专题08 古典概型(原卷版)

合集下载

《古典概型》课件

《古典概型》课件

例5.一人有n把钥匙,其中只有一把可打开房门,随机逐个 试验钥匙,问“房门恰在第k次被打开”的概率是多少?
解析:解法一:n把钥匙按任意顺序开锁,共有 n!种开法,限定第k次成功,则第k次只能是确定 的一把,其他钥匙次序任意,共有(n-1)!种开 法,故p= (n-1)!/ n!= 1
n
解法二:只考虑第k次试验时的钥匙,第k次试验的 钥匙是任意一把时共有n种取法,第k次恰能打开房
解:(1) 记“甲不站正中间”事件A
P(A)

6 A66 A77

6 7
(2)记“甲、乙两人正好相邻”为事件B (3)记“甲、乙两人不相邻”为事件C
P(B) A66 A22 2
A77
7
P(C) A55 A62 5
A77
7
例4.甲、乙两人参加普法知识竞赛,共设有10个不同的 题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一 题,计算
这种分析也与大量重复试验的结果
是一致的.
问:什么样的事件的概率可以不通过 重复试验,而通过对一次试验中可能 出现的结果的分析来计算其概率呢?
(1)所有结果出现的可能性都相等
(2)所出现的结果是有限的
⑴基本事件:一次试验连同其中可能出现的每一个结果称 为一个基本事件。
如抛掷硬币的试验中,由2个基本事件组成。抛掷一个均 匀的骰子的试验中,由6个基本事件组成。
2 5
。记“任取2件,都是次品”
P(A2)

C52 C2
100

1 495
答:2件都是次品的概率为 1
495
由种于,(在事3件C)12A00记3种的“结概任果率取中P2(,件A3取,) 到1件C1件C91是512合合0C0格51格品品1、1、99118件件次是19品次的品结”果为有事CA件3915

古典概型练习题(有详细答案)

古典概型练习题(有详细答案)

古典概型练习题1.从12个同类产品(其中10个正品,2个次品)中任意抽取3个,下列事件是必然事件的是A.3个都是正品B.至少有一个是次品C.3个都是次品D.至少有一个是正品2.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使20x<”是不可能事件③“明天要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件.其中正确命题的个数是( )A. 0B. 1C.2D.34.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为()A. 37B.710C.110D.3105.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这2 张纸片数字之积为偶数的概率为( )A. 12B.718C.1318D.11186.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女当选的概率为( )A.715B.815C.35D. 17.下列对古典概型的说法中正确的个数是 ( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③基本事件的总数为n,随机事件A包含k个基本事件,则()kP An=;④每个基本事件出现的可能性相等;A. 1B. 2C. 3D. 48.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是( )⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球;⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球.A.0B.1C.2D.39.下列各组事件中,不是互斥事件的是 ( )A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分C.播种菜籽100粒,发芽90粒与发芽80粒D.检查某种产品,合格率高于70%与合格率为70%10.若事件A 、B 是对立事件,则P(A)+P(B)=________________.11.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。

古典概型课件

古典概型课件

分为 150 50
(1)为了调查评委对7位歌手 的支持情况,现用分层抽样方 级别 A B C D E
法从各组中抽取若干评委,其 人数 50 100 150 150 50
中从B组中抽取了6人.请将其余 抽取人数 各组抽取的人数填入下表.
6
(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1 号歌手,现从这两组被抽到的评委中分别任选1人,求这2人 都支持1号歌手的概率.
首先要确定随机数的范围和用哪些数代表不同的试验结果. 我们可以从以下三方面考虑:
(1)当试验的基本事件出现的可能性相等时,基本事件总数即 为产生随机数的范围,每个随机数代表一个基本事件. (2)研究等可能事件的概率时,用按比例分配的方法确定表示 各个结果的数字个数及总个数. (3)当每次试验结果需要n个随机数表示时,要把n个随机数作 为一组来处理,此时一定要注意每组中的随机数字能否重复.
古典概型
一.基本事件的定义及特点
1.基本事件有如下特点: (1)任何两个基本事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本事件的和.
2. 随机事件都是由基本事件为元素构成的集合.基本事件是“最 小”的,不可以再分割成其他两个事件.
3. 两个事件互斥,就是相应的集合没有公共的基本事件.即互斥 事件的交集为空集.
(2)记“恰好摸出 1 个黑球和 1 个红球”为事件 A, 则事件 A 包含的基本事件为(a,c),(a,d),(a,e), (b,c),(b,d),(b,e),共 6 个基本事件,
所以
P(A)=
6 10
=0.6,
即恰好摸出 1 个黑球和 1 个红球的概率为 0.6.
(3)记“至少摸出 1 个黑球”为事件 B,

古典概型(2课时)

古典概型(2课时)
2019年6月26日星期三10时47分55秒
例4.甲乙两个人做出拳游戏(锤子、剪刀、布),求 (1)平局的概率; (2)甲赢的概率; (3)乙赢的概率
设平局为事件A,甲赢为事件B,乙赢为事件C,由图容易得 到 (1)平局含3个基本事件(图中△) (2)甲赢含3个基本事件(图中⊙) (3)乙赢含3个基本事件(图中※)
答:掷得奇数点的概率为0.5
2019年6月26日星期三10时47分55秒
规范格式
【例2】单选题是标准化考试中常用的题型,一般是 从A、B、C、D四个选项中选择一个准确答案.如果 考生掌握了考查的内容,他可以选择惟一正确的答 案.假设考生不会做,他随机地选择一个答案,问 他答对的概率是多少?
〖解〗是一个古典概型,基本事件共有4个:选择A、选择B、 选择C、选择D.“答对”的基本事件个数是1个.
高的基因记为D,决定矮的基因记为d,则杂交所得第
概 一子代的一对基因为Dd,若第二子代的D,d基因的遗 传是等可能的,求第二子代为高茎的概率。(只要
有基因D则为高茎,只有两个基因全为d时为矮茎)

解:如左图Dd与Dd的
Dd
Dd
搭配方式有4种:

DD,Dd,dD,dd
D
d
D
d
其中第四种表现为矮
茎,所以第二代为高
点”)P= (“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6
P(“6
1 6
点1”)1 1 1
666 2
=
P(“出现偶数点”)=
3 6
=“出现偶数点”所包含的基本事件的个数 基本事件的总数
古典概型的概率计算公式为:
P(A)=
A所包含的基本事件的个数 基本事件的总数

《古典概型说》课件

《古典概型说》课件
公式
$P(A) = frac{n(A)}{n(S)}$
$n(A)$
事件A包含的基本事件个数。
$n(S)$
样本空间中包含的基本事件个数。
概率计算的应用实例
赌博游戏
概率计算可以帮助玩家了解游戏规则和胜率 ,从而制定合理的策略。
天气预报
通过概率计算,气象学家可以预测未来天气 的可能性,为人们的出行和生活提供参考。
概率图模型
概率图模型是一种基于图结构的概率模型,其基础就是古典概型。通过概率图模型,可以更好地理解和建模复 杂系统的概率分布。
数据挖掘与古典概型
关联规则挖掘
在数据挖掘中,关联规则挖掘是一种常见的方法,它通过寻找数据集中项集之 间的关联关系来发现有价值的模式。在关联规则挖掘中,古典概型可以用来描 述项集出现的概率。
古典概型的特征
01
02
03
等可能性
每个样本点出现的概率是 相等的。
有限性
样本空间是有限的,即样 本点的个数是有限的。
明确性
样本点的出现与否是确定 的,即每个样本点都有确 定的概率值。
古典概型的适用范围
适用于具有有限个样本点的随机试验,如投 掷骰子、抽取扑克牌等。
在实际生活中,古典概型的应用非常广泛, 如彩票中奖概率计算、游戏胜率计算等。
大数定律的数学表述
lim(n→∞) Pn(A) = P(A),其中Pn(A)是相对频率,P(A)是概率 。
大数定律的应用场景
在保险、赌博、统计学等领域用于估计概率和预测结果。
05
古典概型与现代科技的结合
人工智能与古典概型
人工智能算法
人工智能算法中,如决策树、神经网络等,常常需要使用到古典概型来描述问题,以便更好地进行分类、预测 等任务。

古典概型(原卷版)

古典概型(原卷版)

