人教版数学高一-新课标必修四测试题组 第一章 三角函数下C组

合集下载

高一数学必修4 第一章 三角函数测试题

高一数学必修4 第一章 三角函数测试题

高一数学必修4 第一章 三角函数测试题[基础训练A 组]一、选择题1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tancos 107sinπππ.其中符号为负的有( ) A .①B .②C .③D .④ 3.02120sin 等于( )A .23±B .23C .23-D .21 4.已知4sin 5α=,并且α是第二象限的角,那么 tan α的值等于( ) A .43-B .34-C .43D .345.若α是第四象限的角,则πα-是( )A .第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角 6.4tan 3cos 2sin 的值( )A .小于0B .大于0C .等于0D .不存在 二、填空题1.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限. 2.设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0, 其中正确的是_____________________________。

3.若角α与角β的终边关于y 轴对称,则α与β的关系是___________。

4.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是。

5.与02002-终边相同的最小正角是_______________。

三、解答题 1.已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根, 且παπ273<<,求ααsin cos +的值.2.已知2tan =x ,求xx xx sin cos sin cos -+的值。

(2021年整理)必修四第一章三角函数测试题(含答案)

(2021年整理)必修四第一章三角函数测试题(含答案)

(完整版)必修四第一章三角函数测试题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)必修四第一章三角函数测试题(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)必修四第一章三角函数测试题(含答案)的全部内容。

(完整版)必修四第一章三角函数测试题(含答案)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)必修四第一章三角函数测试题(含答案) 这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)必修四第一章三角函数测试题(含答案)> 这篇文档的全部内容。

必修四第一章三角函數測試題班別姓名分數一、選擇題1.已知cos α=12,α∈(370°,520°),則α等於( )A.390°B.420°C.450°D.480°2.若sin x·tan x〈0,則角xの終邊位於( )A.第一、二象限B.第二、三象限 C.第二、四象限D.第三、四象限3.函數y=tan 错误!是()A.週期為2πの奇函數B.週期為错误!の奇函數C.週期為πの偶函數D.週期為2πの偶函數4.已知函數y=2sin(ωx+φ)(ω>0)在區間[0,2π]の圖象如圖,那麼ω等於()A.1 B.2 C.错误!D。

高中数学必修四《第一章三角函数》单元测试题新人教版必修4

高中数学必修四《第一章三角函数》单元测试题新人教版必修4

1 13. (0, ) 14. sin 2x cosx 15. 16.
3
2
2
17.原式 ( 3) 2 1 1 ( 3 )2 1 1
2
2 22
18. tan
3,且
3
2
D 12.D
sin
3 cos
sin
sin 0,cos 0,由

sin2
cos2
1
cos
3
2 sin cos 1 3
1
2
2
19.设需 x 秒上升 100cm . 则 x 60
第一章三角函数单元测试
一、选择题:共 12 小题,在每小题给出的四个选项中,只有一项是符合题目要求的.(
48
分)
1、已知 A={第一象限角 } , B={锐角 } , C={小于 90°的角 } ,那么 A、 B、 C 关系是( )
A. B=A∩ C
B . B∪ C=C
C. A C
D.A=B=C
2、将分针拨慢 5 分钟,则分钟转过的弧度数是
20。– 2tan α
42
50 100, x 15 (秒)
21. y tan2 x 2atan x 5 (tan x a)2 a2 5
x [ , ] tan x [1, ] 42
当 a 1时, y a2 5 ,此时 tan x a
当 a 1 时, y a2 5 ,此时 tan x 1
22.④②或②⑥
4
4
8
8

7、如图,曲线对应的函数是
()
A. y=|sin x|
B. y=sin| x|
C. y=- sin| x|
D. y=- |sin x|

(典型题)高中数学必修四第一章《三角函数》检测卷(含答案解析)(1)

(典型题)高中数学必修四第一章《三角函数》检测卷(含答案解析)(1)

