冶金方法湿法

合集下载

湿法冶金原理的化学方程式

湿法冶金原理的化学方程式

湿法冶金原理的化学方程式
湿法冶金是一种利用化学反应来提取金属的方法,其原理涉及
多种化学方程式。

以提取铜为例,湿法冶金的原理包括浸出、沉淀、萃取和电解等步骤。

首先,浸出阶段涉及到化学方程式,通常是利用硫酸溶液浸出
含铜矿石,其化学反应方程式为:
CuFeS2 + 4H2SO4 + O2 → CuSO4 + FeSO4 + 2H2O + 2SO2。

在这个方程式中,CuFeS2代表含铜的黄铜矿,H2SO4代表硫酸,O2代表氧气,CuSO4代表硫酸铜,FeSO4代表硫酸铁,SO2代表二氧
化硫。

接下来是沉淀阶段,通过加入铁粉或者氢气还原硫酸铜溶液,
使其中的铜离子还原成固体的金属铜,化学反应方程式为:
CuSO4 + Fe → Cu + FeSO4。

然后是萃取阶段,通过有机溶剂来萃取金属离子,例如利用二
甲基苯酚(萘酚)来萃取铜离子,其化学反应方程式为:
2HNO3 + Cu → Cu(NO3)2 + H2O.
最后是电解阶段,将含铜离子的溶液进行电解,将铜离子还原成固体铜,化学反应方程式为:
Cu2+ + 2e→ Cu.
以上是湿法冶金提取铜的基本化学方程式,该原理在提取其他金属时也会有所不同,但都遵循类似的化学反应原理。

锌的湿法冶金方法概述

锌的湿法冶金方法概述

锌的湿法冶金
锌的湿法冶金是指使用水溶液作为冶炼锌的介质,其主要包括电解法、酸浸法和氨浸法等几种方法。

1.电解法:将锌精矿放入电解槽中,加入电解液(主要成分为硫酸和氯化铵),在外加
电流的作用下,锌离子被还原成金属锌沉积在阴极上。

这种方法具有效率高、能耗低等优点,是目前最主要的生产方式。

2.酸浸法:将锌精矿浸入硫酸水溶液中,利用硫酸的氧化作用将锌离子溶解出来。


种方法适用于高品位的锌矿石,但浸出过程中会产生大量的酸性废水,对环境造成污染。

3.氨浸法:将锌精矿浸入氨水溶液中,通过氨水的配位作用将锌离子溶解出来。

这种
方法对锌矿石的品位要求较低,同时产生的废水为碱性废水,对环境污染较小。

但该方法的操作成本较高。

以上三种方法各有优缺点,应根据不同情况选择合适的冶炼方式。

除了上述的电解法、酸浸法和氨浸法外,还有其他一些较为次要的湿法冶金方法。

4.氯化法:将锌精矿与氯气反应,生成氯化锌,再通过还原反应得到金属锌。

这种方
法主要应用于高品位的锌矿石,但因为氯气对环境的危害性较大,所以逐渐被淘汰。

5.氧化焙烧法:将锌精矿加入到反应炉中,通过高温氧化反应,将锌矿石中的锌转化
为氧化锌,再通过还原反应得到金属锌。

这种方法主要适用于低品位的锌矿石,但因为会产生大量的氧化废气,对环境造成了污染。

总的来说,湿法冶金方法相对于干法冶金方法来说,工艺流程更为复杂,但其适用范围更广,能够处理更多种不同品位的锌矿石,且可以生产出较为高纯度的金属锌。

但湿法冶金方法中会产生大量的废水和废气,需要进行处理和净化,以减少对环境的影响。

湿法冶金的原理,化学方程式

湿法冶金的原理,化学方程式

湿法冶金的原理,化学方程式
湿法冶金是一种利用溶液中的化学反应来提取金属的方法。

它通常用于提取贵金属如金、银等。

其原理是利用化学反应将金属从矿石中溶解出来,然后通过沉淀、电解或其他方法从溶液中提取金属。

以提取金为例,湿法冶金的过程包括破碎矿石、浸出、沉淀、纯化和提炼等步骤。

首先,矿石经过破碎后与氰化钠或氰化钾等物质混合,形成含有金的氰化物溶液。

然后,通过加入氢氧化钠或氢氧化钙来沉淀金,形成金的氢氧化物。

最后,通过加热或电解等方法将金从氢氧化物中提取出来,得到金属金。

化学方程式可以用来描述湿法冶金的化学反应过程。

以提取金为例,可以用以下化学方程式来描述:
1. 溶解金矿石,Au + 2CN+ 2OH→ Au(CN)2+ H2O.
2. 沉淀金氢氧化物,Au(CN)2+ 2OH→ Au(OH)2 + 2CN-。

3. 提取金属金,Au(OH)2 → Au + H2O.
这些化学方程式描述了湿法冶金中金的溶解、沉淀和提取过程。

当然,实际的湿法冶金过程可能会涉及到更多的化学反应和步骤,
具体的化学方程式会根据具体的提取金属和使用的化学试剂而有所
差异。

总的来说,湿法冶金利用化学反应将金属从矿石中提取出来,
通过溶解、沉淀和提取等步骤,最终得到纯金属。

这种方法在提取
贵金属方面具有重要的应用价值。

湿法冶金

湿法冶金

❖ 根据能斯特方程: G ZF
❖ 得: G2098 RT ln Kc
ZF
G2098 RT ln
b B
ZF
ZF
a A
n H
G2098 2.303RT lg
b B
ZF
ZF
a A
n H
0 A/
B
2.303RT ZF
(lg
b B
lg
a A
nPH )
0 A/ B
2.303RT ZF
lg
,气相为
❖ 3.反应的G0 等于生成物的G0 减去反应物G的0
❖ 例:Fe3 3OH Fe(OH)3
G908
G0 Fe (OH )3
[G 0 Fe
3
3G 0 OH
]
694.544 [10.586 3 (157.256)]
212.163(KJ )
❖ 三、影响物质稳定性的主要因素 ❖ 物质在水溶液中的稳定程度主要取决于溶液
PH 2
0.0591PH 0.0295 lg PH2

❖ 2. 在给定条件下,溶液中有电极电位比氢更正的 氧化剂存
❖ 在。以下两反应亦属于有电子得失,也有H+参

加的还 氧原 化反O02 / H应2O 。 2.3Z0F3RT
1
lg
P 4
H
O2

O2ZG+F20948 H2+.3Z0+3FR4Telg=H42 H l2gOPO2
❖ 因此水溶液中当电势低于a线,则水将被 分解析出H2,高于b线则析出O2,只有在a、b 线之间H2O才是稳定的。或者说所有在水溶液 中进行的反应,其氧化还原电势应在a线、b线 之间,否则将导致水分解析出H2或O2。

