三年级奥数速算、巧算方法及习题(强烈推荐)

合集下载

三年级奥数加减法的速算与巧算.

三年级奥数加减法的速算与巧算.
如:1+9=10,3+7=10,2+8=10, 4+6=10,5+5=10。
又如:11+89=100,33+67=100, 22+78=100,44+56=100, 55+45=100, 在上面算式中,
1叫9的“补数”;89叫11的“补数”,11
凑整法 〔补数法〕
例1 计算: (1) 1+2+3+4+5+6+7+8+9+10
= ( 1+9)+ ( 2+8)+ ( 3+7)+ ( 4+6)+5+10 =10+10+10+10+10+5 =55
(2) 1+3+5+7+9+11+13+15+17+19 =(1+19)+(3+17)+(5+15)+(7+13)+(9+11) =20+20+20+20+20 =100
凑整法 〔补数法〕
如:43+(38+45)+(55+62+57) =43+38+45+55+62+57 =〔43+57〕+〔38+62〕 +〔45+55〕 =100+100+100 =300
去括号添括号法则
2.在加、减法混合运算中,添括号时:假设添加的括号前 面是“+”号,那么括号内的数的原运算符号不变;假设 添加的括号前面是“-”号,那么括号内的数的原运算符 号“+”变为“-”,“-”变为“+”。

三年级 奥数 小学奥数除法中的巧算(含答案)

三年级 奥数 小学奥数除法中的巧算(含答案)

除法中的巧算(一)学习方法指导我们利用“商不变的性质”进行除法中的巧算,因为“商不变性质”,是被除数、除数同时乘以或同时除以一个数(零除外),它们的商不变。

一般有这样的公式:()()a b a n b n ÷=⨯÷⨯或 ()()()=÷÷÷≠a n b n n 0如:()()123122322464÷=⨯÷⨯=÷=或 ()()12612262632÷=÷÷÷=÷=例1. 用简便方法计算下列各题。

(1)82525÷(2)47700900÷ 分析:(1)(2)可以利用“商不变的性质”去计算。

(1)82525÷ ()()=⨯÷⨯=÷=8254254330010033想办法使其中一个数扩大、或缩小后成为整十、整百、整千,如25扩大4倍得100。

(2)47700900÷()()=÷÷÷=÷=47700100900100477953看到被除数,与除数末尾都有00,这样让它们同时缩小100倍。

在除法运算中,还有两个数的和,(或差)除以一个数,可以用这个数分别去除这两个数(在都能整除的情况下),再求两个商的和或差。

一般公式:()a b c a c b c +÷=÷+÷()a b c a c b c -÷=÷-÷如:()126212262639+÷=÷+÷=+=()126212262633-÷=÷-÷=-=这个性质可以推广到多个数的和除以一个数的情况。

例2. 用简便方法计算。

(1)()2501655+÷(2)()7022134143--÷分析:这两题都可以运用以上性质去解答,就是“两个数的和(差)除以一个数”的除法运算性质。

三年级奥数1课题:速算与巧算

三年级奥数1课题:速算与巧算

课题:速算与巧算【知识讲解】运用“凑整”的方法,进行简便运算。

我们在计算20以内的进位加法时,运用的就是“凑整法”。

如:9+6=15,把6分成1和5,9加1得10,10加5得15.这种想法隐含着一个重要的方法——凑整。

应用“凑整”的方法可以使许多计算变得容易、简便。

【带符号搬家】例1、计算:710+270+190【分析】题中710+190=900,凑成整百数,所以先把“+190”搬家,搬到“+270”的前面,然后再把710+190的和算出来。

710+270+190=(710+190)+270=1170注意:几个数相加,我们可以先观察哪两个数相加的结果是整十或整百的数,就先把这两个数相加。

应用凑整发可以使许多计算变得容易、简便。

例2、计算:820-60+180【分析】题中820和180的和是整百数,可以先把“+180”搬到“-60”的前面,然后再把820+180的和算出来。

820-60+180=(820+180)-60=1000-60=940例3、计算:145+280+255-80【分析】题中145和255的和能凑成整百数,280减去80的差是整百数,所以先把“+255”搬到“280”的前面,再分别计算145与255的和、280与80的差。

145+280+255-80=(145+255)+(280-80)=400+200=600例4、计算:183-160+217+360搬家到“183”的后面,再把“-160”搬到“360”的后面,然后分别计算183+217,360-160.183-160+217+360=(183+217)+(360-160)=400+200=600注意:在给数搬家时,一定要注意数前面的符号要和数一起搬家,否则计算的结果就会改变。

例5、计算:1998+997+295+89【分析】题中1998、997、295和89是接近整千、整百、整十的数,可以先把这些加数分别看作:2000-2、1000-3、300-5、90-1,然后再算出(2000+1000+300+90)-(2+3+5+1)的结果。

三年级奥数速算巧算经典题目

三年级奥数速算巧算经典题目

三年级奥数速算巧算经典题目一、加法中的速算巧算1. 凑整法题目:计算199 + 298+397 + 496。

解析:把199看作200 1,298看作300 2,397看作400 3,496看作500 4。

原式=(200 1)+(300 2)+(400 3)+(500 4)去括号得:200 1+300 2 + 400 3+500 4重新组合:(200+300 + 400+500)-(1 + 2+3+4)先计算括号里的数,200+300+400 + 500 = 1400,1+2+3+4 = 10。

所以结果为1400 10 = 1390。

2. 带符号搬家题目:计算134 + 297 34。

解析:根据带符号搬家的原则,把+297和 34的位置交换。

原式=134 34+297先计算134 34 = 100,再计算100+297 = 397。

二、减法中的速算巧算1. 凑整法题目:计算472 97。

解析:把97看作100 3。

原式=472-(100 3)去括号得:472 100+3先计算472 100 = 372,再计算372+3 = 375。

2. 一个数连续减去几个数题目:计算568 123 77。

解析:根据一个数连续减去几个数等于这个数减去这几个数的和。

原式=568-(123 + 77)先计算123+77 = 200,再计算568 200 = 368。

三、乘法中的速算巧算1. 乘法分配律题目:计算25×(40 + 4)。

解析:根据乘法分配律a×(b + c)=a×b+a×c。

这里a = 25,b = 40,c = 4。

原式=25×40+25×425×40 = 1000,25×4 = 100。

所以结果为1000+100 = 1100。

2. 乘法结合律题目:计算25×125×4×8。

解析:根据乘法结合律(a×b)×(c×d)=(a×c)×(b×d)。

小学三年级(奥数)专项训练 加减法巧算

小学三年级(奥数)专项训练 加减法巧算

三年级专项训练加减法的巧算[知识概述]:1.巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看做所接近的数进行简算。

