最新【人教A版】高中数学:选修1-1、1-2课本例题习题改编(含答案)

合集下载

高中数学选修1-1(全册)习题(答案详细讲解)

高中数学选修1-1(全册)习题(答案详细讲解)

高中数学选修1-1(全册)习题(答案详细讲解)目录:数学选修1-1第一章常用逻辑用语 [基础训练A组]第一章常用逻辑用语 [综合训练B组]第一章常用逻辑用语 [提高训练C组]第二章圆锥曲线 [基础训练A组]第二章圆锥曲线 [综合训练B组]第二章圆锥曲线 [提高训练C组]第三章导数及其应用 [基础训练A组]第三章导数及其应用 [综合训练B组]第三章导数及其应用 [提高训练C组](数学选修1-1)第一章常用逻辑用语[基础训练A 组]一、选择题1.下列语句中是命题的是()A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是()A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0ab >>是33a b >的充要条件.则其中正确的说法有()A .0个B .1个C .2个D .3个 4.下列说法中正确的是()A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ?是q ?的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题1.命题:“若a b ?不为零,则,a b 都不为零”的逆否命题是。

人教A版高中数学选修1-1习题精选(含答案)

人教A版高中数学选修1-1习题精选(含答案)

习题精选一、选择题1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为().A.45°B.60°C.90°D.120°2.过已知点且与抛物线只有一个公共点的直线有().A.1条B.2条C.3条D.4条3.已知,是抛物线上两点,为坐标原点,若,且的垂心恰好是此抛物线的焦点,则直线的方程是().A.B.C.D.4.若抛物线()的弦PQ中点为(),则弦的斜率为()A.B.C.D.5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是()A.B.C.D.6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于()A.4 B.-4 C.D.7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是()A.B.C.D.8.当时,关于的方程的实根的个数是()A.0个B.1个C.2个D.3个9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于()A.-1 B.1 C.7 D.910.以抛物线()的焦半径为直径的圆与轴位置关系为()A.相交 B.相离 C.相切 D.不确定11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是()A.10 B.8 C.6 D.412.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小()A.小于B.等于C.大于D.不能确定13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0)14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为()A.1 B.C.2 D.15.记定点与抛物线上的点之间的距离为,到此抛物线准线的距离为,则当取最小值时点的坐标为()A.(0,0)B.C.(2,2)D.16.方程表示()A.椭圆 B.双曲线 C.抛物线 D.圆17.在上有一点,它到的距离与它到焦点的距离之和最小,则的坐标为()A.(-2,8)B.(2,8)C.(-2,-8)D.(-2,8)18.设为过焦点的弦,则以为直径的圆与准线交点的个数为()A.0 B.1 C.2 D.0或1或219.设,为抛物线上两点,则是过焦点的()A.充分不必要B.必要不充分C.充要D.不充分不必要20.抛物线垂点为(1,1),准线为,则顶点为()A.B.C.D.21.与关于对称的抛物线是()A.B.C.D.二、填空题1.顶点在原点,焦点在轴上且通径(过焦点和对称轴垂直的弦)长为6的抛物线方程是_________.2.抛物线顶点在原点,焦点在轴上,其通径的两端点与顶点连成的三角形面积为4,则此抛物线方程为_________.3.过点(0,-4)且与直线相切的圆的圆心的轨迹方程是_________.4.抛物线被点所平分的弦的直线方程为_________.5.已知抛物线的弦过定点(-2,0),则弦中点的轨迹方程是________.6.顶点在原点、焦点在轴上、截直线所得弦长为的抛物线方程为____________.7.已知直线与抛物线交于、两点,那么线段的中点坐标是__ _.8.一条直线经过抛物线()的焦点与抛物线交于、两点,过、点分别向准线引垂线、,垂足为、,如果,,为的中点,则 =__________.9.是抛物线的一条焦点弦,若抛物线,,则的中点到直线的距离为_________.10.抛物线上到直线的距离最近的点的坐标是____________.11.抛物线上到直线距离最短的点的坐标为__________.12.已知圆与抛物线()的准线相切,则=________.13.过()的焦点的弦为,为坐标原点,则 =________.14.抛物线上一点到焦点的距离为3,则点的纵坐标为__________.15.已知抛物线(),它的顶点在直线上,则的值为__________.16.过抛物线的焦点作一条倾斜角为的弦,若弦长不超过8,则的范围是________.17.已知抛物线与椭圆有四个交点,这四个交点共圆,则该圆的方程为__________.18.抛物线的焦点为,准线交轴于,过抛物线上一点作于,则梯形的面积为_______________.19.探照灯的反射镜的纵断面是抛物线的一部分,安装灯源的位置在抛物线的焦点处,如果到灯口平面的距离恰好等于灯口的半径,已知灯口的半径为30cm,那么灯深为_________.三、解答题1.知抛物线截直线所得的弦长,试在轴上求一点,使的面积为392.若的焦点弦长为5,求焦点弦所在直线方程3.已知是以原点为直角顶点的抛物线()的内接直角三角形,求面积的最小值.4.若,为抛物线的焦点,为抛物线上任意一点,求的最小值及取得最小值时的的坐标.5.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上一宽4米,高6米的大木箱,问能否安全通过.6.抛物线以轴为准线,且过点,()求证不论点的位置如何变化,抛物线顶点的轨迹是椭圆,且离心率为定值.7.已知抛物线()的焦点为,以为圆心,为半径,在轴上方画半圆,设抛物线与半圆交于不同的两点、,为线段的中点.①求的值;②是否存在这样的,使、、成等差数列,若存在,求出的值;若不存在,说明理由.8.求抛物线和圆上最近两点之间的距离.9.正方形中,一条边在直线上,另外两顶点、在抛物线上,求正方形的面积.10.已知抛物线的一条过焦点的弦被焦点分为,两个部分,求证.11.一抛物线型拱桥的跨度为,顶点距水面.江中一竹排装有宽、高的货箱,问能否安全通过.12.已知抛物线上两点,(在第二象限),为原点,且,求当点距轴最近时,的面积.13.是抛物线上的动点,连接原点与,以为边作正方形,求动点的轨迹方程.参考答案:一、1.C;2.C;3.D;4.B;5.C;6.B;7.B;8.D;9.C10.C;11.B;12.C;13.C;14.C;15.C;16.C;17.B;18.B;19.C;20.A;21.D二、1.;2.;3.;4.5.;6.(在已知抛物线内的部分)7.或;8.(4,2);9.10.;11.;12.2;13.-414.2;15.0,,,;16.17.;18.3.14;19.36.2cm三、1.先求得,再求得或2.3.设,,则由得,,,于是当,即,时,4.抛物线的准线方程为,过作垂直准线于点,由抛物线定义得,,要使最小,、、三点必共线,即垂直于准线,与抛物线交点为点,从而的最小值为,此时点坐标为(2,2).5.建立坐标系,设抛物线方程为,则点(26,-6.5)在抛物线上,抛物线方程为,当时,,则有,所以木箱能安全通过.6.设抛物线的焦点为,由抛物线定义得,设顶点为,则,所以,即为椭圆,离心率为定值.7.①设、、在抛物线的准线上射影分别为、、,则由抛物线定义得,又圆的方程为,将代入得②假设存在这样的,使得,由定义知点必在抛物线上,这与点是弦的中点矛盾,所以这样的不存在8.设、分别是抛物线和圆上的点,圆心,半径为1,若最小,则也最小,因此、、共线,问题转化为在抛物线上求一点,使它到点的距离最小.为此设,则,的最小值是9.设所在直线方程为,消去得又直线与间距离为或从而边长为或,面积,10.焦点为,设焦点弦端点,,当垂直于轴,则,结论显然成立;当与轴不垂直时,设所在直线方程为,代入抛物线方程整理得,这时,于是,命题也成立.11.取抛物线型拱桥的顶点为原点、对称轴为轴建立直角坐标系,则桥墩的两端坐标分别为(-26,-6.5),(26,-6.5),设抛物线型拱桥的方程为,则,所以,抛物线方程为.当时,,而,故可安全通过.12.设,则,因为,所以,直线的方程为,将代入,得点的横坐标为(当且仅当时取等号),此时,,,,所以.13.设,,过,分别作为轴的垂线,垂足分别为,,而证得≌,则有,,即、,而,因此,即为所求轨迹方程.。

高中数学人教A版选修1-1第2章圆锥曲线与方程课后练习及解析

高中数学人教A版选修1-1第2章圆锥曲线与方程课后练习及解析
|GB|+|GC| =32(|BD|+|CE|)=20. ∵B、C 是两个定点,G 点到 B、C 距离和等于定值 20,且 20>12, ∴G 点的轨迹是椭圆,B、C 是椭圆焦点. ∴2c=|BC|=12,c=6,2a=20,a=10, b2=a2-c2=102-62=64, 故 G 点的轨迹方程为1x020+6y42 =1, 去掉(10,0)、(-10,0)两点. 又设 G(x′,y′),A(x,y),则有x1′002+y6′42=1.
A.椭圆
B.直线
C.圆
D.线段
2.椭圆1x62 +y72=1 的左右焦点为 F1,F2,一直线过 F1 交椭圆于 A、B 两点,则△ABF2 的
周长为( )
A.32
B.16
C.8
D.4
3.椭圆 2x2+3y2=1 的焦点坐标是( )
A.0,±
6 6
B.(0,±1)
C.(±1,0)
D.± 66,0
4.方程|a|x-2 1+a+y2 3=1 表示焦点在 x 轴上的椭圆,则实数 a 的取值范围是(
)
A.(-3,-1) C.(1,+∞)
B.(-3,-2) D.(-3,1)
5.若椭圆的两焦点为(-2,0),(2,0),且该椭圆过点25,-32,则该椭圆的方程是( )
A.y82+x42=1
B.1y02 +x62=1
C.y42+x82=1
D.y62+1x02 =1
6.设 F1、F2 是椭圆1x62 +1y22 =1 的两个焦点,P 是椭圆上一点,且 P 到两个焦点的距离之
11.已知椭圆 4x2+y2=1 及直线 y=x+m. (1)当直线和椭圆有公共点时,求实数 m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程.

