MOS器件物理基础.ppt

合集下载

第2章MOS器件物理基础

第2章MOS器件物理基础
2.4 器件模型
❖ 版图、电容、小信号模型等
第2章MOS器件物理基础
10
2.2 MOMSO的SI管/V工特作性-原工作理原理与阈值电压
当VG=0,MOS管相当于两个反偏的二极管,截止 当VG稍微增大时,在正的栅源电压作用下,产生电场,
这个电场排斥空穴而吸引电子,因此,使栅极附近的p型 衬底中的空穴被排斥,留下不能移动的受主离子(负离 子),截止。
第2章 MOS器件物理基础
2.1 基本概念
❖ 简化模型-开关 ❖ 结构
2.2 I/V特性
❖ 阈值电压 ❖ I-V ❖ 跨导
2.3 二级效应
❖ 体效应、沟道长度调制效应、亚阈值导电性
2.4 器件模型
❖ 版图、电容、小信号模型等
第2章MOS器件物理基础 1
2.1 基本概念-MOSFET开关
NMOS管三端器件,栅(G)、源(S)、 漏(D)。 通常作为开关使用,VG高 电平,MOS管导通,D、S连接。
nCox
W L
(VGS
Vth )VDS
1 2
VD2S
K N 2(VGS Vth )VDS VD2S
VGS-Vth:MOS管的“过驱动电压”
L:指沟道的有效长度
W/L称为宽长比,K N
1 2
nC,ox WL
称为NMOS管的导电因子,
μn载流子迁移率。
ID的值取决于工艺参数:μn、Cox、器件尺寸W和L、VDS及VGS。
第2章MOS器件物理基础 14
2.2 MOS的I/V特性-阈值电压
0 栅与衬底功函数差
COX
OX
TOX
单位面积栅氧化层电容
常通过沟道注入把VTH0调节到合适值 工艺确定后,VTH第02章就MO固S器定件物了理基,础 设计者无法改变

大规模集成电路第3章MOS集成电路器件基础-63页PPT精选文档

大规模集成电路第3章MOS集成电路器件基础-63页PPT精选文档

VALDSID /SVDS
L(dXd )1 dVDS
定义沟道长度调制系数: 1/VA
Leff Ld dV XD dSVDSL(1VDS)
1 Leff
11(VVDDSS)2

1 L
∵VDS<<1,忽略上式的二次项:
1 Leff

(1VDS
)
1 L
∴得到:
ID SK 2' W L(VG SVTN)2(1VD S)
O
uDS
沟道调制系数λ=1/UA
对于典型的0.5 μm工艺的MOS管, 忽
略沟道调制效应, 其主要参数如表所示。
表 3 - 1 0.5 μm工艺MOS管的典型参数
假定有一NMOS管, W=3 μm, L=2 μm, 在
恒流区则有:
U GS 2V
ID

K W 2 L
(U
小变大, 沟道将发生变化。
ID
若UDS=UGS-UTH , 则沟道在漏
区边界上被夹断, 因此该点 电压称为预夹断电压。
在 此 点 之 前 , 即 UDS<UGSU时TUH D,S管增子大工,作ID在有线明性显区的,增大此。O
在 预 夹 断 点 之 后 , 即 源 区(N+ )
UDS>UGS-UTH , 管 子 工 作 在 恒流区, 此时UDS增大, 大
部分电压降在夹断区, 对沟
反型 层 源 区 (N + )
道电场影响不大, 因此电流
增大很小。
源 区 (N + )

线性 区 饱和 区(恒 流区) UGS = 5 V
UGS = 2.5 V UGS = 1.5 V
漏 区 (N + ) 电流

MOS器件物理基础

MOS器件物理基础

西安电子科技大学
17
MOS管在饱和区电流公式
西安电子科技大学
18
西安电子科技大学
Thanks!
19
MOS管所有pn结必须反偏: *N-SUB接VDD!
4 *P-SUB接VSS! *阱中MOSFET衬底常接源极S,why?
电路中的符号表征
西安电子科技大学
MOS管等效于一个开关!
5
西安电子科技大学
(a)栅压控制的MOSFET (b)耗尽区的形成(c)反型的开始
6 (d)反型层的形成
西安电子科技大学
西安电子科技大学
MOS器件物理基础
西安电子科技大学 刘术彬
1
西安电子科技大学
2
基本结构
西安电子科技大学
Ldrawn:沟道总长度 LD:横向扩散长度
*D、S是对称的,可互换? *所有pn结必须反偏!
Leff:沟道有效长度, Leff= Ldrawn-2 LD
3
西安电子科技大学
CMOS结构 (P、N基于同一衬底)
沟道单位长度电荷(C/m) 电荷移 动速度 (m/s)
12
I/V特性的推导(3)
西安电子科技大学
13
I/V特性的推导(4)
西安电子科技大学
14
西安电子科技大学 NMOS管VGS>VT、VDS> VGS+VT时的示意图
15
I/V特性的推导(5)
西安电子科技大学
16
饱和区MOSFET的I/V特性
NMOS管VGS>VT、VDS=0时的示意图
7
西安电子科技大学 NMOS管VGS>VT、0<VDS< VGS-VT时的示意图
8