凑整之后,对于原数与整十、整百、整千……相差的数,要根据“多加要减去,少加要加上,多减要加上,少减要减去”的原则进行处理。

另外,可结合加法交换律、结合律及减法性质凑整,从而达到简算目的。

2. A-B-C=A-(B+C) A-(B-C)=A-B+C[典例精讲]例1:你有好办法迅速计算出结果吗?(1)502+799-298-97 (2)9999+999+99+9=500+2+800-1-300+2-100+3 =10000+1000+100+10-4=906 =11106变式练习1:(1)75+26+25;(2)72+67+28;(3)1272—998;(4)9997+2598+7401;(5)536+541+464+459;例2:计算下面各题。

(1)487+321+113+479 (2)723-251+177 =(487+113)+(321+479) =723+177)-250-1(3)872+284-272 (4)537-142-58=872-272+284 =537-(142+58)变式练习2:⑴ 464-350+136;⑵ 997+102+999+104+998;⑶ 967+385-167;⑷ 947-126-574;例3:计算下面各题。

(1)321+(279-155)(2)327-(54+72)☆(3)432-(154-68)=321+279-155 =327-72-54 =432+68-154变式练习3:(1)467+(233-550)(2)964-84-16;(3)563-(128+63)(4)8457+(900-457);☆(5)7923-(923-725);(6)832-(454+332)+654;☆ (7) 568-(128-332)-72;作业:家长签字:时间:月日A组基础训练1、计算下面各题。

三年级奥数巧算

三年级奥数巧算

三年级奥数巧算一、加法巧算。

1. 凑整法。

- 概念:把两个或多个数凑成整十、整百、整千等方便计算的数。

- 例:计算23 + 18+77。

- 观察发现23和77可以凑成100。

- 所以先算23+77 = 100,再算100+18 = 118。

- 练习:34+56 + 66。

2. 带符号搬家。

- 概念:在加法运算中,数字带着它前面的符号(+或 -)移动位置,结果不变。

- 例:计算12+35 - 2+15。

- 可以把 - 2和+35交换位置,变成12 - 2+35+15。

- 先算12 - 2 = 10,再算35+15 = 50,最后10+50 = 60。

- 练习:45+23 - 5+17。

二、减法巧算。

1. 凑整法。

- 例:计算178 - 56 - 44。

- 发现56和44可以凑成100。

- 根据减法的性质,一个数连续减去两个数等于这个数减去这两个数的和。

所以178-(56 + 44)=178 - 100 = 78。

- 练习:234 - 34 - 66。

2. 多减要加,少减再减。

- 多减要加:- 例:计算200 - 98。

- 把98看作100,200 - 100 = 100,但多减了2,所以结果要加2,即100+2 = 102。

- 练习:300 - 199。

- 少减再减:- 例:计算132 - 127。

- 把127看作122,132 - 122 = 10,但少减了5,所以结果要再减5,即10 - 5=5。

- 练习:156 - 148。

三、乘法巧算。

1. 乘法交换律和结合律。

- 乘法交换律:a×b=b×a。

- 乘法结合律:(a×b)×c = a×(b×c)。

- 例:计算25×3×4。

- 根据乘法交换律,把3和4交换位置,得到25×4×3。

- 因为25×4 = 100,再算100×3 = 300。

小学三年级奥数万以内加减法的速算与巧算

小学三年级奥数万以内加减法的速算与巧算

加、减法的速算与巧算知识要点:“凑整”先计算,认真审题,灵活分组。

两个数相加,若能恰好凑成整十、整百、整千、整万...则先计算。

如: 1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。

又如:12+88=100,35+65=100,21+79=100,44+56=100,55+45=100。

在上面算式中,1叫9的“补数”;79叫21的“补数”,44也叫56的“补数”,也就是说两个数互为“补数”。

对于不能直接凑整的数,可以把其中一个数拆分后再凑整。

找基准数几个相接近的数相加,可以用找基准数法,进行移多补少计算。

找基准数的方法:整十、整百、整千等等。

本节课需要掌握:移数凑整法,拆数凑整法,借数凑整法,分组凑整法。

例1:换位凑整,快速计算。

(提示:看个位凑整,巧用小括号)(1)34+53+66 (2)679+27+321 (3)63+294+37+54+9 =34+66+53 =679+321+27 =63+37+(294+6)+3+54 =100+53 =1000+27 =100+300+3+54=153 =1027 =457练习1:(1)491+273+209+27 (2)882+356+18+55+44 (3)49+38+51+62+162+38 =1000 =1355 =400拓展题:(提示:巧用小括号,移数凑整法)(1350+249+468)+(251+332+1650)=1350+1650+(249+251)+(468+332)=3000+500+800=4300(2549+385+739)+(61+15+451)=4200例2: 先观察,再速算。

199999+19999+1999+199+19法1:拆数凑整法=(200000-1)+(20000-1)+(2000-1)+(200-1)+(20-1)= 200000+20000+2000+200+20-(1+1+1+1+1)=222220-5=222215法2:借数凑整法=199999+19999+1999+199+15+1+1+1+1=200000+20000+2000+200+15=222215练习2:28+208+2008+20008+200008=28+200+8+2000+8+20000+8+200000+8=200000+20000+2000+200+20+(8+8+8+8+8)=222220+40=222260例3:先观察,再速算。

三年级 速算与巧算 (附带完整答案)

三年级 速算与巧算 (附带完整答案)