10.1.3 古典概型1 概率对随机大事发生可能性大小的度量〔数值〕称为大事的概率,大事A的概率用P(A)表示.【例】掷一个硬币,大事A为硬币消失的是正面,那么P(A)=12.2 古典概型的特点①有限性:样本空间的样本点只有有限个;②等可能性:每个样本点发生的可能性相等.满意以上两个特征的试验称为古典概型试验,其数学模型称为古典概率概型,简称古典概型.【例1】“在1,2,3,4,5中取2个数,其差为1概率〞属于古典概型,由于试验的结果有限,每种结果发生的可能性相等;【例2】“在区间[1,5]中取2个数,其差为1概率〞不属于古典概型,由于试验的结果有无限种可能;【例3】“贵哥投篮中与否〞不属于古典概型,由于中与不中的可能性相等.3 古典概型大事A的概率(1) 一般地,设试验E是古典概型,样本空间Ω包含n个样本点,大事A包含其中的k个样本点,那么定义大事A的概率P(A)=n(A) n(Ω)其中n(A)和n(Ω)分别表示大事A和样本空间Ω包含的样本点个数.【例】掷一个骰子,大事A=“点数为奇数〞,那么n(Ω)=6,n(A)=3,P(A)=n(A)n(Ω)=36=12.(2) 求解古典概型问题的一般思路①明确试验的条件及要观看的结果,用适当的符号〔字母、数字、数组等〕表示试验的可能结果〔借助图表可以关心我们不重不漏地列出全部的可能结果〕;②依据实际问题情境推断样本点的等可能性;③计算样本点总个数及大事A包含的样本点个数,求出大事A的概率.【题型1】古典概型的概念【典题1】以下概率模型中,古典概型的个数为()①从区间[1,10]内任取一个数,求取到1的概率;②从1,2,…,9,10中任取一个整数,求取到1的概率;③向正方形ABCD内任意投一点P,求点P刚好与点A重合的概率;④抛掷一枚质地不匀称的骰子,求向上点数为3的概率.A.1B.2C.3D.4【稳固练习】1.以下是古典概型的个数有()①1≤x≤9且x∈Z,从x中任取一个数,那么满意2<x≤5的概率;②同时掷两颗骰子,点数和为11的概率;③近一周中有一天降雨的概率;④10个人站成一排,其中甲在乙右边的概率.A.1B.2C.3D.42.以下试验中,为古典概型的是()A.种下一粒种子,他是否发芽B.从规格质量为59千克的产品中任意抽取一袋,其是否合格C.抛掷一枚硬币,观看其消失正面还是反面D.某人射击中靶或不中靶【题型2】求古典概型概率【典题1】如图是一个古典概型的样本空间Ω和大事A和B,其中n(Ω)=24,n(A)=12,n(B)=8,n(A∪B)=16,以下运算结果,正确的有()A.n(AB)=4B.P(AB)=16C.P(A⋃B)=23D.P(A B̅)=12【典题2】假设连掷两次骰子,分别得到的点数是m、n,将m、n作为点P的坐标,那么点P落在区域|x−2|+|y−2|⩽2内的概率是.【典题3】将一颗骰子先后抛掷2次,观看向上的点数,大事A:“两数之和为8〞,大事B:“两数之和是3的倍数〞,大事C:“两个数均为偶数〞.(1)写出该试验的根本领件空间Ω,并求大事A发生的概率;(2)求大事B发生的概率;(3)大事A与大事C至少有一个发生的概率.【稳固练习】1.从4名选手甲、乙、丙、丁中选取2人组队参与数学竞赛,其中甲被选中的概率是()A .13B .12C .23D .352.先后抛掷两枚骰子,设消失的点数之和是8,7,6的概率依次为P 1,P 2,P 3,那么( )A .P 1=P 2<P 3B .P 3<P 2<P 1C .P 3=P 1<P 2D .P 3=P 1>P 23.从集合A ={−1,12,2}中随机选取一个数记为k ,从集合B ={12,32,2}中随机选取一个数记为a ,那么a k >1的概率为( ) A .13B .23C .79D .594.抛掷两颗质地匀称的正方体骰子,登记骰子朝上面的点数.设A =“两个点数之和等于8〞,B =“至少有一颗骰子的点数为5〞,那么大事A ∪B 的概率是( ) A .118B .29C .718D .495.数学与文学有很多奇异的联系,如诗中有回文诗:“儿忆父兮妻忆夫〞,既可以顺读也可以逆读,数学中有回文数,如343、12521等,两位数的回文数有11、22、33、…、99共9个,那么三位数的回文数中为偶数的概率是( ) A .19B .29C .13D .496.一个口袋内装有大小相同的6个小球,其中2个红球记为A 1,A 2,4个黑球记为B 1,B 2,B 3,B 4,从中一次摸出2个球.(1)写出这个试验的样本空间及样本点总数; (2)求摸出的2个球颜色不同的概率.7.调查某校高三班级500名同学的肥胖状况,得到下表:从这批同学中随机抽取1名同学,抽到偏瘦女生的概率为0.1.(1)求x的值;(2)假设用分层抽样的方法,从这批同学中随机抽取50名,问应在偏胖同学中抽多少名?(3)y≥46,z≥46,求偏胖同学中男生人数大于女生人数的概率.8.从0,1,2,3这四个数字中,不放回地取两次,每次取一个,构成数对(x,y),x为第一次取到的数字,y为其次次取到的数字.设大事A=“第一次取出的数字是1〞,B=“其次次取出的数字是2〞.(1)写出此试验的样本空间及P(A),P(B)的值;(2)推断A与B是否为互斥大事,并求P(A∪B);(3)写出一个大事C,使A⊆C成立.【A组根底题】1.以下古典概型的说法中正确的个数是()①试验中全部可能消失的根本领件只有有限个;②每个大事消失的可能性相等;③根本领件的总数为n,随机大事A包含k个根本领件,那么P(A)=kn;④每个根本领件消失的可能性相等.A.1B.2C.3D.42.以下试验是古典概型的是()A.口袋中有2个白球和3个黑球,从中任取一球,样本点为{取中白球}和{取中黑球}B.在区间[−1,5]上任取一个实数x,使x2−3x+2>0C.抛一枚质地匀称的硬币,观看其消失正面或反面D.某人射击中靶或不中靶3.掷一枚匀称的硬币两次,大事M={一次正面对上,一次反面对上};大事N={至少一次正面对上}.以下结果正确的选项是()A.P(M)=13,P(N)=12B.P(M)=12,P(N)=34C.P(M)=13,P(N)=34D.P(M)=12,P(N)=124. 任取三个整数,至少有一个数为偶数的概率为( )A.0.125B.0.25C.0.5D.0.8755.(多项选择)甲罐中有2个大小、质地完全一样的小球,标号为1,2,乙罐中有4个大小、质地完全一样的小球,标号为1,2,3,4,现从甲罐、乙罐中分别随机抽取1个小球,记样本空间为Ω,大事A为“抽取的两个小球标号之和大于4〞,大事B为“抽取的两个小球标号之积小于5〞,那么以下结论正确的选项是() A.A与B是互斥大事B.A与B不是对立大事C.Ω=A∪B D.P(A)+P(B)=986.将一枚质地匀称的骰子先后抛掷两次,假设第一次朝上一面的点数为a,其次次朝上一面的点数为b,那么函数y=ax2−2bx+1在(−∞,2]上为减函数的概率是.7.经过某十字路口的汽车,它可能连续直行,也可能向左转或向右转,假如这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为.8.有3个相同的球,分别标有数字1,2,3,从中有放回的随机取两次,每次取1个球.用(x,y)表示试验的样本点,其中x表示第一次取出的根本结果,y表示其次次取出的根本结果.(1)写出这个试验的样本空间Ω;(2)用A表示大事“第一次取出的球的数字是1〞;用B表示大事“两次取出的球的数字之和是4〞,求证:P(AB)=P(A)P(B).9.将一枚骰子先后抛掷2次,观看向上的点数,求:(1)两数之和为6的概率;(2)两数之和是3的倍数的概率;(3)两数之积是6的倍数的概率;(4)以第一次向上的点数为横坐标x、其次次向上的点数为纵坐标y的点(x,y)在圆x2+y2=25的内部的概率.10.将一颗骰子先后抛掷2次,观看向上的点数,大事A:“两数之和为8〞,大事B:“两数之和是3的倍数〞,大事C:“两个数均为偶数〞.(1)写出该试验的根本领件空间Ω,并求大事A发生的概率;(2)求大事B发生的概率;(3)大事A与大事C至少有一个发生的概率.【B组提高题】1.一个正方体,它的外表涂满了红色.在它的每个面上切两刀可得27个小立方块,从中任取两个,其中恰有1个一面涂有红色,1个两面涂有红色的概率为()A.16117B.32117C.839D.1639。

古典概型的经典例题ppt课件

古典概型的经典例题ppt课件
(3)是方片 1 4
(5)既是红心又是草花 0
1
(7)是红色
2
(2)不是7
12 13
3
(4)是J或Q或K 13
2
(6)比6大比9小 13
(8)是红色或黑色 1
ppt课件.
15
2、小明、小刚、小亮三人正在做游戏,现在要从他们
三人中选出一人去帮助王奶奶干活,则小明被选中的概
率为___1___,小明没被选中的概率为___2__。
大小的小正方体,将这些正方体混合后,从中任取一
个小正方体,求: (1)有一面涂有红漆的概率;
P
3
8
(2)有两面涂有红漆的概率; P 3 8
(3)有三面涂有红漆的概率; P 1 8
(4)没有红漆的概率。 P 1
8 ppt课件.
19
1、古典概型下的概率如何计算?
P( A) m n
2、古典概型的两个基本特征是什么?
2号骰子 1号骰子
1
1
2
3
4
5
6
(1,1) (1,合2)作(讨1,论3),(概1,念4)深(化1,5) (1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
现3采用抛掷(3骰,1子)的(方3,式2),(决3定,3两) 名(运3,动4)员(A3,,B5的)乒(乓3,球6) 比赛发4 球权,(4问,下1)面(几4,种2)方(案4对,3两)名(运4,动4)员(来4,说5,) 公(平4,吗6)?
ppt课件.
6
(1)向一个圆面内随机地投一个点,如果该点落在圆 内任意一点都是等可能的,你认为这是古典概型吗? 为什么? 不是
(2)如图所示,射击运动员向一靶心进行射击,这一 试验的结果只有有限个:

高中数学-古典概型(一)

高中数学-古典概型(一)

