中考数学新定义题型专题复习

合集下载

中考数学题号复习:25题 新定义题型

中考数学题号复习:25题   新定义题型

中考题号复习:25题 新定义题型射影1. 如图所示,在平面内有一线段AB ,分别过A 点,B 点向x 轴作垂线,垂足分别为C 、D ,我们把线段CD 称之为线段AB 在x 轴上的射影,线段CD 的长称之为线段AB 在x 轴上的射影长.(1)双曲线x y 4=上有两点A 、B ,A(m ,4),B(n ,1),求AB 在x 轴上 的射影长;(2)直线a x y +=21的图像上有两点A 、B ,AB 在x 轴上的射影长为4, 求AB 的长;(3)已知抛物线c bx ax y ++=2和直线bx y -=,其中c b a 、、满足 c b a >>,抛物线过点(1,0),且与直线相交于A 、B 两点,求线段AB 在x 轴上的射影长CD 的取值范围.限变点若⎩⎨⎧<-≥=1,1,'a b a b b ,则点Q 为点P 的限变点,例如:点(2,3)的限变点的坐标是(2,3),点(-2,5)的限变点的坐标是(-2,-5).(1)①点(1,3)的限变点的坐标是 ;②在点A (-2,-1),B (-1,2)中有一个点是函数y=x2的图像上某一个点的有限变点,这个点是 ;(2)若点P 在函数y=-x+3(2,2->≤≤-k k x )的图像上,其限变点Q 的坐标'b 的取值范围是25'≤≤-b ,求k 的取值范围;(3)若点P 在关于x 的二次函数t t tx x y ++-=222的图像上,其限变点Q 的纵坐标'b 的取值范围是,求令其中或n -m s ,m ,b ''=><≥n n m b s 关于t 的函数解析式及s 的取值范围.联姻函数3. 定义若存在实数对坐标(x ,y )同时满足一次函数y=px+q 和反比例函数y=x k,则二次函数y=k qx px -+2为一次函数与反比例函数的“联姻”函数.(1)试判断(需要写出判断过程):一次函数y=-x+3和反比例函数y=x 2是否存在“联姻”函数,若存在,写出它们的“联姻”函数和实数对坐标;(2)已知:整数m ,n ,t 满足条件t<n<8m,并且一次函数y=(1+n )x+2m+2与反比例函数xy 2015=存在“联姻”函数2015)10()(2--++=x t m x t m y ,求m 的值; (3)若同时存在两组实数对坐标),(11y x 和),(22y x 使一次函数y=ax+2b 和反比例函数x c y =为“联姻”函数,其中a>b>c,a+b+c=0,设L=| x1-x2 |,求L 的取值范围.和谐点4. 在平面直角坐标系中,如果点P 的横坐标和纵坐标都相等,则称点P 为和谐点.例如点(1,1),(21-,21-)(2-,2-)……都是和谐点. (1)分别判断函数23+-=x y 的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数)0(242≠-+=a x ax y 的图象经过和谐点(2,2),且当m x ≤≤0时,函数(3)直线3:+=kx y l 经过和谐点P ,与x 轴交于点D ,与反比例函数x n y G =:的图象交于N M ,两点(点M 在点N 的左侧),若点P 的横坐标为23,且24<DN DM +,求n 的取值范围.梦之点5. 在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点称为“梦之点”.例如点)1,1(--,)0,0(,)2,2(,…都是“梦之点”.显然,这样的“梦之点”有无数个.(1)若点P (2,m )是反比例函数n y x =(n 为常数,n ≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数31y kx s =+-(k ,s 是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,说明理由;(3)若二次函数21y ax bx =++(a ,b 是常数,a >0)的图象上存在两个不同的“梦之点”157值范围.定义域、值域、区间6. 定义:自变量为x 的某个函数记为)(x f ,当自变量x 取某个实数0x 时的函数值记为)(0x f ,自变量x 的取值范围称为函数的定义域,定义域内的自变量x 对应的所有函数值的集合称为函数的值域.若b a ,是任意两个不相等的实数,我们规定:满足不等式b x a ≤≤的实数x 的所有取值的全体叫做闭区间,记为[]b a ,.(1)设反比例函数)0()(>k xk x f =的定义域是[]6,3,值域为[]a ,2,求a k ,的值; (2)一次函数)0()(≠+=k b kx x f 的定义域是[]1,3-,值域为[]9,5,求函数的解析式;(3)是否存在这样的c b ,,使得二次函数c bx x x f ++=2)(的定义域是[]2,4-,值域为[]10,6,若存在,求出c b ,的值;若不存在,说明理由.相反点7. 已知y 是关于x 的函数,若其图象经过点),(t t P -,则称点P 为函数图象上的“相反点”.例如:直线32-=x y 上存在“相反点”)1,1(-P .(1)在双曲线x y 1-=上是否存在“相反点”?若存在,请求出P 点的坐标;若不存在,说明理由;(2)若抛物线192)132(2122+---+-=a a x a x y 上有“相反点”,且与直线x y -=相交于点),(11y x A 和),(22y x B ,求2221x x +的最小值;(3)若函数2)1(412-++--+=k m x k n x y 的图象上存在唯一的一个“相反点”,且当21≤≤-n 时,m 的最小值为k ,求k 的值.美丽抛物线8. 已知如图,直线b x y l +=31:,经过点)41,0(M ,一组抛物线的顶点),1(11y B ,),2(22y B ,),3(33y B ……),(n n y n B (n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:)0,(11x A ,)0,(22x A ,)0,(33x A ……)0,(11++n n x A ,设)10(1<<x d x =. (1)求b 的值;(2)设过211,,A B A 三点的二次函数的表达式为n m x a y ++=2)(,求此表达式(用含d 的代数式表示);(3)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.探究:当)10(<<x d 的大小变化时,这组抛物线是否存在美丽抛物线?若存在,请你求出相应的d 值.特征数9. 定义:任何一个一次函数q px y +=,取出它的一次项系数p 和常数项q ,有序数组[]q p ,为其特征数.例如:52+=x y 的特征数是[]5,2,同理,[]c b a ,,为二次函数c bx ax y ++=2的特征数.(1)若特征数是[]1,2+m 的一次函数为正比例函数,求m 的值;(2)以y 轴为对称轴的二次函数c bx ax y ++=2的图象经过),2(m A 、)1,(n B 两点(其中0>m ,0<n ),连接AB OB OA ,,,得到OB OA ⊥,10=∆AOB S ,求二次函数c bx ax y ++=2的特征数.伴随函数10. 如果把y 是以x 为自变量的函数,记作为)(x f y =,给出如下定义:对自变量取值范围的任意实数t ,当自变量x 满足1+≤≤t x t 时,函数)(x f y =的最大值为t M ,最小值为t m ,t M -t m 是以t 为自变量的函数,记作t t m M t g -=)(,我们把函数t t m M t g -=)(称为函数)(x f y =的“伴随函数”.(1)函数53+-=x y 的“伴随函数”为)(t g = ;(2)已知函数)40(42≤≤-=x x x y ,求出函数y 的“伴随函数”的表达式;(3)当函数b x y +=的图象与)40(42≤≤-=x x x y 的“伴随函数”的图象恰好只有两个公共点,求b 的取值范围.。

专题2.4新定义的四种题型与真题训练-中考数学考前30天迅速提分复习方案(上海专用)(解析版)

专题2.4新定义的四种题型与真题训练-中考数学考前30天迅速提分复习方案(上海专用)(解析版)

专题2.4新定义的四种题型与真题训练题型一:函数中新定义问题1.(2022青浦一模18)如图,一次函数y =ax +b (a <0,b >0)的图象与x 轴,y 轴分别相交于点A ,点B ,将它绕点O 逆时针旋转90°后,与x 轴相交于点C ,我们将图象过点A ,B ,C 的二次函数叫做与这个一次函数关联的二次函数.如果一次函数y =﹣kx +k (k >0)的关联二次函数是y =mx 2+2mx +c (m ≠0),那么这个一次函数的解析式为.【解答】解:对y =﹣kx +k ,当x =0时,y =k ,当y =0时,x =1,∴A (1,0),B (0,k ),∴C (﹣k ,0),将A 、B 、C 的坐标代入y =mx 2+2mx +c 得,,解得:或或,∵m ≠0,k >0,∴m =﹣1,k =3,c =3,∴一次函数的解析式为y =﹣3x +3,故答案为:y =﹣3x +3.2.(2022黄埔一模18)若抛物线2111y ax b x c =++的顶点为A ,抛物线2222y ax b x c =-++的顶点为B ,且满足顶点A 在抛物线2y 上,顶点B 在抛物线1y 上,则称抛物线1y 与抛物线2y 互为“关联抛物线”,已知顶点为M 的抛物线()223y x =-+与顶点为N 的抛物线互为“关联抛物线”,直线MN 与x 轴正半轴交于点D ,如果3tan 4MDO ∠=,那么顶点为N 的抛物线的表达式为_________【详解】设顶点为N 的抛物线顶点坐标N 为(a ,b )已知抛物线()223y x =-+的顶点坐标M 为(2,3)∵3tan 4MDO ∠=,∴34M M N y x x =-,即3324Dx =-,解得24D x =±∵直线MN 与x 轴正半轴交于点D,∴D 点坐标为(6,0)则直线MD 解析式为3(6)4y x =--N 点在直线MD 3(6)4y x =--上,N 点也在抛物线()223y x =-+故有()23(6)423b a b a ⎧=--⎪⎨⎪=-+⎩,化简得2394247b a b a a ⎧=-+⎪⎨⎪=-+⎩联立得2394742a a a --=-+,化简得2135042a a -+=解得a =54或a =2(舍),将a =54代入3942b a =-有359157257442161616b =-⨯+=-+=解得545716a b ⎧=⎪⎪⎨⎪=⎪⎩,故N 点坐标为(54,5716)则顶点为N 的抛物线的表达式为2557()416y a x =-+将(2,3)代入2557()416y a x =-+有,25573(2416a =-+化简得95731616a =+,解得a =-1故顶点为N 的抛物线的表达式为2557(416y x =--+故答案为:2557()416y x =--+.3.(2020杨浦二模)定义:对于函数y =f (x ),如果当a ≤x ≤b 时,m ≤y ≤n ,且满足n ﹣m =k (b ﹣a )(k 是常数),那么称此函数为“k 级函数”.如:正比例函数y =﹣3x ,当1≤x ≤3时,﹣9≤y ≤﹣3,则﹣3﹣(﹣9)=k (3﹣1),求得k =3,所以函数y =﹣3x 为“3级函数”.如果一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”,那么k 的值是.【分析】根据一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”解答即可.【解答】解:因为一次函数y=2x﹣1(1≤x≤5)为“k级函数”,可得:k=2,故答案为:2.题型二:三角形中的新定义1.(2022嘉定一模18)如图,在△ABC中,∠C=90°,BC=2,,点D在边AC上,CD:AD=1:3,联结BD,点E在线段BD上,如果∠BCE=∠A,那么CE=.【解答】解:过点E作EF⊥BC,垂足为F,∵∠ACB=90°,BC=2,,∴AC===4,∵CD:AD=1:3,∴CD=1,∵∠BCE=∠A,∠ACB=∠CFE=90°,∴△ABC∽△CEF,∴===2,∴设EF为a,则CF为2a,BF为2﹣2a,∵∠ACB=∠BFE=90°,∠CBD=∠FBE,∴△BFE∽△BCD,∴=,∴=,∴a=,∴EF=,CF=1,∴CE===,故答案为:.2、(2022杨浦一模17)新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为格线三角形.如图,已知等腰Rt△ABC为“格线三角形”,且∠BAC=90°,那么直线BC与直线c的夹角α的余切值为.【解答】解:过B 作BE ⊥直线a 于E ,延长EB 交直线c 于F ,过C 作CD ⊥直线a 于D ,则∠CDA =∠AEB =90°,∵直线a ∥直线b ∥直线c ,相邻两条平行线间的距离相等(设为d ),∴BF ⊥直线c ,CD =2d ,∴BE =BF =d ,∵∠CAB =90°,∠CDA =90°,∴∠DCA +∠DAC =90°,∠EAB +∠DAC =90°,∴∠DCA =∠EAB ,在△CDA 和△AEB 中,,∴△CDA ≌△AEB (AAS ),∴AE =CD =2d ,AD =BE =d ,∴CF =DE =AE +AD =2d +d =3d ,∵BF =d ,∴cotα===3,故答案为:3.3.(2022长宁一模17)定义:在△A 中,点D 和点E 分别在AB 边、AC 边上,且DE //BC ,点D 、点E 之间距离与直线DE 与直线BC 间的距离之比称为DE 关于BC 的横纵比.已知,在△A 中,4,BC BC =上的高长为3,DE 关于BC 的横纵比为2:3,则DE =_______.【详解】如图,AF BC ⊥于F ,交DE 于点G ,//DE BC ,ADE ABC ∴△△∽,AG DE ⊥,DE AGBC AF∴=,3AF = DE 关于BC 的横纵比为2:3,4BC =,23DE GF ∴=设2DE a =,则3GF a =,33AG AF GF a∴=-=-23343a a -∴=,解得23a =,43DE ∴=,故答案为:434.(2022虹口一模17)在网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形称为“格点三角形”.如图,在4×4的网格中,△ABC 是一个格点三角形,如果△DEF 也是该网格中的一个格点三角形,它与△ABC 相似且面积最大,那么△DEF 与△ABC 相似比的值是.【解答】解:由表格可得:AB =,BC =2,AC =,如图所示:作△DEF ,DE =,DF =,EF =5,∵===,∴△DEF ∽△ABC ,则△DEF 与△ABC 相似比的值是.故答案为:.5.(2020松江二模)如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于度.【分析】设直角三角形的最小内角为x ,另一个内角为y ,根据三角形的内角和列方程组即可得到结论.【解答】解:设直角三角形的最小内角为x ,另一个内角为y ,由题意得,,解得:,答:该三角形的最小内角等于22.5°,故答案为:22.5.6.(2020嘉定二模)定义:如果三角形的两个内角∠α与∠β满足∠α=2∠β,那么,我们将这样的三角形称为“倍角三角形”,如果一个等腰三角形是“倍角三角形”,那么这个等腰三角形的腰长与底边长的比值为【考查内容】新定义题型,黄金三角形【评析】中等【解析】当∠α为底角时,用内角和公式求得∠β= 36,此时为黄金三角形,腰长与底边长的比值215+;当当∠α为顶角时,用内角和公式求得∠β= 45,此时为等腰直角三角形,腰长与底边长的比值22。

中考数学复习《新定义新概念问题》

中考数学复习《新定义新概念问题》

中考数学复习新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型例题:(2017甘肃天水)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2= 2 .【考点】1G:有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:2同步训练:定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【考点】LO:四边形综合题.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB 时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键.类型2 新定义几何概念型例题:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【考点】FI:一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP 的最大值=×2×4=4,S△ABP的最小值=×2×2=2.同步训练:(2017湖北随州)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=﹣x2﹣x+2与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为y=﹣x+,点A的坐标为(﹣2,2),点B的坐标为(1,0);(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B 的坐标;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求得ON的长,可求得N 点坐标;(3)当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,可证△EFH≌△ACK,可求得DF的长,则可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E(﹣1,t),由A、C的坐标可表示出AC 中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标.【解答】解:(1)∵抛物线y=﹣x2﹣x+2,∴其梦想直线的解析式为y=﹣x+,联立梦想直线与抛物线解析式可得,解得或,∴A(﹣2,2),B(1,0),故答案为:y=﹣x+;(﹣2,2);(1,0);(2)如图1,过A作AD⊥y轴于点D,在y=﹣x2﹣x+2中,令y=0可求得x=﹣3或x=1,∴C(﹣3,0),且A(﹣2,2),∴AC==,由翻折的性质可知AN=AC=,∵△AMN为梦想三角形,∴N点在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN===3,∵OD=2,∴ON=2﹣3或ON=2+3,∴N点坐标为(0,2﹣3)或(0,2+3);(3)①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=2,∵抛物线对称轴为x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F点横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH﹣OF=2﹣=,即E点纵坐标为﹣,∴E(﹣1,﹣);当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(﹣3,0),且A(﹣2,2),∴线段AC的中点坐标为(﹣2.5,),设E(﹣1,t),F(x,y),则x﹣1=2×(﹣2.5),y+t=2,∴x=﹣4,y=2﹣t,代入直线AB解析式可得2﹣t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4,);综上可知存在满足条件的点F,此时E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的.类型3 新内容理解把握例题:(2017湖南岳阳)已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对 B.只有1对C.只有2对D.有2对或3对【分析】根据“友好点”的定义知,函数y1图象上点A(a,﹣)关于原点的对称点B(a,﹣)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0 有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.【点评】本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.同步训练:(2017湖南株洲)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【考点】R2:旋转的性质;JB:平行线的判定与性质;KW:等腰直角三角形.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D专题训练1.(2017深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= 2 .【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:22. (2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.3. (2017湖北宜昌)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【考点】KT:勾股数;KQ:勾股定理.【分析】由n=1,得到a=(m2﹣1)①,b=m②,c=(m2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=(m2﹣1)①,b=m②,c=(m2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,(m2﹣1)=5,解得:m=(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,(m2+1)=5,解得:m=±3,∵m>0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.4. (2017广西百色)阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12= (x+3)(3x﹣4).【考点】57:因式分解﹣十字相乘法等.【分析】根据“十字相乘法”分解因式得出3x2+5x﹣12=(x+3)(3x﹣4)即可.【解答】解:3x2+5x﹣12=(x+3)(3x﹣4).故答案为:(x+3)(3x﹣4)5. (2017湖北咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF 是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标.【考点】MR:圆的综合题.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).6.(2017•益阳)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n 的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.【考点】G6:反比例函数图象上点的坐标特征;FA:待定系数法求一次函数解析式;H8:待定系数法求二次函数解析式.【分析】(1)设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,于是得到结论;(2)把M(m,n),N(n,m)代入y=cx+d,即可得到结论;(3)设点A(p,q),则,由直线AB经过点P(,),得到p+q=1,得到q=﹣1或q=2,将这一对“互换点”代入y=x2+bx+c得,于是得到结论.【解答】解:(1)不一定,设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,即(a,b)和(b,a)都在反比例函数(k≠0)的图象上;(2)由M(m,n)得N(n,m),设直线MN的表达式为y=cx+d(c≠0).则有解得,∴直线MN的表达式为y=﹣x+m+n;(3)设点A(p,q),则,∵直线AB经过点P(,),由(2)得,∴p+q=1,∴,解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x2+bx+c得,∴解得,∴此抛物线的表达式为y=x2﹣2x﹣1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,正确的理解题意是解题的关键.。