新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析

新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析

选择性必修第一册全册课后练习题本文档还有大量公式,在网页中显示可能会出现位置错误的情况,下载后均可正常显示,请放心下载练习!第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1.1空间向量与平行关系 ....................................................................................... - 34 -1.4.1.2空间向量与垂直关系 ....................................................................................... - 42 -1.4.2用空量研究距离、夹角问题............................................................................... - 51 -章末测验 ....................................................................................................................... - 64 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 83 -2.2.1直线的点斜式方程............................................................................................... - 87 -2.2.2直线的两点式方程............................................................................................... - 92 -2.2.3直线的一般式方程............................................................................................... - 97 -2.3.1两条直线的交点坐标......................................................................................... - 102 -2.3.2两点间的距离公式............................................................................................. - 102 -2.3.3点到直线的距离公式......................................................................................... - 107 -2.3.4两条平行直线间的距离..................................................................................... - 107 -2.4.1圆的标准方程 .................................................................................................... - 113 -2.4.2圆的一般方程 .................................................................................................... - 118 -2.5.1直线与圆的位置关系......................................................................................... - 122 -2.5.2圆与圆的位置关系............................................................................................. - 128 -章末测验 ..................................................................................................................... - 135 - 第三章圆锥曲线的方程.................................................................................................... - 144 -3.1.1椭圆及其标准方程............................................................................................. - 144 -3.1.2.1椭圆的简单几何性质 ..................................................................................... - 150 -3.1.2.2椭圆的标准方程及性质的应用...................................................................... - 156 -3.2.1双曲线及其标准方程......................................................................................... - 164 -3.2.2双曲线的简单几何性质..................................................................................... - 171 -3.3.1抛物线及其标准方程......................................................................................... - 178 -3.3.2抛物线的简单几何性质..................................................................................... - 184 -章末测验 ..................................................................................................................... - 191 - 模块综合测验 ..................................................................................................................... - 202 -第一章 空间向量与立体几何1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32. ∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→,AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0.(2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →, 故MN →=⎝ ⎛⎭⎪⎫12,0,-12.] 14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →,∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z-(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b |a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010.(2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52. 法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( )。

高中数学选修1-1课后习题答案

高中数学选修1-1课后习题答案

高中数学选修1-1课后习题答案高中数学选修1-1课后习题答案在高中数学的学习过程中,选修课是一个很重要的部分。

选修课的内容相对于必修课来说更加深入和拓展,可以帮助学生更好地理解和应用数学知识。

本篇文章将为大家提供高中数学选修1-1课后习题的答案,希望能够帮助到学习这门课程的同学们。

第一章:函数与导数1. 设函数f(x) = x^2 + 2x - 3,求f(1)的值。

答案:将x = 1代入函数f(x)中,得到f(1) = 1^2 + 2*1 - 3 = 0。

2. 已知函数f(x) = x^3 - 3x + 2,求f(-1)的值。

答案:将x = -1代入函数f(x)中,得到f(-1) = (-1)^3 - 3*(-1) + 2 = 0。

3. 设函数f(x) = 2x^2 - 4x + 1,求f(2)的值。

答案:将x = 2代入函数f(x)中,得到f(2) = 2*(2)^2 - 4*2 + 1 = 5。

4. 已知函数f(x) = x^3 + 2x^2 + x,求f(0)的值。

答案:将x = 0代入函数f(x)中,得到f(0) = 0^3 + 2*0^2 + 0 = 0。

5. 设函数f(x) = x^2 - 4x,求f(3)的值。

答案:将x = 3代入函数f(x)中,得到f(3) = (3)^2 - 4*3 = 9 - 12 = -3。

第二章:三角函数1. 已知sinθ = 1/2,求θ的值。

答案:根据sinθ = 1/2,可以知道θ = π/6 或5π/6。

2. 已知cosθ = -1/2,求θ的值。

答案:根据cosθ = -1/2,可以知道θ = 2π/3 或4π/3。

3. 已知tanθ = √3,求θ的值。

答案:根据tanθ = √3,可以知道θ = π/3 或 4π/3。

4. 已知cotθ = -√3,求θ的值。

答案:根据cotθ = -√3,可以知道θ = 5π/6 或11π/6。

5. 已知secθ = 2,求θ的值。

2019版【人教A版】高中数学:必修1课本例题习题改编(含答案)

2019版【人教A版】高中数学:必修1课本例题习题改编(含答案)

2019版数学精品资料(人教版) 人教A 版必修1课本例题习题改编1.原题(必修1第七页练习第三题(3))判断下列两个集合之间的关系:A={}{}|410|20,x x x N B x x m m N ++∈==∈是与的公倍数,, 改编 已知集合4x x M xN N **⎧⎫=∈∈⎨⎬⎩⎭且10,集合40x N x Z ⎧⎫=∈⎨⎬⎩⎭,则( )A .M N =B .N M ⊆C .20x MN x Z ⎧⎫=∈⎨⎬⎩⎭ D .40x MN x N *⎧⎫=∈⎨⎬⎩⎭解:{}20,M x x k k N *==∈, {}40,N x x k k Z ==∈,故选D .2.原题(必修1第十二页习题1.1B 组第一题)已知集合A={1,2},集合B 满足A ∪B={1,2},则这样的集合B 有 个.改编1 已知集合A 、B 满足A ∪B={1,2},则满足条件的集合A 、B 有多少对?请一一写出来.解:∵A ∪B={1,2},∴集合A ,B 可以是:∅,{1,2};{1},{1,2};{1},{2};{2},{1,2};{2},{1};{1,2},{1,2};{1,2},{1};{1,2},{2};{1,2},∅.则满足条件的集合A 、B 有9对. 改编2 已知集合A 有n 个元素,则集合A 的子集个数有 个,真子集个数有 个 解:子集个数有2n个,真子集个数有21n-个 改编3 满足条件{}{}1,21,2,3A =的所有集合A 的个数是 个解:3必须在集合A 里面,A 的个数相当于2元素集合的子集个数,所以有4个.3.原题(必修1第十三页阅读与思考“集合中元素的个数”)改编 用C(A)表示非空集合A 中的元素个数,定义⎩⎨⎧<-≥-=*C(B)C(A)当C(A),C(B)C(B)C(A)当C(B),C(A)B A ,若{}{}02)ax ax)(x (x x B ,1,2A 22=+++==,且1B A =*,则由实数a 的所有可能取值构成的集合S = .解:由{}2C(A)1,2A ==得,而1B A =*,故3C(B)1C(B)==或.由02)ax ax )(x (x 22=+++得02)ax (x 0ax )(x 22=++=+或. 当1C(B)=时,方程02)ax ax )(x(x 22=+++只有实根0x =,这时0a =.当3C(B)=时,必有0a ≠,这时0ax )(x 2=+有两个不相等的实根a x 0,x 21-==,方程02)ax (x 2=++必有两个相等的实根,且异于a x 0,x 21-==,有0,8a Δ2=-=∴22a ±=,可验证均满足题意,∴{}22,0,22-=S.4.原题(必修1第二十三页练习第二题)改编1 小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是解:先分析小明的运动规律,再结合图象作出判断.距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,后段比前段下降得快,答案选C.改编 2 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t的函数,其图象可能是()解:汽车加速行驶时,速度变化越来越快,而汽车匀速行驶时,速度保持不变,体现在s与t的函数图象上是一条直线,减速行驶时,速度变化越来越慢,但路程仍是增加的.答案:A.5.原题(必修1第二十四页习题1.2A组第七题)画出下列函数的图象:(1)F(x)=改编设函数D(x)= 则下列结论错误的是()A.D(x)的值域为{0,1} B.D(x)是偶函数C.D(x)不是周期函数D.D(x)不是单调函数解:由已知条件可知,D(x)的值域是{0,1},选项A正确;当x是有理数时,-x也是有理数,且D(-x)=1,D(x)=1,故D(-x)=D(x),当x是无理数时,-x也是无理数,且D(-x)=0,D(x)=0,即D(-x)=D(x),故D(x)是偶函数,选项B正确;当x是有理数时,对于任一非零有理数a,x+a是有理数,且D(x+a)=1=D(x), 1,x0,x⎧⎨⎩为有理数,为无理数,0,x01,x>0;≤⎧⎨⎩,当x 是无理数时,对于任一非零有理数b,x+b 是无理数,所以D(x+b) =D(x)=0,故D(x)是周期函数,(但不存在最小正周期),选项C 不正确;由实数的连续性易知,不存在区间I,使D(x)在区间I 上是增函数或减函数,故D(x)不是单调函数,选项D 正确. 答案:C .6.原题(必修1第二十四页习题1.2A 组第十题)改编 已知集合{}{}1,2,3,1,2,3,4A B ==.定义映射:f A B →,则满足点(1,(1)),(2,(2)),(3,(3))A f B f C f 构成ABC ∆且=AB BC 的映射的个数为.解:从A 到B 的映射有3464=个,而其中要满足条件的映射必须使得点A 、B 、C 不共线且=AB BC ,结合图形可以分析得到满足(3)(1)(2)f f f =≠即可,则满足条件的映射有114312m C C =⋅=个.7.原题(必修1第二十五页习题 1.2B 组第二题)画出定义域为{}38,5x x x -≤≤≠且,值域为{}12,0y y y -≤≤≠的一个函数的图像,(1)将你的图像和其他同学的比较,有什么差别吗?(2)如果平面直角坐标系中点P (x,y )的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图像上?改编 若函数()y f x =的定义域为{}38,5x x x -≤≤≠,值域为{}12,0y y y -≤≤≠,则()y f x =的图象可能是( )ABCD解:根据函数的概念,任意一个x 只能有唯一的y 值和它对应,故排除C ;由定义域为{}38,5x x x -≤≤≠排除A 、D,选B.8.原题(必修1第二十五页习题1.2B 组第三题)函数[x]f(x)=的函数值表示不超过x 的最大整数,例如,4]5.3[-=-;2]1.2[=;当(]35.2, -∈x 时,写出函数f(x)的解析式,并作出函数的图象. 改编 1 对于任意实数x ,符号[x]表示x 的整数部分,即[x]是不超过x 的最大整数,例如2[2]=;2]1.2[=;3]2.2[-=-.函数[x]y =叫做“取整函数”,它在数学本身和生产实践中有广泛的应用,则]26[log ]3[log ]2[log ]1[log 3333++++ 的值为 .解:由题意得,∵130=, 31=3,92=3,2733=.∴原式中共有2个0,6个1,18个2,故原式=422181602=⨯+⨯+⨯.改编2 已知函数f (x )=x -[x ], 其中[x ]表示不超过实数x 的最大整数. 若关于x 的方程f (x )=kx +k 有三个不同的实根, 则实数k 的取值范围是 .111111111111A.[1,)(,]B.(1,][,)C.[,)(,1]D.(,][,1)243243342342- -⋃ - -⋃ - -⋃ - -⋃解:画出f(x)的图象(如右图), 与过定点(-1, 0)的直线y=kx+k=k(x+1) 有三个不同的公共点, 利用数形结合的办法, 可求得直线斜率k 的取值范围为111(1,][,)243- -⋃ . 答案:B .改编3 对于任意实数x ,符号[]x 表示x 的整数部分,即[]x 是不超过x 的最大整数.这个函数[]x 叫做“取整函数”,它在数学本身和生产实践中有广泛的应用.那么,(1)[]2log 1+[]2log 2+[]2log 3+[]2log 4+……+[]2log 1024= (2)设()[][],1,3f x x x x ⎡⎤=⋅∈⎣⎦,则()f x 的值域为解:(1)[]2log 1=0,[]2log 2=[]2log 3=1,[]2log 4=[]2log 5=[]2log 6=[]2log 7=2,[]2log 8=[]2log 9=……=[]2log 15=3,[]2log 16=[]2log 17=……=[]2log 31=4,…… []2log 512=[]2log 512=……=[]2log 1023=9,[]2log 1024=10,则原式=234912223242++92+10⨯+⨯+⨯+⨯⨯,用“错位相减法”可以求出原式的值为8204.(2)[)[]()[)[]()1,21,1;2,2.52,4x x f x x x f x ∈==∈==时,时,;[)[]()[]()2.5,32,5;33,9x x f x x x f x ∈=====时,时,;故[]1,3x ∈时()f x 的值域为{}1,4,5,9答案:(1)8204; (2){}1,4,5,9.改编4 函数()[][]2,2f x x x x ⎡⎤=∈-⎣⎦,的值域为 .解:当[)2,1x ∈--时,[]2x =-,(]()[]22,4,2{2,3,4}x f x x -∈=-∈;当[)1,0x ∈-时,[]1x =-,(]()[]0,1,{01}x f x x -∈=-∈,;当[)0,1x ∈时,[]0x =,()0f x =;当[)1,2x ∈时,[]1x =,()[]=1f x x =;当=2x 时,()[]4=4f x =;∴值域为{0,12,3,4},.答案:{0,12,3,4},. 9.原题(必修1第三十六页练习第1题(3))判断下列函数的奇偶性:x1x f(x )2+=.改编 关于函数0)(x x1x lg f(x)2≠+=,有下列命题:①其图象关于y 轴对称;②当0x >时,f(x)是增函数;当0x <时,f(x)是减函数;③f(x)的最小值是lg2;④f(x)在区间),2(),0,1(+∞-上是增函数;⑤f(x)无最大值,也无最小值.其中所有正确结论的序号是 .解: 0)(x x 1x lg f(x)2≠+=为偶函数,故①正确;令x 1x u(x)2+=,则当0x >时,x 1x u(x)+=在)1,0(上递减,在),1[+∞上递增,∴②错误;③④正确;⑤错误.答案:①③④.10.原题(必修1第三十九页复习参考题B 组第三题)已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.改编 已知定义在[-2, 2]上的偶函数f (x )在区间[0, 2]上是减函数, 若f (1-m )<f (m ), 则实数m 的取值范围是 .解:由偶函数的定义, (1)(|1|)()(||)f m f m f m f m -=-⎧⎨=⎩, 又由f (x )在区间[0, 2]上是减函数, 所以10|||1|2m m m ≤<- ≤2⇒ -1≤<.答案:12m -1≤<. 11.原题(必修1第四十四页复习参考题A 组第四题)已知集合A={x|2x =1},集合B={x|ax=1},若B ⊆A ,求实数a 的值.改编 已知集合A={x|x-a=0},B={x|ax-1=0},且A∩B=B ,则实数a 等于 。