古典概型(一)高中数学 1.理解古典概型的概念及特点.2.掌握利用古典概型概率公式解决简单的概率计算问题.导语 研究随机现象,最重要的是知道随机事件发生的可能性大小.对随机事件发生可能性大小的度量(数值)称为事件的概率(probability),事件A的概率用P(A)表示.我们知道,通过试验和观察的方法可以得到一些事件的概率估计,但这种方法耗时多,而且得到的仅是概率的近似值.能否通过建立适当的数学模型,直接计算随机事件的概率呢?一、古典概型的定义问题1 我们讨论过彩票摇号试验、抛掷一枚均匀硬币的试验及掷一枚质地均匀骰子的试验,它们的共同特征有哪些?提示 样本空间的样本点是有限个,每个样本点发生的可能性相等.知识梳理 一般地,若试验E具有以下特征:(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.称试验E为古典概型试验,其数学模型称为古典概率模型,简称古典概型.例1 下列概率模型是古典概型吗?为什么?(1)从区间[1,10]内任意取出一个实数,求取到实数2的概率;(2)向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;(3)从1,2,3,…,100这100个整数中任意取出一个整数,求取到偶数的概率.解 (1)不是古典概型,因为区间[1,10]中有无限多个实数,取出的实数有无限多种结果,与古典概型定义中“所有可能结果只有有限个”矛盾.(2)不是古典概型,因为硬币不均匀导致“正面朝上”与“反面朝上”发生的可能性不相等,与古典概型定义中“每一个试验结果出现的可能性相同”矛盾.(3)是古典概型,因为在试验中所有可能出现的结果是有限的,而且每个整数被抽到的可能性相等.反思感悟 古典概型需满足两个条件(1)样本点总数有限.(2)各个样本点出现的可能性相等.跟踪训练1 下列问题中是古典概型的是( )A .种下一粒杨树种子,求其能长成大树的概率B .掷一枚质地不均匀的骰子,求掷出1点的概率C .在区间[1,4]上任取一数,求这个数大于1.5的概率D .同时掷两枚质地均匀的骰子,求向上的点数之和是5的概率答案 D解析 A ,B 两项中的样本点的出现不是等可能的;C 项中样本点的个数是无限多个;D 项中样本点的出现是等可能的,且是有限个.故选D.二、古典概型概率的计算问题2 在掷骰子的试验中,记A 事件为“点数为偶数”,A 事件包含哪些样本点?A 事件发生的概率是多少?提示 A ={2,4,6}.对于抛掷骰子试验,出现各个点的可能性相同,记出现1点,2点,…,6点的事件分别为A 1,A 2,…,A 6,记事件“出现偶数点”为B ,则P (A 1)=P (A 2)=…=P (A 6),又P (A 1)+P (A 2)+…+P (A 6)=P (必然事件)=1,所以P (A 1)=P (A 2)=…=P (A 6)=,P (B )==.163612知识梳理 一般地,设试验E 是古典概型,样本空间Ω包含n 个样本点,事件A 包含其中的k 个样本点,则定义事件A 的概率P (A )==.kn n (A )n (Ω)例2 一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球.求:(1)样本空间的样本点的总数n ;(2)事件“摸出2个黑球”包含的样本点的个数;(3)摸出2个黑球的概率.解 由于4个球的大小相等,摸出每个球的可能性是均等的,所以是古典概型.(1)将黑球编号为黑1,黑2,黑3,从装有4个球的口袋内摸出2个球,样本空间Ω={(黑1,黑2),(黑1,黑3),(黑1,白),(黑2,黑3),(黑2,白),(黑3,白)},共有6个样本点,所以n =6.(2)事件“摸出2个黑球”={(黑1,黑2),(黑2,黑3),(黑1,黑3)},共有3个样本点.(3)样本点总数n =6,事件“摸出两个黑球”包含的样本点个数m =3,故P ==,即摸出36122个黑球的概率为.12反思感悟 利用古典概型概率计算公式计算概率的步骤(1)确定样本空间的样本点的总数n .(2)确定所求事件A 包含的样本点的个数m .(3)P (A )=.mn 跟踪训练2 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是________.答案 23解析 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P ==.4623三、较复杂的古典概型的概率计算例3 先后抛掷两枚质地均匀的骰子.(1)求点数之和为7的概率;(2)求掷出两个4点的概率;(3)求点数之和能被3整除的概率.解 如图所示,从图中容易看出样本点与所描点一一对应,共36个,且每个样本点出现的可能性相等.(1)记“点数之和为7”为事件A ,从图中可以看出,事件A 包含的样本点共有6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6).故P (A )==.63616(2)记“掷出两个4点”为事件B ,从图中可以看出,事件B 包含的样本点只有1个,即(4,4).故P (B )=.136(3)记“点数之和能被3整除”为事件C ,则事件C 包含的样本点共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P (C )==.123613反思感悟 在求概率时,若事件可以表示成有序数对的形式,则可以把全体样本点用平面直角坐标系中的点表示,即采用图表的形式可以准确地找出样本点的个数.故采用数形结合法求概率可以使解决问题的过程变得形象、直观,更方便.跟踪训练3 某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.解 (1)由题意知,从6个国家中任选2个国家,其一切可能的结果有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 3,B 1),(A 3,B 2),(A 3,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3),共15个.所选2个国家都是亚洲国家的事件所包含的样本点有(A 1,A 2),(A 1,A 3),(A 2,A 3),共3个,则所求事件的概率为P ==.31515(2)从亚洲国家和欧洲国家中各任选1个,其一切可能的结果有(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 3,B 1),(A 3,B 2),(A 3,B 3),共9个.包括A 1但不包括B 1的事件所包含的样本点有(A 1,B 2),(A 1,B 3),共2个,则所求事件的概率为P =.291.知识清单:(1)古典概型.(2)古典概型的概率公式.2.方法归纳:常用列举法(列表法、树状图)求样本点的总数.3.常见误区:在列举样本点的个数时,要按照一定顺序,做到不重、不漏.1.(多选)下列试验是古典概型的是( )A .在适宜的条件下种一粒种子,发芽的概率B .口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球为白球的概率C .向一个圆面内部随机地投一个点,该点落在圆心的概率D .10个人站成一排,其中甲、乙相邻的概率答案 BD解析 A 不是等可能事件,C 不满足有限性.2.在50瓶牛奶中,有5瓶已经过了保质期,从中任取一瓶,取到已经过保质期的牛奶的概率是( )A .0.02 B .0.05C .0.1 D .0.9答案 C解析 由题意知,该题是一个古典概型,因为在50瓶牛奶中任取1瓶有50种不同的取法,取到已过保质期的牛奶有5种不同的取法,根据古典概型公式求得概率是=0.1.故选C.5503.将一枚骰子先后投掷两次,两次向上点数之和为5的倍数的概率为________.答案 736解析 将一枚骰子投掷两次,样本点个数为36,且每个样本点出现的可能性相等,其中“将一枚骰子投掷两次,两次向上点数之和为5的倍数”所包含的样本点有(1,4),(4,1),(2,3),(3,2),(5,5),(6,4),(4,6),共7个,故“将一枚骰子先后投掷两次,两次向上点数之和为5的倍数”的概率为.7364.从1,2,3,4,5中任意取出两个不同的数,则其和为5的概率是________.答案 0.2解析 两数之和等于5有两种情况(1,4)和(2,3),总的样本点有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,且每个样本点出现的可能性相等,所以P ==0.2.210课时对点练1.下列是古典概型的是( )A .任意抛掷两枚骰子,所得点数之和作为样本点B .求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为样本点C .在甲、乙、丙、丁4名志愿者中,任选一名志愿者去参加跳高项目,求甲被选中的概率D .抛掷一枚均匀硬币至首次出现正面为止,抛掷的次数作为样本点答案 C解析 A 项中由于点数的和出现的可能性不相等,故A 不是;B 项中的样本点的个数是无限的,故B 不是;C 项中满足古典概型的有限性和等可能性,故C 是古典概型;D 项中样本点既不是有限个也不具有等可能性,故D 不是.2.一个家庭有两个小孩,则所有可能的样本点有( )A .(男,女),(男,男),(女,女)B .(男,女),(女,男)C .(男,男),(男,女),(女,男),(女,女)D .(男,男),(女,女)答案 C解析 两个孩子出生有先后之分.3.若书架上放的工具书、故事书、图画书分别是5本、3本、2本,则随机抽出一本是故事书的概率为( )A. B. C. D.153103512答案 B解析 样本点总数为10,“抽出一本是故事书”包含3个样本点,所以其概率为.3104.甲、乙、丙三名同学站成一排,甲站在中间的概率是( )A. B. C. D.16121323答案 C解析 样本点有:(甲,乙,丙)、(甲,丙,乙)、(乙,甲,丙)、(乙,丙,甲)、(丙,甲,乙)、(丙,乙,甲),共6个.甲站在中间的样本点包括:(乙,甲,丙)、(丙,甲,乙),共2个,所以甲站在中间的概率P ==.26135.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A. B. C. D.13122334答案 C解析 试验的样本空间Ω={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},共6个样本点,且每个样本点出现的可能性相同,数字之和为奇数的有4个样本点,所以所求概率为.236.(多选)投掷一枚质地均匀的正方体骰子,四位同学各自发表了以下见解,其中正确的有( )A .“出现点数为奇数”的概率等于“出现点数为偶数”的概率B .只要连掷6次,一定会“出现1点”C .投掷前默念几次“出现6点”,投掷结果“出现6点”的可能性就会加大D .连续投掷3次,出现的点数之和不可能等于19答案 AD解析 掷一枚骰子,出现奇数点和出现偶数点的概率都是,故A 正确;“出现1点”是随12机事件,故B 错误;概率是客观存在的,不因为人的意念而改变,故C 错误;连续掷3次,若每次都出现最大点数6,则三次之和为18,故D 正确.7.在1,2,3,4四个数中,可重复地选取两个数,其中一个数是另一个数的2倍的概率是________.答案 14解析 用列举法知,可重复地选取两个数共有16个样本点,且每个样本点出现的可能性相等,其中一个数是另一个数的2倍的有(1,2),(2,1),(2,4),(4,2)共4个样本点,故所求的概率为=.416148.从1,2,3,4,5这5个数字中不放回地任取两数,则两数都是奇数的概率是________.若有放回地任取两数,则两数都是偶数的概率是________.答案 310425解析 从5个数字中不放回地任取两数,样本点有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,且每个样本点出现的可能性相等.因为都为奇数的样本点有(1,3),(1,5),(3,5),共3个,所以所求概率P =.从5个数字中有放回的任取两数,310样本点共有25个,且每个样本点出现的可能性相等,都为偶数的样本点有(2,4),(4,2),(2,2),(4,4)共4个,故概率P =.4259.袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其它球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作是一个样本点概率模型,该模型是不是古典概型?(2)若按球的颜色为样本点,有多少个样本点?以这些样本点建立概率模型,该模型是不是古典概型?解 (1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为样本点的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个样本点,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”.因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为.111因为白球有5个,所以一次摸球摸中白球的可能性为.511同理可知,摸中黑球、红球的可能性均为.311显然这三个样本点出现的可能性不相等,所以以颜色为样本点的概率模型不是古典概型.10.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球.(1)共有多少个样本点?(2)摸出的2只球都是白球的概率是多少?解 (1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下样本点(摸到1,2号球用(1,2)表示):(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).因此,共有10个样本点.(2)上述10个样本点发生的可能性相同,且只有3个样本点是摸到两只白球(记为事件A ),即(1,2),(1,3),(2,3),故P (A )=.故摸出2只球都是白球的概率为.31031011.一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为( )A. B. C. D.12131425答案 A解析 把2个红球分别标记为红1、红2,2个白球分别标记为白1、白2,本试验样本空间所包含的样本点共有16个,其中取出的2个球同色包含的样本点有8个:(红1,红1),(红1,红2),(红2,红1),(红2,红2),(白1,白1),(白1,白2),(白2,白1),(白2,白2).故所求概率P ==.8161212.从集合A ={-1,1,2}中随机选取一个数记为k ,从集合B ={-2,1,2}中随机选取一个数为b ,则直线y =kx +b 不经过第三象限的概率为( )A. B. C. D.29134959答案 A解析 直线y =kx +b 不经过第三象限,即Error!选取出的两个数记为(k ,b ),则该试验的样本空间Ω={(-1,-2),(-1,1),(-1,2),(1,-2),(1,1),(1,2),(2,-2),(2,1),(2,2)},共9个样本点,符合题意的有(-1,1),(-1,2),共2个样本点,所以所求概率为.2913.每年3月为学雷锋活动月,某班有青年志愿者5名,其中男生3人,女生2人,现需选出2名青年志愿者到社区做公益宣传活动,则选出的2名青年志愿者性别相同的概率为( )A. B. 3525C. D.15310答案 B解析 设3名男生分别用A ,B ,C 表示,2名女生分别用a ,b 表示,则从5人中选出2名青年志愿者的样本空间Ω={(A ,B ),(A ,C ),(A ,a ),(A ,b ),(B ,C ),(B ,a ),(B ,b ),(C ,a ),(C ,b ),(a ,b )},共有10个样本点,其中选出的2名志愿者性别相同包含的样本点有(A ,B ),(A ,C ),(B ,C ),(a ,b ),共有4个,则选出的2名青年志愿者性别相同的概率P ==.4102514.一次掷两枚均匀的骰子,得到的点数为m 和n ,则关于x 的方程x 2+(m +n )x +4=0无实数根的概率是________.答案 112解析 总的样本点个数为36,且每个样本点出现的可能性相等.因为方程无实根,所以Δ=(m +n )2-16<0.即m +n <4,其中有(1,1),(1,2),(2,1),共3个样本点.所以所求概率为=.33611215.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A. B. C. D.192971849答案 D解析 记“|a -b |≤1”为事件A ,由于a ,b ∈{1,2,3,4,5,6},则事件A 包含的样本点有:(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5),(5,6),(6,5),(6,6),共16个,而依题意得,样本点总数为36,且每个样本点出现的可能性相等.因此他们“心有灵犀”的概率P ==.16364916.某区的区大代表中有教师6人,分别来自甲、乙、丙、丁四个学校,其中甲校教师记为A 1,A 2,乙校教师记为B 1,B 2,丙校教师记为C ,丁校教师记为D .现从这6名教师代表中选出3名教师组成十九大报告宣讲团,要求甲、乙、丙、丁四个学校中,每校至多选出1名.(1)请列出十九大报告宣讲团组成人员的全部样本点;(2)求教师A 1被选中的概率;(3)求宣讲团中没有乙校教师代表的概率.解 (1)从6名教师代表中选出3名教师组成十九大报告宣讲团,组成人员的全部样本点有12个,分别为:(A 1,B 1,C ),(A 1,B 1,D ),(A 1,B 2,C ),(A 1,B 2,D ),(A 1,C ,D ),(A 2,B 1,C ),(A 2,B 1,D ),(A 2,B 2,C ),(A 2,B 2,D ),(A 2,C ,D ),(B 1,C ,D ),(B 2,C ,D ).(2)组成人员的全部样本点中,A 1被选中的样本点有(A 1,B 1,C ),(A 1,B 1,D ),(A 1,B 2,C ),(A 1,B 2,D ),(A 1,C ,D ),共5个,所以教师A 1被选中的概率为P =.512(3)宣讲团中没有乙校教师代表的样本点有(A 1,C ,D ),(A 2,C ,D ),共2个,所以宣讲团中没有乙校教师代表的概率为P ==.21216。