模拟cmos集成电路设计拉扎维MOS器件物理基础PPT课件

模拟cmos集成电路设计拉扎维MOS器件物理基础PPT课件
定义从D流 向S为正 PMOS管电流驱动能力比NMOS管差 0.8 m nwell:p=250cm2/V-s, n=550cm2/Vs 0.5 m nwell:p=100cm2/V-s, n=350cm2/V-
第23页/共61页
跨导gm
VGS对IDS的控制能力 IDS对VGS变化的灵敏度
gm ID VGS VDS cons tant
• 直流关系式-I/V特性 • 交流关系式-小信号电路中的参数
第6页/共61页
MOS管简化模型
简化模型——开关 由VG控制的一个开关
第7页/共61页
MOS管的结构
Bulk(body)
源漏在物理结构上是完全对称的,靠什么区分开?
提供载流子的端口为源,收集载流子的端口为漏
最重要的工作区域?
受VG控制的沟道区
• 小信号模型 • 信号相对于偏置工作点而言比较小、不会显著影响偏置工作点时用该模型简化计算 • 由gm、 gmb、rO等构成低频小信号模型,高频时还需加上 CGS等寄生电容、寄生电阻(接触孔电阻、 导电层电阻等)
沟道电荷的产生
当VG大到一定 程度时,表面势 使电子从源流向 沟道区 VTH定义为表面电 子浓度等于衬底 多子浓度时的VG
第12页/共61页
阈值电压
0 栅与衬底功函数差
COX
OX
TOX
常通过沟道注入把VTH0调节到合适值 工艺确定后,VTH0就固定了,设计者无法改变
第13页/共61页
I/V特性-沟道随VDS的变化
第3页/共61页
掌握器件物理知识的必要性
• 数字电路设计师一般不需要进入器件内部,只把它当开关用即可 • AIC设计师必须进入器件内部,具备器件物理知识
• MOS管是AIC的基本元件 • MOS管的电特性与器件内部的物理机制密切相关,设计时需将两者结

第2章MOS器件物理基础

第2章MOS器件物理基础

模拟CMOS集成电路设计
2011-9-2
MOS器件物理基础
13
饱和区MOS器件的I/V特性曲线
模拟CMOS集成电路设计
2011-9-2
MOS器件物理基础
14
PMOS
ID参考电流方向
截止区 三极管区(线性区)


饱和区
模拟CMOS集成电路设计
2011-9-2
MOS器件物理基础
15
4)跨导的定义 漏电流的变化量除以栅源电压的变化量,数学表达式为:
模拟CMOS集成电路设计
2011-9-2
MOS器件物理基础
7

阈值电压(VTH)定义 NMOS的VTH通常定义为界面的电子浓度等于P型衬 底的多子浓度时的栅压。
多晶硅栅和硅衬底的功函数之差
反型层与氧化硅层的表面势
(q是电子电荷,Nsub是衬底掺杂浓度,Qdep是耗尽区电荷) Cox是单位面积的栅氧化层电容
模拟CMOS集成电路设计
εsi表示硅介电常数。
2011-9-2
MOS器件物理基础
8

“本征”阈值电压
通过以上公式求得的阈值电压,通常称为“本征(native)”阈值 电压,典型值为-0.1V. 在器件制造工艺中,通常通过向沟道区注入杂质来调整VTH 对于NMOS,通常调整到0.7V(依工艺不同而不同)
模拟CMOS集成电路设计
2011-9-2
MOS器件物理基础
33

MOS SPICE模型
在电路模拟(simulation)中,SPICE要求每个器件都有一 个精确的模型。 种类



1st 代:Level1,Level2,Level3; 2nd代:BSIM,HSPICE level=28,BSIM2 3rd代:BSIM3,MOS model9,EKV(Enz-Krummenacher-Vittoz)

