新北师大版七年级下数学知识点汇总

合集下载

北师大版《数学》(七年级下册)知识点总结

北师大版《数学》(七年级下册)知识点总结

北师大版《数学》(七年级下册)知识点总结第一章整式的运算 组长检查签名 _________ 家长检查签名_________一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。

单独一个数或字母也是单项式。

②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数. ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.⎪⎩⎪⎨⎧⎩⎨⎧其他代数式多项式单项式整式代数式二. 整式的加减1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m n m a a a ⋅=+(m 、n 均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则:mn n m a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.),()()(都为正数n m a a a mn m n n m ==.在应用时需要注意以下几点:(1) 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n(2)底数有时形式不同,但可以化成相同。

七年级下册数学各章知识点总结

七年级下册数学各章知识点总结

北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式 整 式 多项式同底数幂的乘法 幂的乘方 积的乘方幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式1、多项式、多项式的次数、项 几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质: 1、同底数幂的乘法:a m﹒a n =am+n(m,n 都是正整数);2、幂的乘方:(am)n=amn(m,n 都是正整数); 3、积的乘方:(ab )n=a n bn(n 都是正整数);4、同底数幂的除法:am÷a n=am-n(m,n 都是正整数,a ≠0) ;整 式 的 运算六、零指数幂和负整数指数幂: 1、零指数幂:a=1(a ≠0);2、负整数指数幂:p 是正整数。

七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

七年级下册数学北师大版知识点总结

七年级下册数学北师大版知识点总结

七年级下册数学北师大版知识点总结
一、数与式
1、按数轴给出区间,在区间内求有限个数的等差数列和等比数列和中项;
2、利用已知条件解动态系统;
3、两倍求和公式——全部求和公式,并应用;
4、等比数列求和公式的应用;
5、能够把多项式的标准根式换成指数表达式,指数表达式换成标准根式;
6、求多项式根;
二、几何
1、三角形的等份,三角形两边和夹角关系;
2、求J类锐角三角形的角平分线,斜边中点到另两边的距离;
3、极点、极角、极径的概念,求给出三角形的极点和极角;
4、旋转:比喻法、直线点式、方程式;
5、点是否在椭圆内,求椭圆外一点到椭圆上的切线;
6、判断两圆的关系;
7、求给定的圆的切线方程,由两点式求第三点的坐标;
三、弧与面
1、求三角形的外接圆;
2、求圆弧上一点的切线与覆盖圆内一点的切线;
3、球面、圆台面、球磨比较;
4、求圆锥、圆柱的体积;
四、统计
1、求分类数据的众数、比例;
2、求统计量:最大值、最小值、中位数、平均数;
3、应用统计量求特定分类数据及误差;
4、直方图及其应用;
5、图表中图例的意义;
五、概率
1、区间的概念;
2、十架统一概念;
3、概率的概念,求统一概念的概率;
4、随机变量的概念;
5、概率分布的概念及特点;
6、正态分布的概念和应用;。

(完整版)新北师大版七年级数学下册知识点总结(新支点)

(完整版)新北师大版七年级数学下册知识点总结(新支点)

彭 州 市 新 支 点 学 校2015—2016学年度七年级下期北师大版数学知识点整理第一章 整式运算单项式式 多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式知识点(一)公式应用:1、n m n m a a a +=⋅ (m,n 都是正整数)如=⋅-23b b ________。

拓展运用n m n m a a a ⋅=+ 如已知m a =2, n a =8,求n m a +。

解:___________________. 已知m a =2, n a =8,求n m a +2.解:_____________________.2、mn n m a a =)( (m,n 都是正整数) 如=-4362)()(2a a _________________。

拓展应用m n n m mn a a a )()(==。

若2=n a ,则=n a 2__________。

3、n n n b a ab =)((n 是正整数) 拓展运用n n n ab b a )(=。

4、n m n m a a a -=÷(a 不为0,m,n 都为正整数,且m 大于n)。

拓展应用n m n m a a a ÷=- 如若9=m a ,3=n a ,则=-n m a _____________。

5、)0(10≠=a a ;0(1≠=-a a a pp ,是正整数)。

如81)2(1)2(33-=-=-- 6、平方差公式22))((b a b a b a -=-+ a 为相同项,b 为相反项。

如22224)2()2)(2(n m n m n m n m -=--=--+-7、完全平方公式2222)(b ab a b a ++=+ 2222)(b ab a b a +-=- 逆用:2222222(),2().a ab b a b a ab b a b ++=+-+=- 如22244)2(y xy x y x +-=-8、应用式:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 两位数 10a +b 三位数 100a +10b +c 。