一、选择题1.若函数()sin 2f x x =与()2cos g x x =都在区间(),a b 上单调递减,则b a -的最大值是( ) A .π4B .π3C .π2D .2π32.函数()()sin cos y x =的部分图象大致为( )A .B .C .D .3.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积12=(弦⨯矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有弧AB 长为83π,半径等于4米的弧田,按照上述经验公式计算所得弧田面积约是( )(3 1.73≈)A .6平方米B .9平方米C .12平方米D .15平方米4.己知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且图象向右平移12π个单位后得到的函数为偶函数,则下列说法错误的有( ) A .()f x 关于点5(,0)12π对称 B .()f x 关于直线6x π=对称C .()f x 在,]1212π5π[-单调递增 D .()f x 在7[,]1212ππ单调递减5.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭图象相邻两条对称轴之间的距离为π2,将函数()y f x =的图象向左平移π6个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( ) A .关于点π,012⎛⎫⎪⎝⎭对称 B .关于点π,012⎛⎫-⎪⎝⎭对称 C .关于直线π12x =对称 D .关于直线π12x =-对称 6.将函数()sin 3f x x π⎛⎫=- ⎪⎝⎭的图象横坐标缩短到原来的12(纵坐标不变),然后向左平移3π个单位,所得函数记为()g x .若1x ,20,2x π⎛⎫∈ ⎪⎝⎭,12x x ≠,且()()12g x g x =,则()12g x x +=( ) A .12-B .3-C .12D .327.已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =8.设函数()tan 3f x x π=-,()sin 3g x x π⎛⎫=-⎪⎝⎭,则函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是( ) A .4B .5C .12D .139.已知函数()sin cos f x x x =+,则下列说法正确的是( ) A .()f x 的最小值为0 B .()f x 的最大值为2 C .()()2f x f x π-=D .1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上有解 10.已知函数()()()()2sin 0,0,f x x ωϕωϕπ=+>∈的部分图像如图所示,将()y f x =图像上所有点的横坐标缩小到原来的12(纵坐标不变),所得图像对应的函数()g x 解析式为( )A .()2sin 46g x x π⎛⎫=+⎪⎝⎭B .()2sin 43g x x π⎛⎫=+⎪⎝⎭C .()2sin 23g x x π⎛⎫=+ ⎪⎝⎭D .()2sin 3g x x π⎛⎫=+ ⎪⎝⎭11.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫= ⎪⎝⎭,()3g π=,则ω的取值共有( ) A .6个B .5个C .4个D .3个12.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象(如图所示),则下列有关函数()f x 的结论错误的是( )A .图象关于点,012π⎛⎫- ⎪⎝⎭对称 B .最小正周期是π C .在0,6π⎛⎫⎪⎝⎭上单调递减 D .在0,12π⎡⎤⎢⎥⎣⎦3二、填空题13.已知函数273(0)()323(0)x xf x x x x ⎧+≤⎪=⎨⎪-++>⎩,()3sin cos 4g x x x =++,若对任意[3,3]t ∈-,总存在0,2s π⎡⎤∈⎢⎥⎣⎦,使得()()f t a g s +≤成立,则实数a 的取值范围为__________.14.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 15.已知函数()()2sin 0f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是-2,则ω的最小值等于__________.16.函数3()2sin 34f x x π⎛⎫=- ⎪⎝⎭的图象为C ,以下说法: (1)其中最小正周期为23π; (2)图象关于点(,0)4π对称;(3)由2sin3y x =的图象向右平移34π个单位长度可以得到图象C ; (4)直线4πx =-是其图象的其中一条对称轴. 其中正确命题的序号是__________.17.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .18.给出下列4个命题:①函数2cos 32y x π⎛⎫=+ ⎪⎝⎭是奇函数;②函数y =sin (2x +3π)的图象关于点(12π,0)成中心对称;③x =8π是函数y =sin (2x +54π)的一条对称轴方程;④存在实数α,使得32sin 42πα⎛⎫+= ⎪⎝⎭.把你认为正确命题的序号都填在横线上____.19.函数251612()sin (0)236x x f x x x x ππ-+⎛⎫=--> ⎪⎝⎭的最小值为_______. 20.已知定义在R 上的函数()f x 满足3()2f x f x ⎛⎫=-+⎪⎝⎭,且(2)3f -=,则(2020)f =________.三、解答题21.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式;(2)将()y f x =图象上所有点的横坐标缩小到原来的12倍(纵坐标不变),再将图象上所有点的纵坐标扩大到原来的2倍(横坐标不变),最后向下平移2个单位得到()y g x =图象,求函数()y g x =的解析式及在R 上的对称中心坐标. 22.已知函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象与直线2y =的相邻两个交点间的距离为2π,且________.在①函数6f x π⎛⎫+ ⎪⎝⎭为偶函数;②33f π⎛⎫=⎪⎝⎭③x R ∀∈,()6f x f π⎛⎫≤⎪⎝⎭;这三个条件中任选一个,补充在上面问题中,并解答. (1)求函数()f x 的解析式;(2)求函数()f x 在[]0,π上的单调递增区间. 23.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x 的方程()3()0f x g x m -⋅-=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数.24.游客乘坐位于长沙贺龙体育场的摩天轮可近观长沙中心城区城市美景,远眺岳麓山,俯瞰橘子洲,饱览湘江风光.据工作人员介绍,该摩天轮直径约100米,摩天轮的最低处P 与地面的距离为20米,设有60个座舱,游客先乘坐直升电梯到入口(人口在摩天轮距地面的最低处)处等待,当座舱到达最低处P 时有序进入座舱,摩天轮逆时针方向匀速运行一周约需20分钟.以摩天轮的圆心为坐标原点,水平线为x 轴建立如图所示的平面直角坐标系.(1)试将游客甲离地面的距离()h t (单位:米)表示为其坐上摩天轮的时间t (单位:分钟)的函数;(2)若游客乙在甲后的5分钟也在点P 处坐上摩天轮,求在乙坐上摩天轮后的多少分钟时甲乙的离地面距离之差首次达到最大.25.已知函数()()2sin f x x ωϕ=+(0>ω,0ϕπ<<)的最大值和最小正周期相同,()f x 的图象过点(3,且在区间10,12⎡⎤⎢⎥⎣⎦上为增函数.(1)求函数()f x 的解析式;(2)若函数()()1g x f x =+在区间()0,b 上只有4个零点,求b 的最大值.26.如图,有一矩形空地ABCD ,240AB BC ==米,现计划种植甲、乙两种蔬菜,已知单位面积种植甲蔬菜的经济价值是种植乙蔬菜经济价值的3倍,但种植甲蔬菜需要有辅助光照.AB 边中点O 处处恰有一可旋转光源满足甲蔬菜生长的需要,该光源照射范围是60EOF ∠=︒,其中E 、F 分别在边BC ,CD 上.(1)若30BOE ∠=︒,求四边形OECF 的面积; (2)求该空地产生最大经济价值时种植甲种蔬菜的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意求出(),()f x g x 原点附近的单调递减区间,根据递减区间分析可得max 3π4b =,min π4a =,相减即可. 【详解】 解:由题意函数()sin 2f x x =在π3π,44⎛⎫⎪⎝⎭上单调递减,函数()2cos g x x =在()0,π上单调递减, 所以则max 3π4b =,min π4a =,所以b a -的最大值为3πππ442-=. 故选:C. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.2.A解析:A 【分析】先确定奇偶性,再取特殊值确定函数值可能为负,排除三个选项后得出结论. 【详解】记()()sin cos f x x =,则()()()sin cos()sin cos ()f x x x f x -=-==,为偶函数,排除D ,当23x π=时,21()sin cos sin 032f x π⎛⎫⎛⎫⎛⎫==-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,排除B ,C . 故选:A . 【点睛】本题考查由解析式先把函数图象,解题方法是排除法,可通过研究函数的性质如奇偶性、单调性等排除一些选项,再由特殊的函数值,函数值的正负,变化趋势等排除一些选项后得出正确结论.3.B解析:B 【分析】根据已知求出矢2=,弦2AD ==. 【详解】由题意可得:823=43AOB ππ∠=,4OA =,在Rt AOD 中,可得:3AOD π∠=,6DAO π∠=,114222OD AO ==⨯=, 可得:矢422=-=,由sin43AD AO π===可得:弦2AD ==所以:弧田面积12=(弦⨯矢+矢221)22)292=+=≈平方米.故选:B 【点睛】方法点睛:有关扇形的计算,一般是利用弧长公式l r α=、扇形面积公式12S lr =及直角三角函数求解.4.A解析:ABD 【分析】由周期可求出ω,再由平移后为偶函数求出ϕ,即得()sin 23πf x x ⎛⎫=-⎪⎝⎭,求出512f π⎛⎫⎪⎝⎭可判断A ;求出6f π⎛⎫⎪⎝⎭可判断B ;令222,232k x k k Z πππππ-+≤-≤+∈求出单调递增区间可判断C ;由C 选项可判断D. 【详解】()f x 的最小正周期为π,22πωπ∴==,()sin(2)f x x ϕ=+,向右平移12π个单位后得到sin 26y x πϕ⎛⎫=-+ ⎪⎝⎭为偶函数, ,62k k Z ππϕπ∴-=+∈,即2,3k k Z πϕπ=+∈, ||2πϕ<,3ϕπ∴=-,()sin 23f x x π⎛⎫∴=-⎪⎝⎭, 对于A ,55sin 2sin 10121232f ππππ⎛⎫⎛⎫=⨯-==≠ ⎪ ⎪⎝⎭⎝⎭,故()f x 不关于点5(,0)12π对称,故A 错误; 对于B ,sin 2sin 001663f πππ⎛⎫⎛⎫=⨯-==≠± ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,令222,232k x k k Z πππππ-+≤-≤+∈,解得5,1212k x k k Z ππππ-+≤≤+∈, 当0k =时,51212x ππ-≤≤,故()f x 在,]1212π5π[-单调递增,故C 正确; 对于D ,由C 选项可知,()f x 在5[,]1212ππ单调递增,故D 错误.故选:ABD. 【点睛】本题考查正弦型函数的性质,可通过代入验证的方法判断对称轴和对称中心,利用整体换元可求单调区间.5.B解析:B 【分析】由相邻两条对称轴之间的距离为2π,可知22T π=,从而可求出2ω=,再由()y f x =的图像向左平移6π个单位后,得到的图象关于y 轴对称,可得sin 13πϕ⎛⎫+=± ⎪⎝⎭,从而可求出ϕ的值,然后逐个分析各个选项即可 【详解】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=. 设将()f x 的图像向左平移6π单位后,所得图像对应的解析式为()g x , 则()sin 23g x x πϕ⎛⎫=++ ⎪⎝⎭,因()g x 的图像关于y 轴对称,故(0)1g =±,所以sin 13πϕ⎛⎫+=± ⎪⎝⎭,,32k k Z ππϕπ+=+∈,所以,6k k Z πϕπ=+∈, 因||2ϕπ<,所以6π=ϕ. 又()sin 26f x x π⎛⎫=+ ⎪⎝⎭,令2,62x k k Z πππ+=+∈,故对称轴为直线,26k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k ππ+=∈Z ,故,212k x k Z ππ=-∈,所以对称中心为,0,212k k Z ππ⎛⎫-∈⎪⎝⎭,所以A 错误,B 正确. 故选:B 【点睛】此题考查了三角函数的图像变换和三角函数的图像和性质,属于基础题.6.D解析:D 【分析】先利用函数()sin y A ωx φ=+的图像变换规律求得()g x 的解析式,再利用正弦函数的图像的对称性,求得12x x +的值,可得()12g x x +的值. 【详解】将函数()sin 3f x x π⎛⎫=-⎪⎝⎭的图象横坐标缩短到原来的12(纵坐标不变),可得sin 23y x π⎛⎫=- ⎪⎝⎭的图象;再向左平移3π个单位,所得函数()sin 23g x x π⎛⎫=+ ⎪⎝⎭,若1x ,20,2x π⎛⎫∈ ⎪⎝⎭,12x x ≠,则142,333x πππ⎛⎫+∈ ⎪⎝⎭,242,333x πππ⎛⎫+∈ ⎪⎝⎭, ()()12g x g x =,12223322x x πππ+++∴=,126x x π∴+=,则()122sin 2sin 633g x x πππ⎛⎫+=⨯+==⎪⎝⎭.故选:D. 【点睛】本题考查函数()sin y A ωx φ=+的图像变换规律,正弦函数的对称性,属于中档题.7.B解析:B 【分析】利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项. 【详解】由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B . 故选:B . 【点睛】思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域; (2)从图象的变化趋势观察函数的单调性; (3)从图象的对称性观察函数的奇偶性; (4)从图象的特殊点,排除不合要求的解析式..8.A解析:A 【分析】由题意知函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数,作出两个函数图象,数形结合即可求解. 【详解】令()()()0h x f x g x =-=可得()()f x g x =,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于 函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数. 分别作出()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象,由图知两个函数图象在区间[]2,2ππ-上有4个交点,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是4, 故选:A 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.9.C解析:C 【分析】可得()()2f x f x π+=,得出()f x 是以2π为周期的函数,故只需考虑0,2x π⎡⎤∈⎢⎥⎣⎦即可.【详解】()()sin cos cos sin 222f x x x x x f x πππ⎛⎫⎛⎫+=+++=+= ⎪ ⎪⎝⎭⎝⎭,()f x ∴是以2π为周期的函数,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()sin cos sin cos 4f x x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,则3,444x πππ⎡⎤+∈⎢⎥⎣⎦,41x π⎛⎫+ ⎝∴≤⎪⎭≤根据函数的周期性可得()f x 的最小值为1,故AB 错误,∴1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上无解,故D 错误, ()()sin cos cos sin222f x x x x x f x πππ⎛⎫⎛⎫-=-+-=+= ⎪ ⎪⎝⎭⎝⎭,故C 正确. 故选:C. 【点睛】本题考查三角函数的应用,解题的关键是得出()f x 是以2π为周期的函数,故只需考虑0,2x π⎡⎤∈⎢⎥⎣⎦即可. 10.B解析:B 【分析】 由32341234T πππ⎛⎫=--= ⎪⎝⎭可求出T π=,进而可得2ω=,令 ()22122k k Z ππϕπ⨯+=+∈结合()0,ϕπ∈即可求得ϕ的值,再根据三角函数图象的伸缩变换即可求()g x 的解析式. 【详解】 由图知32934123124T ππππ⎛⎫=--== ⎪⎝⎭, 所以T π=,可得2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+, 令()22122k k Z ππϕπ⨯+=+∈,所以()23k k Z πϕπ=+∈,因为()0,ϕπ∈,所以令0k =,可得3πϕ=,所以()2sin 23f x x π⎛⎫=+⎪⎝⎭,将()y f x =图像上所有点的横坐标缩小到原来的12(纵坐标不变), 可得()2sin 43g x x π⎛⎫=+ ⎪⎝⎭,故选:B11.B解析:B 【分析】根据函数在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫=⎪⎝⎭,()3g π=,可得周期的范围,进而得到关于ω的方程与不等式,结合n *∈N 可求ω的值,从而可得答案. 【详解】因为()g x 在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,04g π⎛⎫=⎪⎝⎭,()3g π=, 所以()()7,62,4422121,442T T n n T n N πππωπππωπππω*⎧-≤=⎪⎪⎪-≥=⎨⎪⎪---==∈⎪⎩得263ω≤≤,423n ω-=,n *∈N , 所以242633n -≤≤, 解得15n ≤≤.即1,2,3,4,5n =,可得23ω=,102,3,143,6,经检验均符合题意,所以ω的取值共有5个. 故选:B 【点睛】关键点点睛:本题主要考查余弦函数的几何性质,解题的关键是利用单调区间以及对称点、最值点与周期的关系列出不等式.12.C解析:C 【分析】首先根据题中所给的函数图象,从最值、周期和特殊点着手将解析式确定,之后结合函数的性质对选项逐一分析,得到结果. 【详解】根据图象得到:2A =,311341264T πππ=-=,所以T π=, 所以2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+.将点,26π⎛⎫ ⎪⎝⎭代入,得到2sin 23πϕ⎛⎫+= ⎪⎝⎭,则()232k k Z ππϕπ+=+∈,得()26k k Z πϕπ=+∈,又2πϕ<,所以6π=ϕ, 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 对于A ,20126ππ⎛⎫⨯-+= ⎪⎝⎭,则函数()f x 关于,012π⎛⎫- ⎪⎝⎭对称,故A 正确; 对于B ,函数的周期22T ππ==,故B 正确; 对于C ,当0,6x π⎛⎫∈ ⎪⎝⎭时,2,662x πππ⎛⎫+∈ ⎪⎝⎭,此时函数()f x 为增函数,故C 错误; 对于D ,当0,12x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin 262x π⎡⎛⎫+∈⎢ ⎪⎝⎭⎣⎦,2sin 26x π⎛⎫⎡+∈ ⎪⎣⎝⎭,故()f x 在0,12π⎡⎤⎢⎥⎣⎦D 正确.故选:C . 【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,正弦型函数的相关性质,属于简单题目.二、填空题13.【分析】求出f (t )和g (s )的值域根据存在性和恒成立问题转化为求出a 的范围【详解】对于函数f (x )当x≤0时f (x )单调递增由﹣3≤t≤0可得f (t )∈﹣43当x >0时f (x )=﹣x2+2x+3= 解析:(],2-∞【分析】求出f (t )和g (s )的值域,根据存在性和恒成立问题,转化为()()()maxmaxf t ag s +≤求出a 的范围.对于函数f (x ),当x ≤0时,f (x )733x =+单调递增,由﹣3≤t ≤0,可得f (t )∈[﹣4,3],当x >0时,f (x )=﹣x 2+2x +3=﹣(x ﹣1)2+4,由0<t ≤3,可得f (t )∈[0,4], ∴对任意t ∈[﹣3,3],f (t )∈[﹣4,4],对于函数g (x )=x +cos x +4=2sin (x 6π+)+4, ∵s ∈[0,2π],∴s 6π+∈[6π,23π], ∴g (s )∈[5,6],∴对于s ∈[0,2π],使得g (s )∈[5,6],∵对任意t ∈[﹣3,3],总存在s ∈[0,2π],使得f (t )+a ≤g (s )成立,故()()()max maxf t ag s +≤∴a +4≤6,解得a ≤2, 故答案为:(],2-∞ 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .14.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】 由题意可得()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值.∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭, ∴()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π, ∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+. 在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ. 则=4sin()4cos 462f ππϕϕ⎛⎫+==±⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.15.【分析】先根据函数在区间上的最小值是确定的取值范围进而可得到或求出的范围得到答案【详解】函数在区间上的最小值是则的取值范围是当时函数有最小值或或的最小值等于故答案为:【点睛】本题主要考查正弦函数的最解析:32【分析】先根据函数在区间[,]34ππ-上的最小值是2-确定x ω的取值范围,进而可得到32ωππ--或342ωππ,求出ω的范围得到答案. 【详解】函数()2sin (0)f x x ωω=>在区间[,]34ππ-上的最小值是2-, 则x ω的取值范围是[,]34ωπωπ-,当22x k πωπ=-+,k Z ∈时,函数有最小值2-,32ωππ∴--,或342ωππ,k Z ∈,∴32ω≥,或6ω,k Z ∈, 0ω>,ω∴的最小值等于32.故答案为:32. 【点睛】本题主要考查正弦函数的最值的应用.考查基础知识的运用能力.三角函数式高考的重要考点,一定要强化复习.16.(1)(2)(4)【分析】根据正弦型函数周期公式正弦型函数对称中心坐标正弦型函数对称轴等知识逐项验证即可求得答案【详解】对于(1)根据正弦型函数周期公式:可得:函数最小正周期为:故(1)正确;对于(解析:(1)(2)(4) 【分析】根据正弦型函数周期公式,正弦型函数对称中心坐标,正弦型函数对称轴等知识,逐项验证,即可求得答案. 【详解】对于(1),根据正弦型函数周期公式:2T ωπ=可得:函数3()2sin 34f x x π⎛⎫=-⎪⎝⎭最小正周期为:2233T ππ==,故(1)正确; 对于(2),根据正弦函数sin ()y x x R =∈的图象的对称中心为(0),k π 正弦型函数3()2sin 34f x x π⎛⎫=-⎪⎝⎭∴令334,k Z x k ππ=∈-,解得4,3k k Z x ππ=+∈ ∴其对称中心坐标为(,0),34k k Z ππ+∈当0k =时,对称中心坐标为(,0)4π,故(2)正确;对于(3),将2sin3y x =的图象向右平移34π个单位长度 可得:392sin 32sin 344y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭92sin 322sin 344x x πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭∴将2sin3y x =的图象向右平移34π个单位长度不能得到图象C ,故(3)错误;对于(4),根据正弦函数sin ()y x x R =∈的图象的对称轴方程为,2x k k Z ππ=+∈,正弦型函数3()2sin 34f x x π⎛⎫=- ⎪⎝⎭∴令,2334Z x k k πππ=+∈-,解得51,32k k x Z ππ=+∈ 当2k =-时,512342x πππ=+=--, ∴3()2sin 34f x x π⎛⎫=-⎪⎝⎭一条对称轴4πx =-,故(4)正确; 故答案为:(1)(2)(4).【点睛】本题解题关键是掌握整体法求正弦函数图象的对称中心和对称轴的方法,考查了分析能力和计算能力,属于中档题.17.【分析】由题意画出图形由两角差的正切求出的正切值然后通过求解两个直角三角形得到和的长度作差后可得答案【详解】由图可知在中在中河流的宽度等于故答案为:【点睛】本题给出实际应用问题求河流在两地的宽度着重解析:1)【分析】由题意画出图形,由两角差的正切求出15︒的正切值,然后通过求解两个直角三角形得到DC 和DB 的长度,作差后可得答案.【详解】由图可知,15DAB ∠=︒()tan 45tan 30tan15tan 453021tan 45tan 30︒-︒︒=︒-︒==-+︒︒在Rt ADB 中,60AD =(tan15602120DB AD ∴=⋅︒=⨯=-在Rt ADC 中,60,60DAC AD ∠=︒=tan 60DC AD ∴=⋅︒=()()1201201BC DC DB m ∴=-=-=∴河流的宽度BC 等于)1201m故答案为:1) 【点睛】本题给出实际应用问题,求河流在,B C 两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.18.①③【分析】根据三角函数的奇偶性对称中心对称轴和最值对四个命题逐一分析由此确定正确命题的序号【详解】①为奇函数所以①正确②由于所以②错误③由于所以③正确④由于的最大值为所以④错误故答案为:①③【点睛解析:①③ 【分析】根据三角函数的奇偶性、对称中心、对称轴和最值对四个命题逐一分析,由此确定正确命题的序号. 【详解】①,22cos sin 323y x x π⎛⎫=+=- ⎪⎝⎭为奇函数,所以①正确.②,由于sin 2sin 11232πππ⎛⎫⨯+== ⎪⎝⎭,所以②错误. ③,由于53sin 2sin 1842πππ⎛⎫⨯+==- ⎪⎝⎭,所以③正确.④4πα⎛⎫+ ⎪⎝⎭32<,所以④错误. 故答案为:①③ 【点睛】本小题主要考查三角函数的奇偶性、对称性、最值以及诱导公式,属于中档题.19.【分析】可拆分理解构造由对勾函数可得时取得最小值又当时也取到最小值即可求解【详解】令由对勾函数性质可知当时;因为当时所以当时取到最小值所以故答案为:【点睛】本题考查函数最值的求解拆分构造函数是解题关解析:52【分析】可拆分理解,构造251616()5x x g x x x x-+==+-,由对勾函数可得4x =时取得最小值,又当4x =时,12sin 236x ππ⎛⎫-- ⎪⎝⎭也取到最小值,即可求解 【详解】令251616()5x x g x x x x-+==+-,由对勾函数性质可知当4x =时,min ()3g x =;因为121sin 2362x ππ⎛⎫--- ⎪⎝⎭,当4x =时,121sin 2362x ππ⎛⎫--=-⎪⎝⎭,所以当4x =时,()f x 取到最小值,5(4)2f =,所以min 5()2f x =.故答案为:52【点睛】本题考查函数最值的求解,拆分构造函数是解题关键,属于中档题20.3【分析】由已知可得是函数的一个周期所以再由可求得可得答案【详解】由已知可得则有则是函数的一个周期所以又所以所以故答案为:3【点睛】本题考查了函数的周期性及其应用准确理解周期性的定义是解题的关键属于解析:3 【分析】由已知可得,3是函数()f x 的一个周期,所以(2020)(1)f f =,再由(2)3f -=, 可求得()13f =,可得答案. 【详解】由已知可得,3()2f x f x ⎛⎫+=- ⎪⎝⎭,则有333(3)++()222f x f x f x f x ⎛⎫⎛⎫+==-+= ⎪ ⎪⎝⎭⎝⎭,则3是函数()f x 的一个周期, 所以(2020)(67331)(1)f f f =⨯+=, 又(2)3f -=,所以()()123f f =-=, 所以(2020)3f =, 故答案为:3. 【点睛】本题考查了函数的周期性及其应用,准确理解周期性的定义是解题的关键,属于中档题.三、解答题21.(1)()2sin 23f x x π⎛⎫=-⎪⎝⎭;(2)()4sin 423g x x π⎛⎫=-- ⎪⎝⎭,,2()412k k ππ⎛⎫+-∈ ⎪⎝⎭Z . 【分析】(1)结合图象求出A ,ϕ,代入点的坐标,求出ϕ,从而求出函数()f x 的解析式; (2)通过图象变换,求出函数()g x 的解析式,根据三角函数的性质求出()g x 的对称中心即可. 【详解】(1)由图象知:3532,41234A T πππ⎛⎫==--= ⎪⎝⎭, 解得:T π=,故22πωπ==,故()2sin(2)f x x ϕ=+, 将点,03π⎛-⎫ ⎪⎝⎭代入解析式得:2sin 03πϕ⎛⎫-+= ⎪⎝⎭,故()223k k ϕππ=+∈Z , 而2πϕ<,故3πϕ=-,故()2sin 23f x x π⎛⎫=-⎪⎝⎭; (2)将()y f x =图象上所有点的横坐标缩小到原来的12倍, 解析式转化为2sin 43y x π⎛⎫=-⎪⎝⎭, 再将图象上所有点的纵坐标扩大到原来的2倍(横坐标不变), 解析式转化为4sin 43y x π⎛⎫=-⎪⎝⎭, 最后向下平移2个单位得到()y g x =图象, 则()4sin 423y g x x π⎛⎫==-- ⎪⎝⎭,令()4sin 43h x x π⎛⎫=- ⎪⎝⎭, 令4()3x k k ππ-=∈Z ,解得:()412k x k ππ=+∈Z , 故()h x 的对称中心是,0()412k k ππ⎛⎫+∈⎪⎝⎭Z , 故()g x 的对称中心是,2()412k k ππ⎛⎫+-∈⎪⎝⎭Z . 【点睛】方法点睛:已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 22.(1)()()2sin f x x ϕ=+;(2)答案见解析. 【分析】由已知得周期从而求得ω, 选①:(1)得出()6f x π+,根据偶函数与诱导公式求得ϕ;(2)求出()f x 的增区间,再与[0,]π求交集可得;选②:(1)解方程3f π⎛⎫= ⎪⎝⎭ϕ; (2)同选①选③:(1)由6f π⎛⎫ ⎪⎝⎭是最大值可得ϕ; (2)同选① 【详解】解:∵()f x 的图象与直线2y =的相邻两个交点间的距离为2π, ∴2T π=,即22ππω=,∴1ω=,∴()()2sin f x x ϕ=+. 方案一:选条件① (1)∵2sin 66f x x ππϕ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭为偶函数, ∴62k ππϕπ+=+,即3k πϕπ=+,k Z ∈,∵02πϕ<<,∴3πϕ=,∴()2sin 3f x x π⎛⎫=+⎪⎝⎭. (2)令22232k x k πππππ-+≤+≤+,k Z ∈,得:52266k x k ππππ-+≤≤+,k Z ∈,令0k =,得566x ππ-≤≤, ∴函数()f x 在[]0,π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦(写成开区间也可得分) 方案二:选条件②(1)方法1:∵2sin 33f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭∴sin 32πϕ⎛⎫+= ⎪⎝⎭,∴2k 33ππϕπ+=+或2233k ππϕπ+=+,k Z ∈, ∴2k ϕ=π或23k πϕπ=+,k Z ∈,∵02πϕ<<,∴3πϕ=,∴()2sin 3f x x π⎛⎫=+⎪⎝⎭;方法2:∵2sin 33f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭∴sin 32πϕ⎛⎫+= ⎪⎝⎭,∵02πϕ<<,∴5336πππϕ<+<, ∴233ππϕ+=即3πϕ=,∴()2sin 3f x x π⎛⎫=+ ⎪⎝⎭;(2)同方案一. 方案三:选条件③ ∵x R ∀∈,()6f x f π⎛⎫≤ ⎪⎝⎭,∴6f π⎛⎫ ⎪⎝⎭为()f x 的最大值, ∴262k ππϕπ+=+,k Z ∈,即23k πϕπ=+,k Z ∈,∵02πϕ<<,∴3πϕ=,∴()2sin 3f x x π⎛⎫=+⎪⎝⎭; (2)同方案一. 【点睛】思路点睛:本题考查三角函数的图象与性质,掌握正弦函数的性质是解题关键.()sin()(0,0)f x A x A ωϕω=+>>,只要把x ωϕ+作为一个整体,用它替换sin y x =中的x 可确定函数的性质如单调性、对称中心、对称轴,最值,也可由()sin()(0,0)f x A x A ωϕω=+>>中x 的范围求出t x ωϕ=+的范围M ,然后考虑sin y x =在x M ∈时的性质得出结论. 23.(1)()cos(2)6f x x π=+;(2)见解析.【分析】(1)根据图象求出周期,再根据最低点可求ϕ,从而得到函数解析式. (2)求出()g x 的解析式,故方程可化为cos 206m x π⎛⎫---= ⎪⎝⎭,可通过直线y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭ 的图象的交点的个数解决方程的解的个数.【详解】(1)由函数的图象可得()f x 的周期为2236πππ⎛⎫⨯-=⎪⎝⎭,故22πωπ==, 又26312f ππ⎛⎫+ ⎪=- ⎪ ⎪⎝⎭,故5cos 2+112πϕ⎛⎫⨯=- ⎪⎝⎭, 所以526k πϕππ+=+即2,6k k Z πϕπ=+∈,因为02πϕ<<,故6π=ϕ,所以()cos(2)6f x x π=+. (2)()cos(2)cos 266g x x x ππ=-+=, 故()3()cos(2)3cos 26f xg x m x x m π-⋅-=+--cos 2cossin 2sin3cos 2cos 2666x x x m m x πππ⎛⎫=---=--- ⎪⎝⎭ 故方程在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数即为y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭图象交点的个数,cos 26y x π⎛⎫=- ⎪⎝⎭在,2ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,由图象可得: 当1m -=-31m <-<即1m =或31m -<<时,方程有2个不同的解; 当31m -<-≤31m ≤<时,方程有4个不同的解; 当33m <-≤33m ≤<时,方程有3个不同的解; 【点睛】 方法点睛:(1)平移变换有“左加右减”(水平方向的平移),注意是对自变量x 做加减.(2)与余弦型函数有关的方程的解的个数的讨论,一般可转化为动直线与确定函数的图象的交点个数来讨论.24.(1)()50sin 707050cos ,010210h t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭;(2)52分钟. 【分析】(1)根据题意分析游客甲绕原点作匀速圆周运动,根据三角函数定义可把他离地面的距离()h t 表示出来;(2)先求出游客乙离地面距离的函数()g t ,则()()h h t g t =-△即为甲乙的离地面距离之差,利用函数求最值. 【详解】(1)法1:据题意,游客甲绕原点按逆时针方向作角速度为22010ππ=弧度/分钟的匀速圆周运动,设经过t 分钟后甲到达Q ,则以OP 为始边,OQ 为终边的角的大小是10t π, 因为圆的半径为50r =米,由三角函数定义知点Q 的纵坐标为50sin 102y t ππ⎛⎫=- ⎪⎝⎭,则其离地面的距离为:()()205050sin 7050cos 010210h t t t t πππ⎛⎫=++-=-≥⎪⎝⎭. 法2:因为摩天轮是作匀速圆周运动,故可设()()()sin 0,0h t A t b A ωϕω=++>>,据题意有12050,2070,A b A A b b ⎧+==⎧⇒⎨⎨-+==⎩⎩又周期20T =,所以10πω=,由在最低点入舱得01022πππϕϕ⋅+=-⇒=-,故得()50sin 707050cos ,010210h t t t t πππ⎛⎫=-+=-≥⎪⎝⎭. (2)由(1)可知游客乙离地面的距离:()()7050cos 57050sin 1010g t t t ππ⎡⎤=--=-⎢⎥⎣⎦,其中时间t 表示游客甲坐上摩天轮的时间,则甲乙的离地面距离之差为:()()50sin cos 1010104h h t g t t t t ππππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭△,当()21042t k k ππππ-=+∈Z ,即()15202t k k =+∈Z 时,甲乙离地面距离之差达到最大,所以152t =,即游客乙坐上摩天轮552t -=分钟后,甲乙的离地面距离之差首次达到最大. 【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式:(1)求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;(2) 数学模型(解析式)建立后,不仅要考虑函数本身的定义域,还要结合实际问题确定自变量的取值范围.25.()2sin 3f x x ππ⎛⎫=+ ⎪⎝⎭;(2)296【分析】(1)根据条件先求ω,再根据()0f =ϕ,最后再验证ϕ值,确定函数的解析式;(2)根据条件求函数的零点,确定b 的最大值应是第5个零点. 【详解】 (1)函数的最大值是2,∴,函数的周期2T =,即22πωπω=⇒=,()02sin f ϕ==,且0ϕπ<<,3πϕ∴=或23π, 当3πϕ=时,()2sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,5,3312x ππππ⎡⎤+∈⎢⎥⎣⎦ 0,2π⎡⎤⎢⎥⎣⎦,满足条件; 当23ϕπ=时,()22sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,223,334x ππππ⎡⎤+∈⎢⎥⎣⎦ 3,22ππ⎡⎤⎢⎥⎣⎦,所以函数在区间10,12⎡⎤⎢⎥⎣⎦上为减函数,所以舍去, 所以函数()2sin 3f x x ππ⎛⎫=+ ⎪⎝⎭; (2)()2sin 103g x x ππ⎛⎫=++= ⎪⎝⎭,得1sin 32x ππ⎛⎫+=- ⎪⎝⎭, 72,36x k k Z ππππ+=+∈,解得:52,6x k k Z =+∈, 或112,36x k k Z ππππ+=+∈,解得:32,2x k k Z =+∈, 函数()()1g x f x =+在区间()0,b 上只有4个零点,∴这四个零点应是56,32,176,72,那么b 的最大值应是第5个零点,即296, 所以b 的最大值是296. 【点睛】关键点点睛:本题第一问注意求出两个ϕ 后需验证是否满足条件,第二个关键点是,注意()0,b 是开区间,开区间内只有四个零点,则b 的最大值是第5个零点.26.(1)400平方米;(2)200平方米. 【分析】(1)四边形OECF 的面积OBCF BOE S S S =-△;(2)设[0BOE α∠=∈︒,45]︒,过点F 作FM AB ⊥于点M ,利用三角函数的知识可得EOF S △;设单位面积种植乙蔬菜的经济价值为m ,该空地产生的经济价值为y ,可用含α的式子表示出y ;令()cos sin(120)f ααα=⋅︒-,结合三角恒等变换公式和余弦函数的图象与性质求出()f α取得最小值时,α的值,再将其代入EOF S △的表达式中即可得解. 【详解】解:(1)由60EOF ∠=︒,30BOE ∠=︒,可知⊥OF OB ,O 为AB 中点,2AB BC =,OB BC ∴=,∴四边形FOBC 为正方形.在Rt BOE △中,30BOE ∠=︒,20OB =米,BE ∴=,∴四边形OECF 的面积为12020204002OBCF BOE S S -=⨯-⨯=△平方米.(2)设[0BOE α∠=∈︒,45]︒,则120AOF α∠=︒-,过点F 作FM AB ⊥于点M ,在Rt OBE △中,cos OB BOE OE ∠=,20cos cos OB OE BOE α∴==∠,在Rt OMF △中,sin FMAOF OF∠=,20sin sin(120)FM OF AOF α∴==∠︒-.112020·sin sin 6022cos sin(120)EOF S OE OF EOF αα∴=∠=⨯⨯⨯︒=︒-△,设单位面积种植乙蔬菜的经济价值为m ,该空地产生的经济价值为y ,则()3EOF EOF ABCD y mS m S S =+-△△矩形3(2040)cos sin(120)cos sin(120)m m αααα=⨯+⨯-⋅︒-⋅︒-[800]cos sin(120)m αα=+⋅︒-.令21()cos sin(120)sin cos 2f αααααα=⋅︒-=-cos 2111sin 2cos(230)242ααα+=-⨯=+︒+.[0α∈︒,45]︒,230[30α∴+︒∈︒,120]︒,1cos(230)[2α∴+︒∈-.若该空地产生的经济价值y 最大,则()f α应取得最小值,为12-,此时0α=︒,200EOF S ∴====△平方米. 故该空地产生最大经济价值时种植甲种蔬菜的面积为200平方米. 【点睛】本题考查函数的实际应用,还涉及三角恒等变换与三角函数的图象与性质,选择适当的函数模型是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.。