第二讲 速算与巧算(一)本讲主要介绍两种速算与巧算的方法: 1、理解并掌握分组凑整法; 2、理解并掌握加补凑整法.本章内容只涉及加减法中的速算与巧算,帮助学生在加减法运算中掌握基本的运算技巧,更加快速,更加准确地解决加减法运算中的 “难题”.计算: (1)6+6+6+6+6+4 (2)6+7+8+9+10+11+12+13+14分析:原式=5×6+4 分析:原式=(6+14)+(7+13)+(8+12)+(9+11)+10 =34 =90(3)1+2+3+4+5+4+3+2 (4)7+17+27+37=88分析:原式=24 分析:原式=(10-3)+(20-3)+(30-3)+(40-3) =88(5)58-26-28 (6)64-(25+14)分析:原式=58-28-26 分析:原式=64-14-25 =4 =25教学目标想挑 战吗 ?一位济贫劫富的大侠夜间潜入一吝啬的财主家,盗得一宝箱,非常高兴离去,但是当他要打开宝箱时却发愁了,宝箱是一个密码箱,要在6 4 8 9 7四个数之间填入“+”和“-”,使他们的结果等于4,这样宝箱才会自动打开。

哪位同学可以帮助这位大侠? 答案:6+4-8+9-7=4. 你还记得吗?专题精讲在这一讲中我们我们将会学习有关加减法的速算与巧算的方法.我们在进行加减法运算时,为了又快又准确,除了熟练地掌握计算法则以外,还需要掌握一些巧算方法.加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和(差),这样使我们在加减法运算中更加迅速,更加准确.在具体的凑数运算过程中,我们主要涉及到几种计算方法:(1)分组凑整法,(2)加补凑整法,(3)其他类型的巧算.我们在进行加法的巧算时,经常运用以下两个运算律:(1)加法交换律:两个数相加,交换加数的位置,他们的和不变.即a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.将此运算律推广,多个数相加,任意交换相加的次序,其和不变.(2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变.即a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).将此运算律推广,多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变.我们在进行减法运算时,经常运用以下性质:(3)在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.(4)在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c(5)在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”.如:a+b-c=a+(b-c)a-b+c=a-(b-c),a-b-c=a-(b+c)(一)分组凑整法【例1】(★★★奥数网题库)计算:(1)117+229+333+471+528+622(2)168+253+532(3)(1350+249+468)+(251+332+1650)(4)358+127+142+73分析:在这个例题中,主要让学生掌握加法分组凑整的方法.具体分析如下:(1)原式=(117+333)+(229+471)+(528+622)=450+700+1150=(450+1150)+700=1600+700=2300(2)原式=(168+532)+253=700+253=953(3)原式=1350+249+468+251+332+1650=(1350+1650)+(249+251)+(468+332)=3000+500+800=4300(4)原式=(358+142)+(127+73)=500+200=700【例2】(★★★奥数网题库)计算:(1)265-68-132(2)756-248-352(3)268-56-82-44-18(4)894-89-111-95-105-94分析:在这个例题中,主要让学生掌握减法分组凑整的方法.一个数连续减去两个数,可以先把后两个数相加凑整,再用这个数减去后两个数的和.具体分析如下:(1)原式=265-(68+132)=265-200=65(2)原式=756-(248+352)=756-600=156(3)原式=268-(56+44)-(82+18)=268-100-100=68(4)原式=(894-94)-(89+111)-(95+105)=800-200-200=400【例3】(★★★奥数网题库)计算:(1)98-53+102+63(2)163-154+245+137+55-146(3)1348-234-76+2234-48-24(4)1847-1936+536-154-46分析:在这个例题中,主要让学生掌握加减法混合运算分组凑整的方法,在凑整的过程中,要注意运算符号的变化或者带着符号搬家.具体分析如下:(1)原式=(98+102)+(63-53)=200+10=210(2)原式=(163+137)-(154+146)+(245+55)=300-300+300=300(3)原式=(1348-48)+(2234-234)-(76+24)=1300+2000-100=3200(4)原式=1847-(1936-536)-(154+46)=1847-1400-200=247[巩固] :(1)968-561-168-139,(2)456-(256+165),(3)582+(436-482),(4)264+451-216+136-184+149分析:(1)原式=(968-168)-(561+139)=800-700=100(2)原式=456-256-165=200-165=35(3)原式=582-482+436=100+436=536(4)原式=(264+136)+(451+149)-(216+184)=400+600-400=600[拓展1](我爱数学少年数学夏令营)计算:1997+1-2-3+4+5-6-7+8+9-10-11+……+1993-1994-1995+1996 分析:原式=1997+(1-2-3+4)+(5-6-7+8)+……+(1993-1994-1995+1996)=1997+0+0+……+0=1997[拓展2](2005全国小学数学奥林匹克)计算:2005+2004-2003-2002+2001+2000-1999-1998+1997+1996-……-7-6+5+4-3-2+1分析:将后四项每四项分为一组,每组的计算结果都是0,后2004项的计算结果都是0,剩下第一项,结果是2005.[拓展3](北大数学邀请赛)计算:1989+1988+1987-1986-1985-1984+1983+1982+1981-1980-1979-1978+……+9+8+7-6-5-4+3+2+1分析:从1989开始,每6个数一组,1989+1988+1987-1986-1985-1984=9,以后每一组6个数加、减后都等于9.1989÷6=331……3.最后剩下三个数3,2,1,3+2+1=6.因此,原式=331×9+6=2985.[拓展4] 计算 6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+6839-(4843-2847)分析:原式=(6472+5318+1)+(9354+6836+3)-(4480-2480-4)-(3327-1327-4)-(7362-5362-4)-(4847-2847-4)=11790+16190-2000-2000-2000-2000+20=27980-8000+20=20000(二)加补凑整法【例4】(★★★奥数网题库)计算:(1)165+199(2)198+96+297+10(3)298+396+495+691+799+21(4)195+196+197+198+199+15分析:在这个例题中,主要让学生掌握加法运算加补凑整的方法.