器件物理MOSFETPPT

器件物理MOSFETPPT

xd
(
2
s
s
)
1 2
qN A
最大耗尽层宽度
xdm
( 4 s Fp
qN A
1
)2
6.2 理想MOS电容器
6.2 理想MOS电容器
教学要求 1.导出公式(6-2-24)、(6-2-25)。 2..了解电荷QI的产生机制 3.了解积累区、耗尽区、反型区和强反型情况下,MOS电容的变 化规律及影响MOS电容的主要因素
反型条件:
s f
强反型条件; s 2 f
6.1 理想MOS结构的表面空间电荷 区
s 2 f
电荷块图
能带图
耗尽和反型转折点
6.1 理想MOS结构的表面空间电荷区
5.VG>VT时, 表面少数载流子浓度超过多数载流子 浓度,这种情况称为“反型”。
电荷块图
反型
能带图
6.1 理想MOS结构的表面空间电荷区
6.2 理想MOS电容器
MOS中无直流电流流过,所以MOS电容中最重 要的特性就是C-V特性,把理想C-V特性曲线和 实测C-V曲线比较,可以判断实际MOS电容与 理想情况的偏差。而且在MOS器件制备中,M OS电容的C-V特性检测也常作为一种常规的工 艺检测手段。
6.2 理想MOS电容器
MOS系统单位面积的微分电容
由掺杂浓度和氧化层厚度确定
6.2 理想MOS电容器
耗尽区( VG<0) (以n衬底为例)
栅上有-Q电荷,半导体中有+Q 的受主杂质ND+,ND+的出现是 由于多子被排斥,因此器件工 作与多子有关,仍能在10-10-1013秒内达到平衡,交流信号作 用下,耗尽层宽度在直流值附 近呈准静态涨落,所以MOS电 容看作两个平板电容器的串联。

《MOS管教程》课件

《MOS管教程》课件
利用两个或多个MOS管的 串并联,可以实现与逻辑 功能。
OR门
利用两个或多个MOS管的 串并联,可以实现或逻辑 功能。
NOT门
通过一个MOS管可以实现 非逻辑功能。
04
MOS管的驱动与保护
驱动电路
栅极驱动电路
提供合适的栅极电压,使MOS管正常工作。
源极驱动电路
控制源极的电压,使MOS管在正确的状态下工作。
音频放大
音频功率放大
利用MOS管的放大特性,可以用于音 频信号的功率放大,广泛应用于音响 设备中。
耳机驱动
音频信号处理
在音频信号处理电路中,MOS管可以 作为运算放大器或比较器使用,实现 音频信号的滤波、均衡等处理。
通过控制MOS管的导通和截止,可以 实现耳机的音量控制和音源切换。
数字逻辑门
AND门
漏极驱动电路
控制漏极的电流,使MOS管在合适的电流下工作。
保护电路
01
过流保护电路
当电流过大时,自动切断电源, 防止MOS管烧毁。
02
过压保护电路
03
欠压保护电路
当电压过高时,自动切断电源, 防止MOS管损坏。
当电压过低时,自动切断电源, 防止MOS管工作异常。
安全工作区
电压安全工作区
确保MOS管在正常工作电压范围内工作,避免过压或欠压。
预防措施
在电路设计时,应充分考虑导通电阻的影响,并留有一定的余量。
开关噪声
总结词
开关过程中产生的噪声
详细描述
MOS管在开关过程中会产生噪声,这种噪 声可能会对周围电路产生干扰。
解决方案
预防措施
采用低噪声的MOS管产品,并合理设计电 路布局和布线,减小电磁干扰。

2 第二章 MOS器件物理基础

2 第二章 MOS器件物理基础

2010-3-161 CMOS模拟集成电路设计第二章MOS器件物理基础金湘亮博士xiangliangjin@2010-3-1622010-3-1632010-3-1642010-3-165CMOS模拟集成电路设计内容简介⏹集成电路的学习方法探讨⏹WHY⏹内容简介2010-3-1662010-3-1672010-3-1682010-3-1692010-3-16102010-3-16112010-3-1612问题的提出:Vg的值是多少时器件导通?也就是阈值电压是多少?在管子导通/截止时源漏电阻是多少?电阻和各端电压是什么关系?源漏间是否可以只用一个简单的模型?管子的速度由什么决定?2010-3-16132010-3-16142010-3-1615MOSFET2010-3-1616开启电压:沟道形成的栅-源电压。