北师大版七年级下册数学课本知识点

北师大版七年级下册数学课本知识点

北师大版七年级下册数学课本知识点第一章 整式的运算1、(3页)像216b π,35x ,2a h 等,都是数与字母的乘积,这样的代数式叫做单项式。

几个单项式的和叫做多项式,例如216ab b π-,1122ab mn -等。

单项式和多项式统称整式。

2、(3页)一个单项式中,所有字母的指数和叫做这个单项式的次数。

如35x 是1次的,2a h 是3次的。

一个多项式中,次数最高的项的次数,叫做这个多项式的次数。

例如216ab b π-是2次的,21213x y y +-是3次的。

3、(14页)同底数幂相乘法则:同底数幂相乘,底数不变,指数相加。

即(,)m n m n a a a m n +⋅=都是正整数。

4、(18页)幂的乘方法则:幂的乘方,底数不变,指数相加。

即()(,)n m mn a a m n =都是正整数。

5、(19页)积的乘方法则:积的乘方等于每一个因式乘方的积。

即()()nn n ab a b n =是正整数。

6、(22、23页)同底数幂的除法法则:同底数幂相除,底数不变,指数相减。

即(0,,)m n m n a a a a m n m n -÷=≠>都是正整数,且。

特别的,我们规定:01(0)a a =≠;1(0,)p pa a p a -=≠是正整数。

7、(27页)整式的乘法法则-单项式乘以单项式:单项式乘以单项式,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式:8、(29页)整式的乘法法则-单项式乘以多项式:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

9、(32页)整式的乘法法则-多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

10、(35页)平方差公式:两数和与这两数差的积,等于它们的平方差。

即()()22a b a b a b +-=-。

北师大版七年级数学下册知识点梳理

北师大版七年级数学下册知识点梳理

北师大版七年级数学下册知识点梳理七年级数学(下)重要知识点总结第一章:整式的运算一、概念1.代数式是由数字、字母及其乘积、和、差、积、商等符号组成的式子。

2.单项式是由数字与字母的乘积组成的代数式,不含加减运算,分母中不含字母。

3.多项式是由几个单项式相加(减)组成的代数式,含加减运算。

4.整式是单项式和多项式的统称。

二、公式、法则:1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。

逆用:a的m+n次方等于a的m次方乘以a的n次方。

2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(a≠0)。

逆用:a的m-n次方等于a的m次方除以a的n次方(a≠0)。

3.幂的乘方法则:a的m次方的n次方等于a的mn次方。

逆用:a的mn次方等于a的m次方的n次方。

4.积的乘方法则:ab的n次方等于a的n次方乘以b的n次方。

逆用:a的n次方乘以b的n次方等于ab的n次方(当ab=1或-1时常逆用)。

5.零指数幂:任何数的0次方等于1(注意考虑底数范围,底数a≠0)。

6.负指数幂:任何数的负整数次幂等于该数的倒数的正整数次幂(底数a≠0)。

7.单项式与多项式相乘:单项式m乘以多项式(a+b+c)等于ma+mb+mc。

8.多项式与多项式相乘:多项式(m+n)乘以多项式(a+b)等于ma+mb+na+nb。

9.平方差公式:(a+b)乘以(a-b)等于a的平方减去b的平方。

推广:有一项完全相同,另一项只有符号不同,结果等于相同。

连用变化。

10.完全平方公式:a+b)的平方等于a的平方加上2ab加上b的平方。

a-b)的平方等于a的平方减去2ab加上b的平方。

逆用:a的平方加上2ab加上b的平方等于(a+b)的平方。

a的平方减去2ab加上b的平方等于(a-b)的平方。

完全平方公式变形:a的平方加上b的平方等于(a-b)的平方加上2ab。

2a的平方加上b的平方等于(a+b)的平方减去2ab等于(a-b)的平方加上2ab等于1.完全平方和公式中间项等于完全平方差公式中间项的相反数,等于完全平方公式中间项的一半。

北师大版七年级下册数学各章知识点总结复习整理

北师大版七年级下册数学各章知识点总结复习整理

北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式整式多项式同底数幂的乘法幂的乘方积的乘方幂运算 同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法 多项式与多项式相乘 整式运算 平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质:1、同底数幂的乘法:a m ﹒a n =a m+n (m,n 都是正整数);2、幂的乘方:(a m )n =a mn (m,n 都是正整数);3、积的乘方:(ab )n =a n b n (n 都是正整数);4、同底数幂的除法:a m ÷a n =a m-n (m,n 都是正整数,a ≠0) ;六、零指数幂和负整数指数幂:1、零指数幂:a 0=1(a ≠0);2、负整数指数幂:p 是正整数。

七、整式的乘除法:1(0)p p a a a -=≠法则:单项式与单项式相乘,把它们的系数、p是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

2024年北师大版初一数学知识点总结(二篇)