九年级数学中考复习新定义专题练习

九年级数学中考复习新定义专题练习

九年级数学中考复习新定义专题练习1.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b = ab 2 + a .如:1☆3=1×32+1=10.则(-2)☆3的值为 .2.(2019•德州)已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x }=x ﹣[x ],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= .3. 用“△”定义新运算:对于任意有理数a ,b ,当a ≤b 时,都有2a b a b ∆=;当a >b 时,都有2a b ab ∆=.那么,2△6 = ,2()3-△(3)-= . 4. 如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.5. 定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB 和BC 组成圆的折弦,AB BC >,M 是弧ABC 的中点,MF AB ⊥于F ,则AF FB BC =+.如图2,△ABC 中,60ABC ∠=︒,8AB =,6BC =,D 是AB 上一点,1BD =,作DE AB ⊥交△ABC 的外接圆于E ,连接EA ,则EAC ∠=________°6.(2019•枣庄)对于实数a 、b ,定义关于“⊗”的一种运算:a ⊗b =2a +b ,例如3⊗4=2×3+4=10.(1)求4⊗(﹣3)的值;(2)若x ⊗(﹣y )=2,(2y )⊗x =﹣1,求x +y 的值.7. 阅读材料:规定一种新的运算:a c =b ad bc d -.例如:1214-23=-2.34××= (1)按照这个规定,请你计算5624的值.(2)按照这个规定,当5212242=-+-x x 时求x 的值.8. 对于平面直角坐标系xOy 中的点M 和图形G ,若在图形G 上存在一点N ,使M ,N 两点间的距离等于1,则称M 为图形G 的和睦点.(1)当⊙O 的半径为3时,在点P 1(1,0),P 2,1),P 3(72,0),P 4(5,0)中,⊙O 的和睦点是________;(2)若点P (4,3)为⊙O 的和睦点,求⊙O 的半径r 的取值范围;(3)点A 在直线y =﹣1上,将点A 向上平移4个单位长度得到点B ,以AB 为边构造正方形ABCD ,且C ,D 两点都在AB 右侧.已知点E,若线段OE 上的所有点都是正方形ABCD 的和睦点,直接写出点A 的横坐标A x 的取值范围.9. 对于任意四个有理数a ,b ,c ,d ,可以组成两个有理数对(a ,b )与(c ,d ).我们规定:(a ,b )★(c ,d )=bc -ad .例如:(1,2)★(3,4)=2×3-1×4=2.根据上述规定解决下列问题:(1)有理数对(2,-3)★(3,-2)= ;(2)若有理数对(-3,2x -1)★(1,x +1)=7,则x = ;(3)当满足等式(-3,2x -1)★(k ,x +k )=5+2k 的x 是整数时,求整数k 的值.10. 对于任意有理数a ,b ,定义运算:a ⊙b =()1a a b +-,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)-1=13;(3)-⊙(5)-=-3×(-3-5)-1=23.(1)求(-2)⊙312的值; (2)对于任意有理数m ,n ,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m ⊕n =(用含m ,n 的式子表示).11. (2019•衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =,y =那么称点T 是点A ,B 的融合点.例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x ==1,y ==2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点.①试确定y 与x 的关系式.②若直线ET 交x 轴于点H .当△DTH 为直角三角形时,求点E 的坐标.12. 已知在平面直角坐标系xOy 中的点P 和图形G,给出如下的定义:若在图形G 上存在一点Q ,使得Q P 、之间的距离等于1,则称P 为图形G 的关联点.(1)当圆O 的半径为1时,①点11(,0)2P ,2P,3(0,3)P 中,圆O 的关联点有_____________________. ②直线经过(0,1)点,且与y 轴垂直,点P 在直线上.若P 是圆O 的关联点,求点P 的横坐标x 的取值范围.(2)已知正方形ABCD 的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r 的取值范围.备用图 备用图参考答案:1. -202. 1.13. 24 -64. 45. 60°6. (1) 5 (2) 137. (1)8 (2)x=18. (1)P2,P3;(2)4≤r≤6(3) -5+√2≤x A≤3 或√2-1≤x A≤19. (1)﹣5 (2)1 (3)k=1,﹣1,﹣2,﹣410. (1)-4(2)答案不唯一,例如:m⊕n=m(n+1)11. (1)x=(﹣1+7)=2,y=(5+7)=4,故点C是点A、B的融合点;(2)①y=2x﹣1;②点E(,6)或(6,15).12. (1)P1 P2(2)-√3≤x≤√3(3)2√2-1≤r≤3。

中考数学专题复习

中考数学专题复习

中考数学专题复习附答案1. 定义新运算“a∗b”:对于任意实数a,b,都有a∗b=(a+b)(a−b)−1,其中等式右边是通常的加法、减法、乘法运算,例4∗3=(4+3)(4−3)−1=7−1=6.若x∗k=x(k为实数)是关于x的方程,则它的根的情况为( )A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根2. 定义运算:若a m=b,则log a b=m(a>0),例如23=8,则log28= 3.运用以上定义,计算:log5125−log381=()A.−1B.2C.1D.443. 定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x−1)※x的结果为________.4. 对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b=√a+b √a−b ,如:3⊕2=√3+2√3−2=√5,那么12⊕4=________.5. 规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N的坐标分别为(0, 1),(0, −1),P是二次函数y=14x2的图象上在第一象限内的任意一点,PQ垂直直线y=−1于点Q,则四边形PMNQ是广义菱形.其中正确的是________.(填序号)6. 定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为________;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60∘,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.7. 用※定义一种新运算:对于任意实数m和n,规定m※n=m2n−mn−3n,如:1※2=12×2−1×2−3×2=−6.(1)求(−2)※√3;(2)若3※m≥−6,求m的取值范围,并在所给的数轴上表示出解集.8. 阅读下面的材料:对于实数a,b,我们定义符号min{a, b}的意义为:当a<b时,min{a, b}= a;当a≥b时,min{a, b}=b,如:min{4, −2}=−2,min{5, 5}=5.根据上面的材料回答下列问题:(1)min{−1, 3}=________;(2)当min{2x−32,x+23}=x+23时,求x的取值范围.9. 阅读理解:材料一:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三数组”.材料二:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则有x1+x2=−ba ,x1⋅x2=ca.问题解决:(1)请你写出三个能构成“和谐三数组”的实数________;(2)若x1,x2是关于x的方程ax2+bx+c=0(a,b,c均不为0)的两根,x3是关于x的方程bx+c=0(b,c均不为0)的解.求证:x1,x2,x3可以构成“和谐三数组”;(3)若A(m, y1),B(m+1, y2),C(m+3, y3)三个点均在反比例函数y=4x的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值.10. 在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数--“差一定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14÷5=2...4,14÷3=4...2,所以14是“差一数”;19÷5=3...4,但19÷3=6...1,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.参考答案与试题解析中考专题复习(新型定义题型)一、选择题(本题共计 2 小题,每题 3 分,共计6分)1.【答案】C2.【答案】A二、填空题(本题共计 3 小题,每题 3 分,共计9分)3.【答案】x2−14.【答案】√25.【答案】①④三、解答题(本题共计 5 小题,每题 10 分,共计50分)6.【答案】90∘或270∘(2)证明:∵MN是⊙O的直径,点A,B,C在⊙O上,∴∠BAM+∠BCN=90∘,即∠BAD+∠BCD=90∘,∴四边形ABCD是对余四边形.(3)解:线段AD,CD和BD之间数量关系为:AD2+CD2=BD2,理由如下:∵对余四边形ABCD中,∠ABC=60∘,∴∠ADC=30∘,∵AB=BC,∴将△BCD绕点B逆时针旋转60∘,得到△BAF,连接FD,如图3所示:∴△BCD≅△BAF,∠FBD=60∘,∴BF=BD,AF=CD,∠BDC=∠BFA,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30∘,∴∠ADB+∠BDC=30∘,∴∠BFA+∠ADB=30∘,∵∠FBD+∠BFA+∠ADB+∠AFD+∠ADF=180∘,∴60∘+30∘+∠AFD+∠ADF=180∘,∴∠AFD+∠ADF=90∘,∴∠FAD=90∘,∴AD2+AF2=DF2,∴AD2+CD2=BD2.7.【答案】解:(1)(−2)※√3=(−2)2×√3−(−2)×√3−3√3=4√3+2√3−3√3=3√3.(2)3※m≥−6,则9m−3m−3m≥−6,解得:m≥−2,将解集表示在数轴上如下:8.【答案】−1(2)由题意得:2x−32≥x+23,3(2x−3)≥2(x+2),6x−9≥2x+4,x ≥134,∴ x 的取值范围为x ≥134.9.【答案】如12,13,15 (2)证明: x 1,x 2是关于x 的方程ax 2+bx +c =0(a,b,c 均不为0)的两根,∴ x 1+x 2=−b a ,x 1⋅x 2=c a ,1x 1+1x 2=x 1+x 2x 1x 2=−b c , ∵ x 3是关于x 的方程bx +c =0(b,c 均不为0)的解,∴ x 3=−c b ,∴1x 3=−b c , ∴ 1x 1+1x 2=1x 3,∴ x 1,x 2,x 3可以构成“和谐三数组”.(3)A (m,y 1),B (m +1,y 2), C (m +3,y 3)三个点均在反比例函数y =4x 的图象上, y 1=4m ,y 2=4m+1,y 3=4m+3, ∴ 1y 1=m 4,1y 2=m+14,1y 3=m+34,∵ A (m,y 1),B (m +1,y 2), C (m +3,y 3)三点的纵坐标恰好构成“和谐三数组”, ∴ ①1y 1+1y 2=1y 3, ∴ m 4+m+14=m+34, ∴ m =2. ②1y 2+1y 3=1y 1, m+14+m+34=m 4, m =−4.③1y 3+1y 1=1y 2, ∴ m+34+m 4=m+14,m =−2,即满足条件的实数m 的值为2或−4或−2.10.解:(1)49÷5=9...4,但49÷3=16...1,所以49不是“差一数”;74÷5=14...4,74÷3=24...2,所以74是“差一数”.(2)大于300且小于400的数除以5余数为4的有304,309,314,319,324,329,334,339,344,349,354,359,364,369,374,379,384,389,394,399,其中除以3余数为2的有314,329,344,359,374,389.故大于300且小于400的所有“差一数”有314,329,344,359,374,389.。