)(th GS U ++++++2010-3-1617(2)对的影响.DS th GS GS u U u 时)(>D i )(th GS GS DS U u u -<①(th GS GS DS U u u -=②(th GS GS DS U u u ->③↑DS u →线性增大D i →沟道从s-d 逐渐变窄↑DS u (GS GD U u =→→沟道预夹断↑DS u →夹断区延长→几乎不变D i →恒流区2010-3-16183. 特性曲线与电流方程2)(1⎪⎪⎭⎫ ⎝⎛-=th GS GS DO D UuI i 时的是,其中,th GS GS DO i U u I )(2=2010-3-16192010-3-1620DQDOthGSmDQDDDOthGSUthGSGSthGSDOUGSDIIUgIiiIUUuUIuiDSDS)()()()(2.212=⇒≈=⎪⎪⎭⎫⎝⎛-=∂∂小信号作用时,2010-3-1621 2.1 MOSFET的基本概念2.1.1 MOSFET阈值电压是多少?当器件导通时,漏源之间的电阻有多大?这个电阻与端电压的关系是怎样的?总是可以用简单的线性电阻来模拟漏和源之间的通道?器件的速度受什么因素限制?2010-3-16221. MOSFET的三种结构简图图2.1 NMOS FET结构简图2.1.2 MOSFET的结构2010-3-1623图2.2 PMOS FET结构简图2010-3-1624图2.3 CMOS FET的结构简图2010-3-16252. MOS FET结构尺寸的通用概念W: gate widthL drawn(L): gate length(layout gate length)S,D,G,B: source,drain,gate,body(bulk)2010-3-1626 D SNMOS PMOS2010-3-1627(a) V=02010-3-1628(b) V GS>0(c)2010-3-1629(d)V G↑多晶硅和硅衬底的功函数差费米势,MOS强反型时的表面势为费米势的2倍耗尽区电荷(2.1)2010-3-16302010-3-16312010-3-1632MOS结构等效为一个由poly-Si和反型沟道构成的平板电2010-3-1633如果从S到D有一电压差VDS,假设平板电容在L方向上x点的2010-3-1634⎦⎣2L2010-3-1635(2.7))电压,只有过驱动电压⎦22010-3-16362010-3-1637)(TH GS ox n DDS on V V LW C I V R -==μ1(2.9)此时D, S 间体现为一个电阻,其阻值为:2010-3-1638称为“压控晶体管”。

第二章 MOS器件的物理基础

第二章 MOS器件的物理基础

22
2.2 MOS的I/V特性
2.2.4 I/V特性总结:
VDS < VGS − VTH 线性区
红色部分:沟道在源 漏之间连续存在
VDS ≥ VGS − VTH 饱和区
灰色部分:沟道在某点被夹 断,用作恒流源
MOS的I/V特性曲线
CMOS模拟集成电路设计 第二章 MOS器件物理基础
VDS << 2(VGS − VTH ) 深线性区
VG
S
VD
n+ 0 P型衬底
x=L' L
n+
V ( x) = VGS − VTH
V DS ≥ VGS − VTH 时, 反型层在沟道中某点x处被夹断
CMOS模拟集成电路设计 第二章 MOS器件物理基础
Copyright 2011 Zhengran
21
2.2 MOS的I/V特性
当 VDS > VGS − VTH 时,则 VGD = VGS − VDS < VTH ,也就意味着沟道在 漏端不存在。 沟道在x点被夹断,将式(课本2.7)的积分区间换 VGS − VTH ],得到: 为[0,
CMOS模拟集成电路设计
Design of Analog CMOS Integrated Circuits
Feb.2011 郑然 zhengran@
西北工业大学航空微电子中心 教育部嵌入式系统集成工程研究中心
第二章 MOS器件的物理基础
CMOS模拟集成电路设计 第二章 MOS器件物理基础
13
2.2 MOS的I/V特性
四个合理的假设: 一、电流的大小由沟道内移动的电荷决定。 二、沟道中某点垂直于沟道的电场决定了该点移动电荷的 数量。 三、载流子的运动速率与横向电场大小成正比 v = µE。 四、认为 VGS = VTH 时反型层开始形成。 注意:栅极电势和沟道中某点的电势之差决定了该点 垂直于沟道的电场