2024年北师大版初一数学知识点总结(二篇)

2024年北师大版初一数学知识点总结一、集合与运算1. 集合的概念与表示- 集合的概念:具有某种特定性质的事物的总称。

- 集合的表示:列举法、描述法、集合关系式。

2. 集合的基本运算- 交集:属于同时属于两个集合的元素所组成的新集合。

- 并集:属于两个集合中至少一个的元素所组成的新集合。

- 差集:属于一个集合而不属于另一个集合的元素所组成的新集合。

- 互斥事件:两个事件不可能同时发生的事件。

- 逆事件:一个事件不发生的事件。

- 交换律、结合律、分配律、对偶律。

二、数与运算1. 自然数与整数- 自然数:正整数及零的集合,用N表示。

- 整数:正整数、负整数和零的集合,用Z表示。

2. 有理数- 有理数:可以表示为两个整数之比的数,有限小数、无限循环小数和无限不循环小数的集合,用Q表示。

- 有理数的运算:加法、减法、乘法、除法。

- 有理数的性质:相等性、大小关系、绝对值。

3. 小数与分数- 小数:有限小数、无限循环小数、无限不循环小数。

- 分数:整数和真分数。

- 分数的化简、比较大小、加法、减法、乘法、除法。

4. 实数- 实数:有理数和无理数的集合,用R表示。

- 实数的性质:有序性、稠密性。

5. 整数的除法- 整数除法的概念与性质。

- 余数与商的关系。

三、代数式与方程式1. 代数式与代数式的值- 代数式:由数和变量以及运算符号组成的式子。

- 代数式的值:当变量取某一确定的值时,代入代数式中计算得到的值。

2. 方程与方程的解- 方程:含有一个或多个未知数的等式。

- 方程的解:是使方程成立的未知数的值。

- 方程与方程组的思想与模型应用。

四、几何图形1. 平面与空间几何- 点、线、面和体。

2. 几何图形与基本图形的性质- 几何图形:点、线和面的集合。

- 基本图形:三角形、四边形、五边形、六边形、圆等。

- 基本图形的性质与分类。

3. 直线与角- 直线:直径、相交、垂直、平行等性质。

- 角:角的概念、角的度量、角的分类。

北师大版初一下册数学知识点总结

北师大版初一下册数学知识点总结

七年级数学下册全部知识点归纳第一章:整式的运算单项式式多项式同底数幂的乘法幂的乘方积的乘方同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中,叫做这个多项式的次数。

三、整式1、单项式和多项式统称为。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配律。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:(1)代数式化简。

(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

北师大七年级数学下册知识点总结

北师大七年级数学下册知识点总结

北师大版七年级数学下册知识点总结第一章 整式的运算一、整式1、单项式:表示数与字母的积的代数式。

另外规定单独的一个数或字母也是单项式。

单项式中的数字因数叫做单项式的系数。

注意系数包括前面的符号,系数是1时通常省略,π是系数,72xyz -的系数是72- 单项式的次数是指所有字母的指数的和。

2、多项式:几个单项式的和叫做多项式。

(几次几项式)每一个单项式叫做多项式的项,注意项包括前面的符号。

多项式的次数:多项式中次数最高的项的次数。

项的次数是几就叫做几次项,其中不含字母的项叫做常数项。

3、整式;单项式与多项式统称为整式。

(最明显的特征:分母中不含字母)4、排列多项式:①按某一个字母降幂排列:某一个字母的指数由大到小排列; ②按某一个字母升幂排列:某一个字母的指数由小到大排列。

二、整式的加减:①先去括号; (注意括号前有数字因数)②再合并同类项。

(系数相加,字母与字母指数不变)三、幂的运算性质1、同底数幂相乘:底数不变,指数相加。

m n m n a a a +=•2、幂的乘方:底数不变,指数相乘。

nm m n a a =)(3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘。

n n n b a ab =)( 4、零指数幂:任何一个不等于0的数的0次幂等于1。

10=a (0≠a ) 注意00没有意义。

5、负整数指数幂: p p a a 1=- (p 正整数,0≠a )6、同底数幂相除:底数不变,指数相减。

m n m n a a a -=÷注意:以上公式的正反两方面的应用。

常见的错误:632a a a =•,532)(a a =,33)(ab ab =,326a a a =÷,4222a a a =+四、单项式乘以单项式:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式。

