数》的第4节内容。
本节课主要让学生掌握二次函数在实际生活中的应用,培养学生的实际问题解决能力。
教材通过生活实例引入二次函数的应用,使学生感受到数学与生活的紧密联系。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有了初步了解。
但学生在应用二次函数解决实际问题时,往往会因为不能很好地将实际问题转化为数学模型而感到困难。
因此,在教学过程中,教师需要引导学生正确地将实际问题转化为二次函数模型,并运用二次函数的知识解决问题。
三. 教学目标1.让学生掌握二次函数在实际生活中的应用。
2.培养学生将实际问题转化为数学模型并解决的能力。
3.提高学生对数学与生活紧密联系的认识。
四. 教学重难点1.重点:二次函数在实际生活中的应用。
2.难点:将实际问题转化为二次函数模型,并运用二次函数的知识解决问题。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、合作交流,提高学生解决实际问题的能力。
六. 教学准备1.准备相关的生活实例和案例分析。
2.准备教学课件和板书设计。
七. 教学过程1.导入(5分钟)通过一个生活实例引入二次函数的应用,让学生感受到数学与生活的紧密联系。
例如,假设某商场举行打折活动,商品的原价为100元,打折力度为x(0≤x≤1),求打折后的价格。
2.呈现(10分钟)呈现教材中的案例分析,引导学生将实际问题转化为二次函数模型。
例如,某工厂生产一批产品,生产成本为c元,生产数量为x(x≥0),求总成本。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,尝试将其转化为二次函数模型,并运用二次函数的知识解决问题。
教师巡回指导,为学生提供帮助。
4.巩固(10分钟)选取几组学生解决的实际问题,让学生分享自己的解题过程和心得。
二次函数的应用教学教案
二次函数的应用教学教案教学目标:1.理解什么是二次函数以及二次函数的基本概念。
2.掌握二次函数的标准形式、顶点形式以及描绘二次函数的基本技巧。
3.通过实际应用问题,培养学生运用二次函数解决实际问题的能力。
教学重点:1.二次函数的标准形式和顶点形式的转换。
2.利用顶点坐标及对称性质描绘二次函数图像。
3.运用二次函数解决实际应用问题。
教学难点:1.运用二次函数解决实际应用问题。
2.让学生进行问题拓展和综合运用。
教学准备:1.教学PPT或黑板。
2.相关练习题。
3.实际应用问题材料。
教学过程:一、导入(15分钟)1.引出二次函数的概念,通过展示二次函数的图像,向学生提问:“你们在平时的生活中有观察到哪些曲线类似这个图像的事物?这个图像有什么特点?我们该如何描述这个图像?”2.引导学生回答,将学生的回答与二次函数的概念进行对比。
引出二次函数的基本概念及其形式。
二、讲解(30分钟)1.讲解二次函数的标准形式和顶点形式的概念及转换方法。
重点讲解顶点形式的优势。
2.解释二次函数图像的基本特点和性质,如对称性、增减性。
3.通过示例,演示如何根据顶点坐标及对称性质进行图像描绘。
三、实例解析与练习(30分钟)1.展示一个实际应用问题,如抛物线抛物线问题,让学生根据已知条件建立二次函数模型,并求解。
2.让学生自行尝试解决实际应用问题。
3.布置练习题,让学生进行巩固。
四、总结与拓展(15分钟)1.归纳总结二次函数的基本知识点,并进行小结。
2.提出综合运用问题,让学生进行拓展思考。
教学延伸:1.引导学生观察二次函数在现实生活中的具体应用,如汽车行驶问题、落体运动问题等。
2.布置课后作业,巩固学生对二次函数的理解和运用。
课堂反思:本节课通过引入二次函数的实际应用问题,激发了学生的兴趣和学习动力。
通过讲解和解析实例问题,培养了学生运用二次函数解决实际问题的能力。
同时,通过布置练习题和提出综合运用问题,提高了学生的综合能力和拓展思维能力。
二次函数的应用教案
二次函数的应用教案一、教学目标1.知识与技能目标:了解二次函数的概念和特征,掌握二次函数的图像特点和性质。
2.过程与方法目标:通过观察、实验和归纳,培养学生的观察、实验、归纳和推理能力。
3.情感、态度与价值观目标:培养学生的探究精神,激发学生对数学的兴趣与热爱。
二、教学重难点1.教学重点:二次函数的概念、特征和图像。
2.教学难点:二次函数的应用问题的解决方法。
三、教学过程Step 1 导入新知识通过引入一个实际问题,提出一个数学应用的问题,并引出二次函数的概念和特征。
示例问题:一个人站在地面上,向上抛一个物体,假设抛物线的顶点高度是10米,抛物线与地面相交的两个点的高度分别是2米和18米,求抛物线的方程。