【优质文档】人教版高中数学必修四第一章三角函数章末检测(附答案可下载)

【优质文档】人教版高中数学必修四第一章三角函数章末检测(附答案可下载)

( 2) ∵- 1≤ cos x≤1, k< 0,
∴ k ( cos x-1) ≥ 0, 又 sin2 x≥ 0,
第 8页 共 9页
∴ 当 cos x= 1,即 x= 2k ( k ∈ Z) 时, f( x) = sin2 x+ k ( cos x- 1) 有最小值 f( x) min= 0.
第 9页 共 9页
20. ( 1) 有最小值无最大值,且最小值为 1+ a; ( 2) 0.
解析: ( 1) f( x) = sin x+a = 1+ a ,由 0< x< π,得 0< sin x≤ 1,又 a> 0,所以当
sin x
Байду номын сангаас
sin x
sin x= 1 时, f( x) 取最小值 1+ a;此函数没有最大值.
1
上所有点的横坐标缩短到原来的
倍 ( 纵坐标不变 ) ,得到的图象所表示的函数是 (
).
2
A. y= sin 2 x - π , x∈ R 3
B.y= sin x + π , x∈R 26
C. y= sin 2 x + π , x∈R 3
D. y= sin 2 x+ 2π , x∈ R 3
二、填空题
②当 n= 2k + 1, k ∈ Z 时,原式= sin[ +(2k+1)π] + sin[ -(2 k+1)π] =- 2 .
sin [ +(2k+1) π] cos[ -(2k+1)π]
cos
19.对称中心坐标为
kπ+ π,0 ;对称轴方程为 x= kπ+ π( k∈ Z) .
2 12
23
解析:∵ y= sin x 的对称中心是 ( k π, 0) , k ∈ Z ,

高中数学 第一章 三角函数测试题(含解析)新人教A版必修4(2021年整理)

高中数学 第一章 三角函数测试题(含解析)新人教A版必修4(2021年整理)

高中数学第一章三角函数测试题(含解析)新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数测试题(含解析)新人教A版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数测试题(含解析)新人教A版必修4的全部内容。

第一章三角函数 测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的。

)1.若cos θ>0,且tan θ<0,则角θ的终边所在象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限2.如果α的终边过点P(2sin 6π,—2cos 6π),则sin α的值等于( ) A .12B .12-C .3-D .3-3。

已知角3π的终边上有一点P (1,a ),则a 的值是 ( ) A .3- B .3± C .33D .34. 已知1sin 1cos 2αα+=-,则cos sin 1αα-的值是 ( )A .12B .12- C .2 D .-25。

函数y=sin (2x +π)是 ( ) A .周期为π的奇函数B .周期为π的偶函数C .周期为2π的奇函数D .周期为2π的偶函数6.由函数y=sin2x 的图象得到函数y=sin (2x +3π)的图象,所经过的变换是( ) A .向左平移3π个单位 B .向右平移3π个单位C .向左平移6π个单位D .向右平移6π个单位7。

给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角; ③不论用角度制还是用弧度制度量一个角,它们与扇形所在圆的半径的大小无关; ④若sin sin αβ=,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角.其中正确..命题的个数是 ( )A .1B .2C .3D .48.如图1所示,为研究钟表与三角函数的关系,建立如图1所示的坐标系,设秒针针尖位置P (x ,y )。

