人教版 高中数学选修2-3 检测及作业课时作业 4排列的综合应用(习题课)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学精品资料

课时作业4 排列的综合应用(习题课)

|基础巩固|(25分钟,60分)

一、选择题(每小题5分,共25分)

1.6名同学排成一排,其中甲、乙必须排在一起的不同排法共有()

A.720种B.360种

C.240种D.120种

解析:将甲、乙两人视为1人与其余4人排列,有A55种排列方法,甲、乙两人可互换位置,所以总的排法有A22·A55=240(种).答案:C

2.某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廓、大厅的地面以及楼的外墙,现有编号为1~6的六种不同花色的装饰石材可选择,其中1号石材有微量的放射性,不可用于办公室内,则不同的装饰效果种数为()

A.65 B.50

C.350 D.300

解析:办公室可选用的花色有A15种,其余三个地方的装饰花色有A35种,所以不同的装饰效果种数为A15·A35=300(种),故选D.

答案:D

3.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()

A.192种B.216种

C.240种D.288种

解析:第一类:甲在最左端,有A55=5×4×3×2×1=120(种)方法;第二类:乙在最左端,有4A44=4×4×3×2×1=96(种)方法.所以共有120+96=216(种)方法.

答案:B

4.从a,b,c,d,e五人中选2人分别参加数学和物理竞赛,但a不能参加物理竞赛,则不同的选法有()

A.16种B.12种

C.20种D.10种

解析:先选一人参加物理竞赛有A14种方法,再从剩下的4人中选1人参加数学竞赛,有A14种方法,共有A14·A14=16种方法.

(1)五位奇数;

(2)大于30 000的五位偶数?

解析:(1)要得到五位奇数,末位应从1,3,5,7,9五个数字中取,有5种取法,取定末位数字后,首位就有除这个数字和0之外的8种不同取法.首末两位取定后,十个数字还有八个数字可供中间的十位、百位与千位三个数位选取,共有A38种不同的排列方法.因此由分步乘法计数原理共有5×8×A38=13 440个没有重复数字的五位奇数.

(2)要得偶数,末位应从0,2,4,6,8中选取,而要比30 000大的五位偶数,可分两类:

①末位数字从0,2中选取,则首位可取3、4、5、6、7、8、9中任一个,共7种选取方法,其余三个数位就有除首末两个数位上的数字之外的八个数字可以选取,共A38种取法.所以共有2×7×A38种不同情况.

②末位数字从4,6,8中选取,则首位应从3、4、5、6、7、8、9中除去末位数字的六位数字中选取,其余三个数位仍有A38种选法,所以共有3×6×A38种不同情况.由分类加法计数原理,比30 000大的无重复数字的五位偶数的个数共有2×7×A38+3×6×A38=10 752种.

10.六人按下列要求站一横排,分别有多少种不同的站法?

(1)甲不站两端;

(2)甲、乙站在两端;

(3)甲不站左端,乙不站右端.

解析:(1)法一:要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A14种站法,然后其余5人在另外5个位置上作全排列有A55种站法,根据分步乘法计数原理,共有站法A14·A55=480种.法二:由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有A25种站法,然后其余4人有A44种站法,根据分步乘法计数原理,共有站法A25·A44=480种.

法三:若对甲没有限制条件共有A66种站法,甲在两端共有2A55种站法,从总数中减去这两种情况的排列数,即得所求的站法数,共有A66-2A55=480种.

(2)首先考虑特殊元素,甲、乙先站两端,有A22种,再让其他4人在中间位置作全排列,有A44种,根据分步乘法计数原理,共有A22·A44=48种站法.

(3)法一:甲在左端的站法有A55种,乙在右端的站法有A55种,且甲在左端而乙在右端的站法有A44种,共有A66-2A55+A44=504种站法.法二:以元素甲分类可分为两类:a.甲站右端有A55种,b.甲在中间4个位置之一,而乙不在右端有A14·A14·A44种,故共有A55+A14·A14·A44

=504种站法.

|能力提升|(20分钟,40分)

11.某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天.若7位员工中的甲、乙被安排在相邻两天值班,丙不在10月1日值班,丁不在10月7日值班,则不同的安排方案共有()

A.504种B.960种

C.1 008种D.1 108种

解析:由题意知,满足甲、乙两人被安排在相邻两天值班的方案共有A22A66=1 440(种),其中满足甲、乙两人被安排在相邻两天值班且丙在10月1日值班的方案共有A22A55=240(种),满足甲、乙两人被安排在相邻两天值班且丁在10月7日值班的方案共有A22A55=240(种),满足甲、乙两人安排在相邻两天值班且丙在10月1日值班、丁在10月7日值班的方案共有A22A44=48(种).因此,满足题意的方案共有1 440-2×240+48=1 008(种).

答案:C

12.两家夫妇各带一个小孩一起去公园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为________.

解析:分3步进行分析,①先安排两位爸爸,必须一首一尾,有A22=2种排法,

②两个小孩一定要排在一起,将其看成一个元素,考虑其顺序有A22=2种排法,③将两个小孩看作一个元素与两位妈妈进行全排列,有A33=6种排法.

则共有2×2×6=24种排法.

答案:24

13.某教师一天上3个班级的课,每班一节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5和第6节不算连上),那么这位教师一天的课的所有排法有多少种?

解析:首先求得不受限制时,从9节课中任意安排3节,有A39=504种排法,其中上午连排3节的有3A33=18种,下午连排3节的有2A33=12种,则这位教师一天的课的所有排法有504-18-12=474种.

14.一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单.

(1)3个舞蹈节目不排在开始和结尾,有多少种排法?

相关文档
最新文档