Step 2 探究二次函数1. 让学生通过分析实际问题的图像特点和数学公式的关系,推导出二次函数的一般形式y=ax^2+bx+c。
2.利用计算器或数学软件,让学生绘制出抛物线的图像,观察二次函数的特点。
Step 3 二次函数的性质1.探究二次函数的开口方向,通过改变二次函数的参数a的值,观察二次函数的图像变化。
2.探究二次函数的最值,引出二次函数的顶点公式。
Step 4 应用二次函数解决实际问题通过给出一些具体的应用问题,让学生应用二次函数的知识解决问题。
示例问题:1.一辆汽车以匀加速直线运动的方式行驶,位移与时间的关系可以用二次函数表示,已知汽车在2秒时的位移是5米,在5秒时的位移是12米,求汽车的速度函数和位移函数。
2.一个学生站在距离地面20米的楼顶上,抛出一个物体,求物体离地面的最大距离和物体落地的时间。
Step 5 总结归纳通过讨论和总结归纳,让学生对二次函数的特点和性质有更清晰的认识。
四、教学方法1.观察法:通过观察实际问题和二次函数的图像,引导学生发现二次函数的特点和规律。
2.实验法:通过计算器或数学软件绘制二次函数的图像,进行实验观察。
3.归纳法:通过讨论和总结,归纳出二次函数的性质和解决问题的方法。
二次函数应用的教案
二次函数应用的教案教案标题:二次函数应用的教案教案目标:1. 理解二次函数的基本概念和特性;2. 掌握二次函数的图像、顶点、轴对称性等相关知识;3. 学会运用二次函数解决实际问题。
教案步骤:1. 引入二次函数的概念(10分钟)a. 提问引导学生思考:你们对二次函数有什么了解?b. 解释二次函数的定义和一般形式:y = ax^2 + bx + c,其中a、b、c为常数。
2. 讲解二次函数的图像和特性(15分钟)a. 展示二次函数的图像,并解释图像的特点。
b. 解释二次函数的顶点、轴对称性等概念,并通过图像进行说明。
3. 演示二次函数的应用(20分钟)a. 提供一些实际问题,如抛物线运动、最值问题等,让学生尝试用二次函数解决。
b. 引导学生分析问题,建立数学模型,并用二次函数解答。
4. 学生练习与巩固(15分钟)a. 给学生分发练习题,让他们在课堂上独立完成。
b. 随堂检查学生的练习,解答学生疑问。
5. 拓展应用与实践(10分钟)a. 鼓励学生在日常生活中寻找更多二次函数的应用场景,并分享给全班。
b. 提供一些拓展问题,让学生进行思考和探究。
6. 总结与反思(10分钟)a. 小结二次函数的基本概念和特性。
b. 让学生回顾本节课所学内容,并提出疑问或反思。
教案评估:1. 课堂参与度:观察学生在课堂上的积极参与程度。
2. 练习题表现:评估学生在练习题上的完成情况和准确性。
3. 拓展问题回答:评估学生对于拓展问题的回答和思考能力。
教案扩展:1. 可以引入二次函数的标准形式,让学生了解不同形式之间的转换关系。
2. 可以进一步讲解二次函数的根与因式分解的关系,帮助学生更好地理解二次函数的解法。
3. 可以引导学生进行二次函数应用的实践活动,如设计抛物线运动的实验等。
教案注意事项:1. 在讲解二次函数的图像时,使用具体的例子进行说明,以帮助学生更好地理解。
2. 在演示二次函数应用时,尽量选择与学生生活经验相关的问题,增加学习的实用性。
高中数学试讲10分钟经典教案
高中数学试讲10分钟经典教案《二次函数及其应用》- 高中数学试讲10分钟一、教学目标1.了解二次函数及其基本性质。
2.熟练掌握二次函数的函数表达式和图像特征。
3.掌握二次函数在生活中的应用。
二、教学重点1. 二次函数的函数表达式和图像特征。
2. 二次函数在生活中的应用。
三、教学难点1. 二次函数的图像解析。
2. 二次函数在生活中的应用。
四、教学内容1.导入- 老师通过视频或图片的形式,让学生对二次函数有一个直观的了解,这样可以激发学生的学习兴趣,从而更好的开展本次教学。
- 导入课题后,老师适当的启发学生,让学生自己思考什么是二次函数,解二次方程和不等式时,是否曾经嗅到过一丝思想的共性呢?当听到学生自问自答的答案时,老师要及时的予以肯定。
2.知识探讨(1) 什么是二次函数?- 将关于变量x的二次多项式f(x)=ax^2+bx+c表示成“y=ax^2+bx+c”,y表示因变量,x表示自变量,其函数图像经常被称为二次曲线,简单地称为“二次函数”。
(2) 二次函数的图像特征- 老师应该给学生展示一张二次函数的图像,让学生自己总结图像的几种特征,由此引出二次函数的图像特征:- 当二次函数中的“a”为正数时,二次函数是凸型的,开口朝上;反之,“a”为负数时,二次函数是凹型的,开口朝下。
- 当二次函数中的“a的绝对值”越小,二次函数的开口越宽,反之,当“a的绝对值”越大,二次函数的开口越窄。