高一数学新课标人教版必修4第一章 三角函数练习题1含答案解 双基限时练4

高一数学新课标人教版必修4第一章 三角函数练习题1含答案解  双基限时练4

双基限时练(四)1.利用正弦线比较sin1,sin1.2,sin1.5的大小关系,有( ) A .sin1>sin1.2>sin1.5 B .sin1>sin1.5>sin1.2 C .sin1.5>sin1.2>sin 1 D .sin1.2>sin 1>sin 1.5解析 π4<1<1.2<1.5<π2,画图易知. 答案 C2.若α为第二象限角,则下列各式恒小于零的是( ) A .sin α+cos α B .tan α+sin α C .cos α-tan αD .sin α-tan α解析 由α为第二象限角知,sin α>0,tan α<0,由三角函数线知|tan α|>sin α. ∴-tan α>sin α,即sin α+tan α<0. 答案 B3.角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异,那么α的值为( )A.π4B.3π4 C.7π4 D.3π4或7π4答案 D4.依据三角函数线,作出如下判断:①sin π6=sin 7π6;②cos ⎝ ⎛⎭⎪⎫-π4=cos π4;③tan π8>tan 3π5;④sin 3π5>sin 4π5.其中正确的有( )A.1个B.2个C.3个D.4个答案C5.已知角α的余弦线是长度为单位长度的有向线段,那么角α的终边在()A.x轴的非负半轴上B.x轴的非正半轴上C.x轴上D.y轴上解析由角α的余弦线是长度为单位长度的有向线段,得cosα=±1,故角α的终边在x轴上.答案CA.若α,β是第一象限的角,则cosα>cosβB.若α,β是第二象限的角,则tanα>tanβC.若α,β是第三象限的角,则cosα>cosβD.若α,β是第四象限的角,则tanα>tanβ解析方法一:(特殊值法)取α=60°,β=30°,满足sinα>sinβ,此时cosα<cosβ,所以A不正确;取α=60°,β=150°,满足sinα>sinβ,这时tanα<tanβ,所以B不正确;取α=210°,β=240°,满足sinα>sinβ,这时cosα<cosβ,所以C不正确.方法二:如图,P1,P2为单位圆上的两点,设P1(x1,y1),P2(x2,y2),且y1>y2.若α,β是第一象限角,又sin α>sin β,则sin α=y 1,sin β=y 2,cos α=x 1,cos β=x 2.∵y 1>y 2,∴α>β.∴cos α<cos β.∴A 不正确.若α,β是第二象限角,由图知P ′1(x ′1,y ′1),P ′2(x ′2,y ′2),其中sin α=y ′1,sin β=y ′2,则tan α-tan β=y ′1x ′1-y ′2x ′2=x ′2y ′1-x ′1y ′2x ′1x ′2.而y ′1>y ′2>0,x ′2<x ′1<0, ∴-x ′2>-x ′1>0,∴x ′1x ′2>0,x ′2y ′1-x ′1y ′2<0, 即tan α<tan β.∴B 不正确.同理,C 不正确.故选D. 答案 D7.若角α的正弦线的长度为34,且方向与y 轴的正方向相反,则sin α的值为________.答案 -348.比较大小:sin1155°________sin(-1654°)(填“<”或“>”). 答案 >9.已知α∈(0,4π),且sin α=12,则α的值为________. 解析 作出满足sin α=12的角的终边,如图:直线y =12交单位圆于A ,B 两点,连接OA ,OB ,则终边在OA ,OB 上的角的集合为⎩⎨⎧⎭⎬⎫α|α=π6+2k π或α=5π6+2k π,k ∈Z .又α∈(0,4π),所以α=π6或5π6或13π6或17π6 答案 π6或5π6或13π6或17π610.在(0,2π)内,使sin α>cos α成立的α的取值范围为________.答案 ⎝ ⎛⎭⎪⎫π4,54π11.试作出角α=7π6的正弦线、余弦线、正切线. 解 如图:α=7π6的余弦线、正弦线、正切线分别为OM ,MP ,AT . 12.利用三角函数线比较下列各组数的大小. (1)sin 2π3与sin 4π5; (2)tan 2π3与tan 4π5. 解如图所示,角2π3的终边与单位圆的交点为P ,其反向延长线与单位圆的过点A 的切线的交点为T ,作PM ⊥x 轴,垂足为M ,sin 2π3=MP ,tan 2π3=AT ;角4π5的终边与单位圆的交点为P ′,其反向延长线与单位圆的过点A 的切线交点为T ′,作P ′M ′⊥x 轴,垂足为M ′,则sin 4π5=M ′P ′,tan 4π5=AT ′,由图可见,MP >M ′P ′,AT <AT ′,所以(1)sin 2π3>sin 4π5. (2)tan 2π3<tan 4π5.13.利用三角函数线,求满足下列条件的角α的集合: (1)tan α=-1;(2)sin α<-12.解 (1)如图①所示,过点(1,-1)和原点作直线交单位圆于点P 和P ′,则OP 和OP ′就是角α的终边,∴∠xOP =3π4=π-π4,∠xOP ′=-π4,∴满足条件的所有角α的集合是{α|α=-π4+k π,k ∈Z }.①②(2)如图②所示,过点⎝ ⎛⎭⎪⎫0,-12作x 轴的平行线,交单位圆于点P 和P ′,则sin ∠xOP =sin ∠xOP ′=-12,∴∠xOP =11π6,∠xOP ′=7π6, ∴满足条件的所有角α的集合是 {α|7π6+2k π<α<11π6+2k π,k ∈Z }.。

(典型题)高中数学必修四第一章《三角函数》检测卷(包含答案解析)(1)

(典型题)高中数学必修四第一章《三角函数》检测卷(包含答案解析)(1)

一、选择题1.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的部分图像如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=- ⎪⎝⎭B .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭C .()3sin 26f x x π⎛⎫=-⎪⎝⎭D .1()3sin 26f x x π⎛⎫=-⎪⎝⎭ 2.函数()2cos 3⎛⎫=+ ⎪⎝⎭πf x x 在[]0,π的单调递增区间是( ) A .20,3π⎡⎤⎢⎥⎣⎦B .2,33ππ⎡⎤⎢⎥⎣⎦C .,3ππ⎡⎤⎢⎥⎣⎦D .2π,π33.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径长为30m ,2AM BP m ==,巨轮逆时针旋转且每12分钟转一圈,若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为( )A .30sin 30122t ππ⎛⎫-+⎪⎝⎭B .30sin 3062t ππ⎛⎫-+⎪⎝⎭C .30sin 3262t ππ⎛⎫-+⎪⎝⎭D .30sin 62t ππ⎛⎫-⎪⎝⎭ 4.已知函数()sin 26f x x π⎛⎫=-⎪⎝⎭,若方程()35f x =的解为1x ,2x (120x x π<<<),则()12sin x x -=( )A .35B .45-C .D .5.将函数()sin 25f x x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度后得到函数()y g x =的图象,对于函数()y g x =有以下四个判断: ①该函数的解析式为2sin 210y x π⎛⎫=+ ⎪⎝⎭; ②该函数图象关于点,02π⎛⎫⎪⎝⎭对称; ③该函数在区间,44ππ⎡⎤-⎢⎥⎣⎦上单调递增; ④该函数在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增. 其中,正确判断的序号是( ) A .②③B .①②C .②④D .③④6.已知函数()()cos f x x ωϕ=+(0>ω,0πϕ-<<)的图象关于点,08π⎛⎫⎪⎝⎭对称,且其相邻对称轴间的距离为23π,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象,则下列说法中正确的是( )A .()f x 的最小正周期23T π= B .58πϕ=-C .()317cos 248πx g x ⎛⎫=- ⎪⎝⎭D .()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦7.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用.假设在水流量稳定的情况下,简车上的每一个盛水筒都做逆时针匀速圆周运动.现将筒车抽象为一个几何图形,如图所示,圆O 的半径为4米,盛水筒M 从点0P 处开始运动,0OP 与水平面的所成角为30,且每分钟恰好转动1圈,则盛水筒M 距离水面的高度H (单位;m )与时间t (单位:s )之间的函数关系式的图象可能是( )A .B .C .D .8.下列结论正确的是( ) A .sin1cos1< B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭9.使函数()3)cos(2)f x x x θθ=+++是偶函数,且在0,4⎡⎤⎢⎥⎣⎦π上是减函数的θ的一个值是( ) A .6π B .3π C .23π D .56π 10.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于011.如图,摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.某摩天轮最高点距离地面高度为120m ,转盘直径为110m 设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要20min .游客甲坐上摩天轮的座舱,开始转动t min 后距离地面的高度为H m ,则在转动一周的过程中,高度H 关于时间t 的函数解析式是( )A .()55cos 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭B .()55sin 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭C .()55cos 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭D .()55sin 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭12.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫= ⎪⎝⎭,()3g π=,则ω的取值共有( ) A .6个B .5个C .4个D .3个二、填空题13.已知3()tan 1f x a x x =+(a ,b 为实数),且3(lg log 10)5f =,则(lglg3)f =____________.14.已知定义在R 上的函数()f x 满足:()()2f x f x π+=,且当[]0,x π∈时,()sin f x x =.若对任意的(],x m ∈-∞,都有()2f x ≤,则实数m 的取值范围是______. 15.如图,某公园要在一块圆心角为3π,半径为20m 的扇形草坪OAB 中修建一个内接矩形文化景观区域CDEF ,若//EF AB ,则文化景观区域面积的最大值为______2m .16.若函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π)的图象经过点,26π⎛⎫⎪⎝⎭,且相邻两条对称轴间的距离为2π,则4f π⎛⎫⎪⎝⎭的值为________. 17.设函数()y f x =的定义域为D ,若对任意的1x ∈D ,总存在2x ∈D ,使得()()121f x f x ⋅=,则称函数()f x 具有性质M .下列结论:①函数3y x x =-具有性质M ; ②函数35x x y =+具有性质M ;③若函数()[]8log 2,0,y x x t =+∈具有性质M ,则510t =; ④若3sin y x a =+具有性质M ,则5a =. 其中正确结论的序号是____________.18.函数251612()sin (0)236x x f x x x x ππ-+⎛⎫=--> ⎪⎝⎭的最小值为_______. 19.关于函数()4sin(2)(),3f x x x R π=+∈有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍;②()y f x =的图象关于点(,0)6π-对称;③()y f x =的表达式可改写为4cos(2);6y x π=-④()y f x =的图象关于直线6x π=-对称.其中正确命题的序号是_________.20.将函数()sin (0)f x x ωω=>的图象向右平移6π个单位长度,得到函数()y g x =的图像,若()y g x =是偶函数,则ω的最小值为________.三、解答题21.已知函数()12sin 26x f x π⎛⎫=+⎪⎝⎭,x ∈R .(1)用“五点法”画出函数()f x 一个周期内的图象; (2)求函数()f x 在[],ππ-内的值域; (3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象,求函数()g x 在[],ππ-内的单调增区间.22.函数()sin()f x A x ωϕ=+(0,0,[0,2))A ωϕπ>>∈的图象如图所示:(1)求()f x 的解析式; (2)()f x 向左平移12π个单位后得到函数()g x ,求()g x 的单调递减区间;(3)若,2x ππ⎡⎤∈-⎢⎥⎣⎦且()32f x ≥,求x 的取值范围.23.已知向量a =(cosωx -sinωx ,sinωx),b =(-cosωx -sinωx,2cosωx).设函数f(x)=a b ⋅+λ(x ∈R)的图象关于直线x =π对称,其中ω,λ为常数,且ω∈1,12⎛⎫⎪⎝⎭.(1)求函数f(x)的最小正周期; (2)若y =f(x)的图象经过点,04π⎛⎫⎪⎝⎭,求函数f(x)在区间30,5π⎡⎤⎢⎥⎣⎦上的取值范围 24.已知函数()()()f x g x h x =,其()22g x x =,()h x =_____. (1)写出函数()f x 的一个周期(不用说明理由); (2)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值. 从①cos 4x π⎛⎫+⎪⎝⎭,②2sin 24x π⎛⎫- ⎪⎝⎭这两个条件中任选一个,补充在上面问题中并作答, 注:如果选择多个条件分别解答.按第一个解答计分. 25.已知sin(3)(),cos x f x x R xπ-=∈(1)若α为第三象限角,且3sin 5α=-,求()f α的值. (2)若,34x ππ⎡⎤∈-⎢⎥⎣⎦,且21()2()1cos g x f x x =++,求函数()g x 的最小值,并求出此时对应的x 的值.26.函数()cos()(0)f x x ωφω=+>的部分图像如图所示.(1)求()f x 的表达式; (2)若[1,2]x ∈,求()f x 的值域;(3)将()f x 的图像向右平移112个单位后,再将所得图像横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图像,求()g x 的单调递减区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 本题首先可根据33π44T 求出ω,然后根据当43x π=时函数()f x 取最大值求出ϕ,最后代入30,2⎛⎫- ⎪⎝⎭,即可求出A 的值. 【详解】因为4π7π3π3124,所以33π44T ,T π=,因为2T πω=,所以2ω=,()sin(2)f x A x ϕ=+,因为当43x π=时函数()sin(2)f x A x ϕ=+取最大值,所以()42232k k Z ππϕπ⨯+=+∈,()26k k Z πϕπ=-+∈,因为2πϕ<,所以6πϕ=-,()sin 26f x A x π⎛⎫=- ⎪⎝⎭,代入30,2⎛⎫- ⎪⎝⎭,3sin 26A π⎛⎫-=- ⎪⎝⎭,解得3A =,()3sin 26f x x π⎛⎫=- ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查根据函数图像求函数解析式,对于()sin()f x A x ωϕ=+,可通过周期求出ω,通过最值求出A ,通过代入点坐标求出ϕ,考查数形结合思想,是中档题.2.C解析:C 【分析】先求出函数的单调增区间,再给k 取值即得解. 【详解】 令22223+<+<+ππk πx πk π(k ∈Z ) ∴42233+<<+ππk πx k π(k ∈Z ), 所以函数的单调递增区间为4[2,2]33ππk πk π++(k ∈Z ), 当1k =-时,5233ππx -<<- 当0k =时,433x ππ<<又∵[]0,x π∈, 故选:C 【点睛】方法点睛:求三角函数()cos()f x A wx ϕ=+的单调区间,一般利用复合函数的单调性原理解答:首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.3.B解析:B 【分析】先通过计算得出转动的角速度,然后利用三角函数模型表示在转动的过程中点B 的纵坐标满足的关系式,则吊舱到底面的距离为点B 的纵坐标减2. 【详解】如图所示,以点M 为坐标原点,以水平方向为x 轴,以OM 所在直线为y 轴建立平面直角坐标系.因为巨轮逆时针旋转且每12分钟转一圈,则转动的角速度为6π每分钟, 经过t 分钟之后,转过的角度为6BOA t π∠=,所以,在转动的过程中,点B 的纵坐标满足:3230sin 30sin 322662y t t ππππ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭则吊舱距离地面的距离30sin 32230sin 306262h t t ππππ⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】建立三角函数模型解决实际问题的一般步骤: (1)审题:审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择合适的三角函数模型; (3)求解:对所建立的数学模型进行分析研究,从而得到结论.4.B解析:B 【分析】求出函数()f x 在(0,)π上的对称轴,然后由正弦函数性质得1223x x π+=,这样12sin()x x -化为2222sin(2)sin 2cos(2)336x x x πππ⎛⎫-=+=- ⎪⎝⎭,而已知条件为23sin(2)65x π-=,再由正弦函数性质确定226x π-的范围,从而由平方关系求得结论.【详解】函数()sin 26f x x π⎛⎫=-⎪⎝⎭的对称轴满足:()262x k k Z πππ-=+∈,即()23k x k Z ππ=+∈,令0k =可得函数在区间()0,π上的一条对称轴为3x π=,结合三角函数的对称性可知1223x x π+=,则:1223x x π=-,()122222sin sin 2sin 2cos 2336x x x x x πππ⎛⎫⎛⎫⎛⎫-=-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由题意:0πx <<,则112666x πππ-<-<,23sin 265x π⎛⎫-= ⎪⎝⎭,120x x π<<<,则2226x πππ<-<,由同角三角函数基本关系可知:24cos 265x π⎛⎫-=- ⎪⎝⎭, 故选:B . 【点睛】关键点点睛:本题考查正弦函数的性质,考查平方关系.解题时根据自变量的范围求得此范围内函数的对称轴,从而得出两个变量12,x x 的关系,可化双变量为单变量,再根据函数值及函数性质确定出单变量的范围,从而求得结论.注意其中诱导公式的应用,目的是把求值式与已知条件中的角化为一致.5.A解析:A 【分析】根据函数平移变换得sin 2y x =,再根据正弦函数的性质依次讨论即可得答案. 【详解】解:由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知: 将sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后 解析式为sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,选项①错误; 令2x k =π,k Z ∈,求得2k x =π,k Z ∈, 故函数的图象关于点,02k ⎛⎫⎪⎝⎭π对称, 令1k =,故函数的图象关于点,02π⎛⎫⎪⎝⎭对称,选项②正确; 则函数的单调递增区间满足:222()22k x k k Z ππππ-≤≤+∈,即()44k x k k Z ππππ-≤≤+∈,令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项③正确,④错误.故选:A. 【点睛】本题考查三角函数平移变换,正弦型函数的单调区间,对称中心等,考查运算求解能力,解题的易错点在于平移变换时,当1ω≠时,须将ω提出,平移只针对x 进行平移,具体的在本题中,sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后得sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,而不是sin 2sin 251010y x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,是中档题. 6.D解析:D 【分析】首先根据三角函数的性质,可知相邻对称轴间的距离是半个周期,判断A ;再求函数的解析式,判断B ;根据平移规律得到函数()g x ,判断C ;最后根据函数()g x 的解析式,利用整体代入的方法求函数的单调递减区间. 【详解】相邻对称轴间的距离是半个周期,所以周期是43π,故A 不正确; 243T ππω==,解得:32ω=,()f x 的图象关于点,08π⎛⎫⎪⎝⎭对称,3,282k k Z ππϕπ∴⨯+=+∈,解得:5,16k k Z πϕπ=+∈ 0πϕ-<<, 1116πϕ∴=-,故B 不正确; ()311cos 216f x x π⎛⎫=- ⎪⎝⎭,向左平移3π个单位长度后得()31133cos cos 2316216g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 故C 不正确; 当02x π≤≤时,3339,2161616x πππ⎡⎤-∈-⎢⎥⎣⎦,当3390,21616x ππ⎡⎤-∈⎢⎥⎣⎦时,函数单调递减,即 ,82x ππ⎡⎤∈⎢⎥⎣⎦,故D 正确. 故选:D 【点睛】关键点点睛:本题的关键是根据三角函数的性质求得函数()f x 的解析式,第四个选项是关键,需根据整体代入的方法,先求33216x π-的范围,再确定函数的单调递减区间. 7.D解析:D 【分析】先根据题意建立坐标系,写出盛水筒M 距离水面的高度H 与时间t 之间的函数关系式,再根据关系式即可判断. 【详解】解:以O 为圆心,过点O 的水平直线为x 轴,建立如图所示的平面直角坐标系:0306xOP π∠==,OP ∴在()t s 内转过的角为:26030t t ππ=, ∴以x 轴正半轴为始边,以OP 为终边的角为:306t ππ-,P ∴点的纵坐标为:4sin 306t ππ⎛⎫-⎪⎝⎭, H ∴与t 之间的函数关系式为:4sin 2306H t ππ⎛⎫=-+⎪⎝⎭, 当sin 1306t ππ⎛⎫-= ⎪⎝⎭时,max 426H =+=, 当sin 1306t ππ⎛⎫-=-⎪⎝⎭时,max 422H =-+=-, 对A ,B ,由图像易知max min H H =-,故A ,B 错误; 对C ,max min H H <-,故C 错误; 对D ,max min H H >-,故D 正确. 故选:D. 【点睛】关键点点睛:本题解题的关键是理解题意,根据题意写出H 与t 之间的函数关系式.8.D解析:D 【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增, 因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.9.B解析:B 【解析】1())cos(2))cos(2))2sin(2)26f x x x x x x πθθθθθ=+++=+++=++,由于()f x 为偶函数,则(0)2sin()26f πθ=+=±,sin()1,662k πππθθπ+=±+=+,3k πθπ=+,当0k =时,3πθ=,()2sin(2)2sin(2)362f x x x πππ=++=+2cos2x =,当[0,]4x π∈时,2[0,]2x π∈,()2cos2f x x =为减函数,符合题意,所以选B.10.D解析:D 【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫⎪⎝⎭和23f π⎛⎫⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。