第湿法冶金原理课件 (一)

第湿法冶金原理课件 (一)

第湿法冶金原理课件 (一)第湿法冶金原理课件湿法冶金是冶金工艺中的一种炼铜、炼锌、炼锡、提金、提银、提钨、提钛等非铁冶金诸多工艺中广泛应用的方法。

在湿法冶金中,混合和矿石粉末熔炼的操作方式不同于操作流程。

1. 湿法冶金的定义湿法冶金是一种将矿石在水溶液的存在下用化学反应方法分离、提取所需金属的过程,比如将铜从含铜硫化物中分离等。

但是湿法冶金一般是一个要短于将矿石直接冶炼的过程。

2. 湿法冶金的原理湿法冶金适用于低品位的金属矿石,是通过溶浸、浮选、融炼和复合等手段,将所需的金属进行提取。

因而湿法冶金原理可通过以下几点进行说明:2.1 溶浸反应利用酸性溶液或氧化剂对含有金、铜、铝等金属的硫化或氧化矿石进行溶浸反应。

2.2 金属分离根据肖特基、法拉第等原理利用电现象将所需金属从已溶解于水中的金属中分离出来。

2.3 浮选金属利用氧化剂将已溶解于水中的金属浮于水面上或离心分离。

2.4 溶剂萃取利用有机溶剂对溶解在水中的金属进行萃取,随后再采用蒸馏技术去除有机溶剂。

3. 湿法冶金的优势和局限在经济和环境方面,湿法冶金具有以下优势:3.1 技术成熟湿法冶金在冶金领域具备着完善的技术体系和规范的操作流程。

3.2 能够利用低品位矿脉湿法冶金技术能够使用低品位矿脉,降低了开采的成本。

3.3 手段多样湿法冶金能够通过种种手段对不同种类的金属进行提取。

3.4 无二氧化硫污染由于运行水作为电解液所使用的二氧化硫源相对于其他冶金方法较少,因此采用湿法冶金不会产生环境污染。

但是湿法冶金也有以下的局限:3.5 历程时间较长湿法冶金所需的传送和处理过程较长,投入资本较大,即便湿法冶金在处理低品位的金属矿脉方面的投资也很高。

3.6 费用高湿法冶金的成本相较于其他冶金方法较高,并且净得率相对较低,即净得块产量(产品中有效的金属量)除以原矿的投资成本最终盈利能力较差。

3.7 难以实施控制湿法冶金过程中的变化较大,比如pH值、温度等参数难以实施有效的控制,因此更难达到良好的稳定状态。

湿法冶金的工艺流程和原理

湿法冶金的工艺流程和原理

湿法冶金的工艺流程和原理嘿,朋友们,今天咱们来聊聊湿法冶金。

这玩意儿听起来挺高大上的,其实呢,就是把金属从矿石里提取出来的一种方法。

就像你从一堆沙子里淘金一样,只不过这里的沙子换成了矿石,金子换成了各种金属。

首先,咱们得从矿石说起。

矿石,就是那些含有金属的石头。

这些石头里,金属是以化合物的形式存在的,不是纯金属。

所以,咱们得想办法把这些金属从化合物里分离出来。

湿法冶金的第一步,就是把矿石磨成粉末。

这就好比你要把豆子磨成豆浆,得先把它磨碎。

磨矿石的机器叫做球磨机,里面有很多铁球,矿石放进去,铁球就在里面滚来滚去,把矿石磨成粉末。

磨好的矿石粉末,下一步就是浸出。

这一步,就是把金属从矿石粉末里提取出来。

这就好比你要把豆浆里的豆渣过滤掉,留下纯豆浆。

浸出的方法有很多,最常见的就是用酸或者碱溶液。

把矿石粉末和酸或者碱溶液混合,金属就会溶解在溶液里,形成金属离子。

浸出后的溶液,里面含有金属离子,但是还有很多杂质。

所以,下一步就是净化。

这一步,就是把金属离子从溶液里分离出来,去除杂质。

这就好比你要把豆浆里的豆渣彻底过滤掉,留下纯豆浆。

净化的方法有很多,比如沉淀法、溶剂萃取法、离子交换法等等。

净化后的溶液,里面就只剩下金属离子了。

最后一步,就是把金属离子还原成纯金属。

这一步,就是把金属从溶液里提取出来,形成纯金属。

这就好比你要把豆浆里的蛋白质提取出来,做成豆腐。

还原的方法有很多,比如电解法、置换法、还原法等等。

好了,这就是湿法冶金的整个工艺流程。

听起来是不是挺复杂的?其实,这个过程就像你做豆浆一样,需要很多步骤,但是每一步都是为了把金属从矿石里提取出来。

湿法冶金的原理,其实就是化学反应。

金属从矿石里提取出来,就是通过化学反应实现的。

比如,浸出的时候,金属和酸或者碱发生反应,形成金属离子。

净化的时候,金属离子和杂质发生反应,形成沉淀或者被萃取出来。

还原的时候,金属离子发生还原反应,形成纯金属。

总的来说,湿法冶金就是通过一系列的化学反应,把金属从矿石里提取出来。

金属冶炼中的湿法冶金工艺

金属冶炼中的湿法冶金工艺
电积
对提取出的金属进行进一步提纯和精炼,以满足不同需求和应用。
精炼
湿法冶金工艺的应用
通过浸出、萃取、电积等工艺,从铜矿石中提取铜。
铜的湿法冶炼
采用浸出、净化、电积等工艺,从锌矿石中提取锌。
锌的湿法冶炼
通过拜耳法、联合法等工艺,从铝土矿中提取铝。
铝的湿法冶炼
钨的湿法冶炼
采用离子交换、萃取、沉淀等工艺ห้องสมุดไป่ตู้从钨矿中提取钨。
离心分离
溶剂萃取法
利用有机溶剂将目标金属离子从水相中萃取至有机相,实现净化和富集。
沉淀法
通过向溶液中加入沉淀剂,使目标金属离子以固体形式沉淀下来,实现净化和富集。
离子交换法
利用离子交换剂将目标金属离子吸附在交换剂上,实现净化和富集。
将净化和富集后的含金属离子的溶液通电,使金属离子在阴极上还原成金属析出。
总结词
湿法冶金工艺在生产过程中会产生大量的废气、废水和固体废物,这些废弃物如果不经过妥善处理,会对环境造成严重污染。例如,废气中的硫化物、氮化物等有害物质会导致酸雨、光化学烟雾等问题;废水中的重金属离子、酸碱物质等会导致水体污染、土壤污染等问题;固体废物则可能占用大量土地,且其中的有害物质可能渗透到土壤和地下水中。
新型反应器
设计新型反应器,优化反应条件,提高生产效率和金属纯度。
VS
将湿法冶金与其他冶金工艺(如火法冶金、电冶金等)相结合,实现优势互补,提高金属提取效率。
优化集成
对各种工艺进行优化集成,形成高效、环保的金属冶炼系统,实现资源的高效利用。
联合工艺
感谢观看
THANKS
详细描述
总结词:为了应对湿法冶金工艺面临的挑战,需要不断进行技术更新和改进。