具体分析如下:(1)(法1)原式=165+200-1 (法2)原式=164+1+199=365-1 =164+200=364 =364(2)(法1)原式=(198+2)+(96+4)+(297+3)+1=200+100+300+1=601(法2)原式=(200-2)+(100-4)+(300-3)+10=200+100+300-2-4-3+10=601(3)(法1)原式=298+396+495+691+799+2+4+5+9+1=(298+2)+(396+4)+(495+5)+(691+9)+(799+1)=300+400+500+700+800=2700(法2)原式=(300-3)+(400-4)+(500-5)+(700-9)+(800-1)+21=300+400+500+700+800-3-4-5-9-1+21=2700(4)(法1)原式=(195+5)+(196+4)+(197+3)+(198+2)+(199+1)=200+200+200+200+200=1000(法2)原式=(200-5)+(200-4)+(200-3)+(200-2)+(200-1)+15=200+200+200+200+200=1000[前铺] 计算:(1)65+99 (2) 36+102 (3) 258-98 (4) 351-103分析:(1)原式=65+100-1=165-1=164;(2)原式=36+100+2=136+2=138;(3)原式=258-100+2=158+2=160;(4)原式=351-100-3=251-3=248;通过以上题目的运算,我们发现一个快捷运算的规律:在(1)中,在加100时多加了1,所以要减去,这样保证结果不变,所以“多加的要减去”;(2)中,少加了2,在后面要加上,所以“少加的要加上”;(3)中,多减了2,所以要加上,所以“多减的要加上”;(4)中,少减了3,后面要再减去3,所以“少减的要再减”.这几种基本的加补凑整计算的方法,老师要引导学生理解,并加深巩固.【例5】(★★★奥数网题库)计算:(1)895-504-97(2)98-96-97-105+102+101(3)399+403+297-501(4)196+198-102-97分析:在这个例题中,主要让学生掌握加减法混合运算中加补凑整的方法.具体分析如下:(1)原式=(900-5)-(500+4)-(100-3)=900-500-100-5-4+3=294(2)原式=(100-2)-(100-4)-(100-3)-(100+5)+(100+2)+(100+1)=100-100-100-100+100+100-2+4+3-5+2+1=3(3)原式=(400-1)+(400+3)+(300-3)-(500+1)=400-1+400+3+300-3-500-1=598(4)原式=(200-4)+(200-2)-(100+2)-(100-3)=200+200-100-100-4-2-2+3=195[巩固] :(1)697+811,(2)709-698,(3)198-205-308+509,(4)501+502+503-398-397-396.分析:(1)原式=(700-3)+(800+11)=700+800-3+11=1508(2)原式=(700+9)-(700-2)=11(3)原式=(200-2)-(200+5)-(300+8)+(500+9)=200-200-300+500-2-5-8+9=194(4)原式=(500+1)+(500+2)+(500+3)-(400-2)-(400-3)-(400-4)=315. [拓展1] 计算:195+196+197+198+199分析:原式=(200-5)+(200-4)+(200-3)+(200-2)+(200-1)=200×5-(5+4+3+2+1)=1000-15=985[拓展2] (07年7月仁华入学测试题)83+86+95-85+86-94+95+94+86+92+87+80+93+100-89+83+96+98分析:原式=83+86+95-83-2+86-94+95+94+86+92+87+80+93+100-87-2+83+96+98 =90×12-4+5-2-4+5-4+2-10+3+10-2-7+6+8=1080+6=1086[拓展3](2006香港圣公会小学数学奥林匹克)89+899+8999+89999+899999分析:原式=(90-1)+(900-1)+(9000-1)+(90000-1)+(900000-1)=90+900+9000+90000+900000-5=999990-5=999985[拓展4](华罗庚金杯少年数学邀请赛)计算 11+192+1993+19994+199995所得和数的数字之和是多少?分析:原式=(20-9)+(200-8)+(2000-7)+(20000-6)+(200000-5)=(20+200+2000+20000+200000)-(9+8+7+6+5)=222220-35=222185故所得数字之和等于2+2+2+1+8+5=20.(三)其他常见类型巧算【例6】(★★★仁华试题)计算100-101+102-103+104-105+106-107+108分析:原式=100+(102-101)+(104-103)+(106-105)+(108-107)=100+1+1+1+1=104【例7】(★★★仁华试题)计算:123+234+345-456+567-678+789分析:方法1:原式=123+234+345+(567-456)+(789-678)=123+234+345+111+111=234+(123+567)=234+690=924方法2:原式=123+(123+111)+(123+222)-(123+333)+(123+444)-(123+555)+(123+666)=123×3+(111+222-333+444-555+666)=369+555=924【例8】(★★★仁华试题)计算1234+3142+4321+2413分析:原式=(1000+200+30+4)+(3000+100+40+2)+(4000+300+20+1)+(2000+400+10+3)=(1000+2000+3000+4000)+(100+200+300+400)+(10+20+30+40)+(1+2+3+4)=10000+1000+100+10=11110【例9】(★★★★仁华试题)计算19971997+9971997+971997+71997+1997+997+97+7分析:原式=(19972000-3)+(9972000-3)+(972000-3)+(72000-3)+(2000-3)+(1000-3)+(100-3)+(10-3)=19972000+9972000+972000+72000+2000+1000+100+10-8×3=30991110-24=30991086【例10】(★★★★★仁华试题)在右图的36个格子中各有一个数,最上面一横行和最左面一竖列中的数已经填好,其余每个格子中的数等于每个格子同一横行最左面数与同一竖列最上面数之和(例如:a=14+17=31),问这36个数的总和是多少?分析:第二横行的空格应该填的数字分别是11+12,13+12,15+12,17+12,19+12,同理,下面每一横行都是用竖列的一个数与横行的每一个数相加.我们最后要求这36个格子中的所有数字之和,第一横行的和为:10+11+13+15+17+19=(10+15)+(11+19)+(13+17)=85,第二横行的和为:12+11+12+13+12+15+12+17+12+19+12=12×6+(11+13+15+17+19)=147,同理,第三横行的和为:14+11+14+13+14+15+14+17+14+19+14=14×6+(11+13+15+17+19)=159,第四横行的和为16×6+75=171,第五横行的和为:18×6+75=183,第六横行的和为:20×6+75=195.所以36个格子的和为85+147+159+171+183+195=940.方法2:法1比较笨拙,没有体现该题解法的精髓,在我们解这道题之前,我们看看下面的例子:2 3 4 5468上表空格处的数等于每个格子同一横行最左面数与同一竖列最上面数之和,求这16个数之和。