高一数学必修4第一章三角函数单元测试题

高一数学必修4第一章三角函数单元测试题

高一数学必修4第一章三角函数单元测试全卷满分150分。

考试用时120分钟★祝考试顺利★一、选择题:(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B )A .B=A ∩CB .B ∪C=CC .A CD .A=B=C2. 角α的终边上有一点)0(),2,(<-a a a ,则αsin = ( A )A. 552-B. 55-C.55 D.552 3、已知α角是第二象限的角,│2cosα│=2cosα-,则角2α属于( C ) A . 第一象限;B .第二象限;C .第三象限;D .第四象限. 4、在△ABC 中,下列等式一定成立的是(C ) A .sin (A +B )=﹣sinC B .cos (A +B )=cosCC .cos=sinD .sin=sin5. 已知tanα=3,则sin ()•cos ()的值为(B )A.B .﹣C .D .﹣6. 使函数y =sin(2x +φ)为偶函数的φ值可以是( D )A.π4B.3π C .π D.3π27、下列不等式中正确的是(C )A .54sinsin 77ππ> B .sin()sin()56ππ->- C .54cos cos 77ππ<D .cos()cos()65ππ-<- 8.函数y =cos x +|cos x |,x ∈[0,2π]的大致图象为( D )9. 设()f x 是定义域为R ,最小正周期为32π的函数,若cos (0)()2sin (0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤≤⎩,则15()4f π-的值等于( B ) A.1 BC.0D. 10. 函数2sin(2)6y x π=-([0,]x ∈π)的单调递增区间是( C ).A.[0,]3πB.7[,]1212ππ C.5[,]36ππ D.5[,]6ππ 11、函数()sin()(0)4f x x πωω=->在区间(4π-,2π)上是增函数,则ω的取值范围是(B ) A .(0,]B .(0,1]C .(0,]D .(0,2]12.定义在R 上的偶函数f(x)满足f(x+2)=f(x),且在[-3,-2]上是减函数,若βα,是锐角三角形的两个内角,且βα< 则( A )A 、(sin )(cos )f f βα>B 、 (sin )(cos )f f αβ<C 、()()βαsin sin f f >D 、()()βαcos cos f f <二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上.) 13. 已知cos (π+α)=﹣,则tan (﹣α)值为 ±14. 已知41)6sin(=π+x ,则=-π+-π)3(cos )65sin(2x x 165 . 15.函数2()cos 3sin 1f x x x =+-的最大值为 216、关于函数()(),32sin 4R x x x f ∈⎪⎭⎫ ⎝⎛+=π有下列命题: ① 由()()021==x f x f 可得21x x -必是π的整数倍;② ()x f y =的表达式可改写为()⎪⎭⎫ ⎝⎛-=62cos 4πx x f ;③ ()x f y =的图象关于点⎪⎭⎫ ⎝⎛-0,6π 对称;④ ()x f y =的图象关于直线6π-=x 对称.⑤ ()x f y = 在区间[125π-,12π]上是增函数. 以上命题正确的序号是_____②、③、⑤_____________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)(1)求值sin (﹣π)+cos π﹣tanπ +sin π(2) 求函数y =解:(1)-1(2)222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦18、(本小题12分)已知函数sinα+cosα=﹣,α∈(﹣)(Ⅰ)求sinα•cosα,sinα﹣cosα的值;(Ⅱ)求cos()sin()23cos()sin()22παπαππαα+----的值. 解:(Ⅰ)∵函数sinα+cosα=﹣,α∈(﹣),平方可得1+2sinαcosα=,解得sinαcosα=﹣.sinα﹣cosα=﹣=﹣=﹣. (Ⅱ)由(Ⅰ)可得sinα=﹣,cosα=﹣,∴tanα==﹣,==tanα=﹣.19.(本小题12分)已知()2sin(2)26f x a x a b π=-+++,3[,]44x ππ∈,是否存在常数Q b a ∈,,使得)(x f 的值域为}133|{-≤≤-y y ?若存在,求出b a ,的值;若不存在,说明理由.19.解:存在1-=a ,1=b 满足要求. ∵344x ππ≤≤, ∴252363x πππ≤+≤,∴1sin(2)62x π-≤+≤, 若存在这样的有理数b a ,,则(1)当0>a 时,⎪⎩⎪⎨⎧-=++-=++-,1322,323b a a b a a 无解;(2)当0<a 时,⎩⎨⎧-=++--=++,1323,322b a a b a a 解得1-=a ,1=b ,即存在1-=a ,1=b 满足要求. 20.(本小题12分)已知f (x )=﹣sin (2x +)+2,求:(1)f (x )的最小正周期及对称轴方程;(2)f (x )的单调递增区间; (3)若方程f (x )﹣m +1=0在x ∈[0,]上有解,求实数m 的取值范围.解:(1)由于f (x )=﹣sin (2x +)+2,它的最小正周期为=π,令2x +=kπ+,求得x=+,k ∈Z ,故函数f (x )的图象的对称轴方程为x=+,k ∈Z .(2)令2kπ+≤2x +≤2kπ+,求得 kπ+≤x ≤kπ+,可得函数f (x )的增区间为[kπ+,kπ+],k ∈Z .(3)若方程f (x )﹣m +1=0在x ∈[0,]上有解,则函数f (x )的图象和直线y=m ﹣1在x ∈[0,]上有交点.∵x ∈[0,],∴2x +∈[,],sin (2x +)∈[﹣,1],f (x )∈[2﹣,],故m ﹣1∈[2﹣,],∴m ∈[3﹣,]. 21、(本小题12分) 已知函数f (x )=2sin (2x ﹣)+1,x ∈[,].(1)求f (x )的最大值和最小值; (2)若不等式|f (x )﹣m |<2在[,]上恒成立,求实数m 的取值范围.解:(1)由函数f (x )=2sin (2x ﹣)+1,∵x ∈[,],∴2x ﹣∈[,],∴当2x ﹣=时,f (x )取得最大值为:2; 当2x ﹣=时,f (x )取得最小值为:1﹣;(2)不等式|f (x )﹣m |<2在[,]上恒成立,即m ﹣2<f (x )<2+m 在[,]上恒成立, 由(1)可得,∴.故实数m 的取值范围为(0,).22.(本小题12分)函数()sin f x x mx =- (m R ∈) (1)证明:()f x 是奇函数(2)若12m =,求证:()f x 在(0,)π至少有一个零点 (3)若()f x 在x R ∈有n 个零点,求证:n 是奇数证明:(1),()sin()()(sin )()()x R f x x m x x mx f x f x ∈-=---=--=-∴ 为奇函数。

高一数学下学期数学必修四第一章《三角函数》测试题含答案-名校试卷

高一数学下学期数学必修四第一章《三角函数》测试题含答案-名校试卷

第一章《三角函数》测试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.下列命题正确的是( ).A.终边相同的角都相等B.钝角比第三象限角小C.第一象限角都是锐角D.锐角都是第一象限角 2.若角︒600的终边上有一点()a ,4-,则a 的值是( ). A.34- B.34± C.3 D.34). A.3cos5π B.3cos5π-C.3cos5π± D.2cos 5π 4.下列函数中,最小正周期为π,且图象关于直线3x π=对称的是( ).A.)62sin(+=x yB.sin()26x y π=+C.sin(2)6y x π=-D.sin(2)y x π=-5.函数)sin(ϕω+=x y 的部分图象如右图,则ω,ϕA.,24ωϕππ== B.,36ωϕππ==C.5,44ωϕππ==D.,44ωϕππ==6.要得到3sin(2)4y x π=+的图象,只需将x y 2sin 3=A.向左平移4π个单位 B.向右平移4π个单位C.向左平移8π个单位D.向右平移8π个单位7.设tan()2απ+=,则sin()cos()sin()cos()αααα-π+π-=π+-π+( ).A.3B.13C.1D.1- 8.A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为( ).A. 锐角三角形B. 钝角三角形C. 等腰直角三角形D. 等腰三角形 9.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当[0,]2x π∈时,x x f sin )(=,则5()3f π的值为( ).A.21-B .23 C.23-D.2110.函数y =( ).A.2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B.2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦C.22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D.222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦11.函数2sin(2)6y x π=-([0,]x ∈π)的单调递增区间是( ). A.[0,]3π B.7[,]1212ππ C.5[,]36ππ D.5[,]6ππ 12.设a 为常数,且1>a ,02x ≤≤π,则函数1sin 2cos )(2-+=x a x x f 的最大值为( ).A.12+aB.12-aC.12--aD.2a第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.)13.在扇形中,已知半径为8,弧长为12,则圆心角是 弧度,扇形面积是 . 14.函数xxy cos 2cos 2-+=的最大值为________.15.方程x x lg sin =的解的个数为__________.16.设()sin()cos()f x a x b x αβ=π++π+,其中βα,,,b a 为非零常数.若1)2009(-=f ,则=)2010(f . 三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.) 17.(本小题满分10分)已知α是第三角限角,化简ααααsin 1sin 1sin 1sin 1+---+.18.(本小题满分12分)已知角α的终边在直线x y 2=上,求角α的正弦、余弦和正切值.19.(本小题满分12分)(1)当3tan =α,求αααcos sin 3cos 2-的值;(2)设3222cos sin (2)sin()32()22cos ()cos()f θθθθθθπ+π-++-=+π++-,求()3f π的值.20.(本小题满分12分)已知函数())4f x x π=-,x ∈R .(1)求函数()f x 的最小正周期和单调递增区间;(2)求函数()f x 在区间[]82ππ-,上的最小值和最大值,并求出取得最值时x 的值.21.(本小题满分14分)已知()2sin(2)26f x a x a b π=-+++,3[,]44x ππ∈,是否存在常数Q b a ∈,,使得)(x f 的值域为}133|{-≤≤-y y ?若存在,求出b a ,的值;若不存在,说明理由.22.已知函数()()()sin 0,0f x A x B A ωϕω=++>>的一系列对应值如下表:(1)根据表格提供的数据求函数()f x 的一个解析式; (2)根据(1)的结果,若函数()()0y f kx k =>周期为23π,当[0,]3x π∈时,方程()f kx m = 恰有两个不同的解,求实数m 的取值范围.第一章《三角函数》测试题参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.D 由任意角和象限角的定义易得只有D 正确.2.A 因为360tan )60540tan(4600tan =︒=︒+︒=-=︒a,故34-=a .3.B33|cos |cos 55ππ===-. 4.C ∵最小正周期为π,∴2ω=,又∵图象关于直线3x π=对称,∴()13f π=±,故只有C 符合.5.D ∵2134=-=T ,∴8=T ,4ωπ=,又由142ϕππ⨯+=得4ϕπ=.6.C ∵3sin 2()3sin(2)84y x x ππ=+=+,故选C.7.A 由tan()2απ+=,得tan 2α=,故sin()cos()sin cos sin cos tan 13sin()cos()sin (cos )sin cos tan 1αααααααααααααα-π+π---++====π+-π+-----.8.B 将52cos sin =+A A 两边平方,得254cos cos sin 2sin 22=++A A A A , ∴025211254cos sin 2<-=-=A A , 又∵0A <<π, ∴A 为钝角.9.B 5()(2)()()sin 33333f f f f πππππ=π-=-===10.D 由01cos 2≥+x 得21cos -≥x ,∴222233k x k πππ-≤≤π+,Z k ∈. 11.C 由3222262k x k πππ+π≤-≤+π得236k x k ππ-+π≤≤-+π(Z k ∈),又∵[0,]x ∈π, ∴单调递增区间为5[,]36ππ.12.B 2222)(sin 1sin 2sin 11sin 2cos )(a a x x a x x a x x f +--=-+-=-+=, ∵π20≤≤x , ∴1sin 1≤≤-x , 又∵1>a ,∴12)1()(22max -=+--=a a a x f .二、填空题(本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.) 13.23,48 圆心角23812===r l α,扇形面积488122121=⨯⨯==lr S .14.3 22221(2c o s )2c o s ,c o s 11,3113y y y x x x y y y ---=+=⇒-≤≤≤≤++. 15.3 画出函数x y sin =和x y lg =的图象,结合图象易知这两个函数的图象有3交点.16.1 (2009)s i n (2009)c o s (2009f a b αβ=π++π+=-, (2010)s i n (2010)c o s (201f a b απβ=π+++ sin[(2009)]cos[(2009)]a b αβ=π+π++π+π+ [sin(2009)cos(2009)]1a b αβ=-π++π+=.三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.) 17.解:∵α是第三角限角, ∴0sin 1>+α,0sin 1>-α,0cos <α,∴)sin 1)(sin 1()sin 1()sin 1)(sin 1()sin 1(sin 1sin 1sin 1sin 122αααααααααα-+-++-+=+---+αααααααα22222222cos )sin 1(cos )sin 1(sin 1)sin 1(sin 1)sin 1(--+=----+= ααααααααcos sin 1cos sin 1|cos sin 1||cos sin 1|-++-=--+=αααtan 2cos sin 2-=-=. 18. 解:设角α终边上任一点)2,(k k P (0≠k ),则k x =,k y 2=,||5k r =.当0>k 时,k r 5=,α是第一象限角, 55252s i n ===k k r y α,555cos ===kk r x α,22tan ===k k x y α; 当0<k 时,k r 5-=,α是第三象限角, 55252s i n -=-==k k r y α,555cos -=-==k k r x α,22tan ===k k x y α. 综上,角α的正弦、余弦和正切值分别为552,55,2或552-,55-,2. 19.解:(1)因为1tan tan 31cos sin cos sin 3cos cos sin 3cos 22222+-=+-=-αααααααααα,且3tan =α, 所以,原式=+⨯-=13331254-.(2)θθθθθθθπθπθπθθcos cos 223cos sin cos 2)cos()(cos 223)2sin()2(sin cos 2)(223223++-++=-+++-++-+=fθθθθθθθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 2cos cos 222cos cos cos 222223++--++-=++-+-=1cos 2cos cos 2)2cos cos 2)(1(cos 22-=++++-=θθθθθθ, ∴1()cos1332f ππ=-=-. 20.解:(1)因为())4f x x π=-,所以函数()f x 的最小正周期为22T π==π,由2224k x k π-π+π≤-≤π,得388k x k ππ-+π≤≤+π,故函数)(x f 的递调递增区间为3[,]88k k ππ-+π+π(Z k ∈); (2)因为()cos(2)4f x x π=-在区间[]88ππ-,上为增函数,在区间[]82ππ,上为减函数,又()08f π-=,()8f π=π())1244f ππ=π-==-,故函数()f x 在区间[]82ππ-,8x π=;最小值为1-,此时2x π=.21.解:存在1-=a ,1=b 满足要求.∵344x ππ≤≤, ∴252363x πππ≤+≤,∴1sin(2)6x π-≤+≤, 若存在这样的有理b a ,,则(1)当0>a 时,⎪⎩⎪⎨⎧-=++-=++-,1322,323b a a b a a 无解;(2)当0<a 时,⎩⎨⎧-=++--=++,1323,322b a a b a a 解得1-=a ,1=b ,即存在1-=a ,1=b 满足要求. 22. 解:(1)设()f x 的最小正周期为T ,得11()266T ππ=--=π,由2T ωπ=,得1ω=,又31B A B A +=⎧⎨-=-⎩,解得21A B =⎧⎨=⎩ 令562ωϕππ⋅+=,即562ϕππ+=,解得3ϕπ=-, ∴()2sin 13f x x π⎛⎫=-+ ⎪⎝⎭. (2)∵函数()2sin 13y f kx kx π⎛⎫==-+ ⎪⎝⎭的周期为23π,又0k >, ∴3k =, 令33t x π=-,∵0,3x π⎡⎤∈⎢⎥⎣⎦, ∴2[,]33t ππ∈-, 如图,s t =sin 在2[,]33ππ-上有两个不同的解,则)1,23[∈s ,∴方程()f kx m =在[0,]3x π∈时恰好有两个不同的解,则)1,3m ∈,即实数m 的取值范围是)1,3。