五、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项。

北师大版七年级数学下全部知识点归纳

北师大版七年级数学下全部知识点归纳

北师大版七年级数学下册全部知识点归纳第一章:整式的运算 单项式: 。

整 式 多项式: 。

同底数幂的乘法:幂的乘方:积的乘方:幂的运算 同底数幂的除法: 零指数幂: 负指数幂: 整式的加减单项式与单项式相乘整式运算单项式与多项式相乘: 整式的乘法 多项式与多项式相乘:平方差公式: 完全平方公式:单项式除以单项式整式的除法 多项式除以单项式:完全平方公式的变形公式:(1)22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++-(2)22()()4a b a b ab +=-+ (3)2214[()()]ab a b a b =+-- 第二章 平行线与相交线平行线: 。

对顶角的性质:垂线的性质:性质1:过一点有 。

性质2:连接直线外一点 。

平行线的性质:1、平行公里:过 性质2:平行于 平行。

整 式 的 运算余角:余角和补角 补角:邻补角:两线相交 对顶角:同位角三线八角 内错角同旁内角平行线的判定:平行线平行线的性质:尺规作图:第三章 变量之间的关系自变量变量的概念 因变量变量之间的关系 表格法关系式法变量的表达方法 图象法第四章 三角形三角形概念: 称为三角形。

三角形按内角的大小可分为三类:直角三角形的性质: ;直角三角形的两直角边为a 、b ,斜边为c ,斜边上的高为h,则h= 。

任意三角形都有三条角平分线,并且它们相交于三角形内一点。

这个点叫三角形的 任意三角形都有三条中线,它们相交于三角形内一点。

这个点叫三角形的 任意三角形都有三条高线,它们所在的直线相交于一点。

这个点叫三角形的平行线与相交线三角形都有三条高线:区 别相 同中 线 平分对边 三条中线交于三角形内部 (1)都是线段 (2)都从顶点画出 (3)所在直线相交于一点 角平分线 平分内角三条角平分线交于三角形内部高 线 垂直于对边(或其延长线)锐角三角形:三条高线交于直角三角形:三条高线交于钝角三角形:三条高线交于三角形三边关系:三角形 三角形内角和定理:角平分线三条重要线段 中线高线三角形 全等图形的概念: 全等三角形的性质:SSSSAS全等三角形 全等三角形的判定 ASAAASHL (适用于Rt Δ)全等三角形的应用 利用全等三角形测距离作三角形第五章 生活中的轴对称: 轴对称图形于轴对称: 轴对称图形轴对称区别是一个图形自身的对称特性 是两个图形之间的对称关系 对称轴可能不止一条对称轴只有一条共同点沿某条直线对折后都能够互相重合如果轴对称的两个图形看作一个整体,那么它就是一个轴对称图形;如果把轴对称图形分成两部分(两个图形),那么这两部分关于这条对称轴成轴对称。

北师大版七年级数学下册知识点总结

北师大版七年级数学下册知识点总结

北师大版七年级数学下册知识点总结一、整式的乘除。

1. 同底数幂的乘法。

- 法则:同底数幂相乘,底数不变,指数相加。

即a^m· a^n = a^m + n(m、n 为正整数)。

- 例如:2^3×2^4=2^3 + 4=2^7。

2. 幂的乘方。

- 法则:幂的乘方,底数不变,指数相乘。

即(a^m)^n=a^mn(m、n为正整数)。

- 例如:(3^2)^3 = 3^2×3=3^6。

3. 积的乘方。

- 法则:积的乘方等于乘方的积。

即(ab)^n=a^n b^n(n为正整数)。

- 例如:(2×3)^2=2^2×3^2 = 4×9 = 36。

4. 同底数幂的除法。

- 法则:同底数幂相除,底数不变,指数相减。

即a^m÷ a^n=a^m - n(a≠0,m、n为正整数且m>n)。

- 例如:5^5÷5^3 = 5^5 - 3=5^2。

5. 零指数幂。

- 规定:a^0 = 1(a≠0)。

6. 负整数指数幂。

- 规定:a^-p=(1)/(a^p)(a≠0,p为正整数)。

- 例如:2^-3=(1)/(2^3)=(1)/(8)。

7. 整式的乘法。

- 单项式乘以单项式:系数相乘,同底数幂相乘。

例如:3x^2·2x^3=(3×2)(x^2+3) = 6x^5。

- 单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积相加。

例如:2x(x + 3)=2x^2+6x。

- 多项式乘以多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

例如:(x + 2)(x+3)=x^2+3x+2x + 6=x^2+5x+6。

8. 整式的除法。

- 单项式除以单项式:系数相除,同底数幂相除。

例如:6x^5÷2x^3=(6÷2)(x^5 - 3)=3x^2。

- 多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加。

2024年初一下册数学知识点总结北师(3篇)

2024年初一下册数学知识点总结北师(3篇)