中考数学专题复习新定义问题

中考数学专题复习新定义问题

中考数学专题复习新定义问题学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、解答题1.在平面直角坐标系xOy 中,O 的半径为1,对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到O 的弦B C ''(,B C ''分别是,B C 的对应点),则称线段BC 是O 的以点A 为中心的“关联线段”.(1)如图,点112233,,,,,,A B C B C B C 的横、纵坐标都是整数.在线段112233,,B C B C B C 中,O 的以点A 为中心的“关联线段”是______________;(2)ABC 是边长为1的等边三角形,点()0,A t ,其中0t ≠.若BC 是O 的以点A 为中心的“关联线段”,求t 的值;(3)在ABC 中,1,2AB AC ==.若BC 是O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.2.在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是 ;在点1234,,,P P P P 中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线323y x =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.3.在⊙ABC 中,D ,E 分别是ABC 两边的中点,如果DE 上的所有点都在⊙ABC 的内部或边上,则称DE 为⊙ABC 的中内弧.例如,下图中DE 是⊙ABC 的一条中内弧.(1)如图,在Rt⊙ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出⊙ABC 的最长的中内弧DE ,并直接写出此时DE 的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在⊙ABC 中,D E ,分别是AB AC ,的中点. ⊙若12t =,求⊙ABC 的中内弧DE 所在圆的圆心P 的纵坐标的取值范围; ⊙若在⊙ABC 中存在一条中内弧DE ,使得DE 所在圆的圆心P 在⊙ABC 的内部或边上,直接写出t 的取值范围.4.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ). 已知点A (2-,6),B (2-,2-),C (6,2-). (1)求d (点O ,ABC );(2)记函数y kx =(11x -≤≤,0k ≠)的图象为图形G ,若d (G ,ABC )1=,直接写出k 的取值范围;(3)T 的圆心为T (t ,0),半径为1.若d (T ,ABC )1=,直接写出t 的取值范围.5.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当⊙O 的半径为2时,⊙在点1231135,0,,,,02222P P P ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 中,⊙O 的关联点是_______________. ⊙点P 在直线y=-x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围. (2)⊙C 的圆心在x 轴上,半径为2,直线y=-x+1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.6.在平面直角坐标系xOy 中,点P 的坐标为(1x ,1y ),点Q 的坐标为(2x ,2y ),且12x x ≠,12y y ≠,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).⊙若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;⊙点C 在直线x=3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式; (2)⊙O 的半径为,点M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.7.在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.①分别判断点M(2,1),N(32,0),T(1,3)关于⊙O的反称点是否存在?若存在,求其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣33x+23与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C 的横坐标的取值范围.参考答案:1.(1)22B C ;(2)3t =±;(3)当min 1OA =时,此时3BC =;当max 2OA =时,此时62BC =. 【解析】 【分析】(1)以点A 为圆心,分别以112233,,,,,AB AC AB AC AB AC 为半径画圆,进而观察是否与O 有交点即可;(2)由旋转的性质可得AB C ''△是等边三角形,且B C ''是O 的弦,进而画出图象,则根据等边三角形的性质可进行求解;(3)由BC 是O 的以点A 为中心的“关联线段”,则可知,B C ''都在O 上,且1,2AB AB AC AC ''====,然后由题意可根据图象来进行求解即可.【详解】解:(1)由题意得:通过观察图象可得:线段22B C 能绕点A 旋转90°得到O 的“关联线段”,1133,B C B C 都不能绕点A 进行旋转得到; 故答案为22B C ;(2)由题意可得:当BC 是O 的以点A 为中心的“关联线段”时,则有AB C ''△是等边三角形,且边长也为1,当点A 在y 轴的正半轴上时,如图所示:设B C''与y轴的交点为D,连接OB',易得B C y''⊥轴,⊙12B D DC''==,⊙2232OD OB B D''=-=,2232AD AB B D''=-=,⊙3OA=,⊙3t=;当点A在y轴的正半轴上时,如图所示:同理可得此时的3OA=,⊙t3=-;(3)由BC是O的以点A为中心的“关联线段”,则可知,B C''都在O上,且1,2AB AB AC AC''====,则有当以B'为圆心,1为半径作圆,然后以点A为圆心,2为半径作圆,即可得到点A的运动轨迹,如图所示:由运动轨迹可得当点A也在O上时为最小,最小值为1,此时AC'为O的直径,⊙90AB C''∠=︒,⊙30AC B''∠=︒,⊙cos303BC B C AC'''==⋅︒=;由以上情况可知当点,,A B O'三点共线时,OA的值为最大,最大值为2,如图所示:连接,OC B C''',过点C'作C P OA'⊥于点P,⊙1,2OC AC OA''===,设OP x=,则有2AP x=-,⊙由勾股定理可得:22222C P AC AP OC OP'''=-=-,即()222221x x--=-,解得:14x=,⊙154C P'=,⊙34B P OB OP ''=-=, 在Rt B PC ''中,2262B C B P C P ''''=+=, ⊙62BC =; 综上所述:当min 1OA =时,此时3BC =;当max 2OA =时,此时62BC =.【点睛】本题主要考查旋转的综合、圆的基本性质、三角函数及等边三角形的性质,熟练掌握旋转的性质、圆的基本性质、三角函数及等边三角形的性质是解题的关键. 2.(1)平行,P 3;(2)32;(3)233922d ≤≤【解析】 【分析】(1)根据圆的性质及“平移距离”的定义填空即可;(2)过点O 作OE⊙AB 于点E ,交弦CD 于点F ,分别求出OE 、OF 的长,由1d OE OF =-得到1d 的最小值;(3)线段AB 的位置变换,可以看作是以点A 32,2⎛⎫⎪⎝⎭为圆心,半径为1的圆,只需在⊙O内找到与之平行,且长度为1的弦即可.平移距离2d 的最大值即点A ,B 点的位置,由此得出2d 的取值范围. 【详解】解:(1)平行;P 3;(2)如图,线段AB 在直线323y x =+上,平移之后与圆相交,得到的弦为CD ,CD⊙AB ,过点O 作OE⊙AB 于点E ,交弦CD 于点F ,OF⊙CD ,令0y =,直线与x 轴交点为(-2,0),直线与x 轴夹角为60°,⊙2sin 603OE ︒==. 由垂径定理得:221322OF OC CD ⎛⎫=-= ⎪⎝⎭,⊙132d OE OF =-=;(3)线段AB的位置变换,可以看作是以点A32,2⎛⎫⎪⎝⎭为圆心,半径为1的圆,只需在⊙O 内找到与之平行,且长度为1的弦即可;点A到O的距离为2235222AO⎛⎫=+=⎪⎝⎭.如图,平移距离2d的最小值即点A到⊙O的最小值:53122-=;平移距离2d的最大值线段是下图AB的情况,即当A1,A2关于OA对称,且A1B2⊙A1A2且A1B2=1时.⊙B2A2A1=60°,则⊙OA2A1=30°,⊙OA2=1,⊙OM=12, A2M=32,⊙MA=3,AA2=22339 322⎛⎫+=⎪⎪⎝⎭,⊙2d的取值范围为:233922d≤≤.【点睛】本题考查圆的基本性质及与一次函数的综合运用,熟练掌握圆的基本性质、点与圆的位置关系、直线与圆的位置关系是解题的关键.3.(1)π;(2)⊙P的纵坐标1py≥或12Py≤;⊙02t<≤.【解析】【分析】(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE为直径的半圆,DE的长即以DE为直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,,⊙当12t=时,要注意圆心P在DE上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角⊙AEP满足90°≤⊙AEP<135°;⊙根据题意,t的最大值即圆心P在AC上时求得的t值.【详解】解:(1)如图2,以DE 为直径的半圆弧DE ,就是△ABC 的最长的中内弧DE ,连接DE ,⊙⊙A=90°,AB=AC=22,D ,E 分别是AB ,AC 的中点,22114,42sin sin 4522︒∴=====⨯=AC BC DE BC B , ⊙弧DE 122ππ=⨯=; (2)如图3,由垂径定理可知,圆心一定在线段DE 的垂直平分线上,连接DE ,作DE 垂直平分线FP ,作EG⊙AC 交FP 于G ,⊙当12t =时,C (2,0),⊙D (0,1),E (1,1),1,12⎛⎫ ⎪⎝⎭F , 设1,2P m ⎛⎫ ⎪⎝⎭由三角形中内弧定义可知,圆心线段DE 上方射线FP 上均可,⊙m≥1, ⊙OA=OC ,⊙AOC=90°⊙⊙ACO=45°,⊙DE⊙OC⊙⊙AED=⊙ACO=45°作EG⊙AC 交直线FP 于G ,FG=EF=12根据三角形中内弧的定义可知,圆心在点G 的下方(含点G )直线FP 上时也符合要求; 12∴m 综上所述,12m或m≥1. ⊙图4,设圆心P 在AC 上,⊙P 在DE 中垂线上,⊙P 为AE 中点,作PM⊙OC 于M ,则PM=323,2⎛⎫∴ ⎪⎝⎭P t , ⊙DE⊙BC⊙⊙ADE=⊙AOB=90°,222221(2)41∴=+=+=+AE AD DE t t⊙PD=PE ,⊙⊙AED=⊙PDE⊙⊙AED+⊙DAE=⊙PDE+⊙ADP=90°,⊙⊙DAE=⊙ADP12∴===AP PD PE AE 由三角形中内弧定义知,PD≤PM1322∴AE ,AE≤3,即2413+t ,解得:2t02>∴<t t【点睛】此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题.4.(1)2;(2)10k -≤<或01k <≤;(3)4t =-或0422t -≤≤或422t =+.【解析】【详解】分析:(1)画出图形,根据“闭距离”的概念结合图形进行求解即可.(2)分0k <和0k >两种情况,画出示意图,即可解决问题.(3)画出图形,直接写出t的取值范围.详解:(1)如下图所示:⊙B(2-,2-),C(6,2-)⊙D(0,2-)⊙d(O,ABC)2OD==(2)10k-≤<或01k<≤(3)4t=-或0422t≤≤-或422t=+.点睛:属于新定义问题,考查点到直线的距离,圆的切线的性质,认真分析材料,读懂“闭距离”的概念是解题的关键.5.(1)⊙P 2、P 3,⊙-322≤x≤-22或22 ≤x≤322;(2)-2≤x≤1或2≤x≤22 . 【解析】【详解】试题分析:(1)⊙由题意得,P 只需在以O 为圆心,半径为1和3两圆之间即可,由23,OP OP 的值可知23,P P 为⊙O 的关联点;⊙满足条件的P 只需在以O 为圆心,半径为1和3两圆之间即可,所以P 横坐标范围是-322 ≤x≤-22 或22 ≤x≤322; (2).分四种情况讨论即可,当圆过点A , CA=3时;当圆与小圆相切时;当圆过点 A ,AC=1时;当圆过点 B 时,即可得出.试题解析:(1)12315,01,22OP P OP ===, 点1P 与⊙的最小距离为32,点2P 与⊙的最小距离为1,点3P 与⊙的最小距离为12, ⊙⊙的关联点为2P 和3P .⊙根据定义分析,可得当直线y=-x 上的点P 到原点的距离在1到3之间时符合题意; ⊙ 设点P 的坐标为P (x ,-x) ,当OP=1时,由距离公式可得,OP=22(0)(0)1x x -+--= ,解得22x =± ,当OP=3时,由距离公式可得,OP=22(0)(0)3x x -+--= ,229x x +=,解得322x =±, ⊙ 点的横坐标的取值范围为-322 ≤x≤-22 或22 ≤x≤322(2)⊙y=-x+1与轴、轴的交点分别为A、B两点,⊙ 令y=0得,-x+1=0,解得x=1,令得x=0得,y=0,⊙A(1,0) ,B (0,1) ,分析得:如图1,当圆过点A时,此时CA=3,⊙ 点C坐标为,C ( -2,0)如图2,当圆与小圆相切时,切点为D,⊙CD=1 ,又⊙直线AB所在的函数解析式为y=-x+1,⊙ 直线AB与x轴形成的夹角是45°,⊙ RT⊙ACD中,CA=2,⊙ C点坐标为(1-2,0)⊙C点的横坐标的取值范围为;-2≤cx≤1-2,如图3,当圆过点A时,AC=1,C点坐标为(2,0)如图4,当圆过点B 时,连接BC ,此时BC =3,在Rt⊙OCB中,由勾股定理得OC=23122-=,C点坐标为(22,0).⊙ C点的横坐标的取值范围为2≤cx≤22;⊙综上所述点C的横坐标的取值范围为-322≤cx≤-22或22≤cx≤322.【点睛】本题考查了新定义题,涉及到的知识点有切线,同心圆,一次函数等,能正确地理解新定义,正确地进行分类讨论是解题的关键.6.(1)⊙2;⊙1y x =- 或1y x =-+;(2)1≤m≤5 或者51m -≤≤-.【解析】【详解】试题分析:(1)⊙易得S=2;⊙得到C 的坐标可以为(3,2)或者(3,-2),设AC 的表达式为y=kx+b ,将A 、C 分别代入AC 的表达式即可得出结论;(2)若⊙O 上存在点N ,使MN 的相关矩形为正方形,则直线MN 的斜率k=±1,即过M 点作k=±1的直线,与⊙O 相切,求出M 的坐标,即可得出结论.试题解析:(1)⊙S=2×1=2;⊙C 的坐标可以为(3,2)或者(3,-2),设AC 的表达式为y=kx+b ,将A 、C分别代入AC 的表达式得到:0{23k b k b =+=+或0{23k b k b=+-=+,解得:1{1k b ==-或1{1k b =-=,则直线AC 的表达式为1y x =- 或1y x =-+;(2)若⊙O 上存在点N ,使MN 的相关矩形为正方形,则直线MN 的斜率k=±1,即过M 点作k=±1的直线,与⊙O 有交点,即存在N ,当k=-1时,极限位置是直线与⊙O 相切,如图1l 与2l ,直线1l 与⊙O 切于点N ,ON=2,⊙ONM=90°,⊙1l 与y 交于1P (0,-2).1M (1m ,3),⊙13(2)0m --=-,⊙1m =-5,⊙1M (-5,3);同理可得2M (-1,3); 当k=1时,极限位置是直线3l 与4l (与⊙O 相切),可得3M (1,3), 4M (5,3). 因此m 的取值范围为1≤m≤5或者51m -≤≤-.考点:一次函数,函数图象,应用数学知识解决问题的能力.7.(1)①见解析;②0<x <2;(2)圆心C 的横坐标的取值范围是2≤x≤8.【解析】【详解】试题分析:(1) ⊙根据反称点的定义画图得出结论;⊙⊙CP≤2r =2 CP 2≤4, P (x ,-x +2), CP 2=x 2+(-x +2)2=2x 2-4x +4≤,2x 2-4x≤0, x (x -2)≤0,⊙0≤x≤2,把x =2和x=0代入验证即可得出,P (2,0),P′(2,0)不符合题意P (0,2),P′(0,0)不符合题意,⊙0<x <2(2)求出A ,B 的坐标,得出OA 与OB 的比值,从而求出⊙OAB=30°,设C (x ,0) ⊙当C 在OA 上时,作CH⊙AB 于H ,则CH≤CP≤2r =2,⊙AC≤4,得出 C 点横坐标x≥2. (当x =2时,C 点坐标(2,0),H 点的反称点H′(2,0)在圆的内部);⊙当C 在A 点右侧时,C 到线段AB 的距离为AC 长,AC 最大值为2,⊙C 点横坐标x≤8,得出结论.试题解析: (1)解:⊙M (2,1)不存在,3,02N ⎛⎫ ⎪⎝⎭存在,反称点1,02N ⎛⎫' ⎪⎝⎭(1,3)T 存在,反称点T′(0,0)⊙⊙CP≤2r =2 CP 2≤4, P (x ,-x +2), CP 2=x 2+(-x +2)2=2x 2-4x +4≤4 2x 2-4x≤0, x (x -2)≤0,⊙0≤x≤2,当x =2时,P (2,0),P′(2,0)不符合题意当x =0时,P (0,2),P′(0,0)不符合题意,⊙0<x <2 (2)解:由题意得:A (6,0),()0,23B ,⊙3OA OB=,⊙⊙OAB =30°,设C (x ,0)⊙当C 在OA 上时,作CH⊙AB 于H ,则CH≤CP≤2r =2,⊙AC≤4, C 点横坐标x≥2. (当x =2时,C 点坐标(2,0),H 点的反称点H′(2,0)在圆的内部)⊙当C 在A 点右侧时,C 到线段AB 的距离为AC 长,AC 最大值为2,⊙C 点横坐标x≤8 综上所述:圆心C 的横坐标的取值范围2≤x≤8.考点:定义新运算;一次函数的图象和性质;二次函数的图象和性质;圆的有关性质,解直角三角形;答案第15页,共15页。

中考数学复习新定义题型专题训练

中考数学复习新定义题型专题训练

中考数学复习新定义题型专题训练典例精析:例1.我们把分子为1的分数叫做理想分数,如,,,111234任何一个理想分数都可以写成两个不同理想分数的和,如()=+;=+;=+;=1111111111236341245209 ;根据对上述式子的观察思考:如果理想分数111n a b=+(n 是不小于2的正整数),那么a b += (用含n 的点评:本题可以视为“规律性的题型中的定义”,主要是根据定义(本题是“理想分数”)计算推理发现规律,从实例规律迁移解决问题.2.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是1112=--,1-的差倒数为()11112=--,现已知11x 3=-,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依次类推,则 2020x =.例2.我们把a b c d 称作二阶行列式,规定它的运算法则为a bad bc c d=-,比如:232534245=⨯-⨯=-,如果有23x01x->,则x 的取值范围为 . 分析:根据二阶行列式规定的运算法则可知:()2x 3x 10--⨯> ,解得:x 1>;∴故应填:x 1>.点评:本题可以视为“运算建模题型中定义”,主要是根据定义所规定的运算法则进行运算推理来解决问题;这类题可以串联起数学的多个知识点,是中考中出现频率比较高的一种题型.追踪练习:1.对于点(),x y 的一次操作变换()(),,1p x y x y x y =+-,且规定()()(),,n 1n 1p x y P P x y -=(n 为大于1的整数);如()(),,1p 1231=-,()()()(),,(.),2111p 12P 12P 3124==-=,(),3p 12=((,))(,)(,)122P p 12p 2462==-,则(,)2019p 11-= ( )A.(),100902-B.(),101002-C.(),100902D.()101002、2.对于正数x ,如果规定()1f x 1x =+,例如:()11f 4145==+,114f 14514⎛⎫== ⎪⎝⎭+;根据上面的规定计算()()()()111f 2019f 2018f 2f 1f f f 220182019⎛⎫⎛⎫⎛⎫++++++++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 的值为, ()()()()111f 2020f 2019f 2f 1f f f 220192020⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值二阶行列式运算法则”,计算填空:; ⑵.x 3x 2x 4x 3+---= ;⑶.2x x 26x 2x-=+,则x = .4.若定义()a,b ☆()m,n am bn =+ ,则⎛⋅ ⎝= .5.对于两个不相等的实数a,b,定义一种新的运算如下,)a b a b 0=+> ,如:32= ()654 的值.6.我们定义a b ad bc c d =-,比如:()121623661236-=-⨯-⨯=--=-;若x,y 均为点评:本题可以视为“探索题型中的新定义”,主要是根据定义计算推理论证,这类题一般要在定义的前提下进行匪类讨论,往往和存在性问题交融在一起.追踪练习:1.若平面直角坐标系中,两点关于过原点的一条直线成轴对称,则这两点就是互为镜面点, 这条直线叫镜面直线,如(),A 23)和(),B 32是以x y =为镜面直线的镜面点. ⑴.若(),M 41和(),N 14--是一对镜面点,则镜面直线为 .⑵.若以y =为镜面直线,则(),E 20-的镜面点为 .2.如图,A,B 是⊙O 上的两个顶点,P 是⊙O 上的动点(P 不与A,B 重合),我们称APB∠是⊙O 上关于点A,B 的滑动角.3.定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内ABCD 的准内点.⑴.如图2,AFD ∠与DEC ∠的角平分线相交于点P .求证:点P 是四边形ABCD 的准内点.⑵.分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)⑶.判断下列命题的真假,在括号内填“真”或“假”.①任意凸四边形一定存在准内点.( )②任意凸四边形一定只有一个准内点.( )③若点P 是四边形ABCD 的准内点,则PA PB PC PD +=+或PA PC PB PD +=+( ).例4. 对于实数a b 、,定义运算某“*”:()()22a ab a b a b ab b a b ⎧-≥⎪=⎨-<⎪⎩*.例如42*,因为42>,所以2424428=-⨯=*.若12x x 、是一元二次方程2x 5x 60-+=的两个根,则*12x x = .分析:∵12x x 、是一元二次方程2x 5x 60-+=的两个根∴()()x 2x 30--= 解得:x 3= 或x 2=①.当12x 3,x 2== 时,1x *2x =23233-⨯=;②.当12x 2,x 3== 时,1x *2x =22333⨯-=-.故应填:3或3-. 点评:本题可以视为“开放题型中的新定义”,本题的结论是开放的,常常要根据条件分类讨论,结合对应的定义法则进行运算推理(实际上是同一名称多种形式),这类题容易漏解.追踪练习:1. 对实数a ☆b ()()-⎧>≠⎪=⎨≤≠⎪⎩b b a a b,a 0a a b,a 0 ;比如2☆3-==3128,计算[2☆()-4]× [()-4☆()-2]= .2.在平面直角坐标系xOy 中,对于任意两点()111P x ,y 和()222P x ,y 的“非常距离”,给出以下概念:若1212x x y y -≥- ,则点1P 和点2P 的“非常距离”距离为12x x -;.若1212x x y y -<- ,则点1P 和点2P 的“非常距离”距离为12y y -.例如:点()1P 1,2和()2P 3,5。