金属冶炼的湿法冶金技术

金属冶炼的湿法冶金技术
湿法冶金技术还可以用于处理含放射性元素的矿石,提取其中的铀、钚等元素,为核能工业提供原料 。
废旧金属回收
• 湿法冶金技术在废旧金属回收领域中主要用于从废旧金属中提 取有价值的金属,如铜、镍、钴等。通过使用适当的化学试剂 ,可以将这些金属从废旧金属中溶解出来,再通过置换、吸附 或离子交换等方法,将金属从溶液中分离出来。这种方法能够 有效地回收利用废旧金属,减少资源浪费和环境污染。
盐法
利用盐类溶剂溶解矿石,再通 过分离和提纯得到金属的过程 。
氧化还原法
利用氧化剂或还原剂将矿石中 的金属元素进行氧化或还原, 再通过分离和提纯得到金属的
过程。
02
湿法冶金技术的原理
浸出过程
浸出过程是湿法冶金技术的核心环节,通过化学反应将矿石中的有价金属转化为可 溶性的化合物,使其从固体矿物中溶解出来进入溶液中。
稀有金属提取
• 湿法冶金技术在稀有金属提取领域中主要用于从复杂的矿物 原料或二次资源中提取稀有金属,如锆、铪、铌、钽等。这 些金属在高科技产业、航空航天等领域具有广泛的应用价值 。湿法冶金技术通过使用适当的化学试剂,将稀有金属从原 料中溶解出来,再通过分离和纯化,获得高纯度的稀有金属 产品。这种方法能够满足市场对稀有金属的需求,促进高科 技产业的发展。
01
利用微生物资源,实现金属的生物提取和分离,具有环保、低
能耗等优势。
电化学冶金技术
02
利用电化学原理,实现金属的高效提取和分离,具有工艺简单
、操作方便等优点。
溶剂萃取冶金技术
03
利用有机溶剂萃取金属离子,具有分离效果好、金属回收率高
、操作简便等优点。
THANKS
感谢观看
湿法冶金技术的历史与发展

湿法冶金简介

湿法冶金简介

利用高温从矿石中提取金属或其化合物的冶金过程。此过程没有水溶液参加,故又称 为干法冶金。
火法冶金的工艺流程一般分为矿石准备、冶炼、精炼3个步骤。
①矿石准备。选矿得到的细粒精矿不易直接加入鼓风炉(或炼铁高炉),须先加入冶 金熔剂(能与矿石中所含的脉石氧化物、有害杂质氧化物作用的物质),加热至低于 炉料的熔点烧结成块;或添加粘合剂压制成型;或滚成小球再烧结成球团;或加水混 捏;然后装入鼓风炉内冶炼。
都是常用的预备处理方法。
2、浸取溶液与残渣分离,同时将夹带于残渣中的冶金溶剂和金属离子回收。 3、净化:在浸出过程中,常常有部分金属或非金属杂质与被提取金属一道进入溶液,从溶液中除去这 些杂质的过程叫做净化。
4、制备金属:用置换、还原、电积等方法从净化液中将金属提取出来的过程。
湿法冶金与火法冶金的异同点
提取冶金简图
湿法冶金
CHAPTER 3
浸出过程
湿法冶金浸出过程
1.浸出物料及浸出剂 2. 浸出方法 3. 浸出种类
第一节 浸出物料及浸出剂
浸出是湿法冶金中最重要的单元过程。浸出的目的是选择适当的溶剂使矿 石、精矿或冶炼中间产品中的有价成分或有害杂质选择性溶解,使其转入溶 液中,达到有价成分与有害杂质或与脉石分离之目的。浸出物料也可能是冶 炼后的残渣、阳极泥、废合金等。
此法主要应用在低本位、难熔化或微粉状的矿石。 现在世界上有75%的锌和镉是采用焙烧-浸取-水溶液电解法制成的。这种方法已大部分代替了过去的火 法炼锌。其他难于分离的金属如镍-钴,锆-铪,钽-铌及稀土金属都采用湿法冶金的技术如溶剂萃取或离子 交换等新方法进行分离,取得显著的效果。湿法冶金在锌、铝、铜、铀等工业中占有重要地位,世界上全 部的氧化铝、氧化铀,大部分锌和部分铜都是用湿法生产的。 湿法冶金的优点在于对非常低品位矿石(金、铀)的适用性,对相似金属(铪与锆)难分离情况的适用 性;以及和火法冶金相比,材料的周转比较简单,原料中有价金属综合回收程度高,有利于环境保护,并 且生产过程较易实现连续化和自动化。