2024年初一下册数学知识点总结北师第一单元:自然数与整数1. 自然数:0、1、2、3、4、5……,它们可以用来表示物体的数量。

2. 整数:自然数及其相反数与零的集合,包括正整数、负整数和零。

3. 整数的加法:同号相加得更大的数,异号相加得正数减去绝对值较大的数。

4. 整数的减法:a-(-b) = a + b,a-(-b) = a-b。

5. 整数的乘法:正数相乘为正数,负数相乘为负数,0与任何数相乘为0。

6. 整数的除法:除数不为0时,两正数相除为正数,两负数相除为正数,正数除以负数为负数。

7. 素数与合数:只有两个相异因数1和自身的整数是素数,可以被除了1和自身外的其他数整除的整数是合数。

第二单元:有理数1. 有理数:可以表示成两整数之比的数,包括整数、分数和小数。

2. 分数的加法与减法:分母相同,分子相加(减);分母不同,通分后分子相加(减)。

3. 分数的乘法与除法:分子相乘(除),分母相乘(除)。

4. 有理数的相反数与数轴:任何有理数与其相反数的和为0,数轴上,正数在右侧,负数在左侧。

5. 有理数的比较与排序:将有理数转化为分数后比较其大小。

第三单元:代数的基本概念1. 代数:利用字母(变量)表示数的运算。

2. 代数式:由字母、数字和运算符号组成的式子。

3. 项与系数:含有加减号的代数式可以分解成若干项,每一项中字母的指数与系数的乘积称为项的系数。

4. 等式:左右两边的值相等的代数式称为等式。

5. 解方程:通过变换等式的形式找到使等式成立的未知数的值。

第四单元:一次方程与消元法1. 一次方程:未知数的最高次数为1的方程。

2. 解一元一次方程:通过变换等式的形式找到使等式成立的未知数的值。

3. 消元法:通过两个方程的相加、相减或相乘消除其中一个未知数,以求解另一个未知数。

第五单元:图形的认识与运用1. 平面图形:点、线段、直线、射线、角、三角形、矩形、正方形、平行四边形、菱形、梯形、圆等。

2. 两条直线的位置关系:平行、相交、重合。

七年级数学北师大版下册思维导图及知识点汇总

七年级数学北师大版下册思维导图及知识点汇总

七年级数学北师大版下册思维导图及知识点汇总北师大版七年级下册数学知识点总结第一章=整式的乘除i 多项式「同底数皋的乘法ST 的乘方积的乘方同底数臬的除法零指数磊1员指数幕{整式的加减单项式与单项式相乘 单项式与多项式相乘 多项式与多项式相乘 平方差公式完全平方公式 单项式除以单项式'整式的除法多项式除以.虽】页式lx 都是数字与字母的乘积的代数式叫做里项式。

单项式的数字因数叫俶单项式的系数。

队单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一"J 字母也是单项式®趴只含有字母因式的电项式的系数是1或一"6.单独的一个数字是单项式,它的系数是它本身■>J 单独的一个非零常数的次数是%馭单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

沢单项式的系数包括它前面的符号。

10>单项式的系数罡带分数时,应化成假分数桝Us 单项式的系数是1或一丄时,通常省略数字G 叫12.单项式的灰数仅与字母有关,与单项式的系数无关。

幕运算_, 」整式的乘法二多顶式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的;欠数。

三、整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式帥减1、整式加减的理论根据是:去括号法则,合并同类项法则,臥及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:(I”列出代数式;用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

初中七年级数学北师大版下册思维导图及知识点汇总

初中七年级数学北师大版下册思维导图及知识点汇总

七年级数学北师大版下册思维导图及知识点汇总北师大版七年级下册数学知识点总结第一章:整式的乘除整式)的运算f单项式尸整式-I多项式{同底数幕的乘法幕的乘方积的乘方皋运算同底数旱的除法零指数幕[负指数幕(整式的加减,,整式的乘法5式运置'整式的除法H 单项式与单项式相乘单项式与多项式相乘多项式与多项式相乘平方差公式完全平方公式单项式除以单项式多项式除以单项式—、式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或一1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号•<>10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或一1时,通常省略数字“1"。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫他常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的祗念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、我1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