《古典概型》ppt课件

《古典概型》ppt课件

有限性
样本空间中包含的基本事件是有 限的。,每个基本
事件都有确定的概率。
这一性质使得古典概型在实际应 用中具有可操作性和实用性。
互斥性
两个或多个基本事件不能同时发 生。
在古典概型中,由于每个基本事 件发生的概率是相等的,因此它 们之间是互斥的,即不可能同时
在统计学中的应用
样本统计
在统计学中,样本统计量是用来描述数据特征的重要工具。 古典概型可用于计算样本统计量的概率分布,如样本均值、 样本方差等。
假设检验
古典概型在假设检验中也有应用,特别是在使用似然比检验 和贝叶斯统计时。通过比较不同假设下的概率,可以判断哪 个假设更合理。
在实际生活中的应用
决策制定
发生。
互斥性是古典概型中一个重要的 性质,它确保了概率计算的正确
性和合理性。
03
古典概型的应用
在概率论中的应用
概率计算
古典概型提供了一种计算概率的简单 方法,特别是对于离散随机事件。通 过列举所有可能的结果和满足条件的 结果,可以直接计算概率。
概率分布
在概率论中,古典概型常用于推导离 散随机变量的概率分布,如二项分布 、泊松分布等。这些分布在实际应用 中具有广泛的应用价值。
古典概型可以帮助人们在不确定的情况下做出决策。例如,在赌博游戏中,玩 家可以使用古典概型来计算获胜的概率。
风险评估
在风险评估中,古典概型可以用来计算风险事件发生的概率。例如,在保险行 业中,保险公司可以使用古典概型来评估不同风险事件的发生概率和损失程度。
04
古典概型与现代概率论的联系
古典概型在现代概率论中的地位
古典概型是现代概率论的基础
古典概型为概率论的发展提供了基本的概念和原理,为后续的概率模型和理论奠 定了基础。

古典概型典例精讲

古典概型典例精讲

古典概型一、基础知识:1、基本事件:一次试验中可能出现的每一个不可再分的结果称为一个基本事件。

例如:在扔骰子的试验中,向上的点数1点,2点,……,6点分别构成一个基本事件2、基本事件空间:一次试验,将所有基本事件组成一个集合,称这个集合为该试验的基本事件空间,用Ω表示。

3、基本事件特点:设一次试验中的基本事件为12,,,n A A A (1)基本事件两两互斥(2)此项试验所产生的事件必由基本事件构成,例如在扔骰子的试验中,设i A 为“出现i 点”,事件A 为“点数大于3”,则事件456A A A A = (3)所有基本事件的并事件为必然事件由加法公式可得:()()()()()1212n n P P A A A P A P A P A Ω==+++ 因为()1P Ω=,所以()()()121n P A P A P A +++= 4、等可能事件:如果一项试验由n 个基本事件组成,而且每个基本事件出现的可能性都是相等的,那么每一个基本事件互为等可能事件。