人教版2023中考专题复习 解答题压轴题新定义题型

人教版2023中考专题复习 解答题压轴题新定义题型

专题17 解答题压轴题新定义题型(原卷版)模块一 2022中考真题集训类型一 函数中的新定义问题1.(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n (n ≥0)的点叫做这个函数图象的“n 阶方点”.例如,点(13,13)是函数y =x 图象的“12阶方点”;点(2,1)是函数y =2x 图象的“2阶方点”. (1)在①(﹣2,−12);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y =1x 图象的“1阶方点”的有 (填序号);(2)若y 关于x 的一次函数y =ax ﹣3a +1图象的“2阶方点”有且只有一个,求a 的值;(3)若y 关于x 的二次函数y =﹣(x ﹣n )2﹣2n +1图象的“n 阶方点”一定存在,请直接写出n 的取值范围.2.(2022•湘西州)定义:由两条与x 轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C 1:y =x 2+2x ﹣3与抛物线C 2:y =ax 2+2ax +c 组成一个开口向上的“月牙线”,抛物线C 1和抛物线C 2与x 轴有着相同的交点A (﹣3,0)、B (点B 在点A 右侧),与y 轴的交点分别为G 、H (0,﹣1).(1)求抛物线C 2的解析式和点G 的坐标.(2)点M 是x 轴下方抛物线C 1上的点,过点M 作MN ⊥x 轴于点N ,交抛物线C 2于点D ,求线段MN 与线段DM 的长度的比值.(3)如图②,点E 是点H 关于抛物线对称轴的对称点,连接EG ,在x 轴上是否存在点F ,使得△EFG 是以EG 为腰的等腰三角形?若存在,请求出点F 的坐标;若不存在,请说明理由.3.(2022•兰州)在平面直角坐标系中,P(a,b)是第一象限内一点,给出如下定义:k1=ab和k2=ba两个值中的最大值叫做点P的“倾斜系数”k.(1)求点P(6,2)的“倾斜系数”k的值;(2)①若点P(a,b)的“倾斜系数”k=2,请写出a和b的数量关系,并说明理由;②若点P(a,b)的“倾斜系数”k=2,且a+b=3,求OP的长;(3)如图,边长为2的正方形ABCD沿直线AC:y=x运动,P(a,b)是正方形ABCD上任意一点,且点P的“倾斜系数”k<√3,请直接写出a的取值范围.4.(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标;(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.①当MN=6a时,求点P的坐标;②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.5.(2022•赤峰)阅读下列材料定义运算:min|a,b|,当a≥b时,min|a,b|=b;当a<b时,min|a,b|=a.例如:min|﹣1,3|=﹣1;min|﹣1,﹣2|=﹣2.完成下列任务(1)①min|(﹣3)0,2|=;②min|−√14,﹣4|=.(2)如图,已知反比例函数y1=kx和一次函数y2=﹣2x+b的图象交于A、B两点.当﹣2<x<0时,min|kx,﹣2x+b|=(x+1)(x﹣3)﹣x2,求这两个函数的解析式.6.(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc ≠0)为函数y1、y2的“组合函数”.(1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;(2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图象相交于点P.①若m+n>1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.类型二几何图形中的新定义问题7.(2022•青岛)【图形定义】有一条高线相等的两个三角形称为等高三角形、例如:如图①,在△ABC和△A'B'C'中,AD,A'D'分别是BC和B'C'边上的高线,且AD=A'D'、则△ABC 和△A'B'C'是等高三角形.【性质探究】如图①,用S△ABC,S△A'B'C′分别表示△ABC和△A′B′C′的面积,则S△ABC=12BC•AD,S△A'B'C′=12B′C′•A′D′,∵AD=A′D′∴S△ABC:S△A'B'C′=BC:B'C'.【性质应用】(1)如图②,D是△ABC的边BC上的一点.若BD=3,DC=4,则S△ABD:S△ADC=;(2)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:2,CD:BC=1:3,S△ABC=1,则S△BEC=,S△CDE=;(3)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:m,CD:BC=1:n,S△ABC=a,则S△CDE=.8.(2022•北京)在平面直角坐标系xOy 中,已知点M (a ,b ),N .对于点P 给出如下定义:将点P 向右(a ≥0)或向左(a <0)平移|a |个单位长度,再向上(b ≥0)或向下(b <0)平移|b |个单位长度,得到点P ′,点P ′关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点M (1,1),点N 在线段OM 的延长线上.若点P (﹣2,0),点Q 为点P 的“对应点”. ①在图中画出点Q ;②连接PQ ,交线段ON 于点T ,求证:NT =12OM ;(2)⊙O 的半径为1,M 是⊙O 上一点,点N 在线段OM 上,且ON =t (12<t <1),若P 为⊙O 外一点,点Q 为点P 的“对应点”,连接PQ .当点M 在⊙O 上运动时,直接写出PQ 长的最大值与最小值的差(用含t 的式子表示).模块二 2023中考押题预测9.(2023•义乌市校级模拟)定义:在平面直角坐标系中,有一条直线x =m ,对于任意一个函数,作该函数自变量大于m 的部分关于直线x =m 的轴对称图形,与原函数中自变量大于或等于m 的部分共同构成一个新的函数图象,则这个新函数叫做原函数关于直线x =m 的“镜面函数”.例如:图①是函数y =x +1的图象,则它关于直线x =0的“镜面函数”的图象如图②所示,且它的“镜面函数”的解析式为y ={x +1(x ≥0)−x +1(x <0),也可以写成y =|x |+1.(1)在图③中画出函数y =﹣2x +1关于直线x =1的“镜面函数”的图象.(2)函数y =x 2﹣2x +2关于直线x =﹣1的“镜面函数”与直线y =﹣x +m 有三个公共点,求m 的值.(3)已知A (﹣1,0),B (3,0),C (3,﹣2),D (﹣1,﹣2),函数y =x 2﹣2nx +2(n >0)关于直线x =0的“镜面函数”图象与矩形ABCD 的边恰好有4个交点,求n 的取值范围.10.(2023•秦皇岛一模)定义:如果二次函数y=a1x2+b1x+c1,(a1≠0,a1、b1、c1是常数)与y=a2x2+ b2x+c2a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函致互为“旋转函数”.例如:求函数y=2x2﹣3x+1的“旋转函数”,由函数y=2x2﹣3x+1可知,a1=2,b1=3,c1=1.根据a1+a2=0,b1=b2,c1+c2=0求出a2、b2、c2就能确定这个函数的“旋转函数”.请思考并解决下面问题:(1)写出函数y=x2﹣4x+3的“旋转函数”;(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,求(m+n)2023的值;(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.11.(2022•滨海县校级三模)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“好点”,例如,点(﹣1,1)是函数y=x+2的图象的“好点”.(1)在函数①y=﹣x+5,②y=6x,③y=x2+2x+1的图象上,存在“好点”的函数是(填序号).(2)设函数y=4x(x<0)与y=kx﹣1的图象的“好点”分别为点A、B,过点A作AC⊥y轴,垂足为C.当△ABC为等腰三角形时,求k的值;(3)若将函数y=2x2+4x的图象在直线y=m下方的部分沿直线y=m翻折,翻折后的部分与图象的其余部分组成了一个新的图象.当该图象上恰有3个“好点”时,求m的值.12.(2022•婺城区模拟)定义:在平面直角坐标系中,对于任意一个函数,作该函数y轴右侧部分关于y 轴的轴对称图形,与原函数y轴的交点及y轴右侧部分共同构成一个新函数的图象,则这个新函数叫做原函数的“新生函数“例如:图①是函数y=x+l的图象,则它的“新生函数“的图象如图②所示,且它的“新生函数“的解析式为y={x+1(x≥0)−x+1(x<0),也可以写成y=|x|+1.(1)在图③中画出函数y=﹣2x+l的“新生函数“的图象.(2)函数y=x2﹣2x+2的“新生函数“与直线y=﹣x+m有三个公共点,求m的值.(3)已知A(﹣1,0),B(3,0),C(3,﹣2),D(﹣1,﹣2),函数y=x2﹣2nx+2(n>0)的“新生函数“图象与矩形ABCD的边恰好有4个交点,求n的取值范围.13.(2022•宁南县模拟)新定义:在平面直角坐标系xOy中,若一条直线与二次函数图象抛物线有且仅有一个公共点,且抛物线位于这条直线同侧,则称该直线与此抛物线相切,公共点为切点.现有一次函数y=﹣4x﹣1与二次函数y=x2+mx图象相切于第二象限的点A.(1)求二次函数的解析式及切点A的坐标;(2)当0<x<3时,求二次函数函数值的取值范围;(3)记二次函数图象与x轴正半轴交于点B,问在抛物线上是否存在点C(异于A)使∠OBC=∠OBA,若有则求出C坐标,若无则说明理由.14.(2022•天宁区校级二模)如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(t,0)与(t+6,0).对于坐标平面内的一动点P,给出如下定义:若∠APB=45°,则称点P为线段AB的“等角点”.(1)当t=1时,①若点P为线段AB在第一象限的“等角点”,且在直线x=4上,则点P的坐标为;②若点P为线段AB的“等角点”,并且在y轴上,则点P的坐标为;(2)已知直线y=﹣0.5x+4上总存在线段AB的“等角点”,则t的范围是.15.(2022•零陵区模拟)九年级数学兴趣小组在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的“旋转函数”.小组同学是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的“旋转函数”.请参照小组同学的方法解决下面问题:(1)函数y=x2﹣4x+3的“旋转函数”是;(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,求(m+n)2022的值;(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试求证:经过点A1,B1,C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.16.(2022•甘井子区校级模拟)定义:将函数C1的图象绕点P(m,0)旋转180o,得到新的函数C2的图象,我们称函数C2是函数C1关于点P的相关函数.例如:当m=1时,函数y=(x﹣3)2+9关于点P(1,0)的相关函数为y=﹣(x+1)2﹣9.(1)当m=0时,①一次函数y=﹣x+7关于点P的相关函数为.②点A(5,﹣6)在二次函数y=ax2﹣2ax+a(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣2)2+6关于点P的相关函数是y=﹣(x﹣10)2﹣6,则m=.(3)当m﹣1≤x≤m+2时,函数y=x2﹣6mx+4m2关于点P(m,0)的相关函数的最大值为8,求m的值.17.(2022•庐阳区校级三模)定义:对于给定的两个函数,任取自变量x的一个值;当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为关联函数.例如:一次函数y=x﹣1,它的关联函数为y={−x+1(x<0)x−1(x≥0).已知二次函数y=﹣x2+4x−12.(1)当第二象限点B(m,32)在这个函数的关联函数的图象上时,求m的值;(2)当﹣3≤x≤﹣1时求函数y=﹣x2+4x−12的关联函数的最大值和最小值.18.(2022•江都区二模)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“梅岭点”.(1)若点P (3,p )是一次函数y =mx +6的图象上的“梅岭点”,则m = ; 若点P (m ,m )是函数y =3x−2的图象上的“梅岭点”,则m = ;(2)若点P (p ,﹣2)是二次函数y =x 2+bx +c 的图象上唯一的“梅岭点”,求这个二次函数的表达式; (3)若二次函数y =ax 2+bx +c (a ,b 是常数,a >0)的图象过点(0,2),且图象上存在两个不同的“梅岭点”A (x 1,x 1),B (x 2,x 2),且满足﹣1<x 1<1,|x 1﹣x 2|=2,如果k =﹣b 2+2b +2,请直接写出k 的取值范围.19.(2022•海淀区校级模拟)在平面直角坐标系xOy 中,⊙O 的半径为1,对于线段AB ,给出如下定义:若将线段AB 沿着某条直线l 对称可以得到⊙O 的弦A ′B ′(A ′,B ′分别为A ,B 的对应点),则称线段AB 是⊙O 的以直线l 为对称轴的对称的“反射线段”,直线l 称为“反射轴”.(1)如图1,线段CD 、EF 、GH 中是⊙O 的以直线l 为对称轴的“反射线段”有 ;(2)已知A 点的坐标为(0,2),B 点坐标为(1,1).①如图2,若线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,画出图形,反射轴l 与y 轴的交点M 的坐标是 .②若将“反射线段”AB 沿直线y =x 的方向向上平移一段距离S ,其反射轴l 与y 轴的交点的纵坐标y M 的取值范围为12≤y M ≤136,求S 的取值范围.(3)已知点M 、N 是在以(2,0)为圆心,半径为√13的圆上的两个动点,且满足MN =√2,若MN 是⊙O 的以直线l 为对称轴的“反射线段”,当M 点在圆上运动一周时,反射轴l 与y 轴的交点的纵坐标的取值范围是 .20.(2022•亭湖区校级三模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=4BE,QB=6,求邻余线AB的长.21.(2022•寻乌县二模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.例如:如图①,∠B=∠C,则四边形ABCD为“等邻角四边形”.(1)定义理解:以下平面图形中,是等邻角四边形得是.①平行四边形②矩形③菱形④等腰梯形(2)深入探究:①已知四边形ABCD为“等邻角四边形”,且∠A=120°,∠B=100°,则∠D=°.②如图②,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC,求证:四边形ABDE为等邻角四边形.(3)拓展应用:如图③,在等邻角四边形ABCD中,∠B=∠C,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,PM+PN的值是否会发生变化?请说明理由.22.(2022•东胜区二模)【概念理解】定义:我们把对角线互相垂直的四边形叫做垂美四边形如图①.我们学习过的四边形中是垂美四边形的是;(写出一种即可)【性质探究】利用图①,垂美四边形ABCD两组对边AB,CD的平方和与BC,AD的平方和之间的数量关系是;【性质应用】(1)如图②,在△ABC中,BC=6,AC=8,D,E分别是AB,BC的中点,连接AE,CD,若AE⊥CD,则AB的长为;(2)如图③,等腰Rt△BCE和等腰Rt△ADE中,∠BEC=∠AED=90°,AC与BD交于O点,BD与CE交于点F,AC与DE交于点G.若BE=6,AE=8,AB=12,求CD的长;【拓展应用】如图④,在▱ABCD中,点E、F、G分别是AD、AB、CD的中点,EF⊥CF,AD=6,AB =8,求BG的长.23.(2022•修水县一模)定义:有一组对角互补的四边形叫做“对补四边形”.例如:在四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.概念理解.(1)如图1,已知四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D的度数为;②若∠B=90°,且AB=3,AD=2,则CD2﹣CB2=.拓展延伸.(2)如图2,已知四边形ABCD是“对补四边形”.当AB=CB,且∠EBF=12∠ABC时,试猜想AE,CF,EF之间的数量关系,并证明.24.(2022•盐城一模)对于平面内的两点K、L,作出如下定义:若点Q是点L绕点K旋转所得到的点,则称点Q是点L关于点K的旋转点;若旋转角小于90°,则称点Q是点L关于点K的锐角旋转点.如图1,点Q是点L关于点K的锐角旋转点.(1)已知点A(4,0),在点Q1(0,4),Q2(2,2√3),Q3(﹣2,2√3),Q4(2√2,﹣2√2)中,是点A关于点O的锐角旋转点的是.(2)已知点B(5,0),点C在直线y=2x+b上,若点C是点B关于点O的锐角旋转点,求实数b的取值范围.(3)点D是x轴上的动点,D(t,0),E(t﹣3,0),点F(m,n)是以D为圆心,3为半径的圆上一个动点,且满足n≥0.若直线y=2x+6上存在点F关于点E的锐角旋转点,请直接写出t的取值范围.25.(2022•寿阳县模拟)所谓“新定义”试题指给出一个从未接触过的新规定,源于中学数学内容但又是学生没有遇到过的新信息,它可以是新的概念、新的运算、新的符号、新的图形、新的定理或新的操作规则与程序等.在解决它们的过程中又可产生了许多新方法、新观念,增强了学生创新意识.主要包括以下类型:①概念的“新定义”;②运算的“新定义”;③新规则的“新定义”;④实验操作的“新定义”;⑤几何图形的新定义.如果我们新定义一种四边形:有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=12∠D,∠C=12∠A,请你利用所学知识求出∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO.∠OBA的平分线交OA 于点E,连接DE并延长交AC于点F,若∠AFE=2∠EAF.请你判断四边形DBCF是不是半对角四边形?并说明理由.26.(2022•泗洪三模)定义:若一个圆内接四边形的两条对角线互相垂直,则称这个四边形为圆美四边形.(1)选择:下列四边形中,一定是圆美四边形的是A.平行四边形B.矩形C.菱形D.正方形(2)如图1,在等腰Rt△ABC中,∠BAC=90°,AB=1,经过点A,B的⊙O交AC边于点D,交BC 于点E,连接DE,若四边形ABED为圆美四边形,求DE的长;(3)如图2,AD是△ABC外接圆⊙O的直径,交BC于点E,点P在AD上,延长BP交⊙O于点F,已知PB2=PE•P A.问四边形ABFC是圆美四边形吗?为什么?27.(2022•淮阴区校级一模)定义:在平行四边形中,若有一条对角线长是一边长的两倍,则称这个平行四边形叫做和谐四边形,其中这条对角线叫做和谐对角线,这条边叫做和谐边.【概念理解】(1)如图1,四边形ABCD是和谐四边形,对角线AC与BD交于点G,BD是和谐对角线,AD是和谐边.①△ADG与△BCG的形状是三角形.②若AD=4,则BD=.【问题探究】(2)如图2,四边形ABCD是矩形,过点B作BE∥AC交DC的延长线于点E,连接AE交BC于点F,AD=4,AB=k.①当k=2时,请说明四边形ABEC是和谐四边形;②是否存在值k,使得四边形ABCD是和谐四边形,若存在,求出k的值,若不存在,请说明理由.【应用拓展】(3)如图3,四边形ABCD与四边形ABEC都是和谐四边形,其中BD与AE分别是和谐对角线,AD与AC分别是和谐边,AB=4,AD=k,请直接写出k的值.28.(2022•亭湖区校级模拟)问题:A4纸给我们矩形的印象,这个矩形是特殊矩形吗?思考:通过度量、上网查阅资料,小丽同学发现A4纸的长与宽的比是一个特殊值“√2”定义:如图1,点C把线段AB分成两部分,如果ACBC=√2,那么点C为线段AB的“白银分割点”如图2,矩形ABCD中,BCAB=√2,那么矩形ABCD叫做白银矩形.应用:(1)如图3,矩形ABCD是白银矩形,AD>AB,将矩形沿着EF对折,求证:矩形ABFE也是白银矩形.(2)如图4,矩形ABCD中,AB=1,BC=√2,E为CD上一点,将矩形ABCD沿BE折叠,使得点C 落在AD边上的点F处,延长BF交CD的延长线于点G,说明点E为线段GC的”白银分制点”.(3)已知线段AB(如图5),作线段AB的一个“白银分割点”.(要求:尺规作图,保留作图痕迹,不写作法)29.(2022•盐田区二模)定义:将图形M绕点P顺时针旋转90°得到图形N,则图形N称为图形M关于点P的“垂直图形”.例如:在图中,点D为点C关于点P的“垂直图形”.(1)点A关于原点O的“垂直图形”为点B.①若点A的坐标为(0,2),直接写出点B的坐标;②若点B的坐标为(2,1),直接写出点A的坐标;(2)已知E(﹣3,3),F(﹣2,3),G(a,0).线段EF关于点G的“垂直图形”记为E'F',点E的对应点为E',点F的对应点为F'.①求点E'的坐标;②当点G运动时,求FF'的最小值.30.(2022•高新区校级二模)在数学课上,当老师讲到直线与圆的位置关系时,张明同学突发奇想,特殊线与圆在不同的位置情况下会有怎样的数量关系呢?于是在课下他查阅了老师推荐他的《几何原本》,这本书是古希腊数学家欧几里得所著的一部数学著作.它是欧洲数学的基础,总结了平面几何五大公设,被广泛地认为是历史上学习数学几何部分最成功的教科书.其中第三卷命题36﹣2圆幂定理(切割线定理)内容如下:切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.(比例中项的定义:如果a、b、c三个量成连比例即a:b=b:c,则b叫做a和c的比例中项)(1)为了说明材料中定理的正确性,需要对其进行证明,下面已经写了不完整的“已知”和“求证”,请补充完整,并写出证明过程.已知:如图,A是圆O外一点,AB是圆O的切线,直线ACD为圆O的割线.求证:证明:(2)如图,已知AC=2,CD=4,则AB的长度是.31.(2022•江北区模拟)定义:若连结三角形一个顶点及其对边上一点的线段将该三角形分割成的两个小三角形中,有一个与原三角形相似,则称该线段为三角形的相似分割线;若分割成的两个小三角形都与原三角形相似,则称该线段为全相似分割线.(1)如图1,在△ABC中,∠ABC为钝角,相似分割线AD是BC边上的中线,求证:BC=√2AB.(2)如图2,在△ABC中,AD是△ABC的全相似分割线,求证:1AD2=1AB2+1AC2;(3)在△ABC中,AD是△ABC的全相似分割线,将△BAD绕B点顺时针旋转,D点旋转到E点,A点旋转到F点,当旋转到如图3的位置时,E,F,C三点共线,BF恰好是△BEC的相似分割线,求CDBD值.32.(2022•巢湖市二模)定义:如果一个三角形中有一个角是另一个角的2倍,那么我们称这样的三角形为倍角三角形.根据上述定义可知倍角三角形中有一个角是另一个角的2倍,所以我们就可以通过作出其中的2倍角的角平分线,得出一对相似三角形,再利用我们学过的相似三角形的性质解决相关问题.请通过这种方法解答下列问题:(1)如图1,△ABC中,AD是角平分线,且AB2=BD•BC,求证:△ABC是倍角三角形;(2)如图2,已知△ABC是倍角三角形,且∠A=2∠C,AB=8,BC=10,求AC的长;(3)如图3,已知△ABC中,∠A=3∠C,AB=8,BC=10,求AC的长.。