三年级奥数专题讲义:速算与巧算(加减混合式的巧算)

三年级奥数专题讲义:速算与巧算(加减混合式的巧算)

三年级奥数专题讲义:速算与巧算(加减混合式的巧算)1.去括号和添括号的法则在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a+(b+c+d)=a+b+c+da-(b+a+d)=a-b-c-da-(b-c)=a-b+c例6①100+(10+20+30)② 100-(10+20+3O)③ 100-(30-10)解:①式=100+10+20+30=160②式=100-10-20-30=40③式=100-30+10=80例7 计算下面各题:① 100+10+20+30 ② 100-10-20-30 ③ 100-30+10解:①式=100+(10+20+30)=100+60=160②式=100-(10+20+30)=100-60=40③式=100-(30-10)=100-20=802.带符号“搬家”例8计算 325+46-125+54解:原式=325-125+46+54=(325-125)+(46+54)=200+100=300注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面虽然没有符号,应看作是+325.3.两个数相同而符号相反的数可以直接“抵消”掉例9 计算9+2-9+3解:原式=9-9+2+3=54.找“基准数”法几个比较接近于某一整数的数相加时,选这个整数为“基准数”.例10计算 78+76+83+82+77+80+79+85=640解:原式=80×8-2-4+3+2-3+0-1+5习题一一、直接写出计算结果:① 1000-547 ② 100000-85426③ 11111111110000000000-1111111111 ④ 78053000000-78053二、用简便方法求和:①536+(541+464)+459 ② 588+264+148③ 8996+3458+7546 ④567+558+562+555+563三、用简便方法求差:① 1870-280-520 ② 4995-(995-480)③ 4250-294+94 ④ 1272-995四、用简便方法计算下列各题:① 478-128+122-72 ② 464-545+99+345 ③ 537-(543-163)-57 ④ 947+(372-447)-572五、巧算下列各题:① 996+599-402 ② 7443+2485+567+245③ 2000-1347-253+1593 ④3675-(11+13+15+17+19)。

三年级奥数 第2讲 速算与巧算(例题)

三年级奥数 第2讲 速算与巧算(例题)

知识导航计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

例题指导一、乘法中的巧算:1. 几种特殊因数的巧算。

一个数×10,数后添0;一个数×100,数后添00;一个数×1000,数后添000;以此类推。

例1: ①24×10 ②52×100 ③99×1000一个数×9,数后添0,再减此数;一个数×99,数后添00,再减此数;一个数×999,数后添000,再减此数;以此类推。

例2:①12×9 ②12×99③12×999一个偶数乘以5,可以除以2添上0。

例3:①6×5②16×5 ③116×5一个数乘以11,“两头一拉,中间相加”。

例4:①22×11 ②123×11 ③2222×11一个偶数乘以15,“加半添0”.例5:①24×15 ②142×152.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=25×4= 125×8=1例6:①123×4×25 ②125×2×8×25×5×43.分解因数,凑整先乘。

例7: ①24×25 ②56×125 ③125×5×32×54.应用乘法分配律。

例8:①175×34+175×66 ②123×101 ③123×99二、除法及乘除混合运算中的巧算1.在除法中,利用商不变的性质巧算商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为整十、整百、整千的数,再除。

三年级 速算与巧算 (附带完整答案)

三年级 速算与巧算 (附带完整答案)

第二讲 速算与巧算(一)本讲主要介绍两种速算与巧算的方法: 1、理解并掌握分组凑整法; 2、理解并掌握加补凑整法.本章内容只涉及加减法中的速算与巧算,帮助学生在加减法运算中掌握基本的运算技巧,更加快速,更加准确地解决加减法运算中的 “难题”.计算: (1)6+6+6+6+6+4 (2)6+7+8+9+10+11+12+13+14分析:原式=5×6+4 分析:原式=(6+14)+(7+13)+(8+12)+(9+11)+10 =34 =90(3)1+2+3+4+5+4+3+2 (4)7+17+27+37=88分析:原式=24 分析:原式=(10-3)+(20-3)+(30-3)+(40-3) =88(5)58-26-28 (6)64-(25+14)分析:原式=58-28-26 分析:原式=64-14-25 =4 =25教学目标想挑 战吗 ?一位济贫劫富的大侠夜间潜入一吝啬的财主家,盗得一宝箱,非常高兴离去,但是当他要打开宝箱时却发愁了,宝箱是一个密码箱,要在6 4 8 9 7四个数之间填入“+”和“-”,使他们的结果等于4,这样宝箱才会自动打开。