高中数学(人教A版)选修1-1全册综合测试题(含详解)

高中数学(人教A版)选修1-1全册综合测试题(含详解)

综合测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“当a >1时,方程x 2-4x +a =0有实根”不是命题C .命题“矩形的对角线互相垂直且平分”是真命题D .命题“当a >4时,方程x 2-4x +a =0有实根”是假命题 答案 D2.如果命题“綈p 且綈q ”是真命题,那么下列结论中正确的是( ) A .“p 或q ”是真命题 B .“p 且q ”是真命题 C .“綈p ”为真命题 D .以上都有可能解析 若“綈p 且綈q ”是真命题,则綈p ,綈q 均为真命题,即命题p 、命题q 都是假命题,故选C.答案 C3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的渐近线方程为( )A .y =±12xB .y =±2xC .y =±4xD .y =±14x解析 由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,∴b a =12,故双曲线的渐近线方程为y =±12x ,选A.答案 A4.若θ是任意实数,则方程x 2+y 2sin θ=4表示的曲线不可能是( ) A .椭圆 B .双曲线 C .抛物线D .圆解析 当sin θ=1时,曲线表示圆. 当sin θ<0时,曲线表示的双曲线. 当sin θ>0时,曲线表示椭圆. 答案 C5.曲线y =x 3+1在点(-1,0)处的切线方程为( ) A .3x +y +3=0 B .3x -y +3=0 C .3x -y =0D .3x -y -3=0解析 y ′=3x 2,∴y ′| x =-1=3,故切线方程为y =3(x +1),即3x -y +3=0. 答案 B6.下列命题中,正确的是( )A .θ=π4是f (x )=sin(x -2θ)的图像关于y 轴对称的充分不必要条件 B .|a |-|b |=|a -b |的充要条件是a 与b 的方向相同 C .b =ac 是a ,b ,c 三数成等比数列的充分不必要条件D .m =3是直线(m +3)x +my -2=0与mx -6y +5=0互相垂直的充要条件答案 A7.函数f (x )=x 2+a ln x 在x =1处取得极值,则a 等于( ) A .2 B .-2 C .4D .-4解析 f (x )的定义域为(0,+∞), 又f ′(x )=2x +a x ,∴由题可知,f ′(1)=2+a =0,∴a =-2. 当a =-2时,f ′(x )=2x -2x =2(x -1)(x +1)x , 当0<x <1时,f ′(x )<0. 当x >1时,f ′(x )>0, ∴f (x )在x =1处取得极值. 故选B. 答案 B8.设P 是椭圆x 29+y 24=1上一点,F 1,F 2是椭圆的两个焦点,则cos ∠F 1PF 2的最小值是( )A .-19B .-1 C.19D.12解析 由椭圆方程a =3,b =2,c =5,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 1|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-|F 1F 2|2-2|PF 1||PF 2|2|PF 1|·|PF 2|=(2a )2-(2c )2-2|PF 1||PF 2|2|PF 1|·|PF 2|=162|PF 1|·|PF 2|-1.∵|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=9, ∴cos ∠F 1PF 2≥162×9-1=-19,故选A.答案 A9.给出下列三个命题: ①若a ≥b >-1,则a 1+a ≥b1+b;②若正整数m 和n 满足m ≤n ,则m (n -m )≤n2;③设P (x 1,y 1)为圆O 1:x 2+y 2=9上任一点,圆O 2以Q (a ,b )为圆心且半径为1.当(a -x 1)2+(b -y 1)2=2时,圆O 1与圆O 2相切.其中假命题的个数为( ) A .0个 B .1个 C .2个D .3个解析 考查不等式的性质及其证明,两圆的位置关系.显然命题①正确,命题②用“分析法”便可证明其正确性.命题③:若两圆相切,则两圆心间的距离等于4或2,二者均不符合,故为假命题.故选B.答案 B10.如图所示是y =f (x )的导数图像,则正确的判断是( ) ①f (x )在(-3,1)上是增函数; ②x =-1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(-1,2)上是增函数; ④x =2是f (x )的极小值点. A .①②③ B .②③ C .③④D .①③④解析 从图像可知,当x ∈(-3,-1),(2,4)时,f (x )为减函数,当x ∈(-1,2),(4,+∞)时,f (x )为增函数,∴x =-1是f (x )的极小值点, x =2是f (x )的极大值点,故选B. 答案 B11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是直线l :x =a 2c (c 2=a 2+b 2)上一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=4ab ,则双曲线的离心率是( )A. 2B. 3C. 2D. 3解析 设直线l 与x 轴交于点A ,在Rt △PF 1F 2中,有|PF 1|·|PF 2|=|F 1F 2|·|P A |,则|P A |=2ab c ,又|P A |2=|F 1A |·|F 2A |,则4a 2b 2c 2=(c -a 2c )·(c +a 2c )=c 4-a 4c 2,即4a 2b 2=b 2(c 2+a 2),即3a 2=c 2,从而e =ca = 3.选B.答案 B12.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥8x x 2+4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 f (x )在(-∞,+∞)内单调递增,则f ′(x )≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x ∈R 恒成立,故Δ≤0,即m ≥43;m ≥8xx 2+4对任意x >0恒成立,即m ≥(8x x 2+4)max ,因为8x x 2+4=8x +4x ≤2,当且仅当x =2时,“=”成立,故m ≥2.易知p 是q 的必要不充分条件.答案 B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为________.解析 ∵双曲线y 212-x 24=1的焦点坐标为(0,±4),顶点坐标为(0,±23), ∴椭圆的顶点坐标为(0,±4),焦点坐标为(0,±23),在椭圆中a =4,c =23,b 2=4.∴椭圆的方程为x 24+y 216=1. 答案 x 24+y 216=114.给出下列三个命题:①函数y =tan x 在第一象限是增函数;②奇函数的图像一定过原点;③函数y =sin2x +cos2x 的最小正周期为π,其中假.命题的序号是________.解析 ①不正确,如x =π4时tan x =1,当x =9π4时tan x =1,而9π4>π4,所以tan x 不是增函数;②不正确,如函数y =1x 是奇函数,但图像不过原点;③正确.答案 ①②15.若要做一个容积为324的方底(底为正方形)无盖的水箱,则它的高为________时,材料最省.解析 把材料最省问题转化为水箱各面的面积之和最小问题,然后列出所用材料和面积关于边长a 的函数关系式.设水箱的高度为h ,底面边长为a ,那么V =a 2h =324,则h =324a 2,水箱所用材料的面积是S =a 2+4ah =a 2+1296a ,令S ′=2a -1296a 2=0,得a 3=648,a =633, ∴h =324a 2=324(633)2=333,经检验当水箱的高为333时,材料最省. 答案 33316.设m ∈R ,若函数y =e x +2mx (x ∈R)有大于零的极值点,则m 的取值范围是________.解析 因为函数y =e x +2mx (x ∈R)有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图像可得-2m >1,即m <-12.答案 m <-12三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a ,b ,c 的值.解 本题涉及了3个未知量,由题意可列出三个方程即可求解. ∵y =ax 2+bx +c 过点(1,1), ∴a +b +c =1.①又∵在点(2,-1)处与直线y =x -3相切, ∴4a +2b +c =-1.②∴y ′=2ax +b ,且k =1. ∴k =y ′| x =2=4a +b =1, ③联立方程①②③得⎩⎪⎨⎪⎧a =3,b =-11,c =9.18.(12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为63,直线l :y =-x +22与以原点为圆心、以椭圆C 1的短半轴长为半径的圆相切.求椭圆C 1的方程.解 ∵e =63,∴e 2=c2a 2=a 2-b 2a 2=23,∴a 2=3b 2.∵直线l :y =-x +22与圆x 2+y 2=b 2相切, ∴222=b ,∴b =2.∴b 2=4,a 2=12.∴椭圆C 1的方程是x 212+y 24=1.19.(12分)已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ). (1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图像上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),则F ′(x )=1x -a x 2=x -ax 2(x >0), ∵a >0,由F ′(x )>0,得x ∈(a ,+∞),∴F (x )在(a ,+∞)上单调递增; 由F ′(x )<0,得x ∈(0,a ), ∴F (x )在(0,a )上单调递减.∴F (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)由(1)知F ′(x )=x -a x 2(0<x ≤3),则k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立,即a ≥(-12x 20+x 0)max ,当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,∴a min =12.20.(12分)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于两点P ,Q ,交直线l 1于点R ,求RP →·RQ →的最小值.解 (1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线. ∴所求轨迹的方程为x 2=4y .