湿法冶金的名词解释

湿法冶金的名词解释

湿法冶金的名词解释湿法冶金是一种常见的冶金工艺,用水或其他液体溶解剂作为反应介质,在一定温度和压力下进行金属的分离、提纯、合成和回收。

与干法冶金相比,湿法冶金具有许多独特的优势,尤其适用于低品位矿石和复杂矿石的处理。

一、浸出和萃取浸出是湿法冶金中最基础的步骤之一,它是将金属从原始矿石中提取出来的过程。

在浸出过程中,矿石通常被破碎和抛光,然后被放入一个大型反应器中与特定的溶解剂接触。

溶解剂可以是水,也可以是酸或碱等化学物质。

溶解剂的选择取决于原始矿石的特性和所需分离金属的类型。

通过浸出,金属在溶解剂中溶解,形成含有金属离子的溶液。

而萃取是从溶液中选择性地分离和回收目标金属的过程。

一种常见的萃取方法是将溶液与一种称为提取剂的有机物接触。

提取剂分子具有两个或多个亲和性不同的配体基团,可以选择性地与特定金属离子形成络合物。

通过与提取剂相互作用,金属离子被从溶液中吸附到有机相中,从而实现金属的富集。

二、沉淀和结晶沉淀是一种常见的湿法冶金技术,用于从溶液中分离和回收金属。

在沉淀过程中,化学反应被利用来使金属以固体沉淀的形式从溶液中析出。

这通常涉及添加一种沉淀剂,例如盐酸或硫酸,与溶液中的金属离子产生反应,生成难溶的金属盐。

这种金属盐会以固体颗粒的形式沉淀下来,沉淀物可以经过过滤或沉淀分离设备进行分离和回收。

与沉淀相似,结晶也是一种从溶液中分离和纯化金属的方法。

结晶是通过控制溶液中金属的浓度和温度来实现的。

在适当的条件下,溶液中的金属离子会被引发结晶,形成结晶体。

通过结晶,金属可以以纯净晶体的形式得到回收。

三、电解和电沉积电解是一种利用电流将金属阳离子还原成纯金属的技术。

在电解过程中,一个金属阳极(即被氧化的金属)和一个金属阴极(即目标金属)被放置在电解槽中,中间由电解液隔离。

当电流通过电解槽时,金属阳离子会移动到阴极上并还原成金属原子,从而在阴极上沉积金属。

电沉积是一种类似于电解的过程,但它主要用于生产金属薄膜或涂层。

湿法冶金除铁的几种主要方法

湿法冶金除铁的几种主要方法

湿法冶金除铁的几种主要方法[引入]:湿法冶金是一种广泛应用的处理方法,在提取和纯化金属方面具有重要地位。

在湿法冶金过程中,铁是一种常见的杂质,其存在会对金属产品的纯度和质量产生不良影响。

因此,有效地去除铁成为湿法冶金过程中的关键步骤。

本文将介绍几种湿法冶金除铁的主要方法,并对其进行简要对比分析。

化学沉淀法是一种常用的湿法冶金除铁方法。

该方法的原理是利用化学反应将溶液中的铁离子转化为不溶性沉淀物,从而与目标金属分离。

化学沉淀法的主要工艺流程包括配制沉淀剂、加入沉淀剂、搅拌、静置、过滤、洗涤、干燥等步骤。

该方法的优点是操作简单、设备投资较小,适用于含铁量较低的溶液。

但化学沉淀法的缺点是会产生大量的废渣,且沉淀剂的纯度会影响目标金属的纯度。

溶剂萃取法是一种基于不同溶剂对目标金属和杂质溶解度差异的除铁方法。

该方法的原理是选用适当的溶剂,将目标金属与杂质分离。

溶剂萃取法的主要工艺流程包括选用溶剂、混合、萃取、分离、洗涤、干燥等步骤。

该方法的优点是分离效果好、目标金属纯度高,适用于处理含铁量较高的溶液。

但溶剂萃取法的缺点是操作复杂、设备投资较大,且溶剂的回收和再生过程容易导致环境污染。

离子交换法是一种借助于离子交换剂与溶液中的离子进行交换而除铁的方法。

该方法的原理是选用适当的离子交换剂,将其与溶液中的铁离子进行交换,从而去除铁离子。

离子交换法的主要工艺流程包括选用离子交换剂、混合、离子交换、洗涤、干燥等步骤。

该方法的优点是除铁效果好、操作简单、设备投资较小,适用于处理各种不同含铁量的溶液。

离子交换法的缺点是离子交换剂的再生和回收容易导致环境污染,且对设备有一定的腐蚀性。

[总结]:以上三种方法均为湿法冶金除铁的主要方法,各具优缺点。

化学沉淀法操作简单,但产生大量废渣且沉淀剂纯度会影响目标金属纯度;溶剂萃取法分离效果好、目标金属纯度高,但操作复杂、设备投资较大且易造成环境污染;离子交换法除铁效果好、操作简单、设备投资较小,但离子交换剂的再生和回收容易导致环境污染且对设备有一定的腐蚀性。