哪位同学可以帮助这位大侠? 答案:6+4-8+9-7=4. 你还记得吗?专题精讲在这一讲中我们我们将会学习有关加减法的速算与巧算的方法.我们在进行加减法运算时,为了又快又准确,除了熟练地掌握计算法则以外,还需要掌握一些巧算方法.加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和(差),这样使我们在加减法运算中更加迅速,更加准确.在具体的凑数运算过程中,我们主要涉及到几种计算方法:(1)分组凑整法,(2)加补凑整法,(3)其他类型的巧算.我们在进行加法的巧算时,经常运用以下两个运算律:(1)加法交换律:两个数相加,交换加数的位置,他们的和不变.即a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.将此运算律推广,多个数相加,任意交换相加的次序,其和不变.(2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变.即a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).将此运算律推广,多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变.我们在进行减法运算时,经常运用以下性质:(3)在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.(4)在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c(5)在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”.如:a+b-c=a+(b-c)a-b+c=a-(b-c),a-b-c=a-(b+c)(一)分组凑整法【例1】(★★★奥数网题库)计算:(1)117+229+333+471+528+622(2)168+253+532(3)(1350+249+468)+(251+332+1650)(4)358+127+142+73分析:在这个例题中,主要让学生掌握加法分组凑整的方法.具体分析如下:(1)原式=(117+333)+(229+471)+(528+622)=450+700+1150=(450+1150)+700=1600+700=2300(2)原式=(168+532)+253=700+253=953(3)原式=1350+249+468+251+332+1650=(1350+1650)+(249+251)+(468+332)=3000+500+800=4300(4)原式=(358+142)+(127+73)=500+200=700【例2】(★★★奥数网题库)计算:(1)265-68-132(2)756-248-352(3)268-56-82-44-18(4)894-89-111-95-105-94分析:在这个例题中,主要让学生掌握减法分组凑整的方法.一个数连续减去两个数,可以先把后两个数相加凑整,再用这个数减去后两个数的和.具体分析如下:(1)原式=265-(68+132)=265-200=65(2)原式=756-(248+352)=756-600=156(3)原式=268-(56+44)-(82+18)=268-100-100=68(4)原式=(894-94)-(89+111)-(95+105)=800-200-200=400【例3】(★★★奥数网题库)计算:(1)98-53+102+63(2)163-154+245+137+55-146(3)1348-234-76+2234-48-24(4)1847-1936+536-154-46分析:在这个例题中,主要让学生掌握加减法混合运算分组凑整的方法,在凑整的过程中,要注意运算符号的变化或者带着符号搬家.具体分析如下:(1)原式=(98+102)+(63-53)=200+10=210(2)原式=(163+137)-(154+146)+(245+55)=300-300+300=300(3)原式=(1348-48)+(2234-234)-(76+24)=1300+2000-100=3200(4)原式=1847-(1936-536)-(154+46)=1847-1400-200=247[巩固] :(1)968-561-168-139,(2)456-(256+165),(3)582+(436-482),(4)264+451-216+136-184+149分析:(1)原式=(968-168)-(561+139)=800-700=100(2)原式=456-256-165=200-165=35(3)原式=582-482+436=100+436=536(4)原式=(264+136)+(451+149)-(216+184)=400+600-400=600[拓展1](我爱数学少年数学夏令营)计算:1997+1-2-3+4+5-6-7+8+9-10-11+……+1993-1994-1995+1996 分析:原式=1997+(1-2-3+4)+(5-6-7+8)+……+(1993-1994-1995+1996)=1997+0+0+……+0=1997[拓展2](2005全国小学数学奥林匹克)计算:2005+2004-2003-2002+2001+2000-1999-1998+1997+1996-……-7-6+5+4-3-2+1分析:将后四项每四项分为一组,每组的计算结果都是0,后2004项的计算结果都是0,剩下第一项,结果是2005.[拓展3](北大数学邀请赛)计算:1989+1988+1987-1986-1985-1984+1983+1982+1981-1980-1979-1978+……+9+8+7-6-5-4+3+2+1分析:从1989开始,每6个数一组,1989+1988+1987-1986-1985-1984=9,以后每一组6个数加、减后都等于9.1989÷6=331……3.最后剩下三个数3,2,1,3+2+1=6.因此,原式=331×9+6=2985.[拓展4] 计算 6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+6839-(4843-2847)分析:原式=(6472+5318+1)+(9354+6836+3)-(4480-2480-4)-(3327-1327-4)-(7362-5362-4)-(4847-2847-4)=11790+16190-2000-2000-2000-2000+20=27980-8000+20=20000(二)加补凑整法【例4】(★★★奥数网题库)计算:(1)165+199(2)198+96+297+10(3)298+396+495+691+799+21(4)195+196+197+198+199+15分析:在这个例题中,主要让学生掌握加法运算加补凑整的方法.具体分析如下:(1)(法1)原式=165+200-1 (法2)原式=164+1+199=365-1 =164+200=364 =364(2)(法1)原式=(198+2)+(96+4)+(297+3)+1=200+100+300+1=601(法2)原式=(200-2)+(100-4)+(300-3)+10=200+100+300-2-4-3+10=601(3)(法1)原式=298+396+495+691+799+2+4+5+9+1=(298+2)+(396+4)+(495+5)+(691+9)+(799+1)=300+400+500+700+800=2700(法2)原式=(300-3)+(400-4)+(500-5)+(700-9)+(800-1)+21=300+400+500+700+800-3-4-5-9-1+21=2700(4)(法1)原式=(195+5)+(196+4)+(197+3)+(198+2)+(199+1)=200+200+200+200+200=1000(法2)原式=(200-5)+(200-4)+(200-3)+(200-2)+(200-1)+15=200+200+200+200+200=1000[前铺] 计算:(1)65+99 (2) 36+102 (3) 258-98 (4) 351-103分析:(1)原式=65+100-1=165-1=164;(2)原式=36+100+2=136+2=138;(3)原式=258-100+2=158+2=160;(4)原式=351-100-3=251-3=248;通过以上题目的运算,我们发现一个快捷运算的规律:在(1)中,在加100时多加了1,所以要减去,这样保证结果不变,所以“多加的要减去”;(2)中,少加了2,在后面要加上,所以“少加的要加上”;(3)中,多减了2,所以要加上,所以“多减的要加上”;(4)中,少减了3,后面要再减去3,所以“少减的要再减”.这几种基本的加补凑整计算的方法,老师要引导学生理解,并加深巩固.【例5】(★★★奥数网题库)计算:(1)895-504-97(2)98-96-97-105+102+101(3)399+403+297-501(4)196+198-102-97分析:在这个例题中,主要让学生掌握加减法混合运算中加补凑整的方法.具体分析如下:(1)原式=(900-5)-(500+4)-(100-3)=900-500-100-5-4+3=294(2)原式=(100-2)-(100-4)-(100-3)-(100+5)+(100+2)+(100+1)=100-100-100-100+100+100-2+4+3-5+2+1=3(3)原式=(400-1)+(400+3)+(300-3)-(500+1)=400-1+400+3+300-3-500-1=598(4)原式=(200-4)+(200-2)-(100+2)-(100-3)=200+200-100-100-4-2-2+3=195[巩固] :(1)697+811,(2)709-698,(3)198-205-308+509,(4)501+502+503-398-397-396.分析:(1)原式=(700-3)+(800+11)=700+800-3+11=1508(2)原式=(700+9)-(700-2)=11(3)原式=(200-2)-(200+5)-(300+8)+(500+9)=200-200-300+500-2-5-8+9=194(4)原式=(500+1)+(500+2)+(500+3)-(400-2)-(400-3)-(400-4)=315. [拓展1] 计算:195+196+197+198+199分析:原式=(200-5)+(200-4)+(200-3)+(200-2)+(200-1)=200×5-(5+4+3+2+1)=1000-15=985[拓展2] (07年7月仁华入学测试题)83+86+95-85+86-94+95+94+86+92+87+80+93+100-89+83+96+98分析:原式=83+86+95-83-2+86-94+95+94+86+92+87+80+93+100-87-2+83+96+98 =90×12-4+5-2-4+5-4+2-10+3+10-2-7+6+8=1080+6=1086[拓展3](2006香港圣公会小学数学奥林匹克)89+899+8999+89999+899999分析:原式=(90-1)+(900-1)+(9000-1)+(90000-1)+(900000-1)=90+900+9000+90000+900000-5=999990-5=999985[拓展4](华罗庚金杯少年数学邀请赛)计算 11+192+1993+19994+199995所得和数的数字之和是多少?分析:原式=(20-9)+(200-8)+(2000-7)+(20000-6)+(200000-5)=(20+200+2000+20000+200000)-(9+8+7+6+5)=222220-35=222185故所得数字之和等于2+2+2+1+8+5=20.(三)其他常见类型巧算【例6】(★★★仁华试题)计算100-101+102-103+104-105+106-107+108分析:原式=100+(102-101)+(104-103)+(106-105)+(108-107)=100+1+1+1+1=104【例7】(★★★仁华试题)计算:123+234+345-456+567-678+789分析:方法1:原式=123+234+345+(567-456)+(789-678)=123+234+345+111+111=234+(123+567)=234+690=924方法2:原式=123+(123+111)+(123+222)-(123+333)+(123+444)-(123+555)+(123+666)=123×3+(111+222-333+444-555+666)=369+555=924【例8】(★★★仁华试题)计算1234+3142+4321+2413分析:原式=(1000+200+30+4)+(3000+100+40+2)+(4000+300+20+1)+(2000+400+10+3)=(1000+2000+3000+4000)+(100+200+300+400)+(10+20+30+40)+(1+2+3+4)=10000+1000+100+10=11110【例9】(★★★★仁华试题)计算19971997+9971997+971997+71997+1997+997+97+7分析:原式=(19972000-3)+(9972000-3)+(972000-3)+(72000-3)+(2000-3)+(1000-3)+(100-3)+(10-3)=19972000+9972000+972000+72000+2000+1000+100+10-8×3=30991110-24=30991086【例10】(★★★★★仁华试题)在右图的36个格子中各有一个数,最上面一横行和最左面一竖列中的数已经填好,其余每个格子中的数等于每个格子同一横行最左面数与同一竖列最上面数之和(例如:a=14+17=31),问这36个数的总和是多少?分析:第二横行的空格应该填的数字分别是11+12,13+12,15+12,17+12,19+12,同理,下面每一横行都是用竖列的一个数与横行的每一个数相加.我们最后要求这36个格子中的所有数字之和,第一横行的和为:10+11+13+15+17+19=(10+15)+(11+19)+(13+17)=85,第二横行的和为:12+11+12+13+12+15+12+17+12+19+12=12×6+(11+13+15+17+19)=147,同理,第三横行的和为:14+11+14+13+14+15+14+17+14+19+14=14×6+(11+13+15+17+19)=159,第四横行的和为16×6+75=171,第五横行的和为:18×6+75=183,第六横行的和为:20×6+75=195.所以36个格子的和为85+147+159+171+183+195=940.方法2:法1比较笨拙,没有体现该题解法的精髓,在我们解这道题之前,我们看看下面的例子:2 3 4 5468上表空格处的数等于每个格子同一横行最左面数与同一竖列最上面数之和,求这16个数之和。