(2)由题意知,直线l 2的方程可设为y =kx +1(k ≠0),与抛物线方程联立消去y 得x 2-4kx -4=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.又易得点R 的坐标为(-2k ,-1).∴RP →·RQ →=(x 1+2k ,y 1+1)·(x 2+2k ,y 2+1)=(x 1+2k )(x 2+2k )+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+(2k +2k )(x 1+x 2)+4k 2+4 =-4(1+k 2)+4k (2k +2k )+4k 2+4 =4(k 2+1k 2)+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号,∴RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16.21.(12分)已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )与g (x )在区间(a ,a +1)上均为增函数,求a 的取值范围;(3)若方程f (x )=g (x )+m 有唯一解,试求实数m 的值.解 (1)因为f ′(x )=2x -8x ,所以切线的斜率k =f ′(1)=-6,又f (1)=1,故所求的切线方程为y -1=-6(x -1),即y =-6x +7.(2)因为f ′(x )=2(x +2)(x -2)x, 又x >0,所以当x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.即f (x )在(2,+∞)上单调递增,在(0,2)上单调递减.又g (x )=-(x -7)2+49,所以g (x )在(-∞,7)上单调递增,在(7,+∞)上单调递减,欲使函数f (x )与g (x )在区间(a ,a +1)上均为增函数,则⎩⎨⎧ a ≥2,a +1≤7,解得2≤a ≤6.故a 的取值范围是[2,6](3)原方程等价于2x 2-8ln x -14x =m ,令h (x )=2x 2-8ln x -14x ,则原方程即为h (x )=m .因为当x >0时原方程有唯一解,所以函数y =h (x )与y =m 的图像在y 轴右侧有唯一的交点.又h ′(x )=4x -8x -14=2(x -4)(2x +1)x,且x >0, 所以当x >4时,h ′(x )>0;当0<x <4时,h ′(x )<0.即h (x )在(4,+∞)上单调递增,在(0,4)上单调递减,故h (x )在x =4处取得最小值,从而当x >0时原方程有唯一解的充要条件是m =h (4)=-16ln2-24.22.(12分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,且经过点M (4,1),直线l :y =x +m 交椭圆于A ,B 两点.(1)求椭圆的方程;(2)若直线l 不过点M ,试问直线MA ,MB 与x 轴能否围成等腰三角形?解 (1)根据题意,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),因为e =32,a 2-b 2=c 2,所以a 2=4b 2.又椭圆过点M (4,1),所以16a 2+1b 2=1,则可得b 2=5,a 2=20,故椭圆的方程为x 220+y 25=1.(2)将y =x +m 代入x 220+y 25=1并整理得5x 2+8mx +4m 2-20=0,Δ=(8m )2-20(4m 2-20)>0,得-5<m <5. 设直线MA ,MB 的斜率分别为k 1和k 2, A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8m 5,x 1x 2=4m 2-205. k 1+k 2=y 1-1x 1-4+y 2-1x 2-4=(y 1-1)(x 2-4)+(y 2-1)(x 1-4)(x 1-4)(x 2-4). 上式分子=(x 1+m -1)(x 2-4)+(x 2+m -1)·(x 1-4) =2x 1x 2+(m -5)(x 1+x 2)-8(m -1)=2(4m 2-20)5-8m (m -5)5-8(m -1)=0, 即k 1+k 2=0.所以直线MA,MB与x轴能围成等腰三角形.。

【专业资料】新版高中数学人教A版选修1-1习题:第二章 圆锥曲线与方程 2.1.2.1 含解析

【专业资料】新版高中数学人教A版选修1-1习题:第二章 圆锥曲线与方程 2.1.2.1 含解析

2.1.2椭圆的简单几何性质(一)课时过关·能力提升基础巩固1.椭圆x 22+y24=1的短轴长为()A.√2B.2C.2√2D.42.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是()A.x 23+y24=1B.x242√3=1C.x 2+y2=1D.x2+y2=13.已知椭圆中心在原点,一个焦点为(−√3,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是( )A.x 24+y2=1B.x2+y24=1C.x 23+y2=1D.x2+y23=1一个焦点为(−√3,0),∴焦点在x轴上,且c=√3.又长轴长是短轴长的2倍,即2a=2×2b,∴a=2b.故选A.4.在一个椭圆中,以焦点F1,F2为直径两端点的圆恰好过椭圆短轴的两个端点,则此椭圆的离心率e等于()A.12B.√22C.√32D.2√55b=c,故a=√2c.所以e=ca =√22.5.椭圆x 225+y29=1与x29-k+y225-k=1(0<k<9)的关系为()A.有相等的长、短轴B.有相等的焦距C.有相同的焦点D.有相等的离心率x2+y2=1中,a=5,b=3,c=4,且焦点在x轴上.在椭圆x2+y2=1中, ∵0<k<9,且25-k>9-k,∴焦点在y轴上,且c=4,∴两个椭圆有相等的焦距.6.已知P是椭圆x 22+y2b2=1(a>b>0)上的一个动点,且点P与椭圆长轴两顶点连线的斜率之积为−1,则椭圆的离心率为()A.√32B.√22C.12D.√33P(x0,y0),则y0x0-a·y0x0+a=−12,化简得x02a2+2y02a2=1.又因为点P在椭圆上,所以x02a2+y02b2=1,所以a2=2b2,故e=√22.7.若焦点在x轴上的椭圆x 22+y2m=1的离心率为12,则m=.x轴上, 所以0<m<2.所以a2=2,b2=m.所以c2=a2-b2=2-m.因为椭圆的离心率为e=12,所以e2=14=c2a2=2-m2,解得m=32.8.若椭圆的中心在原点,其对称轴为坐标轴,长轴长为2√3,离心率为√33,则该椭圆的方程为.,a=√3.又e =√33,∴c =1.∴b2=2,∴椭圆的方程为x 23+y 22=1或y 23+x 22=1.y 22=1或y 23+x 22=19.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交椭圆C 于点D ,且BF ⃗⃗⃗⃗⃗ =2FD ⃗⃗⃗⃗⃗ ,则椭圆C 的离心率为 .x 2a 2+y 2b2=1(a >b >0),则不妨设B (0,b ),F (c ,0). 设D (x 0,y 0),∵BF ⃗⃗⃗⃗⃗ =2FD ⃗⃗⃗⃗⃗ , ∴(c ,-b )=2(x 0-c ,y 0). ∴x 0=3c,y0=−b.代入椭圆方程得9c 24a 2+b24b2=1,∴c 2a2=13,∴e =c a =√33.10.已知A 为y 轴上一点,F 1,F 2是椭圆的两个焦点,△AF 1F 2为等边三角形,且AF 1的中点B 恰好在椭圆上,求此椭圆的离心率.,连接BF 2.∵△AF 1F 2是等边三角形,且B 为线段AF 1的中点,∴AF 1⊥BF 2.又∠BF 2F 1=30°,|F 1F 2|=2c , ∴|BF 1|=c ,|BF 2|=√3c.根据椭圆定义得|BF 1|+|BF 2|=2a , 即c +√3c =2a,∴ca =√3−1. ∴椭圆的离心率e =√3−1.能力提升1.已知椭圆x 2a 2+y 2b2=1(a >b >0)有两个顶点在直线x +2y =2上,则此椭圆的焦点坐标是( )A.(±√3,0)B.(0,±√3)C.(±√5,0)D.(0,±√5)2.椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F,椭圆C 与x 轴正半轴交于点A,与y 轴正半轴交于点B(0,2),且BF⃗⃗⃗⃗⃗ ·BA ⃗⃗⃗⃗⃗ =4√2+4,则椭圆C 的方程为( ) A .x 24+y 22=1B.x 26+y 24=1C .x 28+y 24=1D.x 216+y 28=13.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为( ) A .14B.√55C .1D.√5−2A ,B 为椭圆的左、右顶点,F 1,F 2为椭圆的左、右焦点,所以|AF 1|=a-c ,|F 1F 2|=2c ,|F 1B|=a+c.又因为|AF 1|,|F 1F 2|,|F 1B|成等比数列, 所以(a-c )(a+c )=4c 2,即a 2=5c 2. 所以离心率e =c a =√55,故选B.4.已知椭圆的中心在原点,焦点在x 轴上,离心率为√55,且过点P(−5,4),则椭圆的方程为 .e =c a=√55,∴c 2a 2=a 2-b 2a 2=15,∴5a 2-5b 2=a 2,即4a 2=5b 2.设椭圆的标准方程为x 2a 2+5y 24a 2=1(a >0). ∵椭圆过点P (-5,4),∴25a 2+5×164a 2=1.解得a2=45.∴椭圆方程为x 245+y236=1.y236=1★5.已知椭圆x225+y216=1的左、右焦点分别是F1,F2,弦AB过F1,若△ABF2的面积是5,A,B两点的坐标是(x1,y1),(x2,y2),则|y1-y2|=.,S△ABF2=S△AF1F2+S△BF1F2=c|y1−y2|(A,B在x轴上、下两侧),又S△ABF2=5,∴|y1−y2|=5c=53.6.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是等边三角形,求该椭圆的离心率.x轴上,如图,由AB⊥F1F2,且△ABF2是等边三角形,得出在Rt△AF1F2中,∠AF2F1=30°.令|AF1|=x,则|AF2|=2x,利用勾股定理,求出|F1F2|=√3x=2c.而|AF1|+|AF2|=2a,即可求出离心率e.x轴上,∵AB⊥F1F2,且△ABF2为等边三角形,∴在Rt△AF1F2中,∠AF2F1=30°.令|AF1|=x,则|AF2|=2x.∴|F1F2|=√|AF2|2-|AF1|2=√3x=2c.由椭圆定义,可知|AF1|+|AF2|=2a.∴e=2c2a=√3x3x=√33.★7.设椭圆的中心在原点,焦点在x轴上,离心率e=√32,已知点P(0,32)到这个椭圆上的点的最远距离为√7,求这个椭圆方程.x2a2+y2b2=1(a>b>0),M(x,y)为椭圆上的点,由ca=√32,得a=2b,|PM|2=x2+(y-32)2=−3(y+12)2+4b2+3(−b≤y≤b).若0<b<12,则当y=-b时|PM|2最大,即(b+32)2=7,解得b=√7−32>12,故矛盾.若b≥12,则当y=−12时,4b2+3=7,b2=1,从而a2=4.所求方程为x24+y2=1.。