《MOS管原理非常详细》PPT课件讲义

《MOS管原理非常详细》PPT课件讲义
哪个脚是D(漏极)?
G(栅极)呢?
是P沟道还是N沟道MOS?
如果接入电路, D极和S极,哪一个该接输 入,哪个接输出? 你答对了吗?
电路符号 再来一个,试试看:
哪个脚是S(源极)?
哪个脚是D(漏极)?
G(栅极)呢?
是P沟道还是N沟道MOS? 依据是什么?
如果接入电路, D极和S极,哪一个该接输 入,哪个接输出?
看看我们常见的NMOS管4816:
请注意:不论NMOS管还是PMOS管,上述PIN脚的确定方法都是一样的。
假如MOS管表面磨损,或是无法辨认PIN1的标记圆点,你可以用什么 方法确认PIN1脚,以及G极,D极和S极? 拿出万用表,试试吧!
实物
再来看看相似的DFN封装MOS管:
外形上来看,DNF封装的MOS管仍旧有8个脚,但已经变成贴片形式, 节约了高度,散热性能更好些。 但其PIN脚极性还是一样排列。
S极
N沟道MOSFET
G极 箭头指向G极的是N沟道
D极
电路符号
S极
P沟道MOSFET
G极 箭头背向G极的是P沟道
D极
当然也可以先判断沟道类型,再判断三个脚极性。
电路符号
小测试: 先判断是什么沟道,再判断三个脚极性。
G极 1
S极 1
2 D极
D极 2
S极 3
P沟道MOSFET
3 G极
N沟道MOSFET
这次怎么样?
电路符号 1 三个极怎么判定 ?
MOS管符号上的三个脚的辨认要抓住关键地方 。
S极
G极,不用说比较好认。
S极,
G极
不论是P沟道还是N沟道,
两根线相交的就是;
D极,
D极

MOS器件物理基础

MOS器件物理基础
tox=50 Å, Cox6.9fF/μm2(1 Å=10-10 m, 1fF= 10-15 F) ∴tox=90 Å, Cox6.9*50/90=3.83fF/μm2
gmN = 2 350 10-4 3.83 10-15/10-12 100 5 10-4 3.6mA/V
23
MOS管的开启电压VT及体效应
VTH = ΦMS + 2ΦF + Qdep , where Cox
ΦMS = Φgate - Φsilicon
ΦF = kT q ln
Nsub ni
Qdep = 4qεsi ΦF Nsub
Cox:单位面积栅氧化层电容
ΦMS:多晶硅栅与硅衬底功函数之差
- VTH )VDS
-
1 2
VDS 2
]
ID
=
nCox
W L
(VGS
- VTH )VDS
VDS << 2(VGS - VTH )
Ron
=
nCox
W L
1 (VGS
- VTH )
等效为一个压控 电阻
2019/11/15
13
I/V特性的推导(3)
ID
=
nCox
W L
[(VGS
- VTH )VDS
5
例:判断制造下列电路的衬底类型
2019/11/15
6
NMOS器件的阈值电压VTH
(a)栅压控制的MOSFET (c)反型的开始
(b)耗尽区的形成 (d)反型层的形成
2019/11/15
7
NMOS管VGS>VT、VDS=0时的示意图
2019/11/15
8
NMOS管VGS>VT、 0<VDS< VGS-VT时的示意图

《第五章MOS器件》PPT课件

《第五章MOS器件》PPT课件

• 对于MOSFET来说,最令人关注的是反型的 表面状态。当栅偏压VG 0时,P型半导 体表面的电子浓度将大于空穴浓度,形成 与原来半导体导电类型相反的N型导电层, 它不是因掺杂而形成的,而是由于外加电 压产生电场而在原P型半导体表面感应出来 的,故称为感应反型层。这一反型层与P型 衬底之间被耗尽层隔开,它是MOSFET的导 电沟道,是器件是否正常工作的关键。反 型层与衬底间的P-N结常称为感应结。
电荷。单位为C/cm2。 QGQS 0
• 由于Q0是不变的,因此
2021/4/27
实用文档
15
中国科学技术大学物理系微电子专业
6、半导体表面状态
2021/4/27
实用文档
16
积累:
电荷分布 QS
中国科学技术大学物理系微电子专业
积累情况下能带图及电荷分布
-d
x
Qm
EiEF
PP nie
kT
E(X) 电场分布 靠近氧化层的半导体表面
形成空穴积累
x
2021/4/27
实用文档
17
耗尽:
Vg>0
EF
2021/4/27
中国科学技术大学物理系微电子专业
Ec
Ei EF E
v
(x) Qm
电荷分布
wx -d
电场分布
QscqNAW
E(X)
实用文档
x
18
强反型:
中国科学技术大学物理系微电子专业
2021/4/27
np nieEFEik T
实用文档
氧化物陷阱电荷Qot:和SiO2的缺陷有关,分布在SiO2 层内,和工艺过程有关的Qot可以通过低温退火除掉 大部分。
可动离子电荷Qm:如Na+等碱金属离子,在高温和高 压下工作时,它们可以在氧化层内移动。因此,在