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)

高一数学试题(必修4)(特别适合按14523顺序的省份)必修4 第一章三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C2 等于()A B C D3.已知的值为()A.-2 B.2 C.D.-4.下列函数中,最小正周期为π的偶函数是()A.y=sin2xB.y=cos C .sin2x+cos2x D. y=5 若角的终边上有一点,则的值是()A B C D6.要得到函数y=cos()的图象,只需将y=sin的图象()A.向左平移个单位 B.同右平移个单位C.向左平移个单位 D.向右平移个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象则y=f(x)是()A.y= B.y=C.y=D.8. 函数y=sin(2x+)的图像的一条对轴方程是()A.x=-B. x=- C .x=D.x=9.若,则下列结论中一定成立的是()A. B. C. D.10.函数的图象()A.关于原点对称 B.关于点(-,0)对称 C.关于y轴对称 D.关于直线x=对称11.函数是()A.上是增函数 B.上是减函数C.上是减函数D.上是减函数12.函数的定义域是()A.B.C. D.二、填空题:13. 函数的最小值是 .14 与终边相同的最小正角是_______________15. 已知则 .16 若集合,,则=_______________________________________三、解答题:17.已知,且.a)求sinx、cosx、tanx的值.b)求sin3x – cos3x的值.18 已知,(1)求的值(2)求的值19. 已知α是第三角限的角,化简20.已知曲线上最高点为(2,),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(2)一、选择题:1.已知,则化简的结果为()A. B. C. D. 以上都不对2.若角的终边过点(-3,-2),则( )A.sin tan>0 B.cos tan>0C.sin cos>0 D.sin cot>03 已知,,那么的值是()A B C D4.函数的图象的一条对称轴方程是()A. B. C. D.5.已知,,则tan2x= ( ) A. B. C. D.6.已知,则的值为()A. B. 1 C. D. 2 7.函数的最小正周期为()A.1 B. C. D.8.函数的单调递增区间是()A. B.C. D.9.函数,的最大值为()A.1 B. 2 C. D.10.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位 D.向右平移个单位11.已知sin(+α)=,则sin(-α)值为()A. B. — C. D. —12.若,则()A. B. C. D.二、填空题13.函数的定义域是14.的振幅为初相为15.求值:=_______________16.把函数先向右平移个单位,然后向下平移2个单位后所得的函数解析式为________________________________三、解答题17 已知是关于的方程的两个实根,且,求的值18.已知函数,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间19.已知是方程的两根,且,求的值20.如下图为函数图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线对称的函数解析式必修4 第三章三角恒等变换(1)一、选择题:1.的值为 ( )A 0BC D2.,,,是第三象限角,则()A B C D3.设则的值是( )A B C D4. 已知,则的值为()A B C D5.都是锐角,且,,则的值是()A B C D6. 且则cos2x的值是()A B C D7.在中,的取值域范围是 ( )A B C D8. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()A B C D9.要得到函数的图像,只需将的图像()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位10. 函数的图像的一条对称轴方程是()A、 B、 C、 D、11.若是一个三角形的最小内角,则函数的值域是( )A B C D12.在中,,则等于 ( )A B C D二、填空题:13.若是方程的两根,且则等于14. .在中,已知tanA ,tanB是方程的两个实根,则15. 已知,则的值为16. 关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图像关于点成中心对称图像;④将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:17. 化简18. 求的值.19. 已知α为第二象限角,且sinα=求的值.20.已知函数,求(1)函数的最小值及此时的的集合。

(压轴题)高中数学必修四第一章《三角函数》检测卷(包含答案解析)

(压轴题)高中数学必修四第一章《三角函数》检测卷(包含答案解析)

一、选择题1.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .452.已知函数f (x )=2sinxsin (x+3φ)是奇函数,其中(0,)2πϕ∈ ,则函数g (x )=cos (2x-φ)的图象( ) A .关于点(,0)12π对称 B .关于轴512x π=-对称 C .可由函数f (x )的图象向右平移6π个单位得到 D .可由函数f (x )的图象向左平移3π个单位得到 3.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .84.如果一个函数在给定的区间上的零点个数恰好为8,则称该函数为“比心8中函数”.若函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上的“比心8中函数”,则ω的取值范围是( )A .4149,66⎡⎫⎪⎢⎣⎭B .4953,66⎡⎫⎪⎢⎣⎭C .3741,66⎡⎫⎪⎢⎣⎭D .[8,9)5.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭图象相邻两条对称轴之间的距离为π2,将函数()y f x =的图象向左平移π6个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( ) A .关于点π,012⎛⎫⎪⎝⎭对称 B .关于点π,012⎛⎫-⎪⎝⎭对称 C .关于直线π12x =对称 D .关于直线π12x =-对称6.使函数())cos(2)f x x x θθ=+++是偶函数,且在0,4⎡⎤⎢⎥⎣⎦π上是减函数的θ的一个值是( ) A .6π B .3π C .23π D .56π7.平面直角坐标系xOy 中,点()00,P x y 在单位圆O 上,设xOP α∠=,若5,36ππα⎛⎫∈ ⎪⎝⎭,且3sin 65πα⎛⎫+= ⎪⎝⎭,则0x 的值为A B C D 8.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=- ⎪⎝⎭,则下面结论正确的是( )A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C9.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( )A .1B C .1916D .3410.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于011.675︒用弧度制表示为( ) A .114π B .134π C .154π D .174π 12.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,0ϕπ≤≤)的部分图象如图所示,则()f x 的解析式是( )A .()2sin 6f x x π⎛⎫=+⎪⎝⎭B .()2sin 3f x x π⎛⎫=+⎪⎝⎭C .()2sin 26f x x π⎛⎫=+⎪⎝⎭D .2n 2)3(si f x x π⎛⎫=+⎪⎝⎭二、填空题13.将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()y g x =的图象,若函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数,则实数ω的取值范围是__________.14.若函数()f x 为定义在R 上的偶函数,且在(0,)+∞内是增函数,又()20f =,则不等式sin ()0x f x ⋅>,[,]x ππ∈-的解集为_________.15.已知定义在R 上的奇函数()f x 满足()()20f x f x -+=,且当(]0,1x ∈时,()21log f x x=,若函数()()()sin F x f x x π=-在区间[]1,m -上有且仅有10个零点,则实数m 的取值范围是__________. 16.已知3cos 6απ⎛⎫-= ⎪⎝⎭,则54cos sin 63ππαα⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭的值为_____.17.如图,某公园要在一块圆心角为3π,半径为20m 的扇形草坪OAB 中修建一个内接矩形文化景观区域CDEF ,若//EF AB ,则文化景观区域面积的最大值为______2m .18.函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象为C ,以下结论中正确的是______(写出所有正确结论的编号).①图象C 关于直线1112π=x 对称; ②图象C 关于点2,03π⎛⎫⎪⎝⎭对称; ③函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是增函数;④由3sin 2y x =的图象向右平移3π个单位长度可以得到图象C . 19.已知函数f (x ),任意x 1,x 2∈,22ππ⎛⎫- ⎪⎝⎭(x 1≠x 2),给出下列结论:①f (x +π)=f (x );②f (-x )=f (x );③f (0)=1;④1212()()f x f x x x -->0;⑤1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭.当()tan f x x =时,正确结论的序号为________.20.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数()()cos[6]1,2,...,126y A x B x π=-+=来表示.已知6月份的平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温为______℃. 三、解答题21.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式;(2)将()y f x =图象上所有点的横坐标缩小到原来的12倍(纵坐标不变),再将图象上所有点的纵坐标扩大到原来的2倍(横坐标不变),最后向下平移2个单位得到()y g x =图象,求函数()y g x =的解析式及在R 上的对称中心坐标. 22.已知函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象与直线2y =的相邻两个交点间的距离为2π,且________.在①函数6f x π⎛⎫+⎪⎝⎭为偶函数;②33f π⎛⎫=⎪⎝⎭③x R ∀∈,()6f x f π⎛⎫≤⎪⎝⎭;这三个条件中任选一个,补充在上面问题中,并解答. (1)求函数()f x 的解析式;(2)求函数()f x 在[]0,π上的单调递增区间. 23.已知()442sin cos cossin f x x x x x ωωωω=+-(其中ω>0).(1)若()f x 的最小正周期是π,求ω的值及此时()f x 的对称中心; (2)若将()y f x =的图像向左平移4π个单位,再将所得的图像纵坐标不变,横坐标缩小为原来的12,得到()g x 的图像,若y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,求ω的取值范围.24.已知函数1()sin 2126f x x a π⎛⎫=+++ ⎪⎝⎭(其中a 为常数). (1)求()f x 的单调减区间; (2)若0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为2,求a 的值.25.已知函数2()22cos 1f x x x =+-.(I )求函数()f x 的最小正周期; (II )求函数()f x 的单调增区间; (III )当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最小值. 26.已知函数()2sin 213f x x π⎛⎫=++ ⎪⎝⎭,x ∈R . (Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)求()f x 在区间06,π⎡⎤⎢⎥⎣⎦上的最大值与最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值.【详解】 因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 2.B解析:B 【分析】利用三角函数的奇偶性求得φ,再利用三角函数的图象对称性、函数y=Asin (ωx+φ)的图象变换规律,判断各个选项是否正确,从而得出结论. 【详解】函数f (x )=2sinxsin (x+3φ)是奇函数,其中0,2πϕ⎛⎫∈ ⎪⎝⎭, ∴y=2sinxsin (x+3φ)是奇函数,∴3φ=2π,φ=6π,则函数g (x )=cos (2x ﹣φ)=cos (2x ﹣6π). 当12x π=时,206x π-=,112g π⎛⎫= ⎪⎝⎭,则函数不关于点,012π⎛⎫⎪⎝⎭对称,选项A 错误; 当512x π=-时,26x ππ-=-,则函数关于直线512x π=-对称,选项B 正确;函数()2sin sin 2sin cos sin 22f x x x x x x π⎛⎫=+== ⎪⎝⎭, 其图像向右平移6π个单位的解析式为sin 2sin 2sin 263y x x x ππ⎡⎤⎛⎫⎛⎫==-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项C 错误; 其图像向左平移3π个单位的解析式为2sin 2sin 2sin 233y x x x ππ⎡⎤⎛⎫⎛⎫==+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项D 错误; 故选B. 【点睛】本题主要考查三角函数的奇偶性、对称性,函数y=Asin (ωx+φ)的图象变换规律,属于中档题.函数()sin y A x ωϕ=+(A >0,ω>0)的性质:(1)奇偶性:=k ϕπ ,k Z ∈时,函数()sin y A x ωϕ=+为奇函数;=2k πϕπ+,k Z ∈时,函数()sin y A x ωϕ=+为偶函数.;(2)周期性:()sin y A x ωϕ=+存在周期性,其最小正周期为T =2πω;(3)单调性:根据y =sin t 和t =x ωϕ+的单调性来研究,由+22,22k x k k Z πππωϕπ-≤+≤+∈得单调增区间;由3+22,22k x k k Z πππωϕπ≤+≤+∈得单调减区间;(4)对称性:利用y =sin x 的对称中心为()(),0k k Z π∈求解,令()x k k ωϕπ+=∈Z ,求得x ;利用y =sin x 的对称轴为()2x k k Z ππ=+∈求解,令()+2x k k πωϕπ+=∈Z ,得其对称轴.3.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标, 可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.4.A解析:A 【分析】根据题意问题转化为方程1sin()2x ωπ=在区间[0,1]上有8个解,根据正弦函数的图像与性质可求得1sin()2x ωπ=在区间[0,1]上取第8个解为416x ω=、第9个解为496x ω=,则4149166ωω≤<,解不等式即可. 【详解】根据题意,函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上零点个数为8,即方程1sin()2x ωπ=在区间[0,1]上有8个解, ∴26x k πωππ=+或52,6x k k Z πωππ=+∈, 当0k =时,1sin()2x ωπ=在区间[0,1]上取第1个解16x ω=,取第2个解56x ω=; 当1k =时,1sin()2x ωπ=在区间[0,1]上取第3个解136x ω=,取第4个解176x ω=; 当3k =时,1sin()2x ωπ=在区间[0,1]上取第7个解376x ω=,取第8个解416x ω=;当4k =时,1sin()2x ωπ=在区间[0,1]上取第9个解496x ω=. 则4149166ωω≤<,解得414966ω≤<. 故选:A5.B解析:B 【分析】由相邻两条对称轴之间的距离为2π,可知22T π=,从而可求出2ω=,再由()y f x =的图像向左平移6π个单位后,得到的图象关于y 轴对称,可得sin 13πϕ⎛⎫+=± ⎪⎝⎭,从而可求出ϕ的值,然后逐个分析各个选项即可 【详解】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=. 设将()f x 的图像向左平移6π单位后,所得图像对应的解析式为()g x , 则()sin 23g x x πϕ⎛⎫=++ ⎪⎝⎭,因()g x 的图像关于y 轴对称,故(0)1g =±, 所以sin 13πϕ⎛⎫+=± ⎪⎝⎭,,32k k Z ππϕπ+=+∈,所以,6k k Z πϕπ=+∈, 因||2ϕπ<,所以6π=ϕ. 又()sin 26f x x π⎛⎫=+ ⎪⎝⎭,令2,62x k k Z πππ+=+∈,故对称轴为直线,26k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k ππ+=∈Z ,故,212k x k Z ππ=-∈,所以对称中心为,0,212k k Z ππ⎛⎫-∈ ⎪⎝⎭,所以A 错误,B 正确. 故选:B 【点睛】此题考查了三角函数的图像变换和三角函数的图像和性质,属于基础题.6.B解析:B 【解析】1())cos(2)2()cos(2))2sin(2)226f x x x x x x πθθθθθ=+++=+++=++,由于()f x 为偶函数,则(0)2sin()26f πθ=+=±,sin()1,662k πππθθπ+=±+=+,3k πθπ=+,当0k =时,3πθ=,()2sin(2)2sin(2)362f x x x πππ=++=+2cos2x =,当[0,]4x π∈时,2[0,]2x π∈,()2cos2f x x =为减函数,符合题意,所以选B.7.A解析:A 【分析】由题意根据三角函数定义可知0x cos α=,先根据角α的取值范围求出6πα⎛⎫+ ⎪⎝⎭的取值范围继而求出4cos 65πα⎛⎫+=- ⎪⎝⎭,再通过凑角求cos α. 【详解】5,36ππα⎛⎫∈ ⎪⎝⎭,则26ππαπ<+<,则由3sin 65πα⎛⎫+= ⎪⎝⎭,得4cos 65πα⎛⎫+=- ⎪⎝⎭.由点()00,P x y 在单位圆O 上,设xOP α∠=,则0x cos α=. 又cos αcos 66ππα⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦cos sin 6666cos sin ππππαα⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭431552=-+⨯=故0x =.选A. 【点睛】本题考查三角函数定义及三角恒等变换的简单应用.解题中注意所求角的取值范围.由配凑法根据已知角构造所求角进行求解是三角恒等变换中常用的解题技巧.8.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.9.C解析:C 【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】 由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫- ⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.10.D解析:D 【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫ ⎪⎝⎭和23f π⎛⎫ ⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。