5、等可能事件的概率:如果一项试验由n 个基本事件组成,且基本事件为等可能事件,则基本事件的概率为1n证明:设基本事件为12,,,n A A A ,可知()()()12n P A P A P A === ()()()121n P A P A P A +++= 所以可得()1i P A n=6、古典概型的适用条件:(1)试验的所有可能出现的基本事件只有有限多个(2)每个基本事件出现的可能性相等当满足这两个条件时,事件A 发生的概率就可以用事件A 所包含的基本事件个数()n A 占基本事件空间的总数()n Ω的比例进行表示,即()()()n A P A n =Ω7、运用古典概型解题的步骤:①确定基本事件,一般要选择试验中不可再分的结果作为基本事件,一般来说,试验中的具体结果可作为基本事件,例如扔骰子,就以每个具体点数作为基本事件;在排队时就以每种排队情况作为基本事件等,以保证基本事件为等可能事件②()(),n A n Ω可通过计数原理(排列,组合)进行计算③要保证A 中所含的基本事件,均在Ω之中,即A 事件应在Ω所包含的基本事件中选择符合条件的二、典型例题:例1:从16-这6个自然数中随机取三个数,则其中一个数是另外两个数的和的概率为________思路:事件Ω为“6个自然数中取三个”,所以()3620n C Ω==,事件A 为“一个数是另外两个数的和”,不妨设a b c =+,则可根据a 的取值进行分类讨论,列举出可能的情况:{}{}{}{}{}{}3,2,1,4,3,1,5,4,1,5,3,2,6,5,1,6,4,2,所以()6n A =。

古典概型 经典课件(最新)

古典概型 经典课件(最新)

A.6 B.24
1
7
C.3 D.24
高中数学课件
【解析】 (1)利用古典概型的特点可知,从 5 个点中选取 2 个点的全部情况有 C52 =10(种),选取的 2 个点的距离不小于该正方形边长的情况为:选取的 2 个点的连线为正 方形的 4 条边和 2 条对角线,共有 6 种.故所求概率 P=160=35.
高中数学课件
解法 2:两次放回抽样共有 25 种情况,满足条件的事件可用坐标表示为(2,1),(3,
1),(3,2),(4,1),(4,2),(4,3),(5,4),(5,3),(5,2),(5,1),共 10 种,故所求
概率 P=1205=25.故选 D.
(3)不超过 30 的素数有 2,3,5,7,11,13,17,19,23,29,共 10 个,随机选取
【答案】 (1)C (2)C
高中数学课件
【反思·升华】 古典概型中基本事件的探求方法: (1)枚举法:适合给定的基本事件个数较少且易一一列举出来.(2)树状图法:适合较 复杂问题中的基本事件的探求,注意在确定基本事件时(x,y)可看成是有序的,如(1,2) 与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同.(3)排列组合法:在求一 些较复杂的基本事件的个数时,可利用排列或组合的知识.
高中数学课件
高频考点 4 间接计算 【例 4.1】 某班有 N(N∈N*,N<365)名同学,求至少有 2 人在同一天过生日的概率(一 年按 365 天计).
【解】 Ω={N 名同学过生日},A={至少有 2 名同学同一天过生日},则 n=365N, 对于 A,则 m=card(A)=A365N.
(2)依题意:a,b,c∈{1,2,3,4},且 a,b,c 互不相同,可得三位数有 4×3×2 =24(个),其中满足 a>b,b<c 的三位数可分两类:若 b=1,则有 213,214,312,314, 412,413,共 6 个;若 b=2,则有 324,423,共 2 个.故“凹数”总共有 8 个,所以所 求三位数为“凹数”的概率为284=13.

古典概型

古典概型
计算公式是:P(A)+ P(B)=1;P( A )=1-P(A);
(二)分布列 1.分布列:设离散型随机变量 ξ 可能取得值为 x1,x2,…,x3,…,ξ 取每一个值 xi(i=1,2,…)的概率为
P(
xi )
pi ,则称表为随机变量 ξ
的概率分布,简称 ξ
的分布列
新疆 王新敞
奎屯
ξ
x1
x2

8.两点分布列: 随机变量 X 的分布列是:
ξ
0
1
P 1 p
p
像上面这样的分布列称为两点分布列.
[全面解读] 古典概型这一模块内容分两个部分,一个是古典概型,一个是离散型随机变量的概率分布。古典概型的问题 基本是数个数,它本质是排列组合问题,分布列问题主要应掌握期望与方差的公式,对二项分布问题应重点关注。 [难度系数]★★☆☆☆
知识点分析:
(一) 古典概型
1.随机事件 A 的概率: 0 P( A) 1,其中当 P( A) 1时称为必然事件;当 P( A) 0 时称为不可能事件;
2.等可能事件的概率(古典概型): P(A)= m 。理解这里 m、n的意义。 n
3.互斥事件:A、B 互斥,即事件 A、B 不可能同时发生。计算公式:P(A+B)=P(A)+P(B)。 4.对立事件:A、B 对立,即事件 A、B 不可能同时发生,但 A、B 中必然有一个发生。
6.方差的性质: Da b a2D ;
7.二项分布:在 一 次随机 试 验 中 ,某事 件 可能发 生 也 可能 不 发生 ,在 n 次独立重复试验中这个事件发生的 次数 ξ 是一个随机变量.如果在一次试验中某事件发生的概率是 P,那么在 n 次独立重复试验中这个事件 恰好发生 k 次的概率是

古典概型(含答案)

古典概型(含答案)

古典概型(写过程)1.袋中有大小相同的三个白球和两个黑球,从中任取两个球,两球同色的概率为( ) A .15 B .25 C .35 D .452.(原创)口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( ) A .15 B.25 C. 13 D. 163.某车间共有6名工人,他们某日加工零件个数的茎叶图如上图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本均值的工人为优秀工人.从该车间6名工人中,任取2人,则恰有1名优秀工人的概率为( ) A.158 B.94 C.31 D.914.若集合{}2,3A =,{}1,2,3B =,从A ,B 中各任意取一个数,则这两数之和等于4的概率是 A .23 B .12 C .13 D . 165.一个袋中装有大小相同的5个白球和3个红球,现在不放回的取2次球,每次取出一个球,记“第1次拿出的是白球”为事件A ,“第2次拿出的是白球”为事件B ,则事件A 与B 同时发生的概率是( ) A .85 B .165 C .74 D .145 6.一个袋子中有5个大小相同的球,其中3个白球与2个黑球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任意取出一个球,则第一次为白球、第二次为黑球的概率为( )A .35 B .310 C .12 D .6257.若(010,)4k k k Z πθ=≤≤∈,则sin cos 1θθ+≥的概率为( ) A .15 B .25 C .211 D .6118.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A.19 B.29 C.13D.49 9.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率是( ) A .122B .111C .322D .21110.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为 .11.两枚质地均匀的骰子同时掷一次,则向上的点数之和不小于7的概率为 . 12.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,如果甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得乒乓球单打冠军的概率为 .13.有标号分别为1、2、3的蓝色卡片和标号分别为1、2的绿色卡片,从这五张卡片中任取两张,这两张卡片颜色不同且标号之和小于4的概率是 .14.在一个袋子中装有分别标注1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同,现从中随机取出两个小球,则取出的小球上标注的数字之和为6的概率等于15.为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为________.16.从字母a 、b 、c 、d 、e 中任取两个不同的字母,则取到字母a 的概率为 .17.袋中又大小相同的红球和白球各1个,每次任取1个,有放回地摸三次. (Ⅰ)写出所有基本事件‘(Ⅱ)求三次摸到的球恰有两次颜色相同的概率; (Ⅲ)求三次摸到的球至少有1个白球的概率.18.一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取1个.(1)求连续取两次都是白球的概率;(2)若取1个红球记2分,取1个白球记1分,取1个黑球记0分,求连续取两次的分数之和为2的概率.参考答案1.B 【解析】试题分析:所有不同方法数有25C 种,所求事件包含的不同方法数有2223C C 种,因此概率52252223=+=C C C P ,答案选B. 考点:古典概型的概率计算2.C 【解析】试题分析:从5个球中随机抽取两个球,共有246C =种取法. 满足两球编号之和大于5的情况有(2,4),(3,4)共2种取法. 所以取出的两个球的编号之和大于5的概率为2263=. 考点:1、古典概型及其概率计算公式;2、组合及组合数公式. 3.A 【解析】试题分析:解:()11321719202125302266x =+++++== 因为六名工人的日加工零件个数互不相同,可用该数据代表相应的工人,则从他们中任取两人,共有()17,1()17,2()17,2()17,()17,()19,()19()19()19()20,2()20,2()20,3()21,()21,()25,15个基本结果,由于是任取的,所以每个结果出现的可能性是相等的,其中恰有一名优秀工人的有()17,25,()17,30,()19,25,()19,30,()20,25,()20,30,()21,25,()21,30,共8个,所以恰有一名优秀工人的概率为815,故选A. 考点:古典概型;2、茎叶图;3、均值的概念. 4.C 【解析】,2,12,221==..63A B C 从集合中各任取一数所有结果为(),(),(2,3),(3,1),(3,2),(3,3)共6种,其中两数和为4的有2种,因此所求概率为P 选考点:本题主要考查古典概型的概率的概念和运算,考查分析问题、解答问题的能力和运算能力. 5.D 【解析】 试题分析:从装有大小相同的5个白球和3个红球共8个球的袋中先后不放回的各取出一个球的方法共有2856A =种,事件A 与B 同时发生的即两次中第1次取出的是白球,第2次取出的还是白球,这样的取法有255420A =⨯=种,由古典概型的概率计算公式得事件A 与B 同时发生的概率是2055614=,故选择D.考点:古典概型的概率计算. 6.B【解析】设3个白球分别为a 1,a 2,a 3,2个黑球分别为b 1,b 2,则先后从中取出2个球的所有可能结果为(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2),(a 2,a 1),(a 3,a 1),(b 1,a 1),(b 2,a 1),(a 3,a 2),(b 1,a 2),(b 2,a 2),(b 1,a 3),(b 2,a 3),(b 2,b 1),共20种.其中满足第一次为白球、第二次为黑球的有(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),共6种,故所求概率为620=310. 7.D 【解析】 试题分析:(010,)4k k k Z πθ=≤≤∈,∴θ有11个sin cos )14πθθθ+=+≥∴sin()42πθ+≥∴322,444n n n Z ππππθπ+≤+≤+∈∴22,2n n n Z ππθπ≤≤+∈发现当k=0,1,2,8,9,10时,成立,所以P=611考点:1.三角恒等变换;2.古典概型. 8.A 【解析】试题分析:先求个位数与十位数之和为奇数的两位数中,其个位数与十位数有一个为奇数,一个为偶数,共有4514151515=+C C C C 个,然后再求个位数与十位数之和为奇数的两位数中,其个位数为0包括的结果有:10,30,50,70,90共5个,由古典概率的求解公式可求解. 考点:古典概型及其概率计算公式. 9.D【解析】略 10.31. 【解析】试题分析:事件“甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种”包含的基本事件有(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),(蓝,红),(蓝,白),(蓝,蓝)共9个;记“他们选择相同颜色运动服”为事件A,则事件A 包含的基本事件有(红,红),(白,白),(蓝,蓝)共3个;所以3193)(==A P . 考点:古典概型. 11.712【解析】试题分析:记两枚质地均匀的骰子同时掷一次的结果为数对(,)x y ,这样的数对有6636⨯=对,而向上的点数之和不小于7,即7x y +≥,则1,6x y ==;2,5,6x y ==;3,4,5,6x y ==;4,3,4,5,6x y ==;5,2,3,4,5,6x y ==;6,1,2,3,4,5,6x y ==,因此满足条件的数对共有12345621+++++=,从而向上的点数之和不小于7的概率为2173612=. 考点:古典概型的概率计算. 12.1928【解析】由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为37+14=1928. 13.310【解析】试题分析:由题意,从中任取两张卡片的总方法数为2510C =,颜色不同,标号和小于4的有:蓝1、红1,蓝1、红2,蓝2、红1共3种,因此其概率为310. 考点:古典概型. 14.15【解析】试题分析:从5个球任取2个球共有2510C =种取法,而数字和为6的只有(1,5),(2,4)两种取法,所以所概率为21105=. 考点:古典概型. 15.5081【解析】能获奖有以下两种情况:①5袋食品中三种卡片数分别为1,1,3,此时共有115422C C A ×A 33=60(种)不同的方法,其概率为P 1=5603=2081;②5袋食品中三种卡片数分别为2,2,1,共有225322C C A ×A 33=90(种)不同的装法,其概率为P 2=5903=3081,所以所求概率P =P 1+P 2=5081.16.25. 【解析】试题分析:所有的基本事件有(),a b 、(),a c 、(),a d 、(),a e 、(),b c 、(),b d 、(),b e 、(),c d 、(),c e 、(),d e ,共10个,其中事件“取到字母a ”所包含的基本事件有(),a b 、(),a c 、(),a d 、(),a e ,共4个,故所求事件的概率为42105=.考点:本题考查利用列举法计算古典概型的概率计算问题,属于中等题.17.(I )(红,红,红),(红,红,白),(红,白,白),(白,红,红【解析】18.(1)4 (2)8【解析】(1)记袋中的2个白球分别为白1,白2,则连续取两次的基本事件有(红,红),(红,白1),(红,白2),(红,黑);(白1,红),(白1,白1),(白1,白2),(白1,黑);(白2,红),(白2,白1),(白2,白2),(白2,黑);(黑,红),(黑,白1),(黑,白2),(黑,黑),共16种.记事件A 为“连续取两次都是白球”,事件A 包含的事件有(白1,白1),(白1,白2),(白2,白1),(白2,白2),共4种, 所以P(A)=416=14.(2)记事件B为“连续取两次的分数之和为2”.因为取1个红球记2分,取1个白球记1分,取1个黑球记0分,所以连续取两次的分数之和为2的基本事件有(红,黑),(黑,红),(白1,白1),(白1,白2),(白2,白1),(白2,白2),共6种,所以P(B)=616=38.。