小学三年级奥数 第二讲 速算与巧算(一)(学生版)

小学三年级奥数  第二讲  速算与巧算(一)(学生版)

第二讲速算与巧算(一)学习内容:加减法的巧算与速算学习目标:(1)学会“化零为整”的思想(2)灵活运用简便方法,提高做作业的计算速度以及准确率速算与巧算是在运算过程中,根据数的特点与数之间的特殊关系,恰当、准确、灵活的运用定律、性质及和、差、积、商的变化规律,进行一种简便、迅速的计算。

一、凑十法同学们已经知道,下面的五组成对的数相加之和都等于10:1+9=10 2+8=10 3+7=10 4+6=10 5+5=10巧用这些结果,可以使计算又快又准。

例1 计算:1+2+3+4+5+6+7+8+9+10这种逐步相加的方法,好处是可以得到每一步的结果,但缺点就是麻烦、容易出错;而且一步出错,以后步步错。

若是利用凑十法,就能克服这种缺点。

练一练:8+5+6+7+3+4+2二、凑整法同学还知道,有些书相加之和是整十、整百的数,如:1+19=20 11+9=20 2+18=20 12+18=30 12+28=40 13+37=50 14+46=60 15+55=70 16+64=80 13+73=90又如:15+85=100 14+86=100 25+75=100 24+76=100 35+65=100 34+66=100 45+55=100 44+56=100 等等巧用这些结果,可以使那些较大的数相加又快又准、像10、20、30、40、50、60、70、80、90、100等等这些整十、整百的数就是凑整的目标。