北师大版七年级数学下册全部知识点归纳

北师大版七年级数学下册全部知识点归纳

北师大版七年级数学下册全部知识点归纳如下:一、比例与比例关系1.比例的概念及表示方法2.比例的性质:比例恒定、比例的交叉相等、比例中项的乘积等于其他项的乘积3.比例的应用:物体的相似性、航空地图的比例尺等二、利用比例解决问题1.比例数值法:已知两个比例相等,求其中一个比例的值2.比例线段法:利用线段的比例关系解决问题3.比例面积法:利用面积的比例关系解决问题三、数的四则运算1.加法与减法2.乘法与除法3.括号的运算顺序4.分数的加法与减法四、图形的认识与变换1.平面图形的基本要素:点、线、线段、射线、角、平行线、垂直线、四边形等2.平面图形的分类及特点:三角形、四边形、正方形、矩形、平行四边形、菱形、梯形等3.图形的移动:平移、旋转、翻转4.图形的轴对称与中心对称五、数与式1.代数表达式的定义与基本运算:合并同类项、提取公因式、乘法公式、分配律等2.正数、负数与零的概念与表示方法3.数轴的概念与使用方法4.方程的概念与解的方法六、面积与体积1.平面图形的面积:矩形、三角形、平行四边形、正方形等2.立体图形的体积:长方体、正方体、棱柱、棱锥等3.圆的面积与周长七、统计与概率1.数据的整理与分析:频数表、直方图、折线图等2.概率的基本概念与计算方法:可能性、事件、概率的计算公式等3.点阵图与统计问题的探究八、函数与方程1.函数的概念与表示方法:自变量、因变量、函数值等2.函数的图象与性质3.一次函数与一元一次方程九、三角形与三角函数1.三角形的面积与三角形的性质:直角三角形、等腰三角形、等边三角形等2.三角函数的引入与基本概念:正弦、余弦、正切等3.利用三角函数解决实际问题以上是北师大版七年级数学下册的全部知识点。

不同章节的知识点内容可能会有所不同,如有遗漏请谅解。

希望以上内容对您有所帮助!。

2024年北师大版七年级数学下册知识点总结(二篇)

2024年北师大版七年级数学下册知识点总结(二篇)

2024年北师大版七年级数学下册知识点总结第一章:方程与不等式1.方程的概念:包含未知数的等式称为方程。

方程的解是使得方程成立的数。

2.解方程:通过变量的运算和移项,求出方程的解。

3.解一元一次方程:如ax+b=0,解得x=-b/a。

4.方程的证明:通过逆向思维,将给定的解代入方程,验证等式是否成立。

5.不等式的概念:含有不等于号的等式称为不等式,如ax>b。

6.解不等式:通过移项,求出不等式的解的范围。

7.不等式的证明:将给定的解代入不等式,验证不等式是否成立。

第二章:数据的收集和整理1.数据的表示:通过表格、图表和线段、折线图等图示进行数据的表示,便于观察和分析。

2.数据的整理:对收集到的数据进行整理,包括分类、排序、求最大值、最小值、众数、中位数等。

3.统计的总体与样本:通过抽取一部分数据作为样本,对总体数据进行概括和判断。

第三章:图形的认识1.点、线、面的概念:几何图形由点、线、面组成。

2.平行线与垂直线:平行线的特点是永不相交,垂直线的特点是相交成直角。

3.多边形:具有多个边的几何图形称为多边形,如三角形、四边形、五边形等。

4.正多边形:具有相等边长和相等内角的多边形。

5.对称图形:具有对称性的图形,可以通过某一条线进行折叠重合。

6.图形的相似性:具有相等比例关系的图形称为相似图形。

7.平移、旋转和翻折:运用平移、旋转和翻折等操作,使得图形位置和形态发生变化。

第四章:四边形1.四边形的概念:具有四个边的图形称为四边形,包括梯形、平行四边形、矩形、菱形、正方形等。

2.梯形:有两个底边,两个腰。

3.平行四边形:具有相对边平行的四边形。

4.矩形:具有四个直角的四边形,对角线相等。

5.菱形:具有四个相等边的四边形,对角线互相垂直。

6.正方形:具有四个相等边且具有对称性的四边形。

第五章:比例与相似1.比例的概念:比例是指两个或多个量之间的比值关系。

比值相等时称为成比例。

2.比例的性质:比例的性质包括交换律、放大和缩小、分配律等。

北师大版七年级下册数学各章知识点总结(完整详细版)

北师大版七年级下册数学各章知识点总结(完整详细版)

北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式 整 式 多项式同底数幂的乘法 幂的乘方 积的乘方幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式1、多项式、多项式的次数、项 几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质: 1、同底数幂的乘法:a m﹒a n =am+n(m,n 都是正整数);2、幂的乘方:(am)n=amn(m,n 都是正整数); 3、积的乘方:(ab )n=a n bn(n 都是正整数);4、同底数幂的除法:am÷a n=am-n(m,n 都是正整数,a ≠0) ;整 式 的 运算六、零指数幂和负整数指数幂: 1、零指数幂:a=1(a ≠0);2、负整数指数幂:p 是正整数。

七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

北师大版七年级数学下册第一章整式的运算复习及其整理(带练习)

北师大版七年级数学下册第一章整式的运算复习及其整理(带练习)