人教A版新课标高中数学必修4第一章《三角函数》综合练习题(含答案)

人教A版新课标高中数学必修4第一章《三角函数》综合练习题(含答案)

第一章《三角函数》综合练习一、选择题1.已知角α的终边经过点0p (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-2.半径为πcm ,圆心角为120︒所对的弧长为()A .3πcmB .23πcmC .23πcm D .223πcm 3.函数12sin[()]34y x π=+的周期、振幅、初相分别是( )A .3π,2-,4πB .3π,2,12πC .6π,2,12πD .6π,2,4π4.sin y x =的图象上各点纵坐标不变,横坐标变为原来的12,然后把图象沿x 轴向右平移3π个单位,则表达式为( ) A .1sin()26y x π=-B .2sin(2)3y x π=-C .sin(2)3y x π=-D .1sin()23y x π=-5.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数图像( )A .关于直线x =π4对称B .关于点(π3,0)对称C .关于点(π4,0)对称D .关于直线x =π3对称6.如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin|x |C .y=-sin|x |D .y=-|sin x |7.函数y=cos 2x –3cosx+2的最小值是()A .2B .0C .41 D .68.函数y =3sin ⎝⎛⎭⎪⎫-2x -π6(x ∈[0,π])的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤0,5π12B.⎣⎢⎡⎦⎥⎤π6,2π3C.⎣⎢⎡⎦⎥⎤π6,11π12D.⎣⎢⎡⎦⎥⎤2π3,11π12 9.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ= D.4=B10.已知1cos()63πα+=-,则sin()3πα-的值为()A .13B .13-C .233D .233-11.已知α、β是第二象限的角,且βαcos cos >,则 ( )A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对12.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )A. 1B.22C. 0D.22-二、填空题13.函数x x f cos 21)(-=的定义域是______________ 14.若sin α+cos αsin α-cos α=2,则sin αcos α的值是_____________.15、函数])32,6[)(6cos(πππ∈+=x x y 的值域是 . 16.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是__________.三、解答题17.已知α是第二象限角,sin()tan()()sin()cos(2)tan()f πααπαπαπαα---=+--.(1)化简()f α; (2)若31sin()23πα-=-,求()f α的值.18.已知tan 3α=,求下列各式的值: (1)4sin cos 3sin 5cos αααα-+ ;(2)212sin cos cos ααα+.19.(1)画出函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 在一个周期的函数图像;(2)求出函数的对称中心和对称轴方程.20.已知y =a -b cos3x (b >0)的最大值为32,最小值为-12.(1)判断其奇偶性.(2)求函数y =-4a sin(3bx )的周期、最大值,并求取得最大值时的x ;21.已知函数45)62sin(21++=πx y (1)求函数的单调递增区间; (2)写出y=sinx 图象如何变换到15sin(2)264y x π=++的图象第一章《三角函数》综合练习答案一、选择题1-5 CDCBB 6-10 CBBCA 11-12 BB 二、填空题13、5[2,2],33k k k Z ππππ++∈14、31015、1[]216、13k << 17. 解析:(1)sin (tan )1()sin cos (tan )cos f ααααααα-==---;(2)若31sin()23πα-=-,则有1cos 3α=-,所以()f α=3。

新课标数学必修4第1章三角函数练习(含答案)

新课标数学必修4第1章三角函数练习(含答案)

1.1.1任意角一、情景导入: 1.角的概念的推广(1)任意角的形成:角可以看成是由一条射线绕着它的端点旋转而成的,射线的端点叫做角的顶点,旋转开始时的射线叫做角的始边,终止时的射线叫做角的终边.(2)正角、负角和零角:按逆时针方向旋转而成的角叫做正角.按顺时针方向旋转而成的角叫做负角.当射线没有作任何旋转时,形成的角叫做零角.(3)象限角:角的顶点与坐标原点重合,角的始边与x 轴的正半轴重合,角的终边落在第几象限,就把这个角称为第几象限的角.如果角的终边落在坐标轴上,则称这个角称为轴上角. 2.象限角及终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合{|360,}S k k Z ββα==+⋅︒∈,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和; 二、感受理解: 1.设{}90E =︒小于的角,{}F =锐角,{}G =第一象限的角,{}90M =︒︒小于的角,但不小于0的角 ,你能分清这几个有关角的集合之间的包含关系吗?2.在 ~间,求出与下列各角终边相同的角,并判定它们分别是哪一个象限的角.(1);(2).3.分别写出: ①终边在轴负半轴上的角的集合; ②终边在 轴上的角的集合;③终边在第一、三象限角平分线上的角的集合; ④终边在四象限角平分线上的角的集合.4.如图,终边落在 位置时的角的集合是____________;线边落在位置,且在[]360,360-︒︒内的角的集合是_________;终边落在阴影部分(含边界)的角的集合是______________.5.探究等分角所在的象限我们都知道,60︒是锐角,60︒角的一半30︒也是锐角.60360k ︒+⋅︒,k Z ∈是第一象限角,它的一半30180,k k Z ︒+⋅︒∈是否仍在第一象限呢?三、迁移拓展:6.下列命题中,正确的是( ).A .始边和终边都相同的两个角一定相等B . 是第二象限的角C .若,则4α是第一象限角 D .相等的两个角终边一定相同7.在“①160°②480°③-960°④-1600°”这四个角中,属于第二象限的角是( )A .①B .①②C .①②③D .①②③④8.经过3小时35分钟,时针与分针转过的度数之差是( ).A .B .C .D .9.下列结论中正确的是( )A.小于90°的角是锐角B.第二象限的角是钝角C.相等的角终边一定相同D.终边相同的角一定相等10.若α是第一象限的角,则-2α是( )A.第一象限的角B.第一或第四象限的角C.第二或第三象限的角D.第二或第四象限的角11.与终边相同的角的集合是___________,它们是第____________象限的角,其中最小的正角是___________,最大负角是___________.12.已知 的终边在 轴上的上方,那么是第__________象限的角.13.设,,,则相等的角集合为____________.14.若角与 的终边关于轴对称,则与的关系是__________;若角与的终边互相垂直,则与的关系是___________.提示:可结合图形分析 15.给出下列命题:①和的角的终边方向相反; ②和的角的终边相同;③第一象限的角和锐角终边相同; ④ (21)180k α=+⋅︒与(41)180,()k k Z β=±⋅︒∈终边相同; 其中所有正确命题的序号是______________.16.求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角:(1) ;(2).17.已知{}9036045360,90360225360,A k k k k k Z ααα=-︒+⋅︒<<︒+⋅︒︒+⋅︒<<︒+⋅︒∈或{}360150360,B k k k Z ββ=⋅︒<<︒+⋅︒∈,求与提示:可根据图形分析两集合间的关系18.如图所示,写出图中阴影部分(包括边界)的角的集合,并指出 是否是该集合中的角.19.已知 是第二象限的角,你能结合图示分别找到以下问题的答案吗?(1)2α角所在的象限 (2) 角所在的象限20.若角 的终边经过点 ,试写出角的集合,并求出集合中绝对值最小的角.四、实践应用:21.α是一个任意角,则α与-α的终边是( )A .关于坐标原点对称B .关于x 轴对称C .关于直线y=x 对称D .关于y 轴对称 22.若α与β的终边互为反向延长线,则有( )A .α=β+180°B .α=β-180°C .α=-βD .α=β+(2k+1)180°,k∈Z参考答案: 1.1.1任意角 二、感受理解 1.略2.(1),三(2),三3.①;② ;③;④.4.{}120k k Zαα=︒+⋅︒∈;{}45,315-︒︒{}45360120360,k k k Z ββ-︒+⋅︒≤≤︒+⋅︒∈.5. 一、三三、迁移拓展:6.D 7.C 8.C 9.C 10.D11. ,三,,12.一、三13.,14.(21)180,k k Z αβ+=+⋅︒∈,90360,k k Z αβ-=±︒+⋅︒∈15.②、④16.(1){}120360,k k Z αα=-︒+⋅︒∈, ,;(2),31523'︒,4437'-︒.17. {}90360150360,36045360,A B k k k k k Z ααα=︒+⋅︒<<︒+⋅︒⋅︒<<︒+⋅︒∈或 {}90360225360,A B k k k Z αα=︒+⋅︒<<︒+⋅︒∈-18.,是19.(1)一、三,(2)三,四,或轴负半轴上的角20.,.四、实践应用: 21.B 22.D1.1.2弧度制一、情景导入:1. 弧度制(1)1弧度的角:等于半径长的圆弧所对的圆心角叫做1弧度的角,这种用弧度来度量的制度称弧度制(2)正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,任一已知角α的弧度数都满足lr α=,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径.2.度数与弧度数的换算:180rad π︒=10.01745180rad rad π︒=≈, 1801()57.35718'rad π=︒≈︒=︒请写出下列特殊角的弧度数与角度数.3.相关计算公式(1)圆心角α,半径r ,弧长l 之间的关系:l r α==180n r π(2)扇形面积公式:221122360n r S r lr πα===二、感受理解:1.请你用弧度制表示下列特殊位置的角,这些内容对今后的学习很重要.(1)终边在x 轴上的角 (2)终边在y 轴上的角 (3)终边在坐标轴上的角(4)终边在第一、三象限角平分线上的角。

必修4第一章三角函数单元基础测试题及答案

必修4第一章三角函数单元基础测试题及答案

1
A. 5
1
B. 4
13
C. 18
13
D. 22
11.sin1,cos1,tan1 的大小关系是(

A.tan1>sin1>cos1
B.tan1>cos1>sin1
C。cos1>sin1>tan1
D.sin1〉cos1>tan1
12.已知函数 f (x)=f (x),且当 x( , ) 时,f (x)=x+sinx,设 a=f (1),b=f
4 3
3、已知 cosθ=cos30°,则θ等于( )
A. 30°
B. k·360°+30°(k∈Z)
C。 k·360°±30°(k∈Z)
D. k·180°+30°(k∈Z)
4、若 cos 0,且sin 2 0,则角 的终边所在象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限( )
18.解、∵ tan 3 ∴ cos 0
(4sin 2 cos ) 1∴Fra bibliotek式=cos
(5cos 3sin ) 1
cos
= 4 tan 2
5 3 tan
= 432
5 33
=5
7
19. 解: f (x) 2 cos x(sin x cos x) 1 sin 2x cos 2x 2 sin(2x )
5、函数
的递增区间是(
)
y 5sin(2x )
6、函数
6 图象的一条对称轴方程是( )
( A)
x
12
;
(B) x 0;
(C)
x
6
;
(D)
x