例2 计算 1+3+5+7+9+11+13+15+17+19练一练:计算21+22+23+24+25+26+27+28+29的和等于多少?例3 计算 2+4+6+8+10+12+14+16+18+20练一练:计算22+24+26+28+30+32+34+16+18+20例4 计算 2+13+25+44+18+37+56+75练一练:计算17+26+82+59+13+24+18+21三、用已知求未知利用已经获得较简单的知识来解决面临的更复杂的难题这是人们认识事物的一般过程,凑十法、凑整法的实质就是这个道理,可见把这种认识规律用于计算方面,可使计算更快更准。

三年级奥数--速算与巧算

三年级奥数--速算与巧算

速算与巧算一、基本概念与原理:1.补数:如果两个数相加,和为10、100、1000、10000等,我们就称这两个数互补,其中的一个为另一个的补数,比如:2+8=10, 我们称2是8的补数,8也是2的补数。

2.如何寻找补数:前位凑九,末(个)位凑十。

比如:找67的补数,末位为:10-7=3,十位为:9-6=3,所以67的补数是33。

3.加法交换律、结合律:加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)3、去括号法则:括号前为“+”,去括号后,原括号内符号不变;括号前为“-”,去括号后,原括号内符号相反。

二、加法运算技巧:1.直接寻找补数:仔细观察题目中的每个数,寻找存在“互补”关系的两个数,利用加法交换律、结合律进行计算。

例:2+7+8=2+8+7=(2+8)+7=17练习:15+73+8572+67+28116+625+84125+428+875+5722.将一个数“拆”成几个数之和,制造补数:在大多数加法计算中,我们并不能像前面那样轻松地直接寻找到存在“互补”关系的两个数。

这个时候,我们可以将其中的一个加数“拆开”,把它变成几个数之和,再用拆开后产生的这些数和原题中其他加数凑成“补数”。

例:4+9+7=9+7+4=9+7+(1+3)=9+1+7+3=(9+1)+(7+3)=20练习:75+35+9075+40+9019+199+1999三、减法运算技巧:1.带符号“搬家”。

例:325+46-125+54=325-125+46+54=200+100=300练习:558+75-158+332.把几个互为“补数”的减数先加起来,再从被减数中减去。

例:25-2-9-8-1=25-(2+9+8+1)=25-(2+8+9+1)=25-20=5练习:300-73-273.将一个减数“拆开”,“拆开”后的数之一应与被减数有相同的“尾数”。

例:75-49=75-(25+24)=75-25-24=50-24=26练习:159-88473-125四、加减法混合运算时的一些特殊技巧:1.在草纸上将带有“+”号的和带有“-”号的分别列成一列,然后将不同列中“末位”相同的数优先运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三年级奥数速算、巧算方法及习题
例1、在合适的地方填上+、-、或×,使等式成立。

(1)1 2 3 4 5=1 (2) 1 2 3 4 5=0 练习1
在合适的地方填上+、-、或×,使等式成立。

(1) 3 3 3 3=3 (2) 3 3 3 3=9
例2、下面两道算式需要填四个运算符号,每个符号只用一次,该怎样填呢?
(1) 9 3 7=20 (2)14 2 5=12
练习2、下面算式等号两边分别用什么运算符号,两边才能相等。

(1)2 5 6=13 (2)5 13=9 2 例3在□里填上合适的数字。

练习3、⑴在□里填上合适的数字。

例4.在□里填上合适的数字。

4
- 4
4 7 1
+ 3
6
4
8 0 3
4 +
5 9 5
3 - 2
7 5
6
8
9 -
1
练习4、填一填。

课后练习
1、在相同的图形里填上相同的整十数,使等式成立。

×3=1 ×6=2 ×6=4
2、在下面的方格里填上合适的数字,使它横看成为两道算式,竖看成为五个成语。

3、把1~9这9个数字分别填入下面的○中,正好组成一道算式。

4、把494、49
5、49
6、49
7、49
8、49
9、501、502、503、504、505、506这十二个数分别填入下面的方格中,使等式成立。

(每个数只能用一次)
3 5
4
7
6 8
4
□÷□×□ + □=□
(□+□-□)×□=□
上 下
面 方
生 死
花 门 拿 稳
2 7
× 9
3
1 8
×
C D
4 A B 6 A=( ) B=( ) C=( ) D=( )
6
5

3
1
4
6

=

= =
+ = =


=

仔细观察这些数!
5、在同样的图形中填入同样的数字。

6、在数字之间填上合适的运算符号或括号,使等式成立。

(1)1 2 3 4=1 (2)1 1 1 1=1 (3)5 5 5 5=15 (4)5 5 5 5=25
(5)1 2 3 4 5 6 =12
7、算式8×5-42÷7+25,计算时( )可以同时计算。

A .乘法和除法 B.减法和加法
8、在下面的五个“8”之间已经填上适当的运算符号或括号,请你添上最后的一个运算符号或括号,使下面的各算式成立。

(1)8+8 8+8+8=24 (2)8+8+8÷8×8=24 (3)8×8÷8+8=24 (4)8 8+8+8+8=24
9、在下面各式添上合适的运算符号和括号,使各算式成立。

(1)2 2 2 2 2=0 (4)2 2 2 2 2=5 (2)2 2 2 2 2=6
(5) 2 2 2 2 2=9
(3)2 2 2 2 2=7 (6)2 2 2 2 2=8
8
8


4 9 5
找准入手点!
基础训练;
1.用竖式计算
860÷5= 920÷9= 484÷8= 6.4-5.8=
45×14= 68×86= 70×97= 7.5+2.6=
2、列式计算。

(1)14与72的积,减去900除以3所得的商,差是多少?
(2)甲数是34507,比乙数少10895,乙数是多少?
(3)900减去86的75倍,再加上590,和是多少?
3.解决问题:
(1)我校从8:00上早操到11:50放学,下午从15:00开始上课到17:3 0放学,这一天在校时间是多少小时?
(2)果园工人给果树剪枝,每人每天可以剪8棵,照这样计算,7个人3天可以剪多少棵?
(3)气象小组测得某一周中每天最高气温的摄氏度分别是:30、31、33、32、29、32、30。

这一周的平均最高气温是多少摄氏度?。

相关文档
最新文档