初中数学中考复习专题五 新定义型

初中数学中考复习专题五  新定义型

专题五新定义型【专题精讲】“新定义型”问题,主要是指在问题中定义了中学数学中没有学过的一些概念,新运算,新符号,要求学生读懂题意并结合已有知识和能力进行理解,根据新的定义进行运算,推理,迁移。

最近几年是考试热点。

“新定义型”关键要把握两点:一是掌握问题的原型特点及其解决问题的思想方法,二是根据问题背景变化,通过认真思考,合理进行思想方法的迁移。

“新定义型”问题的类型:规律题型中的新定义,运算题中的新定义,探索题中的新定义,开放题中的新定义,阅读材料题中点的新定义,等等。

【典型例题讲解】考点一规律题中的新定义例1若自然数n使得三个数的加法运算“)2++nnn”产生进位现象,则称n为“连加进位数”。

+(+()1例如:2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6=15产生进位现象;51是“连加进位数”,因为51+52+53=156产生进位现象。

如果从0,1,2, (99)100个自然数中任取一个数,那么取到“连加进位数”的概率是()A. 0.88B. 0.89C. 0.90D. 0.91考点二运算中的新定义定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5(1)求(-2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”。

理解(1)如图1,已知A. B 是⊙O 上两点,请在圆上找出满足条件的点C ,使△ABC 为“智慧三角形”(画出点C 的位置,保留作图痕迹);(2)如图2,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CD CF 41=,试判断AEF ∆是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy 中,⊙O 的半径为1,点Q 是直线3=y 上的一点,若在⊙O 上存在一点P ,使得OPQ ∆为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标。

最新中考数学新定义题型专题复习资料

最新中考数学新定义题型专题复习资料

新定义型专题(一)专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力(二)解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.(三)考点精讲考点一:规律题型中的新定义 例1.定义:a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知a 1=-13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2009= .考点二:运算题型中的新定义例2.对于两个不相等的实数a 、b ,定义一种新的运算如下,*0a ba b a b a b+=+(>)﹣,如:323*2532+==﹣,那么6*(5*4)= .例3.我们定义ab ad bc cd=-,例如2345=2×5﹣3×4=10﹣12=﹣2,若x ,y 均为整数,且满足1<14x y <3,则x+y 的值是 .考点三:探索题型中的新定义例4.定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1,PH=PJ,PI=PG,则点P就是四边形ABCD的准内点.(1)如图2,∠AFD与∠DEC的角平分线FP,EP相交于点P.求证:点P是四边形ABCD 的准内点.(2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)(3)判断下列命题的真假,在括号内填“真”或“假”.①任意凸四边形一定存在准内点.()②任意凸四边形一定只有一个准内点.()③若P是任意凸四边形ABCD的准内点,则PA+PB=PC+PD或PA+PC=PB+PD.()考点四:阅读材料题型中的新定义阅读材料我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;请解决以下问题:如图,我们把满足AB=AD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;(1)写出筝形的两个性质(定义除外);(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明.真题演练1.定义运算a⊗b=a(1﹣b),下列给出了关于这种运算的几点结论:①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗b)+(b⊗a)=2ab;④若a⊗b=0,则a=0.其中正确结论序号是.(把在横线上填上你认为所有正确结论的序号)2.如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线,例如平行四边形的一条对角线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有;(2)如图,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S =S△ADE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不梯形ABCD写作法,保留作图痕迹);(3)如图,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.3. 如图,六边形ABCDEF 是正六边形,曲线FK 1K 2K 3K 4K 5K 6K 7……叫做“正六边形的渐开线”,其中1FK ,12K K ,23K K ,34K K ,45K K ,56K K ,……的圆心依次按点A ,B ,C ,D ,E ,F 循环,其弧长分别记为l 1,l 2,l 3,l 4,l 5,l 6,…….当AB =1时,l 2 011等于( )A.20112π B.20113π C.20114π D.20116π一、选择题1、定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则,计算2☆3的值是( )A. 56B. 15C.5D.62.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A 、1,2B 、1,3C 、4,2D 、4,33.(2010浙江杭州,10,3分)定义[a ,b ,c ]为函数y =a x 2+bx c +的特征数,下面给出特征数为[2m ,1﹣m ,﹣1﹣m]的函数的一些结论:①当m =﹣3时,函数图象的顶点坐标是(18,33);②当m >0时,函数图象截x 轴所得的线段长度大于32; ③当m <0时,函数在x >14时,y 随x 的增大而减小; ④当m ≠0时,函数图象经过同一个点. 其中正确的结论有( ) (第12题图)A B CD EF K 1 K 2K 3K 4K 5K 6K 74.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。

中考数学复习《新定义问题》

中考数学复习《新定义问题》

【解析】根据题意可知,S1中2有2的倍数个,3有3的倍数个,据此即可作出
选择.A.∵2有3个,∴不可以作为S1,故选项错误;B.∵2有3个,∴不可以
作为S1,故选项错误;C.3只有1个,∴不可以作为S1,故选项错误;D.符合 定义的一种变换,故选项正确.故选D.
13.对于钝角α,定义它的三角函数值如下: sinα=sin(180°-α),cosα=-cos(180°-α).
11.任意一个正整数 n 都可以分解:n=p×q(p,q 是正整数,且 p≤q), 在 n 的所有这种分解中,如果|p-q|最小,则称 p×q 是 n 的最佳分解. p 并规定:F(n)=q.
(1)求F(12);
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换 其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为
15.定义:点 P 是△ABC 内部或边上的点(顶点除外),在△PAB,△PBC, △PCA 中,若至少有一个三角形与△ABC 相似,则称点 P 是△ABC 的自相似 3 3 点.在平面直角坐标系中,点 M 是曲线 y= x (x>0)上的任意一点,点 N 在 x 轴正半轴上. (1)如图 1,MN⊥x 轴,点 N( 3,0), 若 OM 上点 P 是△MON 的自相似点,求点 P 的坐标; (2)如图 2,当点 M(3, 3),点 N(2,0)时,求△MON 的自相似点的坐标.
3.定义[a,b,c]为函数 y=ax2+bx+c 的特征数, 下面给出特征数为[2m,1-m ,-1-m]的函数的一些结论: 1 8 ①当 m=-3 时,函数图象的顶点坐标是(3,3); 3 ②当 m>0 时,函数图象截 x 轴所得的线段长度大于2; 1 ③当 m<0 时,函数在 x>4时,y 随 x 的增大而减小; ④当 m≠0 时,函数图象经过同一个点.其中正确的结论有( B ) A.①②③④ B.①②④ C.①③④ D.②④

中考数学专题复习新定义问题(二)

中考数学专题复习新定义问题(二)