MOS晶体管基础PPT课件

MOS晶体管基础PPT课件
17
微小MOS晶体管
载流子的饱和速度引起的 Early Satutation
◙ 散乱引起速度饱和 ◙ 沟道长小于1微米时,NMOS饱和 ◙ NMOS和PMOS的饱和速度基本相同 ◙ PMOS不显著
2021/6/7
饱和早期开始
18
微小MOS晶体管
短沟道MOS晶体管电流解析式
2021/6/7
19
微小MOS晶体管
B CDB
➢寄生电容不可忽视 ➢寄生电阻与管子的导通电阻 (数十KW)相比,通常可 以忽略不计 例如:
栅极电容 CGS, CGD, CGB (各为1.0fF) 漏源电容 CDB, CSB (各为0.5fF) 栅极电阻
RG (40W) 源漏电阻 RD, RS (各1W)
MOS寄生元21 素
2021/6/7
栅极(G)
ID
漏极(D)
VD
ID
增强型(E)
ID
耗尽型(D)
VTH
VTH
2021/6/7
VG
VG
13
阈值电压的定义
饱和区外插VTH
在晶体管的漏源极加上接近电源 VDD的电压,画出VGS-IDS的关 系曲线,找出该曲线的最大斜率, 此斜率与X轴的交点定义为阈值 电压。
以漏电流为依据 定义VTH
在晶体管的漏源极加上接近电源 VDD的电压,画出VGS-Log(IDS) 的关系曲线,从该曲线中找出电 流为1微安时所对应的VGS定义为 阈值电压。
➢晶体管饱和时
栅极电容的对象主要为源极 电容值减小到2/3程度
由上可知,在饱和区,栅漏电容主要由CGDO决定, 其值大约为栅极电容的20%左右。
2021/6/7
MOS寄生元24 素

MOS器件物理

MOS器件物理

有源器件-MOS管
MOS管的工作原理及表示符号(5)
NMOS D G S B G S PMOS D B G S NMOS D G D PMOS S G S NMOS D G S PMOS D G S NMOS D G D PMOS S
MOS管的高频小信号电容
MOS管的电容(1)
G S
Cbs
d
C1
的交叠电容记为Col):
包括栅源交叠电容C1=WdCol与栅漏交叠电容C4=WdCol: 由于是环状的电场线, C1与C4不能简单地写成WdCox, 需通过更复杂的计算才能得到,且它的值与衬底偏置有关。
MOS管的高频小信号电容
MOS管的电容(3):
源漏区与衬底间的结电容:Cbd、Cbs
即为漏源对衬底的PN结势垒电容,这种电容一般由两部分组成:一个 是垂直方向(即源漏区的底部与衬底间)的底层电容Cj,另一个是横 向即源漏的四周与衬底间构成的圆周电容Cjs,因为不同三极管的几何 尺寸会产生不同的源漏区面积和圆周尺寸值,一般分别定义Cj与Cjs为 单位面积的电容与单位长度的电容。而每一个单位面积PN结的势垒电 容为:
也存在导电沟道。
这两类MOS管的基本工作原理一致,都是利用 栅源电压的大小来改变半导体表面感生电荷的 多少,从而控制漏极电流的大小 。
有源器件-MOS管
MOS管的工作原理及表示符号(2):
当栅源电压VGS=0时,源区(n+型)、衬底(p型)和漏区(n+型)
形成两个背靠背的PN结,不管VDS的极性如何,其中总有一个PN结 是反偏的,所以源漏之间的电阻主要为PN结的反偏电阻,基本上无 电流流过,即漏电流ID为0,此时漏源之间的电阻很大,没有形成导 电沟道。 当栅源之间加上正向电压,则栅极和p型硅片之间构成了以二氧化硅 为介质的平板电容器,在正的栅源电压作用下,介质中便产生了一 个垂直于半导体表面的由栅极指向p型衬底的电场(由于绝缘层很薄, 即使只有几伏的栅源电压VGS,也可产生高达105~106V/cm数量 级的强电场),这个电场排斥空穴而吸引电子,因此,使栅极附近 的p型衬底中的空穴被排斥,留下不能移动的受主离子(负离子),