湿法冶金的原理与应用

湿法冶金的原理与应用

湿法冶金的原理与应用1. 湿法冶金的概述湿法冶金是一种利用溶液中的化学反应来提取或纯化金属的方法。

相比于干法冶金,湿法冶金具有反应速度快、操作灵活、对矿石种类适应性强等优势。

湿法冶金主要应用于金属提取、纯化、合金制备等领域。

2. 湿法冶金的原理湿法冶金的原理是基于溶液中发生的化学反应,通过反应使金属从矿石或合金中分离出来。

湿法冶金常用的化学反应包括溶解、沉淀、电解等。

以下是湿法冶金常用的原理及其应用:2.1 溶解将矿石或合金放入溶剂中,使金属与溶剂发生化学反应,使金属离子在溶液中离解。

常见的溶解反应有氧化、酸性溶解等。

2.1.1 氧化溶解将矿石或合金暴露在氧气中,使金属发生氧化反应生成金属氧化物,进而在酸性环境中溶解生成金属离子。

氧化溶解广泛应用于铜、铅、锌等金属的提取。

2.1.2 酸性溶解在适当的酸性条件下,矿石或合金与酸发生化学反应,生成溶解金属离子。

酸性溶解常用于提取铁、铝等金属。

2.2 沉淀利用反应产生的沉淀将金属从溶液中分离出来,常见的沉淀方法有加热、加碱等。

2.2.1 加热沉淀通过加热溶液中的金属离子,使其与其他物质发生反应,生成不溶于溶液的金属化合物。

这些金属化合物以沉淀的形式从溶液中分离出来。

加热沉淀常用于分离贵金属如金、银等。

2.2.2 加碱沉淀通过加入碱性溶液,使金属离子与碱发生反应生成金属氢氧化物沉淀。

加碱沉淀常用于提取铜、铁等金属。

2.3 电解通过电解过程将金属离子还原成金属,从而从溶液中纯化金属或合金。

电解是一种重要的湿法冶金技术,广泛应用于铜、锌、铝等金属的纯化。

3. 湿法冶金的应用3.1 金属提取湿法冶金是提取金属的重要方法之一。

通过溶解、沉淀、电解等过程,将金属从矿石中分离出来。

湿法冶金常应用于铜、铅、锌、铝等金属的提取过程。

3.2 金属纯化湿法冶金可将金属从合金或杂质中纯化,提高金属的纯度。

通过选择适当的溶液、反应和沉淀条件,使金属与杂质分离,从而得到纯净金属。

镍的生产工艺

镍的生产工艺

镍的生产工艺
镍是一种重要的金属材料,广泛应用于航空航天、电子、化工、建筑、医疗等领域。

目前主要的镍生产工艺包括岩浆冶金法、湿法冶金法和碳酸盐冶金法。

1. 岩浆冶金法:
岩浆冶金法是利用镍硫化矿石进行镍的提取。

首先,将矿石破碎,并进行磨矿处理,以便得到矿石浆。

然后,通过氧化焙烧、还原焙烧等工艺将矿石中的硫化镍转化为金属镍。

接下来,将金属镍浸入硫酸溶液中,经过浸出、沉淀、过滤等步骤,得到含镍的溶液。

最后,通过电解法或其他方法,从溶液中沉积出纯度较高的镍。

2. 湿法冶金法:
湿法冶金法是利用氧化镍或镍盐进行镍的提取。

首先,将氧化镍或镍盐与酸性溶液进行反应,产生含镍离子的溶液。

然后,通过沉淀、过滤等步骤,将镍沉淀出来,得到含镍的固体物。

最后,经过干燥、煅烧等处理,得到纯度较高的镍。

3. 碳酸盐冶金法:
碳酸盐冶金法是利用镍硫化矿石进行镍的提取。

首先,将矿石破碎,并进行磨矿处理,以便得到矿石浆。

然后,通过氧化焙烧、还原焙烧等工艺将矿石中的硫化镍转化为金属镍。

接下来,将金属镍与碳酸盐溶液反应,产生碳酸镍。

最后,将碳酸镍经过煅烧等处理,得到纯度较高的镍。

总的来说,镍的生产工艺主要包括岩浆冶金法、湿法冶金法和碳酸盐冶金法。

这些工艺各有优缺点,但都能够高效地提取镍,并满足各种工业领域对镍的需求。

镍的生产工艺在不断地发展创新,以提高提取效率、降低能耗,并减少对环境的影响。

湿法冶金的概念

湿法冶金的概念

湿法冶金的概念湿法冶金是一种通过在液相介质中处理金属矿石来提取金属的冶金方法。

与干法冶金相比,湿法冶金更加灵活,适用于处理各种矿石类型,并且能够根据需要调整处理参数以提高金属的回收率。

湿法冶金包括液相浸出、溶解、分离和纯化等过程,而这些过程通常是在溶剂中进行的。

下面将详细介绍湿法冶金的概念及其应用。

首先,湿法冶金的核心概念是将金属矿石浸入溶剂中,通过化学反应或物理分离等方式将金属从矿石中提取出来。

在湿法冶金中,溶剂的选择至关重要,它需要具有高效溶解金属的能力,并且对其他矿石组分具有较小的溶解能力。

一般来说,酸性、碱性或者浸出剂等都可以作为溶剂来使用。

而且,湿法冶金通常需要依赖化学反应来促进金属的溶解和分离。

湿法冶金的应用非常广泛,从初级金属提取到高级金属精炼都可以使用湿法冶金方法。

其中,浸出和溶解是湿法冶金中最常见的过程,其目的是将金属从矿石中析出。

浸出通常涉及使用酸性或碱性溶液,将金属从矿石中溶解出来。

而溶解则是使用特定的化学溶剂来将金属溶解出来。

浸出和溶解过程通常与其他物理或化学处理过程相结合,如固液分离、浸出剂的再生和废液处理等。

湿法冶金广泛应用于黄金、银、铜、铁、钴、镍、锌等金属的提取。

例如,黄金提取通常使用氰化物溶剂,将黄金从矿石中溶解出来,然后通过电解或吸附等方式将金属还原成金属状态。

铜的提取通常使用硫酸或氯化物作为溶剂,将铜从矿石中溶解出来,然后通过铁粉还原得到金属铜。

而锌的提取则常常使用硫酸或氯化物作为溶剂,在高温条件下将锌从矿石中溶解出来,并通过电解等方式纯化得到金属锌。

湿法冶金的优点之一是能够处理一些难处理的矿石,如含砷、含铜、含锌和难溶于酸碱的矿石。

此外,湿法冶金对矿石的物理性质要求相对较低,处理过程中的温度、浓度和压力等参数可以根据需要来调整。

此外,湿法冶金还具有较低的操作成本和较高的金属回收率。

然而,湿法冶金也存在一些局限性,如溶剂选择的限制、处理废水和废液的环境污染等问题。

湿法冶金第四章

湿法冶金第四章

(一)矿石矿物组成 矿石和精矿通常都是由一系列的矿物组成,成分十分 复杂,有价矿物常呈氧化物、硫化物、碳酸盐、硫酸 盐.砷化物、磷酸盐等化合物存在,也有以金属形态存在 的金、银、天然铜等。必须根据原料的特点选用适当的溶 剂和浸出方法。表4-1是常见矿物的名称及其组成。
表4-1 常见金属矿物的名称及组成
K2O·2UO3·V2O5+6Na2CO3+2H2O=2Na4[UO2(CO3)3]+2KVO3+4NaOH
有氧化剂(O2)存在时:
U3O8+1/2O2+9Na2CO3+3H2O=3Na4[UO2(CO3)3]+6NaOH UO2+1/2O2+3Na2CO3+H2O=Na4[UO2(CO3)3]+2NaOH
2.硝酸 硝酸本身是强氧化剂,ε NO / NO = 0.96 伏,反应能力强;但易 挥发,价格贵,一般不单独采用硝酸作浸出剂。有时仅作氧 化剂使用。 3.盐酸 盐酸能与金属、金属氧化物、碱类及某些金属硫化物作 用生成可溶性的金属氯化物。最成功的应用是钴渣和镍冰铜 的盐酸浸出。 钻渣是镍电解精炼净液过程中的中间产品之一。钻渣中 的镍、钴均以高价氢氧化物存在,在盐酸浸山时可视为氧化 剂,主要的浸出反应如下: 2Co(OH)3+6HCl=2CoCl2+6H2O+Cl2 2Ni(OH)3+6HCl=2NiCl2+6H2O+Cl2
4.Na2S 是砷、锑、锡、汞硫化矿的良好浸出剂。硫化锑在氢 氧化钠和硫化钠的混合液中,浸出率达99%以上。因为Na2S 可以与As2S3、Sb2S3、HgS、SnS作用,生成一系列稳定的金 属硫离子络合物: Sb2S3+3S2-==2SbS33Sb2S3+S2- ==2SbS2As2S3+S2- ==2AsS2As2S3+3S2- ==2AsS33HgS+S2- ==HgS22SnS2+S2- ==SnS32为防止Na2S水解,通常在浸出液中添加NaOH: Na2S+H2O==NaHS+NaOH NaHS+H2O==H2S+NaOH