- 当二次函数的首项系数增加时,“a”所扮演的作用变得越来越重要,二次函数的图像的变化越明显。
二次函数的图像上下平移,对“a”的影响翻倍;左右平移,对“a”的影响不变。
- 当二次函数的线对称轴与y轴平行时,线对称轴为x=-\frac{b}{2a},此时二次函数的顶点即为线对称轴的坐标“\left(-\frac{b}{2a},\frac{4ac-b^2}{4a}\right)”。
(3) 二次函数在生活中的应用- 老师可以列举几个二次函数在现实生活中的例子,如抛物线天线、桥梁、炮弹轨迹、电视塔天线、水火箭、音响扬声器等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
) m。
要根据条件建立二次函数的表达式,在求最大(或最小)值时,可以采取如下 的方法: (1)画出函数的图像,观察图像的最高(或最低)点,就可以得到函数的最大 (或最小)值。 (2)依照二次函数的性质,判断该二次函数的开口方向,进而确定它有最大值 还是最小值;再利用顶点坐标公式,直接计算出函数的最大(或最小)值。
二次函数的应用
一、教学目标
1、知识与技能: 通过本节学习,巩固二次函数 y=ax2+bx+c(a≠0)的图象与性质,理解顶
点与最值的关系,会求解实际问题中的最值问题。 2、过程与方法:
通过观察图象,理解顶点的特殊性,会把实际问题中的最值问题转化为二 次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与 特殊的关系,了解数形结合思想、函数思想和数学模型思想。 3、情感态度价值观:
回答下面的问题:
1.设矩形一边的长为 x m,试用 x 表示矩形的另一边的长。 2.设矩形的总面积为 y ,请写出用 x 表示 y 的函数表达式。 3.你能利用公式求出所得函数的图像的顶点坐标,并说出 y 的最大值吗? 4.你能画出这个函数的图像,并借助图像说出 y 的最大值吗? 学生思考,并小组讨论。
(二)讲解新课 1、在情境中发现问题
师:在我们的实际生活中你还遇到过哪些运用二次函数的实例?
生:老师,我见过好多。如周长固定时长方形的面积与它的长之间的关系:圆
的面积与它的直径之间的关系等。
师:好,看这样一个问题你能否解决:
活动 1:如图 34-10,张伯伯准备利用现有的一面墙和 40m长的篱笆,把墙外的 空地围成矩形养兔场。
外一种可以利用顶点坐标公式,直接计算最值。
师:这位同学回答的很好,看来同学们是都理解了,也知道如何求函数的最值。
总结:由此可以看出,在利用二次函数的图像和性质解决实际问题时,常常需
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
解:已知周长为 40m,一边长为 x m,看图知,另一边长为(
由面积公式得 yx=( ),y=( ) 。y 的最大值为( ) 。
画函数图像:
通过图像,我们知道 y 的最大值为( )。 师:通过上面这个例题,我们能总结出几种求 y 的最值得方法呢? 生:两种;一种是画函数图像,观察最高(低)点,可以得到函数的最值;另
由于本节课是应用问题,重在通过学习总结解决问题的方法,因而本节课以 “启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要 时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位, 达到“不但使学生学会,而且使学生会学”的目的。为了提高课堂效率,展示学生 的学习效果,适当地辅以电脑多媒体技术。
图2 (3)由图像可知:当 x=1 时,y 有最小值 ;当 x=0 或 x=2 时, 。 (4)当 x=1 时,C 点恰好在 AB 的中点上。 当 x=0 时,C 点恰好在 B 处。 当 x=2 时,C 点恰好在 A 处。 [教法]:在利用函数求极值问题,一定要考虑本题的实际意义,弄明白自变量 的取值范围。在画图像时,在自变量允许取得范围内画。 练习: 如图,正方形 ABCD 的边长为 4,P 是边 BC 上一点,QP⊥AP,并且交 DC 与 点 Q。 (1)Rt△ABP 与 Rt△PCQ 相似吗?为什么? (2)当点 P 在什么位置时,Rt△ADQ 的面积最小?最小面积是多少?
四、教学流程
(一)复习引入 (1)由二次函数 y= -x2 +20x 的解析式我们能够想到的图象特征和性质是…? (2)根据同学们描述信息,画出函数的示意图为:
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。