中考数学专题复习新定义问题(二)学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、解答题1.对于平面直角坐标系xOy 中的图形W ,给出如下定义:点P 是图形W 上任意一点,若存在点Q ,使得∠OQP 是直角,则称点Q 是图形W 的“直角点”.(1)已知点A ()6,8,在点Q 1()0,8,Q 2()4,2-,Q 3()8,4中,______是点A 的“直角点”;(2)已知点()3,4B -,()4,4C ,若点Q 是线段BC 的“直角点”,求点Q 的横坐标n 的取值范围;(3)在(2)的条件下,已知点(),0D t ,()1,0E t +,以线段DE 为边在x 轴上方作正方形DEFG .若正方形DEFG 上的所有点均为线段BC 的“直角点”,直接写出t 的取值范围.2.对于平面内的点M ,如果点P ,点Q 与点M 所构成的MPQ 是边长为1的等边三角形,则称点P ,点Q 为点M 的一对“关联点”,进一步地,在MPQ 中,若顶点M ,P ,Q 按顺时针排列,则称点P ,点Q 为点M 的一对“顺关联点”;若顶点M ,P ,Q 按逆时针排列,则称点P ,点Q 为点M 的一对“逆关联点”.已知(1,0)A ,(1)在33(0,0),(0,1),(2,0),,22O B C D ⎛⎫- ⎪⎝⎭中,点A 的一对关联点是____,它们为点A的一对___关联点(填“顺”或“逆”);(2)以原点O 为圆心作半径为1的圆,已知直线:3l y x b =+.∠若点P 在∠O 上,点Q 在直线l 上,点P ,点Q 为点A 的一对关联点,求b 的值; ∠若在∠O 上存在点R ,在直线l 上存在两点()11,T x y 和()22,S x y ,其中12x x >,且点T ,点S 为点R 的一对顺关联点,求b 的取值范围.3.在平面直角坐标系xOy 中,对于图形Q 和∠P ,给出如下定义:若图形Q 上的所有的点都在∠P 的内部或∠P 的边上,则∠P 的最小值称为点P 对图形Q 的可视度.如图1,∠AOB 的度数为点O 对线段AB 的可视度. (1)已知点N (2,0),在点12(0,3)3M ,2(1,3)M ,3(2,3)M 中,对线段ON 的可视度为60º的点是______.(2)如图2,已知点A (-2,2),B (-2,-2),C (2,-2),D (2,2),E (0,4). ∠直接写出点E 对四边形ABCD 的可视度为______°;∠已知点F (a ,4),若点F 对四边形ABCD 的可视度为45°,求a 的值.4.对于平面内点P和∠G,给出如下定义:T是∠G上任意一点,点P绕点T旋转180°后得到点P',则称点P'为点P关于∠G的旋转点.下图为点P及其关于∠G的旋转点P'的示意图.在平面直角坐标系xOy中,∠O的半径为1,点P(0,-2).(1)在点A(-1,0),B(0,4),C(2,2)中,是点P关于∠O的旋转点的是;=+上存在点P关于∠O的旋转点,求b的取值范围;(2)若在直线y x b(3)若点D在∠O上,∠D的半径为1,点P关于∠D的旋转点为点P',请直接写出点P'的横坐标x P'的取值范围.5.在平面直角坐标系xOy 中,对于∠M 内的一点P ,若在∠M 外存在点P ',使得2MP MP '=,则称点P 为∠M 的二倍点.(1)当∠O 的半径为2时, ∠在1(1,0)T ,2(1,-1)T ,333(,)22-T 三个点中,是∠O 的二倍点的是 ; ∠已知一次函数2y kx k =+与y 轴的交点是(0,)A a ,若一次函数在第二象限的图象上的所有点都是∠O 的二倍点,求a 的取值范围.(2)已知点(,0)M m ,1(0,)2-B ,1(1,)2C -,∠M 的半径为2,若线段BC 上存在点P为∠M 的二倍点,直接写出m 的取值范围 .6.在平面直角坐标系xOy 中,12,,,k A A A ⋯是k 个互不相同的点,若这k 个点横坐标的不同取值有m 个,纵坐标的不同取值有n 个,p m n =+,则称p 为这k 个点的“特征值”,记为12,,,k A A A p ⋯=.如图1,点(1,1),(1,2),,123M N T M N 〈〉=+=.(1)如图2,圆C 的圆心为(0,3),半径为5,与x 轴交于A ,B 两点. ∠,T A B 〈〉=________,,,T A B C 〈〉= _________;∠直线(0)y b b =≠与圆C 交于两点D ,E ,若,,,6T A B D E 〈〉=,求b 的取值范围; (2)点128,,,A A A ⋯到点O 的距离为1或2,且这8个点构成中心对称图形,128,,,6T A A A ⋯=,若抛物线2(0)y ax bx c a =++>恰好经过128,,,A A A ⋯中的三个点,并以其中一个点为顶点,直接写出a 的所有可能取值.7.在∠ABC中,点P是∠BAC的角平分线AD上的一点,若以点P为圆心,P A为半径的∠P与∠ABC的交点不少于...4个,点P称为∠ABC关于∠BAC的“劲度点”,线段P A 的长度称为∠ABC关于∠BAC的“劲度距离”.(1)如图,在∠BAC平分线AD上的四个点1P、2P、3P、4P中,连接点A和点的线段长度是∠ABC关于∠BAC的“劲度距离”.(2)在平面直角坐标系中,已知点M(0,t),N(4,0).∠当t=5时,求出∠MON关于∠MON的“劲度距离”1d的最大值.∠如果222d≤≤内至少有一个值是∠MON关于∠MON的“劲度距离”,请直接写出t 的取值范围.8.在平面直角坐标系xOy中,若点P和点1P关于y轴对称,点1P和点2P关于直线l对称,则称点2P是点P关于y轴,直线l的完美点.(1)如图1,点(2,0)A-.∠若点B是点A关于y轴,直线1:4l x=的完美点,则点B的坐标为__________ ;∠若点(5,0)C是点A关于y轴,直线2:l x a=的完美点,则a的值为__________;(2)如图2,∠O的半径为1.若∠O上存在点M,使得点M'是点M关于y轴,直线3:l x b=的完美点,且点M'在函数2(0)y x x=>的图象上,求b的取值范围;(3)(),0E t是x轴上的动点,∠E的半径为2,若∠E上存在点N,使得点N'是点N关于y轴,直线4:32l y x=+的完美点,且点N'在y轴上,直接写出t的取值范围.9.对于平面直角坐标系xOy中的点P和图形G,给出如下定义:若在图形G上存在两个点M,N,且MN=2,使得以P,M,N为顶点的三角形为等边三角形,则称P为图形G的“正点”.已知A(2,0),B(0,23).(1)在点1C(-1,3),2C(0,0),3C(2,3)中,线段AB的“正点”是;(2)直线(1)3y k x=-+(0k≠)上存在线段AB的“正点”,求k的取值范围;(3)以(),0T t(0t<)为圆心,27为半径作∠T,若线段AB上总是存在∠T的“正点”,直接写出t 的取值范围.10.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ),特殊地,当图形M 与图形N 有公共点时,规定d (M ,N )=0已知点()(2,00)2(30)0()2A B C D m -,,,,,,. (1)∠求d (点O ,线段AB );∠若d (线段CD ,直线AB )=1,直接写出m 的值;(2)∠O 的半径为r ,若d (∠O ,线段AB )≤1,直接写出r 的取值范围; (3)若直线3y x b =+上存在点E ,使d (E ,ABC )=1,直接写出b 的取值范围.11.对于平面直角坐标系xOy 中的一点P 和C ,给出如下的定义:若C 上存在一个点A ,连接P A ,将射线P A 绕点P 顺时针旋转90°得到射线PM ,若射线PM 与C 相交于点B ,则称P 为C 的直角点. (1)当O 的半径为1时,∠在点(0,0)D 、(1,1)E -、(2,2)F 中,O 的直角点是 .∠已知直线l :y x b =+,若直线l 上存在O 的直角点,求b 的取值范围.(2)若(,0)Q q ,Q 的半径为1,直线332y x q =-+ 上存在Q 的直角点,直接写出q 的取值范围.参考答案:1.(1)Q1,Q3;(2)4222n-≤≤+;(3)-3+21-31732t t≤≤-≤≤或【解析】【分析】(1)在平面直接坐标系中画出相关点的坐标,根据定义就可以判断出结果.(2)根据题意画出点Q的位置轨迹,观察图形,满足题意有两种情况,分别计算即可.(3)根据题意画图,并结合第二问,发现当正方形在以OB和OC为直径的圆的相交部分的时候,是不满足题意的,所以找到个边界点,即可解题【详解】解:(1)Q1,Q3,如下图:(2)∠∠OQP=90°,∠点Q在以OP为直径的圆上(O,P两点除外)如图1,以OB为直径作M,作//MH x轴,交M于点H(点H在点M左侧).∠点B的坐标为(-3,4),∠M 的半径为52,点M 的坐标为3,22⎛⎫- ⎪⎝⎭.∠35422H x =--=-.如图2,以OC 为直径作M ',作M H ''∠x 轴,交M '于点H '(点H '在点M '右侧). ∠点C 的坐标为(4,4),∠M '的半径为22,点M '的坐标为(2,2). ∠222H x '=+. ∠n 的取值范围是4222n -≤≤+. (3)正方形1的左下端点为左边界,此时13t =-.正方形2的右上端点在右边圆上,圆心坐标为()2,2 ,则满足关系式:()()22121222t +-+-=,化简得:2260t t --=,解得:121717t t =+=-(舍),. 正方形3的左端点在左边圆上,圆心坐标为3,22⎛⎫- ⎪⎝⎭,此时满足关系式:()22351222t ⎛⎫++-= ⎪⎝⎭,化简得:2+330t t -=, 解得:3432132122t t -+--==,(舍), 正方形4的右下端点在右边圆上,是右边界,143t t +==,. 综上所说:满足题意的解集是:-3+21-31732t t ≤≤-≤≤或.【点睛】本题是新定义题型的考查,能够根据题意画出相关图形,分类讨论是解题关键. 2.(1)C ,D ,逆(或D ,C ,顺);(2)∠0b =,3-或23-;∠2323b --≤≤-.【解析】【分析】(1)根据两点间距离公式,分别求出AO 、AB 、AC 、AD 、OD 的长,根据“关联点”及“顺关联点”的定义即可得答案;(2)∠根据“关联点”的定义可得1AP AQ PQ ===,可得∠QP A =60°,根据∠O 半径及点A 坐标可得OA=OP=AP ,可得∠OAP 是等边三角形,根据等边三角形点性质可得∠OAP =∠POA =60°,113,22P ⎛⎫ ⎪ ⎪⎝⎭,213,22P ⎛⎫- ⎪ ⎪⎝⎭,可得Q 1(0,0),根据∠QP A =∠POA =60°,可得PQ //OA ,即可得出点Q 的横坐标和纵坐标,即可得Q 2、Q 3坐标,把Q 1、Q 2、Q 3坐标代入直线l 解析式求出b 值即可;∠作RH ST ⊥于点H ,则32RH =,根据圆的性质分别求出b 的最大值和最小值即可得答案. 【详解】(1)∠(1,0)A ,33(0,0),(0,1),(2,0),,22O B C D ⎛⎫- ⎪⎝⎭, ∠AO =1,AB =2,AC =1,AD =1,OD=3,∠∠ACD 是等边三角形,∠C 、D 是点A 的“关联点”,∠点A 、C 、D 按顺时针排列,∠C 、D 是点A 的“顺关联点”,故答案为:C ,D ,顺(或D ,C ,逆)(2)∠如图.∠点P ,点Q 为点A 的一对“关联点”,∠APQ 为等边三角形,1AP AQ PQ ===,∠∠QP A =60°,∠以原点O 为圆心作半径为1的圆,点P 在∠O 上,OA =1,∠OA=OP=AP ,∠∠OAP 是等边三角形,∠∠OAP =∠POA =60°,113,22P ⎛⎫ ⎪ ⎪⎝⎭,213,22P ⎛⎫- ⎪ ⎪⎝⎭, ∠Q 1(0,0),∠点Q 在直线l 上,∠b 1=0,∠∠QP A =∠POA =60°,∠PQ //OA ,∠点Q 横坐标为12+1=32, ∠1AP AQ PQ ===,∠点Q 纵坐标为32±, ∠233333,,,2222Q Q ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 当233,22Q ⎛⎫ ⎪⎝⎭时,33322b +=,解得:3b =-; 当333,22Q ⎛⎫- ⎪⎝⎭时,33322b +=-,解得:23b =-. 综上所述,0b =,3-或23-.∠如图.∠点T,点S为点R的一对顺关联点,∠RTS为正三角形,1RT=,//RT x轴,点T和点S在直线:3l y x b=+上.作RH ST⊥于点H,则32RH=,当b取最大值时,111R H l⊥,1111312OH OR R H=-=-,此时11223b OH==-.当b取最小值时,222R H l⊥,2222312OH OR R H=+=+,此时222(23)23b OH=-=-+=--.综上所述,b的取值范围为2323b--≤≤-.【点睛】本题考查等边三角形点判定与性质、圆点性质及一次函数图象上点点坐标特征,正确理解“关联点”点概念是解题关键.3.(1)M1,M2;(2)∠90;∠232+或232【解析】【分析】(1)结合勾股定理,等边三角形的判定和性质以及锐角三角函数求角的度数,从而作出判断;(2)∠根据等腰直角三角形的判定和性质求解;∠根据可视度的定义结合勾股定理分情况讨论求解【详解】解:(1)∠点N (2,0),点12(0,3)3M ,2(1,3)M ,3(2,3)M 中, ∠M 3N ∠x 轴,∠332tan 3ON M M N ∠==,112tan 3233ON M OM ∠=== ∠360M ∠≠︒,160M ∠=︒()222132OM =+=,()222132M N =+=∠∠2OM N 是等边三角形∠2=60OM N ∠︒ ∠对线段ON 的可视度为60º的点是M 1,M 2故答案为:M 1,M 2.(2)∠连接EA ,ED由题意可得AG =EG =2,DG =GE =2∠∠AGE 和∠EDG 均为等腰直角三角形∠∠AED =90°∠点E 对四边形ABCD 的可视度为90°故答案为:90;∠解:由题意可知,四边形ABCD是正方形,点F在直线y=4上.如图所示,点F对正方形ABCD的可视度为45°,当点F是以点D为圆心,4为半径的圆和直线y=4的交点时,过点D作DN∠EF于点N,则有DN=2,DF=4,可得NF=23.∠a=232+.当点F是以点A为圆心,4为半径的圆和直线y=4的交点时,同理可得,a=232.综上,a的值为232+或232.【点睛】本题考查解直角三角形已经图形与坐标,理解题意,利用数形结合思想解题是关键.4.(1)点B,点C;(2)222222b-≤≤+;(3)44'-≤≤px【解析】【分析】(1)根据题意结合图即可得出旋转点;(2)使直线y x b =+分别与圆相切时,求出b 的取值范围;(3)考虑全两种情况即可得出取值范围.【详解】(1)点B ,点C ;(2)由题意可知,点P 关于∠O 的旋转点形成的图形为以点G (0,2)为圆心,以2个单位长度为半径的∠G .当直线y x b =+与∠G 相切时:如图1,求得:222b =+,如图2,求得:222b =-.因为直线y x b =+上存在点P 关于∠O 的旋转点,所以,222222b -≤≤+.图1图2(3) 当∠D 的圆心在(-1,0)(1,0)时,p x ' 取最小和最大值,∴ P '的横坐标x P '的取值范围44'-≤≤p x .【点睛】此题考查了圆与一次函数图像的知识,解题的关键是能够灵活运用直线与圆相切的特点,进而求解.5.(1)∠2T ,3T ;∠2323a <≤;(2)153122m -<<-或315122m <<+ 【解析】【分析】(1)∠根据圆的二倍点的含义判断即可;∠由于圆的半径为2,根据二倍点的含义,则这些点与圆心O 的距离大于1,当直线与半径为1的圆相切时,可求得一次函数解析式中的k 值,从而可求得a 的值;当直线y =kx +2k 与y 轴的交点也是O 与y 轴的交点时,可得a 的值,根据题意最后可确定a 的取值范围; (2)当2MC <且1MB > 或<2MB 且1MC >时,才满足条件,由此可求得m 的取值范围.【详解】(1)∠∠OT 1=1,122OT '=,但此时1T '点在圆上,不合题意,故T 1不是二倍点; ∠OT 2=22112+=,22333322OT ⎛⎫⎛⎫=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,而22222OT '=>,32232OT '=>,∠2T ,3T 是二倍点.故答案为:2T ,3T∠当2x =-时,0y =,∠一次函数2y kx k =+过定点()2,0-,如图1,当一次函数2y kx k =+的图象与半径为1的O 相切时,可得33k =,则233a =.如图2当一次函数2y kx k =+的图象与y 轴的交点也是O 与y 轴的交点时,可得2a =.∠由题意可知2323a <≤. (2)当2MC <且1MB > 或<2MB 且1MC >时,线段BC 上存在点P 为∠M 的二倍点,即221(1)44114m m ⎧-+<⎪⎪⎨⎪+>⎪⎩或221(1)14144m m ⎧-+>⎪⎪⎨⎪+<⎪⎩, 解得:315122m <<+或153122m -<<-. 故答案为:153122m -<<-或315122m <<+. 【点睛】本题是一个新定义问题,涉及直线与圆的位置关系,一次函数的图象,解一元二次不等式组等知识,解题的关键是数形结合.6.(1)∠3,5;∠28b -<<且0b ≠,6b ≠;(2)1或2或14.【解析】【分析】(1)∠先写出A ,B 的坐标,然后根据题意即可求解;∠D ,E 两点都在直线(0)y b b =≠上,而A ,B 两点都在直线0y =上,因此A ,B ,D ,E 四点纵坐标不同的取值有2个,要使得,,,6T A B D E 〈〉=,则A ,B ,D ,E 四点横坐标不同的取值必须有4个,此时这四个点的横坐标均不能相同,由对称性,当6b =时,D ,E 分别为(4,6)-和(4,6),其横坐标分别与A ,B 的横坐标相同,不符合题意;由图可知,直线y b =与C 要有公共点,则28b -<<,答案可解;(2)根据题意画出图形,抛物线2(0)y ax bx c a =++>,所以0a >,抛物线开口向上,因为抛物线经过三个点,且抛物线呈对称,分析抛物线可能经过的点,进行分类讨论即可解得答案.【详解】(1)∠由图可知()()()4,0,4,0,0,3A B C -,根据题意可得:,213T A B 〈〉=+=,,,325T A B C 〈〉=+=,故答案为:3,5;∠解:D ,E 两点都在直线(0)y b b =≠上,而A ,B 两点都在直线0y =上,因此A ,B ,D ,E 四点纵坐标不同的取值有2个,要使得,,,6T A B D E 〈〉=,则A ,B ,D ,E 四点横坐标不同的取值必须有4个,于是此时这四个点的横坐标均不能相同.由对称性,当6b =时,D ,E 分别为(4,6)-和(4,6),其横坐标分别与A ,B 的横坐标相同,不符合题意;由图可知,直线y b =与C 要有公共点,则28b -<<;综上所述,b 的取值范围是28b -<<且0b ≠且6b ≠.(2)∠T <A 1,A 2,…,A 8>=6, ∠这8个点横坐标的不同取值的个数与纵坐标的不同取值的个数之和为6.∠点A 1,A 2,…A 8到点O 的距离为1或2,且这8个点构成中心对称图形,∠这8个点构成的图形如下图所示:它们的坐标分别为:A 1(-1,1),A 2(0,1),A 3(1,1),A 4(-1,0),A 5(1,0),A 6(-1,-1),A 7(0,-1),A 8(1,-1).∠抛物线y =ax 2+bx +c (a >0),∠抛物线开口向上.∠抛物线y =ax 2+bx +c (a >0)恰好经过A 1,A 2,…A 8中的三个点,并以其中一个点为顶点,∠根据抛物线为轴对称图形可得:抛物线经过A1,A3,A7或A4,A5,A7.∠抛物线经过A1,A3,A7时,11.1a b ca b cc-+=⎧⎪++=⎨⎪=-⎩解得:21abc=⎧⎪=⎨⎪=-⎩抛物线经过或A4,A5,A7时,1a b ca b cc-+=⎧⎪++=⎨⎪=-⎩解得:11abc=⎧⎪=⎨⎪=-⎩或这8个点构成的图形如下图所示:它们的坐标分别为:123214214(,),(,)4444A A--,34521432143214(,),(,),(,)444444A A A--6782142143214(,),(,),(,).444444A A A----∠抛物线y=ax2+bx+c(a>0)恰好经过A1,A2,…A8中的三个点,并以其中一个点为顶点,∠根据抛物线为轴对称图形可得:抛物线经过A1,A3,A6或A4,A2,A7.∠抛物线经过A1,A3,A6时,A6为顶点,经过A1,A3,设抛物线解析式为2214().44y x =+- 将A 3坐标代入得:142214().4444a =+- 解得:14.a =抛物线经过A 2,A 4,A 7时,A 7为顶点,经过A 2,A 4,设抛物线解析式为2214().44y x =-- 将A 4坐标代入得:21432214().4444=-- 解得:14.a =综上,a 的值为1或2或14【点睛】本题考查了二次函数的综合运用,解题的关键是进行分类讨论.7.(1)23,P P ;(2)∠22;∠52t -≤≤-或25t ≤≤.【解析】【分析】(1)以AP 为半径,以点P 为圆心作圆,观察图形,结合题意即可解答;(2)∠作∠MON 的角平分线OE ,ON 的垂直平分线PF ,OE 和PF 相交于点P ,此时∠P 过点N ,线段OP 的长度是∠MON 关于∠MON 的“劲度距离”最大值.由此求解即可;∠由题意可知圆心都在直线y =x 上,再分当t >0和t <0时两种情况求t 的取值范围即可.【详解】(1)以AP 为半径,以点P 为圆心作圆,则23P P 、符合要求.故答案为:23P P、;(2)∠作∠MON的角平分线OE,ON的垂直平分线PF,OE和PF相交于点P,此时∠P 过点N,线段OP的长度是∠MON关于∠MON的“劲度距离”最大值.易知,OE的函数表达式为y=x,PF的函数表达式为x=2,从而可得其交点坐标为P(2,2).∠1d=OP=22;∠由题意可知,圆心都在直线y=x上,∠当t>0时,当d最大为22时,圆P经过点N,此时和∠一样,点M在(0,5)处,即t=5;当d最小为2时,圆P经过点M,此时点P的纵坐标为1122OM t=,所以点P的坐标(12t,12t),再由OP=2可得22211()()(2)22t t+=,解得t=2;∠当t>0时,t的取值范围为25t≤≤.∠同理,当t<0时,t的取值范围为52t-≤≤-.综上所述t的取值范围为52t-≤≤-或25t≤≤.【点睛】本题时一次函数和圆的综合题,正确理解题意是解决问题的关键.8.(1)∠(6,0),∠3.5;(2)1524b-<≤;(3)234234t-≤≤+.【解析】【分析】(1)∠根据点坐标的轴对称变换规律即可得;∠先求出点A 关于y 轴,直线2:l x a =的完美点,再根据点C 的坐标建立方程,求解即可得;(2)先根据完美点的定义、待定系数法求出点M 所在直线的解析式为24y x b =+,再找出两个临界位置∠直线24(0)y x b y =+>与位于x 轴上方的半圆O 相切;∠直线24(0)y x b y =+>恰好经过点(1,0),分别利用相似三角形的判定与性质、一次函数的性质求出b 的值即可得;(3)如图(见解析),先确定点N '在E '上运动,再利用待定系数法求出直线1E E '的解析式,从而求出点,K E '的坐标,然后求出E '与y 轴相切时的t 值即可得出答案. 【详解】解:(1)∠(2,0)A -, ∴点A 关于y 轴对称的点坐标为(2,0),又点(2,0)关于直线1:4l x =对称坐标为(6,0),(6,0)B ∴, 故答案为:(6,0);∠(2,0)A -, ∴点A 关于y 轴对称的点坐标为(2,0),又点(2,0)关于直线2:l x a =对称坐标为(22,0)a -,点(5,0)C 是点A 关于y 轴,直线2:l x a =的完美点,225a ∴-=,解得 3.5a =,故答案为:3.5;(2)如图,设点M 关于y 轴的对称点为''M ,由完美点的定义得:点M 所在直线与点M '所在直线2(0)y x x =>平行,则设点M 所在直线的解析式为2(0)y x c y =+>,设点M '的坐标为(,2)M m m ',则(2,2)M b m m ''-,(2,2)M b m m -+,将点(2,2)M b m m -+代入2y x c =+得:2(2)2b m c m -++=,解得4c b =,则点M 所在直线的解析式为24y x b =+,因此,有两个临界位置:∠直线24(0)y x b y =+>与位于x 轴上方的半圆O 相切;∠直线24(0)y x b y =+>恰好经过点(1,0),∠直线24(0)y x b y =+>与位于x 轴上方的半圆O 相切,如图,设直线24(0)y x b y =+>与x 轴交于点B ,与y 轴交于点A ,则(0,4),(2,0),0A b B b b ->,224,2,25OA b OB b AB OA OB b ∴===+=,由圆的切线的性质得:OM AB ⊥,1OM =,在AOB 和OMB △中,90AOB OMB ABO OBM ∠=∠=︒⎧⎨∠=∠⎩, AOB OMB ∴~,OA AB OM OB ∴=,即42512b b b=, 解得54b =, ∠直线24(0)y x b y =+>恰好经过点(1,0), 将点(1,0)代入得:240b +=,解得12b =-, 点M '在函数2(0)y x x =>的图象上,不含原点(0,0)O ,b ∴的值不能取12-,则b 的取值范围为1524b -<≤;(3)如图,设点E关于y轴的对称点为1E,点1E关于直线4:32l y x=+的对称点为E',连接1E E',交直线4l于点K,则E'的半径为2,当点N在E上运动时,点N'在E'上运动,要使点N'在y轴上,则E'与y轴相切或相交即可,(,0)E t,1(,0)E t∴-,14E E l'⊥,∴设直线1E E'的解析式为33y x n=-+,将点1(,0)E t -代入得:303t n +=,解得33n t =-, 则直线1E E '的解析式为3333y x t =--, 联立333332y x t y x ⎧=--⎪⎨⎪=+⎩,解得234324t x t y ⎧--=⎪⎪⎨-+⎪=⎪⎩, 2332(,)44t t K ---+∴, 又点K 是线段1E E '的中点,2332(,)22t t E --+'∴, 当E '与y 轴相切时,2322t -=, 解得234t =+或234t =-,综上,满足条件的t 的取值范围为234234t -≤≤+.【点睛】本题考查了点坐标的轴对称变换规律、圆的切线的性质、相似三角形的判定与性质等知识点,较难的是题(2)(3),正确找出相应的临界位置是解题关键.9.(1)1C ,2C ;(2)03k <≤;(3)6243t -≤≤-或20t ≤<-【解析】【分析】(1)按照定义分别判断所给点能否与已知点构成等边三角形即可;(2)根据正点的定义,可以判断满足条件的正点连线是正六边形的两条边,结合直线(1)3y k x =-+过定点()1,3,进一步判断的范围即可; (3)根据正点的定义,画出满足题意的圆,根据图形进行计算,即可.【详解】解:过点O 作OD ∠AB ,∠2C (0,0),A (2,0),B (0,23),∠AB =22(20)(023)-+-=4,∠OD=22334OA OBAB⨯⨯==,∠在线段AB上存在存在两个点M,N,且MN=2,使得以2C,M,N为顶点的三角形为等边三角形,即:2C是线段AB的“正点”.同理:1C是线段AB的“正点”.故答案是:1C,2C;(2)如图,线段AB的“正点”在线段OC和'C D上.且六边形BCOAD'C是正六边形,∠直线(1)3y k x=-+(0k≠)过定点()1,3,是正六边形的中心坐标也是()1,3,∠直线(1)3y k x=-+(0k≠)绕着中心(1,3)旋转.又∠直线(1)3y k x=-+(0k≠)过点O和C'时,k=3,过点C和D时,k=0,∠03k<≤.(3)如下图:在∠T上取线段MN,使MN=2,往圆外作等边三角形MNE,在MN上取中点D,连接TN,ED,TD,则ED∠MN,TD∠MN,T,D,E三点共线,∠DE=22213-=,TD=()2227133-=,∠大圆的半径=3+33=43,同理:小圆半径=33-3=23,当大圆或小圆与线段AB有交点时,线段AB上存在∠T的“正点”,若大圆过点B时,则TB=43,∠AB=4,OB=23,∠OT=()()2243236-=,∠tan∠OBT=OT OBOB OA==tan∠OAB,即:∠OBT=∠OAB,∠∠ABT=∠OBT+∠ABO=∠OAB+∠ABO=90°,∠此时AB与大圆相切于点B,t=-6,若大圆过点A时,AT=43,此时,t=2-43,若小圆与线段AB相切于点C时,∠ATC=∠ABO=30°,TC=23,∠AT =TC ÷cos30°=23÷32=4,此时,t =-2, 若小圆经过B 点时,圆心与点O 重合时,t =0,综上,243t -6≤≤-或20t ≤<-.【点睛】本题是新定义题型,考查动点轨迹为圆时的综合数据处理,以及等边三角形的性质,锐角三角函数相关知识点,能够根据题意画出图形是解题关键.10.(1)∠3;∠232m =-;(2)31231r -≤≤+;(3)232232b --≤≤+【解析】【分析】(1)∠根据题意作图,由三角形的面积公式及“闭距离”的定义即可求解;∠根据题意作图,根据含30°的直角三角形的性质即可求出D 点坐标,故可求解; (2)根据题意作图,由d (∠O ,线段AB )≤1,分情况讨论即可求解;(3)根据题意作图,找到d (∠O ,线段AB )=1的点,再根据解直角三角形、一次函数的解析式求解方法求出b 的值,故可求解.【详解】(1)∠如图,作OH ∠AB ,∠()0)2023(A B -,,, ∠AO =2,BO =23,AB =()222234+= 根据三角形的面积公式可得1122AO BO AB OH ⋅=⋅ ∠OH =22334⨯= ∠d (点O ,线段AB )=3;∠∠AO =2,BO =23,AB =()222234+=∠AB =2AO ,∠∠ABO =30°如图,作HD ∠AB ,∠d (线段CD ,直线AB )=1,∠DH =1∠BD =2HD =2∠DO =BO -BD =232-∠D(232-,0)∠m=232-;Array(2)如图,OH∠AB,交∠O于M点,BI=1当d(∠O,线段AB)≤1当HM≤1时,由(1)可得OH=3∠31r≥-当BI≤1时,此时IO=BI+OB=231+∠231r≤+故若d(∠O,线段AB)≤1时,r的取值范围为31231-≤≤+;r(3)∠ d (E ,ABC )=1,如图,作CM ∠直线3y x b =+于M 点,此时CM =1设直线3y x b =+与x 轴交于K 点,则∠CKM =60°∠CK =CM ÷cos60°=233∠K (2+233,0),代入3y x b =+得232330b ⎛⎫=+⨯+ ⎪ ⎪⎝⎭ 解得b =232如图,作BG ∠直线3y x b =+于G 点,此时BG =1设直线3y x b =+与y 轴交于N 点,则∠GNB =90°-60°=30°∠BN =2BG =2∠N (0,232+),代入3y x b =+得32320b +=⨯+解得b =232+∠存在点E ,使d (E ,ABC )=1,∠b 的取值范围是232232b --≤≤+.【点睛】此题主要考查圆与几何综合,解题的关键是根据题意作图,由“闭距离”的定义及解直角三角形、圆的性质特点进行求解.11.(1)∠D ,E ;∠22b -≤≤;(2)464633q -≤≤ 【解析】【分析】(1)∠如图,由定义可得:,A B 都在O 上,且90,APB ∠=︒ 再分别画出图形,即可得到答案;∠由定义可知,如图O 的直角点,分布在以O 为圆心以2为半径的圆上或圆内,结合∠可得直线的两个极限位置,从而可得答案;(2)先求解332y x q =-+与,x y 轴的交点坐标,再求解60,ONK QNM ∠=︒=∠ 再分两种情况讨论:情况1:q >0时,结合∠画出图形求解463q =,再利用对称性得到.情况2:q <0时, 463q =-,从而可得答案. 【详解】 解:(1)∠如图,由定义可得:,A B 都在O 上,且90,APB ∠=︒当,P D 重合时,则()0,0P ,此时1,AP BP ==故D是O的直角点,如图,同理可得;()1,1E-是O的直角点,当()2,2F时,AFB∠<90,︒F∴不是O的直角点,故答案为:D,E;∠由定义可知,如图O的直角点,分布在以O为圆心以2为半径的圆上或圆内由∠可得:当直线y x b=+过()1,1E-时,11,b∴=-+2,b∴=当直线y x b=+过()1,1E'-时,11,b∴-=+2,b∴=-所以22b -≤≤;(2) 332y x q =-+, 当0x =,则3,2y q =当0,y = 则330,2x q -+= .2q x ∴= 所以直线与x 轴交点为N (,0)2q ,与y 轴的交点30,,2K q ⎛⎫ ⎪ ⎪⎝⎭32tan 3.2q OK ONK q ON∴∠=== 60,ONK QNM ∴∠=︒=∠情况1:q >0时,如图Q (半径为2)与直线332y x q =-+相切时, ∠2QM =,60QNM ∠=︒,∠26sin 603QM QN ==︒, ∠2623q ON QN ===, ∠463q =.情况2:q <0时,根据对称性,463q =-, ∠q 的取值范围为464633q -≤≤ 【点睛】 本题考查的是自定义题,同时考查了旋转的性质,圆的基本性质,圆的切线的性质定理,求解一次函数的解析式,锐角三角函数的应用,掌握数形结合的方法是解题的关键.。