古典概型 课件

古典概型 课件

b)是相同的事件,故共有 10 个基本事件.
(2)法一中“2 个都是白球”包括(1,2),(1,3),(2,3),共 3 个基
本事件,法二中“2 个都是白球”包括(a,b),(b,c),(a,c),共
3 个基本事件.
基本事件的三种列举方法 (1)直接列举法:把试验的全部结果一一列举出来.此方法适合于 较为简单的试验问题. (2)列表法:将基本事件用表格的方式表示出来,通过表格可以弄 清基本事件的总数,以及要求的事件所包含的基本事件数.列表法 适用于较简单的试验的题目,基本事件较多的试验不适合用列表 法.
①试验中所有可能出现的基本事件只有__有__限___个; ②每个基本事件出现的可能性__相__等___.
那么这样的概率模型称为古典概率模型,简称为古典概型. (2)计算公式:对于古典概型,事件 A 的概率为 P(A)=A包含基的本基事本件事的件总的数个数.
■名师点拨 (1)古典概型的判断 一个试验是否为古典概型,在于这个试验是否具有古典概型的两个 特点:有限性和等可能性.并不是所有的试验都是古典概型. 下列三类试验都不是古典概型: ①基本事件个数有限,但非等可能. ②基本事件个数无限,但等可能. ③基本事件个数无限,也不等可能.
(3)树状图法:树状图法是使用树状的图形把基本事件列举出来的 一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂 的问题,可以作为一种分析问题的主要手段,树状图法适用于较复 杂的试验的题目.
古典概型的概率计算
(1)有 5 支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、
绿、紫.从这 5 支彩笔中任取 2 支不同颜色的彩笔,则取出的 2 支
所以 nP(Ai)=1,所以 P(Ai)=n1(i=1,2,…,n).若在该试验中事

古典概型(共24张PPT)

古典概型(共24张PPT)

解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,它总共出现的 情况如下表所示:
2号骰子 1号骰子
1
2
3
4
5
6
1
(1,1)(1,2) (1,3)((1,1,44)) (1,5) (1,6)
2
(2,1) (2,2)((22,,33)) (2,4)(2,5) (2,6)
3
(3,1)((33,,22)) (3,3) (3,4) (3,5) (3,6)
(1,2),(1,3),(1,4),(1,5),
(2,3),(2,4),(2,5),(3,4),
(3,5),(4,5). 因此,共有10个基本事件.
(2)如下图所示,上述10个基本事件的可能性相同,且只有3个基本事件是摸到
2只白球(记为事件A),
小结
满足以下两个特点的随机试验的概率模型称为古典概型
1
2
试 验 2
1点
P(“1点”)
2点
3点
P(“2点”)
P(“5点”)
4点 5点 P(“3点”) P(“6点”)
6点
P(“4点”)
1 6
问题3:观察对比,找出试验1和试验2的共同特点:
基本事件
基本事件出现的可能性

“正面朝上”

“反面朝上”
1
试 “1点”、“2点” 验2 “3点”、“4点”
“5点”、“6点”
没有区别。
为什么要把两个骰子标上记号?如果不标记号会出 现什么情况?你能解释其中的原因吗?
如果不标上记号,类似于(3,6)和(6,3)的结果将
没有区别。
这时,所有可能的结果将是:
2号骰子
因此,1号在骰子投掷两