高中数学选修1-1全册习题(答案详解)

高中数学选修1-1全册习题(答案详解)

目录:数学选修1-1第一章常用逻辑用语 [基础训练A组]第一章常用逻辑用语 [综合训练B组]第一章常用逻辑用语 [提高训练C组]第二章圆锥曲线 [基础训练A组]第二章圆锥曲线 [综合训练B组]第二章圆锥曲线 [提高训练C组]第三章导数及其应用 [基础训练A组]第三章导数及其应用 [综合训练B组] 第三章导数及其应用 [提高训练C组](数学选修1-1)第一章 常用逻辑用语[基础训练A 组]一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真 3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0a b >>是33a b >的充要条件.则其中正确的说法有( ) A .0个B .1个C .2个D .3个4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。

人教A版高二数学选修1-1 专题1-1-2四种命题及其相互关

人教A版高二数学选修1-1 专题1-1-2四种命题及其相互关

1.1.2 四种命题及其相互关系(学案)一、知识梳理我们知道,能够判断真假的语句叫做命题.例如,(1)如果两个三角形全等,那么它们的面积相等;(2)如果两个三角形的面积相等,那么它们全等;(3)如果两个三角形不全等,那么它们的面积不相等;(4)如果两个三角形的面积不相等,那么它们不全等.二、讲解新课:探究(一):命题(2)、(3)、(4)与命题(1)有何关系?1.上面的四个命题都是形式的命题,可记为,其中p是命题的条件,q是命题的结论.2.在上面的例子中,命题(2)的分别是命题(1)的,我们称这两个命题为互逆命题.命题(3)的分别是命题(1)的,这两个命题称为互否命题.命题(4)的分别是命题(1)的,这两个命题称为互为逆否命题.3.逆命题、否命题和逆否命题的含义:一般地,设“若p则q”为原命题,那么就叫做原命题的逆命题;就叫做原命题的否命题;就叫做原命题的逆否命题.4.四种命题之间的关系:5.四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.二、典例解析题型一四种命题的概念例1.命题“若a2>b2,则a>b”的否命题是( )A.若a2>b2,则a≤b B.若a2≤b2,则a≤bC.若a≤b,则a2>b2D.若a≤b,则a2≤b2点评:写一个命题的其他三种命题时的2个注意点(1)对于不是“若p ,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.跟踪训练1. 命题“若x 2+3x -4=0,则x =4”的逆否命题为( ) A .“若x =4,则x 2+3x -4=0”B .“若x ≠4,则x 2+3x -4≠0”C .“若x ≠4,则x 2+3x -4≠0”D .“若x =4,则x 2+3x -4=0”题型二 命题的真假判断例2.对于下列说法正确的是( )A .若()f x 是奇函数,则()f x 是单调函数B .命题“若220x x --=,则1x =”的逆否命题是“若1x ≠,则220x x --=”C .命题:,21024x p x R ∀∈>,则0:p x R ⌝∃∈,021024x <D .命题“()2,0,2x x x ∃∈-∞<”是真命题点评:在判断四个命题之间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应的有了它的“逆命题”“否命题”“逆否命题”;判定命题为真命题时要进行推理,判定命题为假命题时只需举出反例即可.对涉及数学概念的命题的判定要从概念本身入手.跟踪训练2. 以下关于命题的说法正确的有________(填写所有正确命题的序号). ①“若log 2a >0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数”是真命题; ②命题“若a =0,则ab =0”的否命题是“若a ≠0,则ab ≠0”;③命题“若x ,y 都是偶数,则x +y 也是偶数”的逆命题为真命题;④命题“若a ∈M ,则b ∉M ”与命题“若b ∈M ,则a ∉M ”等价.题型三 四种命题关系的应用例3.证明:若p 2 + q 2=2,则p + q ≤ 2.点评:利用原命题与逆否命题,逆命题与否命题的等价关系进行判断.(1)逆命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假,故当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.跟踪训练3.证明:若a2-b2+2a-4b-3≠0,则a-b≠1.。

2019版【人教A版】高中数学:选修1-1、1-2课本例题习题改编(含答案)

2019版【人教A版】高中数学:选修1-1、1-2课本例题习题改编(含答案)

2019版数学精品资料(人教版) 人教A 版选修1-1,1-2课本例题习题改编1. 原题(选修1-1第三十五页例3)改编 已知点A 、B 的坐标分别是A (0,-1),B (0,1),直线AM 、BM 相交于点M ,且它们的斜率之积是-t ,t ∈(0,1].求M 的轨迹方程,并说明曲线的类型. 解:设M (x ,y ),则10BM y k x -=- (x ≠0),(1)0AM y k x --=-(x ≠0),BM AM k k =-t ,10y x -- ∙(1)y x ---=-t(x ≠0),整理得221x y t+=1(x ≠0)(1)当t ∈(0,1)时,M 的轨迹为椭圆(除去A 和B 两点);(2)当t=1时,M 的轨迹为圆(除去A 和B 两点).2.原题(选修1-1第五十四页习题2.2A 组第一题)改编 1F 、2F 是双曲线2211620x y -=的焦点,点P 在双曲线上,若点P 到焦点1F 的距离等于9,则点P 到焦点2F 的距离等于解:∵双曲线2211620x y -=得:a=4,由双曲线的定义知||P 1F |-|P 2F ||=2a=8,|P 1F |=9, ∴|P 2F |=1<(不合,舍去)或|P 2F |=17,故|P 2F |=17.3. 原题(选修1-1第六十八页复习参考题B 组第一题)改编 已知F 1、F 2分别为椭圆191622=+y x 的左、右焦点,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,求21F PF ∆的面积. 解:依题意,可知当以F 1或F 2为三角形的直角顶点时,点P 的坐标为97,4⎛⎫±±⎪⎝⎭,则点P 到x 轴的距离为49,此时21F PF ∆的面积为479;当以点P 为三角形的直角顶点时,点P 的坐标为3779>,舍去。

故21F PF ∆的面积为479. 4. 原题(选修1-2第五十五页习题3.1B 组第二题)改编 设,C z ∈满足条件.12141log 21->--+-z z 的复数z 所对应的点z 的集合表示什么图形?1214|1|4log 12,12|1|2|1|8108z Z z Z Z Z -+-+>-<----->解:由可得0<化简得:所以表示以(,)为圆心,以为半径的圆的外部。

最新【人教A版】高中数学:必修1课本例题习题改编(含答案)

最新【人教A版】高中数学:必修1课本例题习题改编(含答案)