中考数学专题复习新定义问题【含解析】

中考数学专题复习新定义问题【含解析】

新定义问题【专题点拨】新定义运算、新概念问题一般是介绍新定义、新概念,然后利用新定义、新概念解题,其解题步骤一般都可分为以下几步:1.阅读定义或概念,并理解;2.总结信息,建立数模;3.解决数模,回顾检查.“新概念”试题,其设计新颖,构思独特,思维容量大,既能考查学生的阅读、分析、推理、概括等能力,又能考查学生知识迁移的能力和数学素养,同时还兼具了区分选拔的功能 .【解题策略】具体分析新颖问题→弄清问题题意→向已知知识点转化→利用相关联知识查验→转化问题思路解决【典例解析】类型一:规律题型中的新定义例题1:(2015•永州,第10题3分)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是()A.[x]=x(x为整数) B.0≤x﹣[x]<1C.[x+y]≤[x]+[y]D.[n+x]=n+[x](n为整数)【解析】:根据“定义[x]为不超过x的最大整数”进行计算【解答】:解:A、∵[x]为不超过x的最大整数,∴当x是整数时,[x]=x,成立;B、∵[x]为不超过x的最大整数,∴0≤x﹣[x]<1,成立;C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+(﹣4)=﹣10,∵﹣9>﹣10,∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2],∴[x+y]≤[x]+[y]不成立,D、[n+x]=n+[x](n为整数),成立;故选:C.【点评】本题考查了一元一次不等式组的应用,解决本题的关键是理解新定义.新定义解题是近几年中考常考的题型.变式训练1:(2015•山东潍坊,第12题3分)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )A.(—2012,2) B.(一2012,一2)C. (—2013,—2)D. (—2013,2)类型二:运算题型中的新定义例题2:(2016·四川宜宾)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log n a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000= .【解析】实数的运算.先根据log N M=(a>0,a≠1,N>0,N≠1,M>0)将所求式子化成以10为底的对数形式,再利用公式进行计算.【解答】解:log1001000===.故答案为:.变式训练2:(2016四川省乐山市第16题)在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y′),给出如下定义:若(0)(0)y x y y x ≥⎧'=⎨-<⎩,则称点Q 为点P 的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数3y x =+图象上点M 的“可控变点”,则点M 的坐标为 ;(2)若点P 在函数216y x =-+(5x a -≤≤)的图象上,其“可控变点”Q 的纵坐标y′的取值范围是1616y '-≤≤,则实数a 的取值范围是 .类型三: 探索题型中的新定义例题3:(2016山西省第10题)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH【解析】考点:黄金分割的识别【解答】:由作图方法可知DF=5CF ,所以CG=CF )15(-,且GH=CD=2CF ,从而得出黄金矩形CG=CF )15(-,GH=2CF ∴2152)15(-=-=CF CF GH CG ∴矩形DCGH 是黄金矩形。

中考数学知识点专题分类复习:第42讲新概念新定义

中考数学知识点专题分类复习:第42讲新概念新定义

中考数学知识点专题分类复习:第42讲新概念新定义【知识巩固】(一)专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力(二)解题策略和解法精讲“新定义型专题”关键要把握两点:1.是掌握问题原型的特点及其问题解决的思想方法;2.是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.【典例解析】典例一、规律题型中的新定义(2016·黑龙江龙东·3分)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC 的顶点C的坐标为.【考点】翻折变换(折叠问题);等边三角形的性质;坐标与图形变化-平移.【分析】据轴对称判断出点A变换后在x轴上方,然后求出点A纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.【解答】解:解:∵△ABC是等边三角形AB=3﹣1=2,∴点C到x轴的距离为1+2×=+1,横坐标为2,∴A(2,+1),第2016次变换后的三角形在x轴上方,点A的纵坐标为+1,横坐标为2-2016×1=-2014,所以,点A的对应点A′的坐标是(-2014,+1)故答案为:(-2014,+1).典例二、运算题型中的新定义(2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.【变式训练】(2017甘肃天水)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2= 2.【考点】1G:有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:2典例三、探索题型中的新定义(2017齐齐哈尔)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为113°或92°.【考点】S7:相似三角形的性质;KH:等腰三角形的性质.【分析】由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC≠CD,分两种情形讨论①当AC=AD时,②当DA=DC时,分别求解即可.【解答】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°,∵△ACD是等腰三角形,∵∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC==67°,∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°,故答案为113°或92°.典例四、开放题型中的新定义(2017深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=2.【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:2【变式训练】(2017张家界)阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.例如计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=﹣i,i4=1;(2)计算:(1+i)×(3﹣4i);(3)计算:i+i2+i3+ (i2017)【考点】2C:实数的运算.【分析】(1)把i2=﹣1代入求出即可;(2)根据多项式乘以多项式的计算法则进行计算,再把i2=﹣1代入求出即可;(3)先根据复数的定义计算,再合并即可求解.【解答】解:(1)i3=i2•i=﹣i,i4=(i2)2=(﹣1)2=1.故答案为:﹣i,1;(2)(1+i)×(3﹣4i)=3﹣4i+3i﹣4i2=3﹣i+4=7﹣i;(3)i+i2+i3+…+i2017=i﹣1﹣i+1+…+i=i.典例五、阅读材料题型中的新定义(2017湖北荆州)规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程x2+2x﹣8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.上述结论中正确的有()A.①② B.③④ C.②③ D.②④【考点】G6:反比例函数图象上点的坐标特征;AA:根的判别式;AB:根与系数的关系;HA:抛物线与x轴的交点.【分析】①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设x2=2x1,得到x1•x2=2x12=2,得到当x1=1时,x2=2,当x1=﹣1时,x2=﹣2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程mx2+5x+n=0即可得到正确的结论;【解答】解:①由x2﹣2x﹣8=0,得(x﹣4)(x+2)=0,解得x1=4,x2=﹣2,∵x1≠2x2,或x2≠2x1,∴方程x2﹣2x﹣8=0不是倍根方程.故①错误;②关于x的方程x2+ax+2=0是倍根方程,∴设x2=2x1,∴x1•x2=2x12=2,∴x1=±1,当x1=1时,x2=2,当x1=﹣1时,x2=﹣2,∴x1+x2=﹣a=±3,∴a=±3,故②正确;③关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,∴x2=2x1,∵抛物线y=ax2﹣6ax+c的对称轴是直线x=3,∴抛物线y=ax2﹣6ax+c与x轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m,n)在反比例函数y=的图象上,∴mn=4,解mx2+5x+n=0得x1=﹣,x2=﹣,∴x2=4x1,∴关于x的方程mx2+5x+n=0不是倍根方程;故选C.【变式训练】(2017湖北随州)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=﹣x 2﹣x+2与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为y=﹣x+,点A的坐标为(﹣2,2),点B的坐标为(1,0);(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B的坐标;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求得ON的长,可求得N点坐标;(3)当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,可证△EFH≌△ACK,可求得DF的长,则可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E(﹣1,t),由A、C的坐标可表示出AC中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标.【解答】解:(1)∵抛物线y=﹣x2﹣x+2,∴其梦想直线的解析式为y=﹣x+,联立梦想直线与抛物线解析式可得,解得或,∴A(﹣2,2),B(1,0),故答案为:y=﹣x+;(﹣2,2);(1,0);(2)如图1,过A作AD⊥y轴于点D,在y=﹣x2﹣x+2中,令y=0可求得x=﹣3或x=1,∴C(﹣3,0),且A(﹣2,2),∴AC==,由翻折的性质可知AN=AC=,∵△AMN为梦想三角形,∴N点在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN===3,∵OD=2,∴ON=2﹣3或ON=2+3,∴N点坐标为(0,2﹣3)或(0,2+3);(3)①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=2,∵抛物线对称轴为x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F点横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH﹣OF=2﹣=,即E点纵坐标为﹣,∴E(﹣1,﹣);当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(﹣3,0),且A(﹣2,2),∴线段AC的中点坐标为(﹣2.5,),设E(﹣1,t),F(x,y),则x﹣1=2×(﹣2.5),y+t=2,∴x=﹣4,y=2﹣t,代入直线AB解析式可得2﹣t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4,);综上可知存在满足条件的点F,此时E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).【能力检测】1.(2016·山东省德州市·4分)如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为(21008,21009).【考点】一次函数图象上点的坐标特征.【专题】规律型;一次函数及其应用.【分析】写出部分A n点的坐标,根据坐标的变化找出变化规律“A2n+1((﹣2)n,2(﹣2)n)(n为自然数)”,依此规律即可得出结论.【解答】解:观察,发现规律:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∵2017=1008×2+1,∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案为:(21008,21009).【点评】本题考查了一次函数图象上点的坐标特征以及规律型中坐标的变化,解题的关键是找出变化规律“A2n+1((﹣2)n,2(﹣2)n)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,写出部分A n点的坐标,根据坐标的变化找出变化规律是关键.2.(2016·黑龙江齐齐哈尔·3分)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC 分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为(﹣,).【考点】位似变换;坐标与图形性质;矩形的性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得B n的坐标,然后根据矩形的性质即可求得对角线交点的坐标.【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,∵OA=2,OC=1.∵点B的坐标为(﹣2,1),∴点B1的坐标为(﹣2×,1×),∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,∴B2(﹣2××,1××),∴B n(﹣2×,1×),∵矩形A n OC n B n的对角线交点(﹣2××,1××),即(﹣,),故答案为:(﹣,).3.(2016·山东省菏泽市·3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=﹣1.【考点】二次函数图象与几何变换;抛物线与x轴的交点.【专题】规律型.【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【解答】解:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,﹣1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,﹣1),A6(12,0);∴m=﹣1.故答案为:﹣1.【点评】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标.4.2017湖南岳阳)已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k 为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对 B.只有1对 C.只有2对 D.有2对或3对【分析】根据“友好点”的定义知,函数y1图象上点A(a,﹣)关于原点的对称点B(a,﹣)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0 有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.【点评】本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.。