第一章 整式的运算第一节 整式1.整式的有关概念:(1)单项式的定义:像1.5V ,28n π,h r 231π等,都是数与字母的乘积,这样的代数式叫做单项式.(2)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(3)多项式的概念:几个单项式的和叫做多项式.(4)多项式的次数:一个多项式中,次数最高项的次数,叫做这个多项式的次数.(5)整式的概念:单项式和多项式统称为整式.2.定义的补充: (1)单项式的系数:单项式中的数字因数叫做单项式的系数.(2)多项式的项数:多项式中单项式的个数叫做多项式的项数.(3)区别是否是整式:关键:分母中是否含有字母?分母有字母的为分式,如a 分之3是分式。

3.例题讲解:例1:下列代数式中,哪些是整式?单项式?多项式?并指出它们的系数和次数? (!)ab +c (2)ax 2+bx +c (3)-5(4)π.2y x - (5)12-x x 例2:求多项式363222+--b ab a 的各项系数之和?第二节 整式的加减一、 知识点复习:1、填空:整式包括单项式和多项式.2、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.3、所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。

4、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。

二、练习: 例1:下列各式,是同类项的一组是( ) (A )y x 222与231yx (B )n m 22与22m n 例2、计算:(1))134()73(22+-++k k k k (2))2()2123(22x xy x x xy x +---+例3:先化简,再求值:()[],673235222x x x x x x +++--其中x=21 例4、已知:A=x 3-x 2-1,B=x 2-2,计算:(1)B -A (2)A -3B第三节 同底数幂的乘法一、复习提问2.指出下列各式的底数与指数:(1)34;(2)a 3;(3)(a+b)2;(4)(-2)3;(5)-23.3、同底数幂的乘法法则: m n m n a a a += (,m n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为 m n p m n p a a a a++=(其中m 、n 、p 均为正数);⑤公式还可以逆用: m n m n aa a +=(m 、n 均为正整数)二、巩固练习(1)107×104; (2)x 2·x 5;(3)10·102·104;(4)-a ·(-a)3;(5)(-a)2·(-a)3三、小结1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a 的指数是1.3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.-a 2的底数a ,不是-a .计算-a 2·a 2的结果是-(a 2·a 2)=-a 4,而不是(-a)2+2=a 4.5.若底数是多项式时,要把底数看成一个整体进行计算第四节 幂的乘方与积的乘方一、知识点复习:1. 幂的乘方法则:()m n mn a a =(,m n 都是正整数)幂的乘方,底数不变,指数相乘。

北师大版七年级数学下册全部知识点归纳(新)

北师大版七年级数学下册全部知识点归纳(新)

数学 七年级下册第一章:整式的运算单项式整 式多项式同底数幂的乘法 幂的乘方 积的乘方幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

整式 的 运算数学七年级下册三、整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版《数学》(七年级下册)知识点总结第一章:整式的运算1、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。

即:a m ﹒a n =a m+n 。

逆用,即:a m+n = a m ﹒a n 。

2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。

(a m )n =a mn 。

逆用,即:a mn =(a m )n =(a n )m 。

3、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。

即(ab )n =a n b n 。

逆用,即:a n b n =(ab )n 。

4、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:a m ÷a n =a m-n (a ≠0)。

逆用,即:a m-n = a m ÷a n (a ≠0)。

5、零指数幂:任何不等于0的数的0次幂都等于1,即:a 0=1(a ≠0)。

6、负指数幂:任何不等于零的数的―p 次幂,等于这个数的p 次幂的倒数,即:1(0)p p a a a -=≠7、单项式与单项式相乘单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

8、单项式与多项式相乘单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。

即:m(a+b+c)=ma+mb+mc 。

(注意)运算时注意积的符号,多项式的每一项都包括它前面的符号。

9、多项式与多项式相乘多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

即:(m+n)(a+b)=ma+mb+na+nb 。

(注意)多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。

10、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x 2+(a+b)x+ab 。

11、平方差公式(a+b )(a-b)=a 2-b 2,即:两数和与这两数差的积,等于它们的平方之差。

逆用,即:a 2-b 2=(a+b )(a-b)。

关键找准a 和b 。

符号相同的是a 。

符号不同的是b简算118×122=(120-2)(120+2)=1202-22=14400-4=1439612、完全平方公式222222()2,()2,a b a ab b a b a ab b +=++-=-+即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

简算1992=(200-1)2=2002-2×200×1+12=40000-400+1=39601***掌握理解完全平方公式的变形公式:(1)22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++- (2)22()()4a b a b ab +=-+(3)2214[()()]ab a b a b =+-- 完全平方式:我们把形如:22222,2,a ab b a ab b ++-+的二次三项式称作完全平方式。

完全平方公式可以逆用,即:2222222(),2().a ab b a b a ab b a b ++=+-+=-13、整式的除法单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