最新人教版数学精品教学资料人教A 版必修1课本例题习题改编1.原题(必修1第七页练习第三题(3))判断下列两个集合之间的关系:A={}{}|410|20,x x x N B x x m m N ++∈==∈是与的公倍数,, 改编 已知集合4x x M xN N **⎧⎫=∈∈⎨⎬⎩⎭且10,集合40x N x Z ⎧⎫=∈⎨⎬⎩⎭,则( )A .M N =B .N M ⊆C .20x MN x Z ⎧⎫=∈⎨⎬⎩⎭ D .40x MN x N *⎧⎫=∈⎨⎬⎩⎭解:{}20,M x x k k N *==∈, {}40,N x x k k Z ==∈,故选D .2.原题(必修1第十二页习题1.1B 组第一题)已知集合A={1,2},集合B 满足A ∪B={1,2},则这样的集合B 有 个.改编1 已知集合A 、B 满足A ∪B={1,2},则满足条件的集合A 、B 有多少对?请一一写出来.解:∵A ∪B={1,2},∴集合A ,B 可以是:∅,{1,2};{1},{1,2};{1},{2};{2},{1,2};{2},{1};{1,2},{1,2};{1,2},{1};{1,2},{2};{1,2},∅.则满足条件的集合A 、B 有9对. 改编2 已知集合A 有n 个元素,则集合A 的子集个数有 个,真子集个数有 个 解:子集个数有2n个,真子集个数有21n-个 改编3 满足条件{}{}1,21,2,3A =的所有集合A 的个数是 个解:3必须在集合A 里面,A 的个数相当于2元素集合的子集个数,所以有4个.3.原题(必修1第十三页阅读与思考“集合中元素的个数”)改编 用C(A)表示非空集合A 中的元素个数,定义⎩⎨⎧<-≥-=*C(B)C(A)当C(A),C(B)C(B)C(A)当C(B),C(A)B A ,若{}{}02)ax ax)(x (x x B ,1,2A 22=+++==,且1B A =*,则由实数a 的所有可能取值构成的集合S = .解:由{}2C(A)1,2A ==得,而1B A =*,故3C(B)1C(B)==或.由02)ax ax)(x (x 22=+++得02)ax (x 0ax)(x 22=++=+或.当1C(B)=时,方程02)ax ax)(x (x 22=+++只有实根0x =,这时0a =.当3C(B)=时,必有0a ≠,这时0a x )(x 2=+有两个不相等的实根a x 0,x 21-==,方程02)ax (x 2=++必有两个相等的实根,且异于a x 0,x 21-==,有0,8a Δ2=-=∴22a ±=,可验证均满足题意,∴{}22,0,22-=S .4.原题(必修1第二十三页练习第二题)改编1 小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是解:先分析小明的运动规律,再结合图象作出判断.距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,后段比前段下降得快, 答案选C .改编 2 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是 ( )解:汽车加速行驶时,速度变化越来越快,而汽车匀速行驶时,速度保持不变,体现在s 与t 的函数图象上是一条直线,减速行驶时,速度变化越来越慢,但路程仍是增加的.答案:A .5.原题(必修1第二十四页习题1.2A 组第七题)画出下列函数的图象:(1)F(x)=改编 设函数D(x)= 则下列结论错误的是( )A .D(x)的值域为{0,1}B . D(x)是偶函数C .D(x)不是周期函数D .D(x)不是单调函数解:由已知条件可知,D(x)的值域是{0,1},选项A 正确;当x 是有理数时,-x 也是有理数,且D(-x)=1,D(x)=1,故D(-x)=D(x),当x 是无理数时,-x 也是无理数,且D(-x)=0,D(x)=0,即D(-x)=D(x),故D(x)是偶函数,选项B 正确;当x 是有理数时,对于任一非零有理数a,x+a 是有理数,且D(x+a)=1=D(x),1,x 0,x ⎧⎨⎩为有理数,为无理数,0,x 01,x>0;≤⎧⎨⎩,当x 是无理数时,对于任一非零有理数b,x+b 是无理数,所以D(x+b) =D(x)=0,故D(x)是周期函数,(但不存在最小正周期),选项C 不正确;由实数的连续性易知,不存在区间I,使D(x)在区间I 上是增函数或减函数,故D(x)不是单调函数,选项D 正确. 答案:C . 6.原题(必修1第二十四页习题1.2A 组第十题)改编 已知集合{}{}1,2,3,1,2,3,4A B ==.定义映射:f A B →,则满足点(1,(1)),(2,(2)),(3,(3))A f B f C f 构成ABC ∆且=AB BC 的映射的个数为.解:从A 到B 的映射有3464=个,而其中要满足条件的映射必须使得点A 、B 、C 不共线且=AB BC ,结合图形可以分析得到满足(3)(1)(2)f f f =≠即可,则满足条件的映射有114312m C C =⋅=个.7.原题(必修1第二十五页习题 1.2B 组第二题)画出定义域为{}38,5x x x -≤≤≠且,值域为{}12,0y y y -≤≤≠的一个函数的图像,(1)将你的图像和其他同学的比较,有什么差别吗?(2)如果平面直角坐标系中点P (x,y )的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图像上?改编 若函数()y f x =的定义域为{}38,5x x x -≤≤≠,值域为{}12,0y y y -≤≤≠,则()y f x =的图象可能是( )ABCD解:根据函数的概念,任意一个x 只能有唯一的y 值和它对应,故排除C ;由定义域为{}38,5x x x -≤≤≠排除A 、D,选B.8.原题(必修1第二十五页习题1.2B 组第三题)函数[x]f(x)=的函数值表示不超过x 的最大整数,例如,4]5.3[-=-;2]1.2[=;当(]35.2, -∈x 时,写出函数f(x)的解析式,并作出函数的图象. 改编 1 对于任意实数x ,符号[x]表示x 的整数部分,即[x]是不超过x 的最大整数,例如2[2]=;2]1.2[=;3]2.2[-=-.函数[x]y =叫做“取整函数”,它在数学本身和生产实践中有广泛的应用,则]26[log ]3[log ]2[log ]1[log 3333++++ 的值为 .解:由题意得,∵130=, 31=3,92=3,2733=.∴原式中共有2个0,6个1,18个2,故原式=422181602=⨯+⨯+⨯.改编2 已知函数f (x )=x -[x ], 其中[x ]表示不超过实数x 的最大整数. 若关于x 的方程f (x )=kx +k 有三个不同的实根, 则实数k 的取值范围是 .111111111111A.[1,)(,]B.(1,][,)C.[,)(,1]D.(,][,1)243243342342- -⋃ - -⋃ - -⋃ - -⋃解:画出f(x)的图象(如右图), 与过定点(-1, 0)的直线y=kx+k=k(x+1) 有三个不同的公共点, 利用数形结合的办法, 可求得直线斜率k 的取值范围为111(1,][,)243- -⋃ . 答案:B .改编3 对于任意实数x ,符号[]x 表示x 的整数部分,即[]x 是不超过x 的最大整数.这个函数[]x 叫做“取整函数”,它在数学本身和生产实践中有广泛的应用.那么,(1)[]2log 1+[]2log 2+[]2log 3+[]2log 4+……+[]2log 1024= (2)设()[][],1,3f x x x x ⎡⎤=⋅∈⎣⎦,则()f x 的值域为解:(1)[]2log 1=0,[]2log 2=[]2log 3=1,[]2log 4=[]2log 5=[]2log 6=[]2log 7=2,[]2log 8=[]2log 9=……=[]2log 15=3,[]2log 16=[]2log 17=……=[]2log 31=4,…… []2log 512=[]2log 512=……=[]2log 1023=9,[]2log 1024=10,则原式=234912223242++92+10⨯+⨯+⨯+⨯⨯,用“错位相减法”可以求出原式的值为8204.(2)[)[]()[)[]()1,21,1;2,2.52,4x x f x x x f x ∈==∈==时,时,;[)[]()[]()2.5,32,5;33,9x x f x x x f x ∈=====时,时,;故[]1,3x ∈时()f x 的值域为{}1,4,5,9答案:(1)8204; (2){}1,4,5,9.改编4 函数()[][]2,2f x x x x ⎡⎤=∈-⎣⎦,的值域为 .解:当[)2,1x ∈--时,[]2x =-,(]()[]22,4,2{2,3,4}x f x x -∈=-∈;当[)1,0x ∈-时,[]1x =-,(]()[]0,1,{01}x f x x -∈=-∈,;当[)0,1x ∈时,[]0x =,()0f x =;当[)1,2x ∈时,[]1x =,()[]=1f x x =;当=2x 时,()[]4=4f x =;∴值域为{0,12,3,4},.答案:{0,12,3,4},. 9.原题(必修1第三十六页练习第1题(3))判断下列函数的奇偶性:x1x f(x)2+=.改编 关于函数0)(x x1x lg f(x)2≠+=,有下列命题:①其图象关于y 轴对称;②当0x >时,f(x)是增函数;当0x <时,f(x)是减函数;③f(x)的最小值是lg2;④f(x)在区间),2(),0,1(+∞-上是增函数;⑤f(x)无最大值,也无最小值.其中所有正确结论的序号是 .解: 0)(x x 1x lg f(x)2≠+=为偶函数,故①正确;令x 1x u(x)2+=,则当0x >时,x 1x u(x)+=在)1,0(上递减,在),1[+∞上递增,∴②错误;③④正确;⑤错误.答案:①③④.10.原题(必修1第三十九页复习参考题B 组第三题)已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.改编 已知定义在[-2, 2]上的偶函数f (x )在区间[0, 2]上是减函数, 若f (1-m )<f (m ), 则实数m 的取值范围是 .解:由偶函数的定义, (1)(|1|)()(||)f m f m f m f m -=-⎧⎨=⎩, 又由f (x )在区间[0, 2]上是减函数, 所以10|||1|2m m m ≤<- ≤2⇒ -1≤<.答案:12m -1≤<. 11.原题(必修1第四十四页复习参考题A 组第四题)已知集合A={x|2x =1},集合B={x|ax=1},若B ⊆A ,求实数a 的值.改编 已知集合A={x|x-a=0},B={x|ax-1=0},且A∩B=B ,则实数a 等于 。