第二章MOS器件物理基础2-4

第二章MOS器件物理基础2-4
MOS器件模型
MOS管的器件电容(1)
电容分为以下几类:
(1)栅与沟道之间的栅氧电容C1=WLCox,Cox为单位面积栅氧电容εox/tox; (2)衬底和沟道之间的耗尽层电容 C2 WL q si N sub 4 F (3)多晶硅与源和漏交叠产生的交叠电容C3和C4。
由于是环状的电场线, C3与C4不能简单地写成WdCox,需通过更复杂的 计算才能得到,且它的值与衬底偏置有关。
C j C j 0 1 VR B m
VR:通过PN结的反偏电压 Cj0:PN结在零偏时的结电容(与衬底浓度有关) ΦB :漏源区与衬底间PN结的内建电势
m:底面电容的梯度因子,一般取介于0.3与0.4间的数
MOS管的器件电容(3)
计算图示两种结构中源和漏的结电容
对于图a: CD B CSB WEC j 2(W E)C jsw
C表示栅极输入电容,该电容正比于WLCox 。
gm mCv gs g m vgs f m 2C
n fm (VGS VTH ) 2 2L
MOS管的最高工作频率与沟道长度的平方成反比,因此,减小MOS管 的沟道长度能很显著地提高工作频率 。 例如,MOS管L=0.25μm时,工作频率约40GHz,若L缩小到0.1μm时,工 作频率可达118GHz,说明深亚微米MOS器件可以满足射频电路的要求。
D
MOS管的电容随栅源电压的变化-截止区
漏源之间不存在沟道,则:
栅源、栅漏之间的电容为: CGD CGS CovW Cov:单位宽度的交叠电容。 栅与衬底间的电容为栅氧电容与耗尽区电容之间的串 联:
G
CGD
CDB
B
CGS
C SB CGB S

第三章MOS管ppt课件

第三章MOS管ppt课件
)
第3章
场效应管
饱和区(放大区)外加电压极性及数学模型
VDS 极性取决于沟道类型 N 沟道:VDS > 0, P 沟道:VDS < 0 VGS 极性取决于工作方式及沟道类型 增强型 MOS 管: VGS 与 VDS 极性相同。 耗尽型 MOS 管: VGS 取值任意。 饱和区数学模型与管子类型无关
第3章
场效应管
由于 MOS 管 COX 很小,因此当带电物体(或人)靠近 金属栅极时,感生电荷在 SiO2 绝缘层中将产生很大的电 压 VGS(= Q /COX),使绝缘层击穿,造成 MOS 管永久性损 坏。 MOS 管保护措施: 分立的 MOS 管:各极引线短接、烙铁外壳接地。 MOS 集成电路:
VGS
ID/mA
D N+
G
VUS = 0 -2V -4V
P
O
VGS /V
若| VUS | 阻挡层宽度 耗尽层中负离子数
因 VGS 不变(G 极正电荷量不变) 表面层中电子数 ID 根据衬底电压对 ID 的控制作用,又称 U 极为背栅极。
第3章
场效应管
P 沟道 EMOS 管
第3章
场效应管
3.1.3 四种 MOS 场效应管比较
电路符号及电流流向
D
ID
U G
D
ID
U G
D
ID
U G
D
ID
U
G
S NEMOS
S NDMOS
S PEMOS
S PDMOS
转移特性
ID ID
ID ID
O VGS(th)
VGS
VGS(th) O
VGS
VGS(th) O V GS
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) uGS UGS(th)时uDS 对 iD 的影响.
① uDS uGS UGS(th) ② uDS uGS UGS(th) ③ uDS uGS UGS(th)
uDS iD 线性增大
沟道从s-d逐渐变窄
uDS uGD UGS(th) uDS 夹断区延长
沟道预夹断
iD 几乎不变 恒流区
2020/4/7
6
3. 特性曲线与电流方程
2
iD
I
DO
uGS U GS ( th )
1
, 其 中 ,I DO是uGS
2UGS
(
th