三年 (2020-2022 ) 新高考数学真题汇编专题08计数原理及概率与统计

三年 (2020-2022 ) 新高考数学真题汇编专题08计数原理及概率与统计

新高考专题08计数原理及概率与统计【2022年新高考1卷】1.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( ) A .16B .13C .12D .23【答案】D 【解析】 【分析】由古典概型概率公式结合组合、列举法即可得解. 【详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==. 故选:D.【2022年新高考2卷】2.有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种 B .24种C .36种D .48种【答案】B 【解析】 【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解 【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式,故选:B【2021年新高考1卷】3.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A .甲与丙相互独立B .甲与丁相互独立C .乙与丙相互独立D .丙与丁相互独立【答案】B 【解析】 【分析】根据独立事件概率关系逐一判断 【详解】11561()()()()6636366P P P P =====甲,乙,丙,丁, ,1()0()()()()()36P P P P P P =≠==甲丙甲丙,甲丁甲丁, 1()()()()0()()36P P P P P P =≠=≠乙丙乙丙,丙丁丁丙, 故选:B 【点睛】判断事件,A B 是否独立,先计算对应概率,再判断()()()P A P B P AB =是否成立【2021年新高考2卷】4.某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是( )A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等【解析】 【分析】由正态分布密度曲线的特征逐项判断即可得解. 【详解】对于A ,2σ为数据的方差,所以σ越小,数据在10μ=附近越集中,所以测量结果落在()9.9,10.1内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B 正确;对于C ,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C 正确;对于D ,因为该物理量一次测量结果落在()9.9,10.0的概率与落在()10.2,10.3的概率不同,所以一次测量结果落在()9.9,10.2的概率与落在()10,10.3的概率不同,故D 错误. 故选:D.【2020年新高考1卷(山东卷)】5.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A .120种 B .90种 C .60种 D .30种【答案】C 【解析】 【分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解. 【详解】首先从6名同学中选1名去甲场馆,方法数有16C ; 然后从其余5名同学中选2名去乙场馆,方法数有25C ; 最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.【点睛】本小题主要考查分步计数原理和组合数的计算,属于基础题. 【2020年新高考1卷(山东卷)】6.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A .62% B .56% C .46% D .42%【答案】C 【解析】 【分析】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅,然后根据积事件的概率公式()P A B ⋅=()()()P A P B P A B +-+可得结果. 【详解】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅, 则()0.6P A =,()0.82P B =,()0.96P A B +=,所以()P A B ⋅=()()()P A P B P A B +-+0.60.820.960.46=+-=所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%. 故选:C. 【点睛】本题考查了积事件的概率公式,属于基础题. 【2020年新高考2卷(海南卷)】7.要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( ) A .2种 B .3种C .6种D .8种【答案】C【分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可. 【详解】第一步,将3名学生分成两个组,有12323C C =种分法第二步,将2组学生安排到2个村,有222A =种安排方法所以,不同的安排方法共有326⨯=种 故选:C 【点睛】解答本类问题时一般采取先组后排的策略. 【2021年新高考1卷】8.有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c=+(1,2,,),i n c =⋅⋅⋅为非零常数,则( ) A .两组样本数据的样本平均数相同 B .两组样本数据的样本中位数相同 C .两组样本数据的样本标准差相同 D .两组样本数据的样本极差相同 【答案】CD 【解析】 【分析】A 、C 利用两组数据的线性关系有()()E y E x c =+、()()D y D x =,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B 、D 的正误. 【详解】A :()()()E y E x c E x c =+=+且0c ≠,故平均数不相同,错误;B :若第一组中位数为i x ,则第二组的中位数为i i y x c =+,显然不相同,错误;C :()()()()D y D x D c D x =+=,故方差相同,正确;D :由极差的定义知:若第一组的极差为max min x x -,则第二组的极差为max min max min max min ()()y y x c x c x x -=+-+=-,故极差相同,正确;【2021年新高考2卷】9.下列统计量中,能度量样本12,,,n x x x 的离散程度的是( )A .样本12,,,n x x x 的标准差B .样本12,,,n x x x 的中位数C .样本12,,,n x x x 的极差D .样本12,,,n x x x 的平均数【答案】AC 【解析】 【分析】考查所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确选项. 【详解】由标准差的定义可知,标准差考查的是数据的离散程度; 由中位数的定义可知,中位数考查的是数据的集中趋势; 由极差的定义可知,极差考查的是数据的离散程度; 由平均数的定义可知,平均数考查的是数据的集中趋势; 故选:AC.【2020年新高考1卷(山东卷)】10.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.( )A .若n =1,则H (X )=0B .若n =2,则H (X )随着1p 的增大而增大C .若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y ) 【答案】AC 【解析】 【分析】对于A 选项,求得()H X ,由此判断出A 选项;对于B 选项,利用特殊值法进行排除;对于C 选项,计算出()H X ,利用对数函数的性质可判断出C 选项;对于D 选项,计算出()(),H X H Y ,利用基本不等式和对数函数的性质判断出D 选项.【详解】对于A 选项,若1n =,则11,1i p ==,所以()()21log 10H X =-⨯=,所以A 选项正确. 对于B 选项,若2n =,则1,2i =,211p p =-, 所以()()()121121X log 1log 1H p p p p =-⋅+-⋅-⎡⎤⎣⎦, 当114p =时,()221133log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,当13p 4=时,()223311log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,两者相等,所以B 选项错误. 对于C 选项,若()11,2,,i p i n n==,则()222111log log log H X n n nn n ⎛⎫=-⋅⨯=-= ⎪⎝⎭,则()H X 随着n 的增大而增大,所以C 选项正确.对于D 选项,若2n m =,随机变量Y 的所有可能的取值为1,2,,m ,且 ()21j m j P Y j p p +-==+( 1,2,,j m =).()2222111log log mmi i i i i iH X p p p p ===-⋅=⋅∑∑ 122221222122121111log log log log m m m mp p p p p p p p --=⋅+⋅++⋅+⋅. ()H Y =()()()122221212122211111log log log m m m m m m m m p p p p p p p p p p p p -+-++⋅++⋅+++⋅+++12222122212221221121111log log log log m m m m m mp p p p p p p p p p p p ---=⋅+⋅++⋅+⋅++++由于()01,2,,2i p i m >=,所以2111i i m i p p p +->+,所以 222111log log i i m ip p p +->+, 所以222111log log i i i i m ip p p p p +-⋅>⋅+, 所以()()H X H Y >,所以D 选项错误. 故选:AC【点睛】本小题主要考查对新定义“信息熵”的理解和运用,考查分析、思考和解决问题的能力,涉及对数运算和对数函数及不等式的基本性质的运用,属于难题.【2020年新高考2卷(海南卷)】11.我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A.这11天复工指数和复产指数均逐日增加;B.这11天期间,复产指数增量大于复工指数的增量;C.第3天至第11天复工复产指数均超过80%;D.第9天至第11天复产指数增量大于复工指数的增量;【答案】CD【解析】【分析】注意到折线图中有递减部分,可判定A错误;注意考查第1天和第11天的复工复产指数的差的大小,可判定B错误;根据图象,结合复工复产指数的意义和增量的意义可以判定CD 正确.【详解】由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B错误;由图可知,第3天至第11天复工复产指数均超过80%,故C正确;由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D 正确; 【点睛】本题考查折线图表示的函数的认知与理解,考查理解能力,识图能力,推理能力,难点在于指数增量的理解与观测,属中档题. 【2022年新高考1卷】12.81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为________________(用数字作答).【答案】-28 【解析】 【分析】()81y x y x ⎛⎫-+ ⎪⎝⎭可化为()()88y x y x y x +-+,结合二项式展开式的通项公式求解. 【详解】因为()()()8881=y y x y x y x y x x ⎛⎫-++-+ ⎪⎝⎭,所以()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中含26x y 的项为6265352688C 28y x y C x y x y x -=-,()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为-28 故答案为:-28【2022年新高考2卷】13.已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >=____________. 【答案】0.14##750. 【解析】 【分析】根据正态分布曲线的性质即可解出. 【详解】 因为()22,XN σ,所以()()220.5P X P X <=>=,因此()()()2.522 2.50.50.360.14P X P X P X >=>-<≤=-=.故答案为:0.14.【2022年新高考1卷】14.一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.(|) (|)P B A P B A 与(|)(|)P B AP B A的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:(|)(|)(|)(|)P A B P A BRP A B P A B=⋅;(ⅰ)利用该调查数据,给出(|),(|)P A B P A B的估计值,并利用(ⅰ)的结果给出R的估计值.附22()()()()()n ad bcKa b c d a c b d-=++++,【答案】(1)答案见解析(2)(i)证明见解析;(ii)6R=;【解析】【分析】(1)由所给数据结合公式求出2K 的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异;(2)(i) 根据定义结合条件概率公式即可完成证明;(ii)根据(i )结合已知数据求R . (1)由已知222()200(40906010)=24()()()()50150100100n ad bc K a b c d a c b d -⨯-⨯==++++⨯⨯⨯, 又2( 6.635)=0.01P K ≥,24 6.635>,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异. (2) (i)因为(|)(|)()()()()=(|)(|)()()()()P B A P B A P AB P A P AB P A R P B A P B A P A P AB P A P AB =⋅⋅⋅⋅,所以()()()()()()()()P AB P B P AB P B R P B P AB P B P AB =⋅⋅⋅ 所以(|)(|)(|)(|)P A B P A B R P A B P A B =⋅,(ii)由已知40(|)100P A B =,10(|)100P A B =,又60(|)100P A B =,90(|)100P A B =, 所以(|)(|)=6(|)(|)P A B P A B R P A B P A B =⋅【2022年新高考2卷】15.