高中数学人教A版选修1-1第1章1-1-2四种命题课时测试及解析

高中数学人教A版选修1-1第1章1-1-2四种命题课时测试及解析

高中数学人教A版选修1-1 第一章导数及其应用1.1.2 四种命题课时测试(1)1.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A.若一个数是负数,则它的平方不是正数B.若一个数的平方是正数,则它是负数C.若一个数不是负数,则它的平方不是正数D.若一个数的平方不是正数,则它不是负数【解析】选B.命题“若p,则q”的逆命题是“若q,则p”.故B正确.2.命题“若A∪B=A,则A∩B=B”的否命题是( )A.若A∪B≠A,则A∩B≠BB.若A∪B=A,则A∩B≠BC.若A∩B≠B,则A∪B≠AD.若A∪B≠A,则A∩B=B【解析】选A.否命题是对原命题的条件和结论同时否定,所以选A.3.命题“若x≥a2+b2,则x≥2ab”的逆命题是( )A.若x<a2+b2,则x<2abB.若x≥a2+b2,则x<2abC.若x<2ab,则x<a2+b2D.若x≥2ab,则x≥a2+b2【解析】选D.原命题条件和结论对换得到逆命题,可知选D.4.命题“若∠C=90°,则△ABC是直角三角形”的否命题的真假性为________.【解析】原命题的否命题为“若∠C≠90°,则△ABC不是直角三角形”,明显是假命题.答案:假命题5.已知命题:“若m>2,则方程x2+2x+3m=0无实根”,写出该命题的逆命题、否命题和逆否命题,并判断真假.【解析】逆命题:“若方程x2+2x+3m=0无实根,则m>2”,假命题.否命题:“若m≤2,则方程x2+2x+3m=0有实根”,假命题.逆否命题:“若方程x2+2x+3m=0有实根,则m≤2”,真命题.课时测试(2)一、选择题(每小题4分,共12分)1.(2016·泉州高二检测)已知命题p:垂直于平面α内无数条直线的直线l垂直于平面α,q是p的否命题,下面结论正确的是( )A.p真,q真B.p假,q假C.p真,q假D.p假,q真【解析】选D.当平面α内的直线相互平行时,l不一定垂直于平面α.故p为假命题.易知p的否命题q:若直线l不垂直于平面α内无数条直线,则l不垂直于平面α.易知q为真命题.2.命题“若A∩B=A,则A⊆B”的逆否命题是( )A.若A∪B≠A,则A⊇BB.若A∩B≠A,则A⊆BC.若A⊄B,则A∩B≠AD.若A⊇B,则A∩B≠A【解析】选C.命题:“若A∩B=A,则A⊆B”的逆否命题是:若A⊄B,则A∩B≠A.故C正确.3.(2016·宝鸡高二检测)有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题;其中真命题为( )A.①②B.②③C.①③D.③④【解析】选C.①逆命题为“若x,y互为相反数,则x+y=0”是真命题;②的否命题为“不全等的三角形面积不等”为假命题;③当q≤1时,Δ=4-4q≥0,方程有实根,为真命题,故逆否命题为真命题;④逆命题为“若三角形三内角相等,则三角形是不等边三角形”为假命题.【补偿训练】下列有关命题的说法正确的是( )A.“若x>1,则2x>1”的否命题为真命题B.“若cosβ=1,则sinβ=0”的逆命题是真命题C.“若平面向量a,b共线,则a,b方向相同”的逆否命题为假命题D.命题“若x>1,则x>a”的逆命题为真命题,则a>0【解析】选C.A中,2x≤1时,x≤0,从而否命题“若x≤1,则2x≤1”为假命题,故A不正确;B 中,sinβ=0时,cosβ=±1,则逆命题为假命题,故B不正确;D中,由已知条件得a的取值范围为[1,+∞),故D不正确.二、填空题(每小题4分,共8分)ðA,则a∈A”的逆命题是,它是4.“已知a∈U(U为全集),若a∉U(填“真”或“假”)命题.ðA”,结论是“a∈A”,所以原命题的【解析】“已知a∈U(U为全集)”是大前提,条件是“a∉UðA”.它为真命题.逆命题为“已知a∈U(U为全集),若a∈A,则a∉Uð A 真答案:已知a∈U(U为全集),若a∈A,则a∉U【误区警示】改写逆命题时,易漏大前提5.命题p:“若=b,则a,b,c成等比数列”,则命题p的否命题是(填“真”或“假”)命题.【解析】命题p的否命题是“若≠b,则a,b,c不成等比数列”,是假命题,如a=c=1,b=-1满足≠b,但a,b,c成等比数列.答案:假三、解答题6.(10分)(教材P6练习1改编)写出命题“末位数字是偶数的整数能被2整除”的逆命题、否命题、逆否命题,并判断真假.【解析】因为原命题是:“若一个整数的末位数字是偶数,则它能被2整除”.所以逆命题:若一个整数能被2整除,则它的末位数字是偶数,真命题.否命题:若一个整数的末位数字不是偶数,则它不能被2整除,真命题.逆否命题:若一个整数不能被2整除,则它的末位数字不是偶数,真命题.【补偿训练】已知命题p:“若ac≥0,则二次方程ax2+bx+c=0没有实根”.(1)写出命题p的否命题.(2)判断命题p的否命题的真假,并证明你的结论.【解题指南】(1)根据命题“若p,则q”的否命题是“若p,则q”即可写出命题p的否命题.(2)根据二次方程有实根的条件,即可判断命题的真假.【解析】(1)命题p的否命题为:“若ac<0,则二次方程ax2+bx+c=0有实根”.(2)命题p的否命题是真命题.证明:因为ac<0⇒-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根,所以该命题是真命题.一、选择题(每小题5分,共10分)1.命题“若x≠3且x≠2,则x2-5x+6≠0”的否命题是( )A.若x=3且x=2,则x2-5x+6=0B.若x≠3且x≠2,则x2-5x+6=0C.若x=3或x=2,则x2-5x+6=0D.若x=3或x=2,则x2-5x+6≠0【解题指南】“若x≠3且x≠2”是同时不成立的意思,否定时要改成不同时不成立,即至少一个成立.【解析】选C.命题的否命题需将条件和结论分别否定,x≠3且x≠2的否定是x=3或x=2,因此该命题的否命题为“若x=3或x=2,则x2-5x+6=0”.【补偿训练】命题“若a>b,则a-1>b-1”的否命题是( )A.若a>b,则a-1≤b-1B.若a≥b,则a-1<b-1C.若a≤b,则a-1≤b-1D.若a<b,a-1<b-1【解析】选C.命题的否命题是将条件和结论分别否定,对a>b的否定为a≤b,对a-1>b-1的否定为a-1≤b-1,所以命题的否命题为“若a≤b,则a-1≤b-1”.2.(2016·郴州高二检测)“若x2-3x+2=0,则x=2”为原命题,则它的逆命题、否命题与逆否命题中真命题的个数是( )A.1B.2C.3D.0【解析】选B.逆命题是“若x=2,则x2-3x+2=0”,为真命题;否命题是“若x2-3x+2≠0,则x≠2”为真命题;逆否命题是“若x≠2,则x2-3x+2≠0”,因为x=1时,x2-3x+2=0,所以为假命题;所以真命题的个数为2.二、填空题(每小题5分,共10分)3.“若a>b,则2a>2b”的逆否命题为.【解析】原命题:“若p,则q”的逆否命题为:“若q,则p”.所以“若a>b,则2a>2b”的逆否命题为“若2a≤2b,则a≤b”.答案:若2a≤2b,则a≤b4.命题“若实数a满足a≤3,则a2<9”的否命题是(填“真”或“假”)命题.【解析】命题“若实数a满足a≤3,则a2<9”的否命题是“若实数a满足a>3,则a2≥9”,命题是真命题.答案:真三、解答题5.(10分)(2016·合肥高二检测)设M是一个命题,它的结论是q:x1,x2是方程x2+2x-3=0的两个根,M的逆否命题的结论是p:x1+x2≠-2或x1x2≠-3.(1)写出M.(2)写出M的逆命题、否命题、逆否命题.【解题指南】把逆否命题的结论否定即可得到原命题的条件.【解析】(1)设命题M表述为:若p,则q,那么由题意知其中的结论q为:x1,x2是方程x2+2x-3=0的两个根.而条件p的否定形式p为:x1+x2≠-2或x1x2≠-3,故p的否定形式即p为:x1+x2=-2且x1x2=-3.所以命题M为:若x1+x2=-2且x1x2=-3,则x1,x2是方程x2+2x-3=0的两个根.(2)M的逆命题为:若x1,x2是方程x2+2x-3=0的两个根,则x1+x2=-2且x1x2=-3.逆否命题为:若x1,x2不是方程x2+2x-3=0的两个根,则x1+x2≠-2或x1x2≠-3.否命题为:若x1+x2≠-2或x1x2≠-3,则x1,x2不是方程x2+2x-3=0的两个根.课时测试(3)(15分钟30分)一、选择题(每小题4分,共12分)1.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( )A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a+b+c≥3,则a2+b2+c2=3【解析】选A.因为命题“若p,则q”的否命题为“若p,则q”,故选A.2.下列命题的逆命题为真命题的是( )A.若xy≠0,则x,y不都为零B.正多边形都相似C.若m>0,则x2+x-m=0有实根D.若x是无理数,则x-是有理数【解析】选D.A中逆命题为“若x,y不都为零,则xy≠0”,假命题;B中逆命题为“相似的多边形都是正多边形”,假命题;C中逆命题为“若x2+x-m=0有实根,则m>0”,假命题;D中逆命题为“若x-是有理数,则x是无理数”,真命题.3.(2015·长春高二检测)若命题p的逆命题是q,命题p的逆否命题是r,则q是r的( )A.逆命题B.否命题C.逆否命题D.以上都不正确【解题指南】设命题p为“若s,则t”的形式,分别写出q,r,再判断q与r条件与结论的关系,从而作出选择.【解析】选B.设命题p为:“若s,则t”,则命题q为:若t,则s,命题r是:若t,则s,由此知q为r的否命题.二、填空题(每小题4分,共8分)4.命题“各位数字之和是3的倍数的正整数,可以被3整除”的逆命题是___________________________________________________________,否命题是___________________________________________________,逆否命题是__________________________________________________.【解析】逆命题是:“能被3整除的正整数,它的各位数字之和是3的倍数”.否命题:“各位数字之和不是3的倍数的正整数不能被3整除”.逆否命题是:“不能被3整除的正整数,其各位数字之和不是3的倍数”.答案:能被3整除的正整数,它的各位数字之和是3的倍数各位数字之和不是3的倍数的正整数,不能被3整除不能被3整除的正整数,其各位数字之和不是3的倍数5.(2015·烟台高二检测)下列命题:①“等边三角形三内角都为60°”的逆命题;②“若k>0,则x2+2x-k=0有实根”的逆否命题;③“全等三角形的面积相等”的否命题;④“若ab≠0,则a≠0”的否命题;其中真命题的序号为________.【解析】①逆命题“三内角都为60°的三角形为等边三角形”,真命题;②逆否命题“若x2+2x-k=0没有实根,则k≤0”,因为Δ=4+4k<0,所以k<-1,满足k≤0,所以是真命题;③否命题“不全等的三角形的面积不相等”,是假命题;④否命题“若ab=0,则a=0”是假命题,故只有①②是真命题.答案:①②【补偿训练】(2015·西安高二检测)对于命题“若数列{a n}是等比数列,则a n≠0”,下列说法正确的是( )A.它的逆命题是真命题B.它的否命题是真命题C.它的逆否命题是假命题D.它的否命题是假命题【解析】选D.命题“若数列{a n}是等比数列,则a n≠0”的逆命题为“若a n≠0,则数列{a n}是等比数列”为假命题,故A错.否命题为“若数列{a n}不是等比数列,则a n=0”,显然是假命题,如a n=2n(n∈N*)不是等比数列,对应a n≠0,故选D.三、解答题6.(10分)写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假.(1)在△ABC中,若BC>AC,则∠A>∠B;(2)相等的两个角的正弦值相等.【解析】(1)逆命题:在△ABC中,若∠A>∠B,则BC>AC;真命题.否命题:在△ABC中,若BC≤AC,则∠A≤∠B;真命题.逆否命题:在△ABC中,若∠A≤∠B,则BC≤AC;真命题.(2)逆命题:若两个角的正弦值相等,则这两个角相等;假命题.否命题:若两个角不相等,则这两个角的正弦值也不相等;假命题.逆否命题:若两个角的正弦值不相等,则这两个角不相等;真命题.【补偿训练】分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)当m>时,mx2-x+1=0无实根.(2)当abc=0时,a=0或b=0或c=0.【解析】(1)逆命题:当mx2-x+1=0无实根时,m>;真命题;否命题:当m≤时,mx2-x+1=0有实根;真命题;逆否命题:当mx2-x+1=0有实根时,m≤;真命题.(2)逆命题:当a=0或b=0或c=0时,abc=0;真命题;否命题:当abc≠0时,a≠0且b≠0且c≠0;真命题;逆否命题:当a≠0且b≠0且c≠0时,abc≠0;真命题.(15分钟30分)一、选择题(每小题5分,共10分)1.(2015·中山高二检测)下列判断中不正确的是( )A.命题“若A∩B=B,则A∪B=A”的逆否命题为真命题B.“矩形的两条对角线相等”的否命题为假命题C.“已知a,b,m∈R,若am2<bm2,则a<b”的逆命题是真命题D.“若x∈N*,则(x-1)2>0”是假命题【解题指南】逐个写出命题,作出判断,从中选取不正确的.【解析】选C.A中,逆否命题“若A∪B≠A,则A∩B≠B”是真命题,正确;B中,否命题“不是矩形的四边形的两条对角线不相等”是假命题,正确;C中,逆命题“已知a,b,m∈R,若a<b,则am2<bm2”是假命题.所以C错误.D中,因为x=1时,(1-1)2=0,所以是假命题,正确.2.(2015·昆明高二检测)有下列命题:①“若x+y=0,则x,y互为相反数”的否命题;②“若x>y,则x2>y2”的逆否命题;③“若x≤3,则x2-x-6>0”的否命题;④“对顶角相等”的逆命题.其中真命题的个数是( )A.0B.1C.2D.3【解析】选B.①的否命题为“若x+y≠0,则x,y不互为相反数”为真命题.②的逆否命题为“若x2≤y2,则x≤y”为假命题,如x=0,y=-1时,02≤(-1)2,但0>-1.③该命题的否命题为“若x>3,则x2-x-6≤0”,为假命题;④该命题的逆命题是“相等的角是对顶角”,是假命题.【拓展延伸】命题的四种形式及其真假的判断(1)四种形式:写出命题的四种形式,需要确定原命题的条件和结论,交换条件与结论可得到逆命题,否定条件与结论可得到否命题,既交换条件与结论,又否定条件与结论可得到逆否命题.(2)真假的判断:判断命题的真假时,需要结合命题所含的相关知识点进行推理判断,或用举反例法说明是假命题.二、填空题(每小题5分,共10分)3.(2015·沈阳高二检测)“若a∉M或a∉P,则a∉(M∩P)”的逆否命题是________________________.【解析】命题“若p,则q”的逆否命题是“若q,则p”,题中“a∉M或a∉P”的否定是“a ∈M且a∈P”.答案:若a∈(M∩P),则a∈M且a∈P【补偿训练】命题“若a·b不为零,则a,b都不为零向量”的逆否命题是_____________________________.【解析】逆否命题是“若a,b至少有一个为零向量,则a·b为零”.答案:若a,b至少有一个为零向量,则a·b为零4.命题“当a>0时,函数y=ax+b的值随x的增大而增大”的否命题是__________.【解析】命题的条件是x增大,结论是函数y=ax+b的值增大,命题的否命题是:当a>0时,若x不增大,则函数y=ax+b的值也不增大.答案:当a>0时,若x不增大,则函数y=ax+b的值也不增大【误区警示】原命题有两个条件:“a>0”和“x增大”,其中“a>0”是前提,在写原命题、逆命题、否命题、逆否命题时,把“a>0”置于“若”字的前面,把“x增大”作为原命题的条件,不能把“a>0”和“x增大”都当成条件.三、解答题5.(10分)(2015·苏州高二检测)在公比为q的等比数列{a n}中,前n项的和为S n,若S m,S m+2,S m+1成等差数列,则a m,a m+2,a m+1成等差数列.(1)写出这个命题的逆命题.(2)判断公比q为何值时,逆命题为真?公比q为何值时,逆命题为假?【解题指南】解答本题首先需根据逆命题的概念正确写出逆命题,然后根据等差数列和等比数列的性质判断何时为真命题,何时为假命题.【解析】(1)逆命题:在公比为q的等比数列{a n}中,前n项的和为S n,若a m,a m+2,a m+1成等差数列,则S m,S m+2,S m+1成等差数列.(2)由{a n}为等比数列,所以a n≠0,q≠0.由a m,a m+2,a m+1成等差数列,得2a m+2=a m+a m+1,所以2a m·q2=a m+a m·q,所以2q2-q-1=0.解得q=-或q=1.当q=1时,a n=a1(n=1,2,…),所以S m+2=(m+2)a1,S m=ma1,S m+1=(m+1)a1,因为2(m+2)a1≠ma1+(m+1)a1,即2S m+2≠S m+S m+1,所以S m,S m+2,S m+1不成等差数列.即q=1时,原命题的逆命题为假命题.当q=-时,2S m+2=2·,S m+1=,S m=,所以2S m+2=S m+1+S m,所以S m,S m+2,S m+1成等差数列,即q=-时,原命题的逆命题为真命题.。

