二元一次方程组集体备课
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组(代入消元法)集体备课
一:代入法概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解. 这种解方程组的方法叫做代入消元法,简称代入法。
二:学生学不会代入法解二元一次方程组的原因.
1(不会变形)不知道方程组中的某一个方程装化成 X= 或Y= 的形式,举个例子:X+Y=6转化为 X=6-Y
2(不会代数进去)代数式代入没有变形的另一个方程中,可得一个一元一次方程;2式:X - Y=2 先将X+Y=6转化为 X=6-Y,然后在2式中将X用6-Y代替,就是(6-Y)-Y=2,然后就成为了关于Y 的一元一次方程,就可以解得Y=2。然后将Y=2带入1式或2式都可以,都会得到X=4.
3 解一元一次方程中不会移项合并同类型系数化为一如(6-Y)-Y=2
需要学生回顾一元一次方程的解法,借此探索二元一次方程组的解法
总结: 二元一次方程组的解法是学习二元一次方程组的重要内容.通过把方程写成代数式的形式和上一小节的实际问题,比较一元一次方程的列法和解法,从而自然引入二元一次方程组的代入消元解法.另外不盲目的拔高教学目标,而是让学生充分地自主探索教材.通过学生身边熟悉的事情,建构“问题情境”,使学生感受到问题是
“现实的、有意义的、富有挑战性的”,让学生在不自觉中走进自己的最近“发展区”,偷悦地接受教学活动.