(注意)单项式相除与单项式相乘计算方法类似,也是分成系数、相同字母与不相同字母三部分分别进行考虑。

多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

用字母表示为:().a b c m a m b m c m ++÷=÷+÷+÷ 多项式除以单项式,注意多项式各项都包括前面的符号。

14、看到2n 想到偶数,看到2n+1或2n-1想到奇数15、(x-y )n 如果n 为偶数可颠倒x 与y 的位置即(x-y )2=(y-x )2.如果n 为奇数颠倒x 与y 的位置后,要在括号前添负号,即(x-y )3=-(y-x)3第二章 平行线与相交线1、余角 ;如果两个角的和是直角,那么称这两个角互为余角,简称为互余。

2、补角:如果两个角的和是平角,那么称这两个角互为补角,简称为互补。

3、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。

4、余角和补角的性质用数学语言可表示为:(1)00001290(180),1390(180),∠+∠=∠+∠=则23∠=∠(同角的余角(或补角)相等)。

(2)00001290(180),3490(180),∠+∠=∠+∠=且14,∠=∠则23∠=∠(等角的余角(或补角)相等)。

5、对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。

6、对顶角的性质:对顶角相等。

7、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。

8、垂直:直线AB ,CD 互相垂直,记作“AB ⊥CD ”(或“CD ⊥AB ”),读作“AB 垂直于CD”(或“CD垂直于AB”)。

9、垂线的性质:性质1:平面内,过一点有且只有一条直线与已知直线垂直。

性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。

简称:垂线段最短。

10、点到直线的距离:点到直线的垂线段的长度11、同一平面内,两条直线的位置关系:相交(垂直)或平行。

12、两条直线被第三条直线所截,形成了8个角。

同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。

内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。

同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。

12、平行线:在同一个平面内,不相交的两条直线叫做平行线。

注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。

(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

13、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

补充平行线的判定方法:(1)平行于同一条直线的两直线平行。

(2)在同一平面内,垂直于同一条直线的两直线平行。

(3)平行线的定义。

14、平行线的判定方法(1)、同位角相等,两直线平行。

(2)、内错角相等,两直线平行。

(3)、同旁内角互补,两直线平行。

(4)、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。

(5)、在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行。

15、平行线的性质(1)、两直线平行,同位角相等。

(2)、两直线平行,内错角相等。

(3)、两直线平行,同旁内角互补。

16、平行线的判定与性质具备互逆的特征,其关系如下:17、尺规作线段和角:在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。

18、尺规作图的关键:取半径相等的弧,取弧的宽度相等。

不要忘记答。

(。

就是所求的。

)第三章三角形1、三角形概念:不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。

顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示;2、三角形中三边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。

两边之差< 第三边<两边之和3、判断三条线段能否组成三角形:当两条较短线段之和大于最长线段时,则可以组成三角形。

4、三角形内角和定理:三角形的三个内角的和等于1800。

5、三角形按内角的大小可分为三类:(1)锐角三角形(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。

注:直角三角形的性质:直角三角形的两个锐角互余。

(3)钝角三角形6、直角三角形的面积等于两直角边乘积的一半。

7、三角形的角平分线:(1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)任意三角形都有三条角平分线,并且它们相交于三角形内一点。

8、三角形的中线:(1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。

(2)三角形有三条中线,它们相交于三角形内一点。

9、三角形的高线:(1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。

(2)任意三角形都有三条高线,它们所在的直线相交于一点。

10、全等图形:两个能够重合的图形称为全等图形。

全等图形的性质:全等图形的形状和大小都相同。

全等图形的面积或周长均相等。

11、全等三角形:能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。

用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。

12、全等三角形的性质:全等三角形的对应边、对应角相等。

这是今后证明边、角相等的重要依据。

13、全等三角形的判定(1)、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。

(2)、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。

(3)、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。

(4)、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。

14、三角形具有稳定性15、作三角形:熟练以下三种三角形的作法及依据。

(1)已知三角形的两边及其夹角,作三角形。

(2)已知三角形的两角及其夹边,作三角形。

(3)已知三角形的三边,作三角形。

16、利用三角形全等测距离:利用三角形全等测距离,实际上是利用已有的全等三角形,或构造出全等三角形,运用全等三角形的性质(对应边相等),、运用全等三角形解决实际问题的步骤:17、直角三角形全等的条件:在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。

注意:书写时要规范,即在三角形前面必须加上“Rt”字样。

第四章变量之间的关系1、表示变量间的关系的方法(1)表格(2)关系式(3)图象2、变量、自变量、因变量在某一变化过程中,不断变化的量叫做变量。

如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。

3、自变量与因变量的确定:(1)自变量是先发生变化的量;因变量是后发生变化的量。

(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。

相关文档
最新文档