)
的i

D
2020/4/7
7
FET放大电路的动态分析
一、FET的低频小信号等效模型
iD f uGS , uDS

iD uGS
U DS
gm
iD uDS
U GS
图2.2 PMOS FET结构简图
2020/4/7
14
图2.3 CMOS FET的结构简图
2020/4/7
15
2. MOS FET结构尺寸的通用概念
W: gate width
Ldrawn (L): gate length(layout gate length) Leff: effective gate length LD:S/D side diffusion length W/L: aspect ratio
阈值电压是多少?当器件导通时,漏源之间的电阻 有多大?这个电阻与端电压的关系是怎样的?总是 可以用简单的线性电阻来模拟漏和源之间的通道? 器件的速度受什么因素限制?
2020/4/7
12
2.1.2 MOSFET的结构
1. MOSFET的三种结构简图
图2.1 NMOS FET结构简图
2020/4/7
13
利用栅源电压的大小控制半导体表面的感生电荷的多 少,从而改变沟道电阻,控制漏极电流的大小。
MOSFET 绝缘栅型
增强型(常闭型) 耗尽型(常开型)
N沟道 P沟道 N沟道 P沟道
2020/4/7
3
1. 结构
N沟道增强型MOSFET
2020/4/7
4
2. 工作原理 (1) uDS 0时uGS 对导电沟道的影响.
gm
2 U GS ( th )
I DO I DQ
2020/4/7
9
gm与rds的求法
2020/4/7
10
二、基本共源放大电路的动态分析
Au
Uo Ui
Id Rd U gs
gmU gs Rd U gs
gm Rd
Ri
Ro Rd
2020/4/7
11
2.1 MOSFET的基本概念
2.1.1 MOSFET开关
① uGS 0 漏源为背对的PN结 无导电沟道 即使 uDS 0, iD 0
② uDS 0, uGS 0
栅极聚集正电荷 排斥衬底空穴 剩下负离子区 耗尽层
③ uDS 0, uGS
耗尽层加厚 uGS 增加 吸引自由电子 反型层
++++++
++++++++++++
2020/4/7
开启电压 UGS(th):沟道形成的栅-源电压。 5
若将MOS结构等效为一个由poly-Si和反型沟道构成的平板电 容。对均匀沟道,当VD=VS=0时,宽度为W的沟道中,单位 长度上感应的可移动电荷量为
Qd WCox (VGS VTH )
(2.3)
式中Cox为栅极单位面积电容,WCox为单位长度栅电容.
2020/4/7
23
如果从S到D有一电压差VDS,假设平板电容在L方向上x点的 电位为V(x), 如上图所示
S,D,G,B: source,drain,gate,body(bulk)
2020/4/7
16
3. MOS FET 的四种电路符号
NMOS D
PMOS S
G
BG
B
S
D
(d)
ቤተ መጻሕፍቲ ባይዱ
2020/4/7
17
2.2 MOS的I/V特性
2.2.1.阈值电压
先看MOS器件的工作原理:以NMOS为例来分析阈值电压 产生的原理.
1 rds
diD
iD uGS
U DS
duGS
iD uDS
du UGS
DS
1 Id gmU gs rds U ds
2020/4/7
8
gm与rds的求法
gm
iD uGS
U DS
2 I DO U GS ( th )
uGS UGS(th)
1
U DS
2 U GS ( th )
I DOiD
小 信 号 作 用 时 ,iD I DQ .
Chapter 2 MOS器件物理基础
本章内容
MOSFET 的I-V 特性 MOSFET 的二级效应 MOSFET 的结构电容 MOSFET 的小信号模型
2020/4/7
2
绝缘栅型场效应管
Insulated Gate Field Effect Transistor MOS管:Metal Oxide Semiconductor
2020/4/7
21
2.2.2 I/V特性推导
我们用一个电流棒来辅助理解电流的概念. v I
当沿电流方向的电荷密度为Qd (C/m)的电荷以速度v沿电流 方向移动时,产生的电流为
I Qd * v
(2.2)
量纲 C m * m s A
2020/4/7
22
● NMOS 沟道的平板电容近似与沟道电荷分布
(d) 功函数差
F
KT
q
ln N sub
ni
费米势,MOS强反型时的 表面势为费米势的2倍
Qdep 4q si F N sub
2020/4/7
耗尽区电荷
20
PMOS器件的导通:与NFETS类似,极性相反.
VTH
ms
2F
Qdep Cox
F
KT q
ln
N sub
ni
Qdep 4q si F N sub
2020/4/7
(b) VGS>0
(c)
19
●(d)当VG继续增加,界面电 势达到一定值时,就有电子从源
极流向界面并最终到达漏极,导
电沟道形成,晶体管打开。如图
(d)所示。这时,这个电压值
就是“阈值电压”-VTH .
VTH
ms
2F
Qdep Cox
ms F (sub) F ( gate)
(2.1)
(a) VGS=0
2020/4/7
18
● 在 (a) 图 中 , G 极 没 有 加 入 电压时,G极和sub表面之间, 由于Cox的存在,构成了一个 平板电容,Cox为单位面积的 栅氧电容;
●在栅极加上正电压后,如 图(b)所示,P-sub靠近G的空 穴就被排斥,留下了不可动 的负离子。这时没有导电沟 道的形成,因为没有可移动 的载流子,G和衬底间仅形成 了氧化层电容和耗尽层电容 的串连,如图(c)所示。
相关文档
最新文档