湿法冶金发展的方向和方法

湿法冶金发展的方向和方法

湿法冶金发展的方向和方法湿法冶金是一种利用液相体系进行金属冶炼和提取的方法,它与传统的干法冶金相比,具有能耗低、环境友好、高效快捷等优势。

在未来的发展中,湿法冶金将面临许多挑战和机遇,需要探索新的方向和方法来实现可持续发展。

以下是湿法冶金发展的几个重要方向和方法的介绍。

1.矿石直接浸出法:传统的矿石冶炼过程中,常常需要先进行矿石的破碎和磨细,然后再进行氧化或还原等步骤,才能将有用金属物质转化成可溶性的化合物。

而矿石直接浸出法则是通过直接将矿石与溶剂相接触,使得有用金属物质溶解出来。

这种方法可以有效减少矿石破碎和磨细的能耗,实现矿石的“零废弃冶金”。

2.废弃物回收法:湿法冶金过程中会产生大量的废弃物,如废浆、废水、废渣等,在传统的冶金方法中往往被视为废物进行处理或排放。

但随着环境保护意识的提高,废弃物回收成为了一个重要的方向。

通过湿法冶金技术,可以将废弃物中的有价值的金属物质回收利用,从而实现资源的循环利用和减少废物排放的目标。

3.电化学冶金法:电化学冶金利用电解的原理来进行金属的提取和纯化。

相对于传统的热力学冶金方法,电化学冶金具有温度低、选择性高、能耗低等优势。

未来的发展中,将会不断探索新的电化学冶金体系以及优化电解过程的条件,以增强金属提取和纯化的效率。

4.催化剂的应用:催化剂在湿法冶金中可以起到催化反应、促进溶解、加速反应等作用。

通过合理设计和选择催化剂,可以提高湿法冶金过程的反应速率和效率,减少能耗和副产物的产生。

因此,催化剂的研发和应用将是湿法冶金发展的重要方向之一5.绿色技术的推广:湿法冶金相对于传统的干法冶金来说,更加环境友好,但仍然存在一些问题,如废物处理、能耗等。

因此,在未来的发展中,需要进一步推广和应用一些绿色技术,如生物冶金、电子废物回收等,来减少对环境的影响,并促进湿法冶金的可持续发展。

总之,湿法冶金作为一种环保、高效的冶金方法,将在未来得到更广泛的应用。

通过深入研究和探索新的方向和方法,可以进一步提高湿法冶金的效率和可持续性,实现资源的高效利用。

湿法冶金原理

湿法冶金原理

湿法冶金原理湿法冶金是一种利用液体溶剂进行金属提取和精炼的方法。

在湿法冶金过程中,重要的原理包括溶解、析出、沉淀、萃取和电解。

本文将从这些原理入手,介绍湿法冶金的基本原理和应用。

一、溶解溶解是湿法冶金的基础过程,主要通过将金属物质溶解于液体溶剂中来实现。

常见的液体溶剂包括水、酸和碱溶液。

不同的金属和矿石对应不同的溶解条件,溶解过程可以通过调整溶剂pH值、加热、搅拌等方式进行控制。

溶解可以使目标金属从矿石中分离出来,为下一步的提取和精炼做好准备。

二、析出和沉淀析出和沉淀是将金属从溶液中分离出来的关键过程。

在湿法冶金中,通常通过调整溶液中的物理和化学条件来实现目标金属的析出和沉淀。

例如,通过改变溶液的温度、pH值、浓度等参数,可以控制金属的溶解度,从而实现金属的析出和沉淀。

析出和沉淀还可以通过加入沉淀剂来促进反应的进行,使金属以固体形式沉淀下来。

三、萃取萃取是将目标金属从溶液中提取出来的过程。

萃取通常使用有机溶剂来提取目标金属,通过将金属从水相转移到有机相中实现分离。

常用的有机溶剂包括酸性有机溶剂、氮基有机溶剂和螯合剂等。

萃取过程需要控制溶剂的选择、温度、浓度等条件,以提高金属的提取率和纯度。

萃取是湿法冶金中常用的分离工艺,可广泛应用于金、铜、铝等不同金属的提取和富集。

四、电解电解是利用电流在电解槽中将金属离子还原为金属的过程。

在电解过程中,溶液中的金属离子会在电极上还原成金属沉积。

电解是湿法冶金中常用的金属提纯和精炼方法,可以通电解槽的设计和操作条件来控制产物的纯度和形态。

电解是一种高效、精确的提取和精炼手段,广泛应用于铜、锌、银等金属的生产过程中。

湿法冶金作为一种重要的金属提取和精炼方法,已在工业生产中发挥了重要作用。

通过溶解、析出、沉淀、萃取和电解等原理的应用,可以实现对金属的高效分离和纯化,提高金属的产量和品质。

随着技术的进步,湿法冶金在资源利用、环境保护和能源节约等方面还有着广阔的发展前景。

湿法冶金发展的方向和方法

湿法冶金发展的方向和方法

湿法冶金发展的方向和方法
湿法冶金是20世纪才开始普遍推广和发展的新型冶金技术,它以水为介质,以电解为基础,聚合电解池中特定的杂质,以实现其中一种金属的回收或分离,是现代冶金技术的一大创新。

近几年,湿法冶金技术逐步取代烘箱冶金的传统工艺,被证实是一种安全、高效、节能和环境友好的冶金工艺。

1.高精度湿法冶金工艺
高精度湿法冶金技术是湿法冶金技术的发展方向之一,它着重于使用高精度电解池来实现金属分离及回收,在这一过程中可以极大程度上提高冶金技术的精度,更有效地满足各种金属分离要求。

2.节能湿法冶金工艺
节能湿法冶金是湿法冶金另一个重要发展方向。

节能湿法冶金工艺可以通过控制电解质的浓度,减少电解池的容量,减少电解池的耗电量,从而实现节能的目的,从而大大减少冶金企业的能耗支出,降低整体的运营成本。

3.安全湿法冶金工艺
安全湿法冶金工艺是20世纪发展起来的新型湿法冶金技术,它着重于强调安全的要求,尤其是在高温、高电压、高浓度高温、高电流等情况下,必须采用相应的安全措施,确保操作的安全性。