在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)47.9岁;(2)0.89;(3)0.0014.【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式=-即可解出;P A P A()1()(3)根据条件概率公式即可求出.(1)平均年龄(50.001150.002250.012350.017450.023x =⨯+⨯+⨯+⨯+⨯ 550.020650.017750.006850.002)1047.9+⨯+⨯+⨯+⨯⨯=(岁). (2)设A ={一人患这种疾病的年龄在区间[20,70)},所以()1()1(0.0010.0020.0060.002)1010.110.89P A P A =-=-+++⨯=-=.(3)设B =“任选一人年龄位于区间[40,50)”,C =“从该地区中任选一人患这种疾病”, 则由已知得:()()16%0.16,0.1%0.001,(|)0.023100.23P B P C P B C =====⨯=,则由条件概率公式可得从该地区中任选一人,若此人的年龄位于区间[40,50),此人患这种疾病的概率为()(|)()()0.0010.23(|)0.00143750.0014()0.16P BC P C P B C C B P B B P P ⨯====≈.【2021年新高考1卷】16.某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分,已知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列; (2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由. 【答案】(1)见解析;(2)B 类. 【解析】 【分析】(1)通过题意分析出小明累计得分X 的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答B 类问题的数学期望,比较两个期望的大小即可. 【详解】(1)由题可知,X 的所有可能取值为0,20,100.()010.80.2P X ==-=; ()()200.810.60.32P X ==-=;()1000.80.60.48P X ==⨯=.所以X 的分布列为(2)由(1)知,()00.2200.321000.4854.4E X =⨯+⨯+⨯=.若小明先回答B 问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100.()010.60.4P Y ==-=; ()()800.610.80.12P Y ==-=; ()1000.80.60.48P X ==⨯=.所以()00.4800.121000.4857.6E Y =⨯+⨯+⨯=. 因为54.457.6<,所以小明应选择先回答B 类问题.【2021年新高考2卷】17.一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===.(1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <;(3)根据你的理解说明(2)问结论的实际含义. 【答案】(1)1;(2)见解析;(3)见解析.【解析】 【分析】(1)利用公式计算可得()E X .(2)利用导数讨论函数的单调性,结合()10f =及极值点的范围可得()f x 的最小正零点. (3)利用期望的意义及根的范围可得相应的理解说明. 【详解】(1)()00.410.320.230.11E X =⨯+⨯+⨯+⨯=.(2)设()()3232101f x p x p x p x p =++-+,因为32101p p p p +++=,故()()32322030f x p x p x p p p x p =+-+++,若()1E X ≤,则123231p p p ++≤,故2302p p p +≤.()()23220332f x p x p x p p p '=+-++,因为()()20300f p p p '=-++<,()230120f p p p '=+-≤, 故()f x '有两个不同零点12,x x ,且1201x x <<≤,且()()12,,x x x ∈-∞⋃+∞时,()0f x '>;()12,x x x ∈时,()0f x '<; 故()f x 在()1,x -∞,()2,x +∞上为增函数,在()12,x x 上为减函数, 若21x =,因为()f x 在()2,x +∞为增函数且()10f =,而当()20,x x ∈时,因为()f x 在()12,x x 上为减函数,故()()()210f x f x f >==,故1为230123p p x p x p x x +++=的一个最小正实根,若21>x ,因为()10f =且在()20,x 上为减函数,故1为230123p p x p x p x x +++=的一个最小正实根,综上,若()1E X ≤,则1p =.若()1E X >,则123231p p p ++>,故2302p p p +>. 此时()()20300f p p p '=-++<,()230120f p p p '=+->, 故()f x '有两个不同零点34,x x ,且3401x x <<<,且()()34,,x x x ∈-∞+∞时,()0f x '>;()34,x x x ∈时,()0f x '<;故()f x 在()3,x -∞,()4,x +∞上为增函数,在()34,x x 上为减函数, 而()10f =,故()40f x <,又()000f p =>,故()f x 在()40,x 存在一个零点p ,且1p <.所以p 为230123p p x p x p x x +++=的一个最小正实根,此时1p <,故当()1E X >时,1p <.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1. 【2020年新高考1卷(山东卷)】18.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)0.64;(2)答案见解析;(3)有. 【解析】 【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果; (2)根据表格中数据可得22⨯列联表; (3)计算出2K ,结合临界值表可得结论. 【详解】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>,因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 【点睛】本题考查了古典概型的概率公式,考查了完善22⨯列联表,考查了独立性检验,属于中档题.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题8古典概型
例1.从3,5,7,9中任取2个不同的数,则取出的2个数之差的绝对值大于3的概率是()
A.1
2
B.
1
3
C.
1
4
D.
1
6
例2.2020年在新冠疫情基本控制的情况下,学生开始陆续复学,为了广大师生的安全,学校防控仍是重中之重,除了全员要戴口罩,勤洗手,多通风外,为了避免聚集交叉,学校采取“网格化”管理,为了规范各个网格单元的管理,需要大量“网格员”.已知甲、乙两人需要周一至周五作为网格员,两人商议一个人值周一、周三、周五;另一人值周二、周四.但两人都不想多值一天,约定如下规则来决定:拿一枚一元的硬币,甲选正面,乙选反面,每掷一次硬币为一局比赛,先胜三局的人值周二、周四两天.但由于生
产工艺的问题,此硬币不均匀,出现正面的概率为2
3
,问甲值两天的概率为()
A.2
3
B.
64
81
C.
16
27
D.
163
243
例3.调查某高中1000名学生的肥胖情况,得到的数据如表:
若194
y,193
z,则肥胖学生中男生不少于女生的概率为()
A.5
7
B.
1
2
C.
3
7
D.
5
14
例4.某省在新的高考改革方案中规定:每位考生的高考成绩是按照3(语文、数学、英语)2
+(物理、历史)选14
+(化学、生物、地理、政治)选2的模式设置的,则某考生选择全理科的概率是()
A.
3
10
B.
3
5
C.
7
10
D.
1
12
例5.雅言传承文明,经典浸润人生,某市举办“中华经典诵写讲大赛”,大赛分为四类:“诵读中国”经典诵读大赛、“诗教中国”诗词讲解大赛、“笔墨中国”汉字书写大赛、“印记中国”学生篆刻大赛.某班级三人参赛,则三人参加项目均不相同的概率为()
A.3
4
B.
8
9
C.
3
8
D.
8
27
例6.《易⋅系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化、阴阳五行术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圆点表示阳数,阳数皆为奇数,黑圆点表示阴数,阴数皆为偶数.若从这10个数中任取2个数,则取出的2个数中至少有
1个偶数的概率为()
A.7
9
B.
4
9
C.
1
2
D.
2
9
例7.古典著作《连山易》中记载了金、木、水、火、土之间相生相克的关系,如图所示,将这五种不同属性的物质任意排成一列,则排列中金、木、火不能相邻的概率为()
A.
1
10
B.
1
6
C.
1
4
D.
1
3
例8.如图,在一个圆上取A,B,C,D,E,6
F个点,将圆六等分,现从这6个点中随机取3个点,则所取的3个点构成的三角形不是锐角三角形的概率为()
A.2
5
B.
9
10
C.
4
5
D.
7
10
例9.2019年8月1日,中国科学院正式公布中国科学院院士增选初步候选人名单,总计181位.整
体来看,中国科学院(包含其在全国各地的研究所)、清华大学、北京大学、复旦大学、浙江大学候选人人数位列前五.若从上述5所大学中任选2所大学进行问卷调查,则中国科学院被选中的概率为( )
A .35
B .25
C .34
D .12
例10.传说是三国时期的蜀国丞相诸葛亮(字孔明)发明了一种可以升空的灯笼,后人称之为孔明灯,用作军事信号灯,借此在夜里调兵遣将.在一次游戏中,A ,B ,C ,D ,5E 位小朋友同时分别升起了1盏孔明灯,若任意两盏孔明灯不同时熄灭,那么先熄灭的两盏孔明灯是A ,B ,C 三位小朋友的孔明灯的概率为( )
A .25
B .13
C .310
D .12
例11.六个人排队,甲乙不能排一起,丙必须排在前两位的概率为( )
A .760
B .16
C .1360
D .14
例12.2013年5月,中国数学家张益唐破解了困扰数学界长达一个半世纪的难题,证明了孪生素数猜想的弱化形势,孪生素数猜想:对所有的自然数k ,存在无穷多个素数对(,2)p p k +,1k =的情况就是孪生素数猜想.例如3和5,5和7,11和13,⋯都是孪生素数,在所有小于20的自然数中随机取两个数,则取到的两个数是孪生素数的概率是( )
A .295
B .114
C .15
D .27
例13.从集合{1A =-,3-,2,4}中随机选取一个数记为a ,从集合{5B =-,1,4}中随机选取一个数记为b ,则( )
A .0ab >的概率是12
B .0a b +的概率是
12 C .直线y ax b =+不经过第三象限的概率是13
D .1lna lnb +>的概率是512
例14.若A ,B 为互斥事件,P (A ),P (B )分别表示事件A ,B 发生的概率,则下列说法正确的是( )
A .P (A )P +(
B )1<
B .P (A )P +(B )1
C .()1
P A B = D .()0P A
B =
例15.先后抛掷两颗均匀的骰子,第一次出现的点数记为a ,第二次出现的点数记为b ,则下列说法正确的是( )
A .7a b +=时概率为
16 B .6a b +=时概率为15 C .2a b 时的概率为16
D .a b +是3的倍数的概率是13 例16.一袋中有6个大小相同的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10,现从中任取4个球,则下列结论中正确的是( )
A .取出的最大号码X 服从超几何分布
B .取出的黑球个数Y 服从超几何分布
C .取出2个白球的概率为114
D .若取出一个黑球记2分,取出一个白球记1分,则总得分最大的概率为114
例17.高三(1)班甲、乙两同学报名参加A ,B ,C 三所高校的自主招生考试,因为三所高校考试时间相同,所以甲、乙只能随机报考其中一所高校,则甲、乙两人报考不同高校的概率是 .
例18.设O 为坐标原点,从集合{1,2,3,4,5,6,7,8,9}中任取两个不同的元素x 、y ,组成A 、B
两点的坐标(,)x y 、(,)y x ,则12arctan 3
AOB ∠=的概率为 . 例19.小王同学有4本不同的数学书,3本不同的物理书和3本不同的化学书,从中任取2本,则这2本书属于不同学科的概率是 (结果用分数表示).
例20.盒子中装有编号为1,2,3,4,5,6,7,8,9的九个大小、形状、材质均相同的小球,从随机任意取出两个,则这两个球的编号之积为偶数的概率是 .(结果用最简分数表示)
例21.一个袋中装有同样大小、质量的10个球,其中2个红色、3个蓝色、5个黑色,经过充分混合后,若从此袋中任意取出4个球,则三种颜色的球均取到的概率为 .
例22.某校要从该校环境保护兴趣协会的20名成员中,选取6人组队参加市电视台组织的环保知识竞赛.
(1)若采用抽签法选取参赛队伍成员,请写出步骤;
(2)若选出的人员中有2名女生4名男生,在这6名学生中任选两人担任正副队长,求所选两人恰好有1名女生的概率.。

相关文档
最新文档