人教A版数学必修四第二学期高一数学必修4第一章《三角函数》测试题.docx

人教A版数学必修四第二学期高一数学必修4第一章《三角函数》测试题.docx

xO y1 2 3云南省昭通市实验中学2010-2011学年第二学期高一数学必修4第一章《三角函数》测试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.下列命题正确的是( ).A.终边相同的角都相等B.钝角比第三象限角小C.第一象限角都是锐角D.锐角都是第一象限角 2.若角︒600的终边上有一点()a ,4-,则a 的值是( ). A.34- B.34± C.3 D.343.231sin 5π-化简的结果是( ). A.3cos5π B.3cos5π-C.3cos5π± D.2cos 5π 4.下列函数中,最小正周期为π,且图象关于直线3x π=对称的是( ).A.)62sin(+=x yB.sin()26x y π=+C.sin(2)6y x π=-D.sin(2)3y x π=-5.函数)sin(ϕω+=x y 的部分图象如右图,则ω,ϕ可以取的一组值是( ).A.,24ωϕππ==B.,36ωϕππ==C.5,44ωϕππ==D.,44ωϕππ==6.要得到3sin(2)4y x π=+的图象,只需将x y 2sin 3=的图象( ).A.向左平移4π个单位B.向右平移4π个单位C.向左平移8π个单位D.向右平移8π个单位7.设tan()2απ+=,则sin()cos()sin()cos()αααα-π+π-=π+-π+( ).A.3B.13C.1D.1- 8.A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为( ).A. 锐角三角形B. 钝角三角形C. 等腰直角三角形D. 等腰三角形 9.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当[0,]2x π∈时,x x f sin )(=,则5()3f π的值为( ).A.21-B.23 C.23- D.21 10.函数2cos 1y x =+的定义域是( ). A.2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B.2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ C.22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D.222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦11.函数2sin(2)6y x π=-([0,]x ∈π)的单调递增区间是( ). A.[0,]3π B.7[,]1212ππ C.5[,]36ππ D.5[,]6ππ12.设a 为常数,且1>a ,02x ≤≤π,则函数1sin 2cos )(2-+=x a x x f 的最大值为( ).A.12+aB.12-aC.12--aD.2a第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.)13.在扇形中,已知半径为8,弧长为12,则圆心角是 弧度,扇形面积是 . 14.函数xxy cos 2cos 2-+=的最大值为________.15.方程x x lg sin =的解的个数为__________.16.设()sin()cos()f x a x b x αβ=π++π+,其中βα,,,b a 为非零常数. 若1)2009(-=f ,则=)2010(f . 三、解答题(本大题共6小题,共70分.)17.(本小题满分10分)已知α是第三角限角,化简ααααsin 1sin 1sin 1sin 1+---+.18.(本小题满分12分)已知角α的终边在直线x y 2=上,求角α的正弦、余弦和正切值. 19.(本小题满分12分)(1)当3tan =α,求αααcos sin 3cos 2-的值;(2)设3222cos sin (2)sin()32()22cos ()cos()f θθθθθθπ+π-++-=+π++-,求()3f π的值.20.(本小题满分12分)已知函数()2cos(2)4f x x π=-,x ∈R .(1)求函数()f x 的最小正周期和单调递增区间;(2)求函数()f x 在区间[]82ππ-,上的最小值和最大值,并求出取得最值时x 的值. 21.(本小题满分12分)已知()2sin(2)26f x a x a b π=-+++,3[,]44x ππ∈,是否存在常数Q b a ∈,,使得)(x f 的值域为}133|{-≤≤-y y ?若存在,求出b a ,的值;若不存在,说明理由.22.(本小题满分12分)已知函数()()()sin 0,0f x A x B A ωϕω=++>>的一系列对应值如下表:x6π-3π 56π 43π 116π73π 176πy1- 1 3 1 1- 1 3(1)根据表格提供的数据求函数()f x 的一个解析式; (2)根据(1)的结果,若函数()()0y f kx k =>周期为23π,当[0,]3x π∈时,方程()f kx m =恰有两个不同的解,求实数m 的取值范围.云南省昭通市实验中学2010-2011学年第二学期高一数学必修4第一章《三角函数》测试题参考答案一、选择题(本大题共12小题,每小题5分,共60分.) 1.D 由任意角和象限角的定义易得只有D 正确. 2.A 因为360tan )60540tan(4600tan =︒=︒+︒=-=︒a,故34-=a . 3.B 2233331sincos |cos |cos 5555ππππ-===-. 4.C ∵最小正周期为π,∴2ω=,又∵图象关于直线3x π=对称,∴()13f π=±,故只有C 符合.5.D ∵2134=-=T ,∴8=T ,4ωπ=,又由142ϕππ⨯+=得4ϕπ=.6.C ∵3sin 2()3sin(2)84y x x ππ=+=+,故选C.7.A 由tan()2απ+=,得tan 2α=,故sin()cos()sin cos sin cos tan 13sin()cos()sin (cos )sin cos tan 1αααααααααααααα-π+π---++====π+-π+-----.8.B 将52cos sin =+A A 两边平方,得254cos cos sin 2sin 22=++A A A A , ∴025211254cos sin 2<-=-=A A , 又∵0A <<π, ∴A 为钝角.9.B 53()(2)()()sin 333332f f f f πππππ=π-=-===. 10.D 由01cos 2≥+x 得21cos -≥x ,∴222233k x k πππ-≤≤π+,Z k ∈. 11.C 由3222262k x k πππ+π≤-≤+π得236k x k ππ-+π≤≤-+π(Z k ∈), 又∵[0,]x ∈π, ∴单调递增区间为5[,]36ππ.12.B 2222)(sin 1sin 2sin 11sin 2cos )(a a x x a x x a x x f +--=-+-=-+=, ∵π20≤≤x , ∴1sin 1≤≤-x , 又∵1>a ,∴12)1()(22max -=+--=a a a x f .二、填空题(本大题共4小题,每小题5分,共20分.) 13.23,48 圆心角23812===r l α,扇形面积488122121=⨯⨯==lr S . 14.3 22221(2cos )2cos ,cos 11,3113y y y x x x y y y ---=+=⇒-≤≤≤≤++. 15.3 画出函数x y sin =和x y lg =的图象,结合图象易知这两个函数的图象有3交点. 16.1 (2009)sin(2009)cos(2009)1f a b αβ=π++π+=-, (2010)sin(2010)cos(2010)f a b απβ=π+++sin[(2009)]cos[(2009)]a b αβ=π+π++π+π+ [sin(2009)cos(2009)]1a b αβ=-π++π+=.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤.)17.解:∵α是第三角限角, ∴0sin 1>+α,0sin 1>-α,0cos <α,∴)sin 1)(sin 1()sin 1()sin 1)(sin 1()sin 1(sin 1sin 1sin 1sin 122αααααααααα-+-++-+=+---+αααααααα22222222cos )sin 1(cos )sin 1(sin 1)sin 1(sin 1)sin 1(--+=----+= ααααααααcos sin 1cos sin 1|cos sin 1||cos sin 1|-++-=--+= αααtan 2cos sin 2-=-=.18. 解:设角α终边上任一点)2,(k k P (0≠k ),则k x =,k y 2=,||5k r =.当0>k 时,k r 5=,α是第一象限角,55252sin ===k k r y α,555cos ===kk r x α,22tan ===k k x y α; 当0<k 时,k r 5-=,α是第三象限角, 55252sin -=-==k k r y α,555cos -=-==k k r x α,22tan ===kkx y α. 综上,角α的正弦、余弦和正切值分别为552,55,2或552-,55-,2. 19.解:(1)因为1tan tan 31cos sin cos sin 3cos cos sin 3cos 22222+-=+-=-αααααααααα,且3tan =α, 所以,原式=+⨯-=13331254-. (2)θθθθθθθπθπθπθθcos cos 223cos sin cos 2)cos()(cos 223)2sin()2(sin cos 2)(223223++-++=-+++-++-+=fθθθθθθθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 2cos cos 222cos cos cos 222223++--++-=++-+-=1cos 2cos cos 2)2cos cos 2)(1(cos 22-=++++-=θθθθθθ,∴1()cos1332f ππ=-=-. 20.解:(1)因为()2cos(2)4f x x π=-,所以函数()f x 的最小正周期为22T π==π,由2224k x k π-π+π≤-≤π,得388k x k ππ-+π≤≤+π,故函数)(x f 的递调递增区间为3[,]88k k ππ-+π+π(Z k ∈); (2)因为()2cos(2)4f x x π=-在区间[]88ππ-,上为增函数,在区间[]82ππ,上为减函数,又()08f π-=,()28f π=,π()2cos()2cos 1244f ππ=π-=-=-,故函数()f x 在区间[]82ππ-,上的最大值为2,此时8x π=;最小值为1-,此时2x π=.21.解:存在1-=a ,1=b 满足要求.∵344x ππ≤≤, ∴252363x πππ≤+≤, ∴31sin(2)62x π-≤+≤, 若存在这样的有理b a ,,则(1)当0>a 时,⎪⎩⎪⎨⎧-=++-=++-,1322,323b a a b a a 无解;(2)当0<a 时,⎩⎨⎧-=++--=++,1323,322b a a b a a 解得1-=a ,1=b ,即存在1-=a ,1=b 满足要求. 22. 解:(1)设()f x 的最小正周期为T ,得11()266T ππ=--=π, 由2T ωπ=,得1ω=,又31B A B A +=⎧⎨-=-⎩,解得21A B =⎧⎨=⎩ 令562ωϕππ⋅+=,即562ϕππ+=,解得3ϕπ=-, ∴()2sin 13f x x π⎛⎫=-+ ⎪⎝⎭.(2)∵函数()2sin 13y f kx kx π⎛⎫==-+ ⎪⎝⎭的周期为23π, 又0k >, ∴3k =,令33t x π=-,∵0,3x π⎡⎤∈⎢⎥⎣⎦, ∴2[,]33t ππ∈-,如图,s t =sin 在2[,]33ππ-上有两个不同的解,则)1,23[∈s ,∴方程()f kx m =在[0,]3x π∈时恰好有两个不同的解,则)31,3m ⎡∈+⎣,即实数m 的取值范围是)31,3⎡+⎣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(数学必修4)第一章 三角函数(下)
[提高训练C 组]
一、选择题
1.函数2
2
()lg(sin cos )f x x x =-的定义城是( ) A .322,44x k x k k Z ππππ⎧⎫-
<<+∈⎨⎬⎩⎭ B .522,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭ C .,4
4x k x k k Z π
π
ππ⎧⎫-
<<+
∈⎨⎬⎩
⎭ D .3,44x k x k k Z ππππ⎧⎫
+<<+∈⎨⎬⎩⎭
2.已知函数()2sin()f x x ωϕ=+对任意x 都有(
)(),66f x f x ππ+=-则()6
f π
等于
( ) A . 2或0 B . 2-或2 C . 0 D . 2-或0
3.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)
(),2
sin ,(0)
x x f x x x ππ⎧
-≤<⎪=⎨⎪≤<⎩ 则15()4
f π
-
等于( ) A . 1 B
C. 0
D.
4.已知1A ,2A ,…n A 为凸多边形的内角,且0sin lg .....sin lg sin lg 21=+++n A A A ,
则这个多边形是( )
A .正六边形
B .梯形
C .矩形
D .含锐角菱形 5.函数2cos 3cos 2
++=x x y 的最小值为( )
A .2
B .0
C .1
D .6
6.曲线sin (0,0)y A x a A ωω=+>>在区间2[0,

ω
上截直线2y =及1y =-
所得的弦长相等且不为0,则下列对,A a 的描述正确的是( ) A .13,22a A =
> B .13,22
a A =≤ C .1,1a A =≥ D .1,1a A =≤
二、填空题
1.已知函数x b a y sin 2+=的最大值为3,最小值为1,则函数x b
a y 2
sin 4-=的 最小正周期为_____________,值域为_________________. 2.当7,66x ππ⎡⎤∈⎢
⎥⎣⎦
时,函数2
3sin 2cos y x x =--的最小值是_______,最大值是________。

3.函数cos 1
()()
3
x
f x =在[],ππ-上的单调减区间为_________。

4.若函数()sin 2tan 1f x a x b x =++,且(3)5,f -=则(3)f π+=___________。

5.已知函数)(x f y =的图象上的每一点的纵坐标扩大到原来的4倍,横坐标扩大到原来的
2倍,
然后把所得的图象沿x 轴向左平移2
π
,这样得到的曲线和x y sin 2=的图象相同,则已知函数)(x f y =的解析式为_______________________________. 三、解答题
1.求ϕ
使函数)sin(3)y x x ϕϕ=---是奇函数。

2.已知函数52sin cos 2
2
++-+=a a x a x y 有最大值2,试求实数a 的值。

3.求函数[]π,0,cos sin cos sin ∈+-=x x x x x y 的最大值和最小值。

4.已知定义在区间2[,]3
ππ-上的函数()y f x =的图象关于直线6π
-=x 对称,
当2
[,]63
x ππ∈-
时,函数)22,0,0()sin()(π
ϕπωϕω<<->>+=A x A x f ,
其图象如图所示.
(1)求函数)(x f y =在]3
2
,[ππ-
(2)求方程2
2
)(=x f 的解.
第一章 三角函数(下) [提高训练C 组]答案
x
一、选择题
1.D 2
2
3sin cos 0,cos 20,cos 20,2222
2
x x x x k x k π
πππ->-><+<<+
2.B 对称轴,()266
x f π
π
=
=± 3.B
1515333()(3)()sin 442442
f f f πππππ-
=-+⨯=== 4.C 0
12sin sin ...sin 1,0sin 1sin 1,90n i i i A A A A A A =<≤⇒==而
5.B 令cos ,[1,1]x t t =∈-,则2
32y t t =++,对称轴32
t =-, [1,1]-是函数y 的递增区间,当1t =-时min 0y =; 6.A 图象的上下部分的分界线为2(1)113
,,23,2222
y a A A +-===>>得且 二、填空题
1.4π, [44]-, 231
2,4,441212
a b a T y b b a b ππ⎧+==⎧⎪⎪⇒==-≤≤⎨⎨=-=⎪
⎪⎩⎩
2.
7,28 71
,,sin 1,662
x x ππ⎡⎤∈-≤≤⎢⎥⎣⎦22sin sin 1,y x x =-+ 当1sin 4x =时,min 78y =;当1
sin 1,2
x =-或时,max 2y =; 3.[0][,]22
π
π
π-
,, 令cos u x =,必须找u 的增区间,画出cos u x =的图象即可
4.3- 显然,(3)(3)T f f ππ=+=,令()()1sin 2tan F x f x a x x =-=+为奇函数 (3)(3)14,(3)(3)14,(3)3F f F f f -=--==-=-=-
5.1sin(2)22
y x π=- 2sin 2sin()2y x y x π
π=−−−−−
→=-−−−−−−−→右移个单位横坐标缩小到原来的2倍2
2sin(2)2y x π
=-1sin(2)22
y x π−−−−−−−→=-总坐标缩小到原来的4倍
三、解答题 1.解:2[sin
cos(3)cos
sin(3)]3
3
y x x π
π
ϕϕ=---
2sin(3)3
x π
ϕ=+-,为奇函数,则
,,3
3
k k k Z π
π
ϕπϕπ+
==-
∈。

2.解:22
sin sin 26,sin ,[1,1]y x a x a a x t t =-+-++=∈-令
2226y t at a a =-+-++,对称轴为2
a t =
, 当
12
a
<-,
即2a <-时,[1,1]-是函数y 的递减区间,2max 1|52t y y a a =-==-++=
得2
130,2
a a a --==与2a <-矛盾; 当
12
a
>,即2a >时,[1,1]-是函数y 的递增区间,2max 1|352t y y a a ===-++=
得2
33330,2,22
a a a a a +--==
>=而即; 当112a
-≤
≤,即22a -≤≤时,2max 2
3|2624a t y y a a ===-++=
得2
44
38160,4,2,33
a a a a a --==-
≤≤=-或,而-2即;
43,32
a +∴=-
或 3.
解:令3sin cos ,),,sin()144444
x x t t x x x πππππ
-==
--≤-≤≤-≤
得[t ∈-,21sin cos 2t x x -=,22111
222
t y t t t -=+
=-++ 对称轴1t =,当1t =时,max 1y =;当1t =-时,min 1y =-。

4.解:(1)2
[,]63x ππ∈-
,21,,2,1436
T A T ππ
πω==-== 且()sin()f x x ϕ=+过2(,0)3π,则2,,()sin()333
f x x πππ
ϕπϕ+===+
当6x ππ-≤<-时,2,()sin()633333
x f x x ππππππ
-≤--≤--=--+
而函数()y f x =的图象关于直线6π
-=x 对称,则()()3
f x f x π=--
即()sin()sin 33f x x x π
π=--
+=-,6
x π
π-≤<-
2sin(),[,]363
()sin ,[,)6x x f x x x πππππ⎧
+∈-⎪⎪∴=⎨⎪-∈--⎪⎩
(2)当26
3x π
π-≤≤
时,63x ππ
π≤+≤,()sin()32f x x π=+=
35,,,3
4
41212
x x π
π
πππ
+
=
=-或

当6
x π
π-≤<-时,()sin ,sin 22
f x x x =-=
=- 3,4
4
x π
π
=-
-或 35,,,441212
x π
πππ
∴=--
-或为所求。

相关文档
最新文档