湿法冶金(一)

湿法冶金(一)

湿法冶金(一)湿法冶金是利用浸出剂将矿石、精矿、焙砂及其他物料中有价金属组分溶解在溶液中或以新的固相析出,进行金属分离、富集和提取的科学技术。

由于这种冶金过程大都是在水溶液中进行,故称湿法冶金。

湿法冶金的历史可以追溯到公元前200年,中国的西汉时期就有用胆矾法提铜的记载。

但湿法冶金近代的发展与湿法炼锌的成功、拜尔法生产氧化铝的发明以及铀工业的发展和20世纪60年代羟肟类萃取剂的发明并应用于湿法炼铜是分不开的。

随着矿石品位的下降和对环境保护要求的日益严格,湿法冶金在有色金属生产中的作用越来越大。

湿法冶金主要包括浸出、液固分离、溶液净化、溶液中金属提取及废水处理等单元操作过程。

一、浸出浸出是借助于溶剂选择性地从矿石、精矿、焙砂等固体物料中提取某些可溶性组分的湿法冶金单元过程。

根据浸出剂的不同可分为酸浸出、碱浸出和盐浸出。

根据浸出化学过程分为氧化浸出和还原浸出。

根据浸出方式分为堆浸、就地浸、渗滤浸、搅拌浸出、热球磨浸出、管道浸出、流态化浸出。

根据浸出过程的压力可分为常压浸出和加压浸出。

影响浸出速度的因素主要有固体物料的组成、结构和粒度、浸出剂的浓度、浸出的温度、液固相相对流动的速度和矿浆粘度等。

(一)以溶剂分类1.酸浸出是用酸作溶剂浸出有价金属的方法。

常用的酸有无机酸和有机酸,工业上采用硫酸、盐酸、硝酸、亚硫酸、氢氟酸和王水等。

硫酸的沸点高,来源广,价格低,腐蚀性较弱,是使用最广泛的酸浸出剂。

在有色冶金中硫酸常用于氧化铜矿的浸出、锌焙砂浸出、镍锍和硫化锌精矿的氧压浸出等。

盐酸的反应能力强,能浸出多种金属、金属氧化物和某些硫化物。

如用来浸出镍锍、钴渣等。

但盐酸及生成的氯化物腐蚀性较强,设备防腐要求较高。

硝酸是强氧化剂,价格高,且反应析出有毒的氮氧化物,只在少数特殊情况下才使用。

2.碱浸出用碱性溶液作溶剂的浸出方法。

常用的碱有氢氧化钠、碳酸钠和硫化钠。

铝土矿加压碱浸出是碱浸出最重要的应用实例。

碱浸出还用于浸出黑钨矿、铀矿(Na2CO3浸出UO3)、硫化和氧化锑矿(Na2S+NaOH浸出)等。

干法冶金和湿法冶金

干法冶金和湿法冶金

干法冶金和湿法冶金冶金啊,就像是一场神奇的魔法,把矿石里的宝贝给变出来。

这里面有干法冶金和湿法冶金两大魔法门派呢。

干法冶金啊,就像是用火来烤东西一样直接。

它主要是在高温下对矿石进行加工处理。

就好比咱们烤红薯,把红薯放在火里烤,高温能让红薯发生变化,变得香甜可口。

干法冶金里,高温能让矿石里的金属和其他物质分开。

像炼铁的时候,把铁矿石和焦炭等原料一起放进高炉里,那高炉里的高温就像是一个超级大烤箱,矿石在里面被加热到很高的温度,然后杂质就慢慢被去除,铁就被提炼出来了。

这种方法简单直接,不需要太多的液体参与,就像咱们炒菜的时候,有些菜直接炒干炒香就可以了,不需要加水一样。

不过干法冶金也有它的难处。

这高温可不好控制啊,就像火大了容易把菜烧焦一样,温度太高或者加热时间太长,可能会让金属受到一些不好的影响,比如金属的性能可能会变差。

而且干法冶金的设备往往很复杂,就像一个庞大的机器怪兽,建造和维护都要花不少钱呢。

再说说湿法冶金,这就像是给矿石洗个澡,让金属从矿石里乖乖地跑出来。

湿法冶金主要是用各种化学溶液来处理矿石。

这就好比咱们洗衣服,衣服脏了,用洗衣液加上水,就能把脏东西去掉。

在湿法冶金里,化学溶液就像是神奇的洗衣液,矿石放进溶液里,溶液里的化学物质就和矿石里的金属发生反应。

比如说从铜矿石里提取铜,把铜矿石放到硫酸铜溶液里,通过一系列的化学反应,铜就被提取出来了。

湿法冶金的好处是能处理一些比较复杂的矿石,就像有些特别脏的衣服,用普通的方法洗不干净,就得用特殊的洗衣液和方法来洗,湿法冶金就能处理那些干法冶金搞不定的矿石。

但是呢,湿法冶金也不是十全十美的。

这化学溶液可不是好惹的,处理不好就会对环境造成污染,就像废水乱排会污染河流一样。

而且这个过程也比较复杂,要精确控制溶液的浓度、反应的温度和时间等等,就像做一道复杂的菜,调料放多少、火候多大、煮多长时间都得拿捏得准准的。

干法冶金和湿法冶金都有自己的优缺点。

要是矿石比较简单,对金属的纯度要求不是特别高,干法冶金就像个大力士,一下子就能把活儿干得差不多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
适温细菌和其他靠吃矿石为生细菌如何氧化酸性金属的 机理不得而知。化学和生物作用将酸性金属氧化变成可溶性 的硫酸盐,不可溶解的贵金属留在残留物中,铁、砷和其他 贱金属,如铜、镍和锌进入溶液。溶液可与残留物分离,在 溶液中和之前,采取传统的加工方式,如溶剂萃取,来回收 贱金属,如铜。残留物中可能存在的金属,经细菌氧化后,
5.细菌的进一步改造和重新构建
诱变育种: 分离获得的菌种,在改造上要选择具以下特征进行育种:
1)具有很高的氧化铁或硫的能力 2)具再生生长能力 3)已有相当程度的变异。诱变后,挑选浸出效率提高,又具
稳定遗传性的突变菌株。
基因工程构建新菌株 筛选合适酶的菌株 → 确定酶基因的位置(基因或质粒)
钩端螺菌属