中考数学复习:新定义题型

中考数学复习:新定义题型

新定义题类型一新运算型:252书签。

=-1.其中正确的是( )A. ①②B. ①③ C. ②③ D.①②③2. 阅读材料:设错误!=(x1,y1),错误!未定义书签。

=(x2,y2),如果错误!∥错误!,则x1·y2=x2·y1.根据该材料填空:已知错误!未定义书签。

=(2,3),错误!=(4,m),且错误!未定义书签。

∥错误!未定义书签。

,则m=________.3.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1.因此,min{-错误!,-错误!未定义书签。

}=________;若min{(x-1)2,x2}=1,则x=______.4. 阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;(1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=________,i4=________;(2)计算:(1+i)×(3-4i);(3)计算:i+i2+i3+…+i2017.类型二新概念型5. 已知点A在函数y1=-错误!(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上,若A,B两点关于原点对称,则称点A、B为函数y,y2图象上的一对“友好点”.1请问这两个函数图象上的“友好点”对数的情况为( )A. 有1对或2对 B. 只有1对C.只有2对D. 有2对或3对6. 新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m-2]的一次函数是正比例函数,则关于x的方程错误!+错误!=1的解为________.7.在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=-错误!未定义书签。

中考数学专题复习《新定义问题》专项检测(含答案)

中考数学专题复习《新定义问题》专项检测(含答案)

新定义问题1. 定义[x ]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[-3.6]=-4.对于任意实数x ,下列式子中错误的是( )A. [x ]=x (x 为整数)B. 0≤x -[x ]<1C. [x +y ]≤[x ]+[y ]D. [n +x ]=n +[x ](n 为整数)2.对于两个不相等的实数a ,b ,我们规定符号max{a ,b }表示a ,b 中较大的数,如:max{2,4}=4.按照这个规定,方程max{x ,-x }=2x +1x的解为( )A. 1- 2B. 2- 2C. 1-2或1+ 2D. 1+2或-13.定义运算:a ⊗b =a (1-b ).下面给出了关于这种运算的几种结论:①2⊗(-2)=6;②a ⊗b =b ⊗a ;③(a ⊗a )+(b ⊗b )=2ab ;④若a ⊗b =0,则a =0或b =1.其中结论正确的序号是( )A. ①④B. ①③C. ②③④D. ①②④4. 对于实数m ,n ,定义一种运算“※”:m ※n =m 2-mn -3.下列说法错误的是( )A. 0※1=-3B. 方程x ※2=0的根为x 1=-1,x 2=3C. 不等式组⎩⎪⎨⎪⎧1※t <0(-3)※t <0无解D. 函数y =x ※(-2)的顶点坐标是(1,-4)5. 用“♥”定义一种新运算.对于任意实数m ,n 和抛物线y =ax 2,当y =ax 2♥(m ,n )后都可以得到y =a (x -m )2+n .当y =2x 2♥(3,4)后都可以得到y =2(x -3)2+4.函数y =x 2♥(1,n )得到的函数如图所示,n=________. 第5题图6. 4个数a ,b ,c ,d 排列成⎪⎪⎪⎪⎪⎪⎪⎪a b c d ,我们称之为二阶行列式.规定它的运算法则为:⎪⎪⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,若⎪⎪⎪⎪⎪⎪⎪⎪x +3 x -3x -3 x +3=12,则x =________.7. 新定义[a ,b ]为一次函数y =ax +b (其中a ≠0,且a ,b 为实数)的“关联数”.若“关联数”[3,m +2]所对应的一次函数是正比例函数,则关于x 的方程1x -1+1m =1的解为________.8. 对非负实数x “四舍五入”到个位的值记为x ,即当n 为非负整数..时,若n -12≤x <n +12,则x n =,如0.460,3.674==给出下列关于x 的结论: ①1.4931=; ②22x x =; ③若1142x -=,则实数x 的取值范围是9≤x <11; ④当x ≥0,m 为非负整数时,有20132013m x m x +=+;⑤x y x y +=+.其中,正确的结论有________(填写所有正确的序号). 9.如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”. 以下关于倍根方程的说法,正确的是________.(写出所有正确说法的序号)①方程x 2-x -2=0是倍根方程;②若(x -2)(mx +n )=0是倍根方程,则4m 2+5mn +n 2=0; ③若点(p ,q )在反比例函数y =2x的图象上,则关于x 的方程px 2+3x +q =0是倍根方程;④若方程ax 2+bx +c =0是倍根方程,且相异两点M (1+t ,s ),N (4-t ,s )都在抛物线y =ax 2+bx +c 上,则方程ax 2+bx +c =0的一个根为54.10.在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:若y ′=⎩⎪⎨⎪⎧y (x ≥0)-y (x <0),则称点Q 为点P 的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(-1,3)的“可控变点”为点(-1,-3).(1)若点(-1,-2)是一次函数y =x +3图象上点M 的“可控变点”,则点M 的坐标为________.(2)若点P 在函数y =-x 2+16(-5≤x ≤a )的图象上,其“可控变点”Q 的纵坐标y ′的取值范围是-16≤y ′≤16,则实数a 的取值范围是________. 【答案】专题四 新定义问题1. C 【解析】对于A 选项,取x =2,[2]=2,成立;对于B 选项,取x =3.5,3.5-[3.5]=3.5-3=0.5<1,成立;对于C 选项,x =2.5,y =3.5,则[x +y ]=[6]=6,[x ]+[y ]=2+3=5,6>5,故选项C 错误;对于D 选项,n =2,x =3.5, [2+3.5]=[5.5]=5,2+[3.5]=2+3=5,成立.故答案选择C.2. D 【解析】分类讨论:(1)当x >-x ,即x >0时,max{x ,-x }=x ,即x =2x +1x,∴x 2-2x -1=0,解得x 1=1-2<0(舍去),x 2=1+2;(2)当x <-x ,即x <0时,max{x ,-x }=-x ,即-x =2x +1x,∴x 2+2x +1=0,解得x 1=x 2=-1<0,符合题意.综上所述,符合题意的方程的解是1+2或-1. 3. A 【解析】合题意;B. 方程x ※2=0即为x 2-2x -3=0,解得x 1=-1,x 2=3,正确,故本选项不符合题意;C.不等式组⎩⎪⎨⎪⎧1※t <0(-3)※t <0即为⎩⎪⎨⎪⎧1-t -3<09+3t -3<0,即⎩⎪⎨⎪⎧t >-2t <-2无解,正确,故本选项不符合题意;D. 函数y =x ※(-2)即为y =x 2+2x -3=(x +1)2-4,顶点坐标为(-1,-4),错误,故本选项符合题意.5. 2 【解析】根据题意得y =x 2♥(1,n )是函数y =(x -1)2+n ;由图象得此函数的顶点坐标为(1,2),∴此函数的解析式为y =(x -1)2+2.∴n =2.6. 1 【解析】根据新定义规定的算法:⎪⎪⎪⎪⎪⎪⎪⎪x +3 x -3x -3 x +3=12,即(x +3)2-(x -3)2=12,整理得12x =12,解得x =1.7. x =53 【解析】根据“关联数”[3,m +2]所对应的一次函数是正比例函数,得到y =3x +m +2为正比例函数,即m +2=0,解得m =-2,则分式方程为1x -1-12=1,去分母得:2-(x -1)=2(x -1),去括号得:2-x +1=2x -2,解得x =53,经检验x =53是分式方程的解.8. ①③④ 【解析】9. ②③【解析】10. (-1,2);-5≤a≤4 2 【解析】(1)根据“可控变点”定义知它们的横坐标不变,∴M点的横坐标为-1.当横坐标为负数时,它们的纵坐标互为相反数.∴M(-1,2);(2)当P点的横坐标为负数时,其纵坐标的取值范围是-9≤y<16,则其“可控变点”的纵坐标为-16<y′≤9,符合-16≤y′≤16这一条件.当P点横坐标为非负数时,y′=y,因此只要y=-x2+16≥-16,即0≤x≤42,∴-5≤a≤4 2.。

中考数学复习考点题型专题讲解01 代几综合题中的新定义

中考数学复习考点题型专题讲解01 代几综合题中的新定义
中考数学复习考点题型专题讲解 专题01 代几综合题中的新定义
目录 最新模考题热点题型归纳 【题型一】二次函数中的新定义 【题型二】几何图形中的新定义
【题型一】二次函数中的新定义 【典例分析】
(2023 青浦区一模)在平面直角坐标系 xOy 中(如图),已知抛物线 y=x2﹣2x,其顶点为 A. (1)写出这条抛物线的开口方向、顶点 A 的坐标; (2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”. ①试求抛物线 = ﹣ y x2 2x 的“不动点”的坐标; ②向左或向右平移抛物线 y=x2﹣2x,使所得新抛物线的顶点 B 是该抛物线的“不动点”, 其对称轴与 x 轴交于点 C,且四边形 OABC 是梯形,求新抛物线的表达式.
9 / 22
(1)已知点 M 在抛物线 y = −x2 + 2x + 4 上,且点 M 的横坐标为 2,试判断抛物线 y = −x2 + 2x + 4 是否为回归抛物线,并说明理由; (2)已知点 C 为回归抛物线 y = −x2 − 2x + c 的顶点,如果点 C 是这条抛物线的回归点, 求这条抛物线的表达式; (3)在(2)的条件下,所求得的抛物线的对称轴与 x 轴交于点 D.连接 CO 并延长,交该 抛物线于点 E.点 F 是射线 CD 上一点,如果∠CFE = ∠DEC ,求点 F 的坐标. 【答案】(1)抛物线 y = −x2 + 2x + 4 是回归抛物线;理由见解析;(2) y = −x2 −2x+1; ( )3 F(−1, −8) 【分析】(1)先求出点 M的坐标,再求出点 M关于原点对称的点的坐标,最后代入二次函 数,根据回归抛物线的定义即可得出答案; (2)先求出点 C 关于原点对称的点C′ 的坐标,再将C′ 的坐标代入二次函数解析式,即可 求出 c 的值,从而得出抛物线的表达式; (3)先求出抛物线的对称轴,再根据题意求出点 C 和点 D 的坐标;根据直线 OC 与抛物线 的交点为 E 求出点 E 的坐标;从而求出 、 CD CE 的值;然后根据相似三角形的判定和性质 求出 CF 的值,即可求出点 F 的坐标. 【详解】解 (1)∵M 横坐标为 ,2 ∴M 纵坐标为 4,则 M (2,4) . ∴ M (2,4) 关于原点 O 的对称点为 M ′(−2, −4) ; 当 x = −2时, y = −(−2)2 + 2×(−2) + 4 = −4 .所以 M ' 在抛物线上;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新定义型专题
(一)专题诠释
所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力
(二)解题策略和解法精讲
“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.
(三)考点精讲
考点一:规律题型中的新定义 例1.定义:a 是不为1的有理数,我们把
1
1a
-称为a 的差倒数.如:2的差倒数是
1112=--,-1的差倒数是
111(1)2
=--.已知a 1=-1
3,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4
是a 3的差倒数,…,依此类推,a 2009= .
考点二:运算题型中的新定义
例2.对于两个不相等的实数a 、b ,定义一种新的运算如下,*0a b
a b a b a b
+=
+(>)﹣,如:32
3*2532
+==﹣,那么6*(5*4)= .
例3.我们定义
ab ad bc cd
=-,例如
23
45
=2×5﹣3×4=10﹣12=﹣2,若x ,y 均为整数,且满足1<14
x y <3,则x+y 的值是 .
考点三:探索题型中的新定义
例4.定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1,PH=PJ,PI=PG,则点P就是四边形ABCD的准内点.
(1)如图2,∠AFD与∠DEC的角平分线FP,EP相交于点P.求证:点P是四边形ABCD的准内点.
(2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)
(3)判断下列命题的真假,在括号内填“真”或“假”.
①任意凸四边形一定存在准内点.()
②任意凸四边形一定只有一个准内点.()
③若P是任意凸四边形ABCD的准内点,则PA+PB=PC+PD或PA+PC=PB+PD.()
考点四:阅读材料题型中的新定义
阅读材料
我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;
比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;
我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;
请解决以下问题:
如图,我们把满足AB=AD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;
(1)写出筝形的两个性质(定义除外);
(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明.
真题演练
1.定义运算a⊗b=a(1﹣b),下列给出了关于这种运算的几点结论:
①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗b)+(b⊗a)=2ab;④若a⊗b=0,则a=0.
其中正确结论序号是.(把在横线上填上你认为所有正确结论的序号)
2.如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线,例如平行四边形的一条对角线所在的直线就是平行四边形的一条面积等分线.
(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有;(2)如图,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S梯形ABCD =S△ADE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);
(3)如图,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.
3. 如图,六边形ABCDEF 是正六边形,曲线FK 1K 2K 3K 4K 5K 6K 7……叫做“正六边形的渐开线”,其中1FK ,12K K ,23K K ,34K K ,45K K ,56K K ,……的圆心依次按点A ,
B ,
C ,
D ,
E ,
F 循环,其弧长分别记为l 1,l 2,l 3,l 4,l 5,l 6,…….当AB =1时,l 2 011等于( )
A.
20112
π B.
20113
π C.
20114
π D.
20116
π
一、选择题
1、定义一种运算☆,其规则为a ☆b =1a +1
b
,根据这个规则,计算2☆3的值是( )
A. 56
B. 1
5
C.5
D.6
2.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )
A 、1,2
B 、1,3
C 、4,2
D 、4,3
3.(2010浙江杭州,10,3分)定义[a ,b ,c ]为函数y =a x 2+bx c +的特征数,下面给出特征数为[2m ,1﹣m ,﹣1﹣m]的函数的一些结论:
①当m =﹣3时,函数图象的顶点坐标是(18
,33);
②当m >0时,函数图象截x 轴所得的线段长度大于32
; ③当m <0时,函数在x >
1
4
时,y 随x 的增大而减小; ④当m ≠0时,函数图象经过同一个点. 其中正确的结论有( ) (第12题图)
A B C
D E
F K 1 K 2
K 3
K 4
K 5
K 6
K 7
4.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。

类似的,可以在等腰三角形中建立边角之间的联系。

我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图①在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sadA BC
AB
=
=
底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad60°= .
(2)对于0°<A <180°,∠A 的正对值sadA 的取值范围是 .
(3)如图②,已知sinA 3
5
=,其中∠A 为锐角,试求sadA 的值.
5、若记y =f (x )=221x x +,其中f (1)表示当x =1时y 的值,即f (1)=2
2
111+=12
;f (12)表示当x =12时y 的值,即f (1
2)=2
2111212512
f ==+()(
)();…;则f (1)+f (2)+f (22111212512
f ==+()()())+f (3)+f (13)+…+f (2011)+f (12011)=
. A
A
B
C
C
B
图①
图②
7.在平面直角坐标系中.过一点分別作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如.图中过点P 分別作x 轴,y 轴的垂线.与坐标轴围成矩形OAPB 的周长与面积相等,则点P 是和谐点. (1)判断点M (l ,2),N (4,4)是否为和谐点,并说明理由;
(2)若和谐点P (a ,3)在直线y=﹣x+b (b 为常数)上,求a ,b 的值.
8.阅读下面的材料:
在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所
确定的两条直线,给出它们平行的定义:设一次函数111(0)y k x b k =+≠的图象为直线1l ,一次函数222(0)y k x b k =+≠的图象为直线2l ,若12k k =,且12b b ≠,我们就称直线1l 与直线2l 互相平行. 解答下面的问题:
(1)求过点(1,4)P 且与已知直线21y x =--平
行的直线l 的函数表达式,并画出直线l 的图象;
(2)设直线l 分别与y 轴、x 轴交于点A 、B ,
如果直线m :(0)y kx t t =+>与直线l 平行且交
x 轴于点C ,求出△ABC 的面积S 关于t 的函
数表达式.
y
x
2 4 6 2 4
6 -2
-2
(第23题)。

相关文档
最新文档