所有的钩端螺菌属菌都是严格好氧微生物,专一性地通过 氧化溶液中的Fe3+或矿物质中的Fe2+来获取能量。
硫化杆菌属
能量来源是Fe2+、硫磺和其它矿物。该属菌严格好氧且极度嗜 酸。
2.微生物冶金的原理 • 细菌直接作用浸矿 细菌对矿石存在着直接氧化的能力,细菌与矿石之间通过
物理化学接触把金属溶解。从而使金属从矿石中提取出来。
→ 如基因组则提取及纯化基因组染色体 → 将纯化后的基 因片段克隆到大肠杆菌的质粒上 → 检出被转化的大肠杆菌 → 从转化菌中提取质粒,切割质粒上相关的酶基因片段 → 检测所获酶基因片段及由该基因表达的酶的氨基酸顺序 → 构建穿梭质粒,将酶基因导入目的硫杆菌内 → 表达。
6.细菌浸出扩大试验(工业级)
培养温度的初步确定 培养温度根据菌种来源而定。有适合30℃培养的,但中度嗜热
菌的最佳生长温度约50℃,极度嗜热菌最适生长温度60~70℃。 通过初步设定培养温度可以有选择地获得一些适于特定环境浸出 的微生物类群。培养基pH以3~4为宜。还必须通气,避免阳光照 射等以利繁殖。
3.驯化培养
• 驯化培养就是不断提高目的矿样在培养基中的浓度,同时不 断减少其他易于被菌体分解利用的化合物的量,直至完全停 止。
细菌间接作用浸矿
细菌能把金属从矿石中溶浸出来是细菌生命活动中生成 代谢物的间接作用 ,例如细菌作用产生硫酸和硫酸铁,然后 通过硫酸或硫酸铁作为溶剂浸提出矿石中的有用金属 。
3. 浸矿用菌的开发途径
从已有菌 群中开发
基因工程 构建和重组
获得新性状菌 株(工程菌)
接矿小试验 及扩大试验
效果不明显 抛弃 效果明显 菌种保藏
ห้องสมุดไป่ตู้• 但跟国外比还有很大差距,如对浸矿微生物菌种没有监控,对菌 种生理状态等也缺乏全面认识,不能很好指导浸矿。我国还 没 有真正建立起一家细菌浸矿工厂。
1.与微生物冶金有关的菌类
硫杆菌属
包括至少14种,最重要的是氧化亚铁硫杆菌和氧化硫硫杆菌。 硫杆菌属无机化能营养型,细胞为革兰氏阴性,棒状。直径0.3 ~0.8 μm ,长0.9~2.0 μm 。菌体通过单极生鞭毛进行运动,许多 菌体表面还有粘液层。
什么是微生物湿法冶金?
微生物湿法冶金,又称生物浸出技术,通常指矿石的细菌 氧化或生物氧化,由自然界存在的微生物进行。这些微生物 被称作适温细菌,大约有0.5~2.0微米长、0.5微米宽,只能 在显微镜下看到,靠无机物生存,对生命无害。这些细菌靠 黄铁矿、砷黄铁矿和其他金属硫化物如黄铜矿和铜铀云母为
生。
搅拌浸出、堆浸和原位浸出3种方法。
• 驯化培养实际上是定向选择抗性菌体的过程,一开始可能所 需时间比较长,但随着目的菌数的不断增多,驯化培养的周 期会不断缩短。
• 当菌体对某种金属离子具有较强的耐受力,或菌数在一个较 短周期内到达108~109个/ml时,驯化菌样就可用于生物浸 矿试验。
4.浸矿试验
浸矿试验要注意以下因素:
酸度: 细菌氧化过程中,pH的选择非常重要。有菌体培 养 物、处理硫化矿物及氧化工艺造成的影响。 大部分控制pH2~3。
堆矿环境呈酸性,温度60~80 ℃,是理想的采样地 点。这些菌活跃在浸矿液、矿石表面等区域。
2.在合适条件下培养样品
• 培养基的选择
刚采集到的样品一般不直接用于接矿培养基来培养。通常选 择一些易于菌体分解利用的培养物来扩大菌体数量。
由于冶金菌多为自养型细菌,培养基中一般加入硫酸胺或硝 酸钾、磷酸钾、硫酸镁、硫酸铁、硫等作为N及矿物质来源。
通气 : 对好氧嗜酸菌很重要。 当溶解氧下降至0.5~1.0mg/L 时,细菌氧化很 快停止。但堆矿工艺不通气,只在矿堆上撒水。
温度: 一般情况下,细菌最适生长温度并不等于最适浸出温度。 每种细菌都有最适生长温度与浸出温度。 硫化矿物的量:搅拌浸出法矿浆浓度并非越高越好。较高矿浆浓 度下,需氧量高,需提高搅拌速度,对细菌剪切力随之增加,使细 菌难于吸附到矿物表面;同时在同样条件下矿浆浓度越高,相对吸 附到矿体表面的细菌数目就少,从而降低细菌的氧化速率。 其他(如营养物等)
通过氰化物提取。
微生物冶金工业流程
基本情况
• 国外在生物冶金方面的研究起步较早,目前许多国家已实现了铜 矿、油矿、金矿等一系列矿种的微生物工业化浸出生产。此外, 已有大量的现代生物学手段被引入工业化生产,对其中的金矿微 生物进行有效监控。如用免疫荧光标记技术来活体检测菌体的吸 附过程,用蛋白质定量分析来确定菌体对矿石的吸附量等。
• 国内系统研究适于1959年。1972年开始有微生物湿法冶金技术 应用于工业化生产(细菌浸出铜铀半生矿)。1977年完成高硫锰 矿和锡矿的微生物浸出半工业化生产。1994年在陕西进行吨位黄 铁矿类型贫瘠矿的细菌堆浸实验,金回收率提高58%(原矿含金 量只有0.54g/吨);1995年以后有更多的开发应用。
工业化生产
野外采 样开发
不断 驯化培养
接矿小试验 扩大试验
效果不明显 继续驯化 基因改造
效果明显
细致研究
改善浸出条件 提高浸出效率
浸矿微生物开发
• 1.选择适合的采样地点
• 浸矿微生物可能存在的地点: 矿山、矿堆或尾矿中流淌出来的酸性水 矿石本身 热泉水样或矿浆
微生物一般集中选择在低pH条件下,其最适生长温 度分为30℃(中温菌)、45℃(中度嗜热菌)或70~ 80℃(极度嗜热菌)的类群。
相关文档
最新文档