最新精编高中人教A版选修1-1高中数学强化训练3.4生活中的优化问题举例和答案

最新精编高中人教A版选修1-1高中数学强化训练3.4生活中的优化问题举例和答案

§3.4 生活中的优化问题举例课时目标 通过用料最省、利润最大、效率最高等优化问题,使学生体会导数在解决实际问题中的作用,会利用导数解决简单的实际生活中的优化问题.1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为____________,通过前面的学习,我们知道________是求函数最大(小)值的有力工具,运用________,可以解决一些生活中的______________.2.解决实际应用问题时,要把问题中所涉及的几个变量转化成函数关系,这需通过分析、联想、抽象和转化完成.函数的最值要由极值和端点的函数值确定,当定义域是开区间,而且其上有惟一的极值,则它就是函数的最值.3.解决优化问题的基本思路是:用函数表示的数学问题→用函数表示的数学问题 ↓优化问题的答案←用导数解决数学问题上述解决优化问题的过程是一个典型的_________ _过程.一、选择题1.某箱子的容积与底面边长x 的关系为V (x )=x 2⎝ ⎛⎭⎪⎫60-x 2 (0<x <60),则当箱子的容积最大时,箱子底面边长为( )A .30B .40C .50D .其他2.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件3.某工厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时堆料场的长和宽分别为( )A .32米,16米B .30米,15米C .40米,20米D .36米,18米4.若底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( )A .3VB .32VC .34VD .23V 5.要做一个圆锥形的漏斗,其母线长为20 cm ,要使其体积最大,则高为( ) A .33 cm B .1033 cmC .1633 cmD .2033cm6.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总收益r 与年产量x 的关系是r =⎩⎨⎧400x -12x 2xx ,则总利润最大时,年产量是( )A .100B .150C .200D .300二、填空题7.某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y1和y2分别为2万元和8万元.那么,要使这两项费用之和最小,仓库应建在离车站________千米处.8.如图所示,一窗户的上部是半圆,下部是矩形,如果窗户面积一定,窗户周长最小时,x与h的比为________.9.做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为________.三、解答题10.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为(2+x)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其它因素.记余下工程的费用为y万元.(1)试写出y关于x的函数关系式;(2)当m=640米时,需新建多少个桥墩才能使y最小?11.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x(单位:元,0≤x≤30)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成x的函数;(2)如何定价才能使一个星期的商品销售利润最大?能力提升12.某单位用2 160万元购得一块空地,计划在该块地上建造一栋至少10层、每层2 000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)13.已知某商品生产成本C与产量q的函数关系式为C=100+4q,价格p与产量q的函数关系式为p=25-18q,求产量q为何值时,利润L最大.利用导数解决生活中的优化问题的一般步骤.(1)分析实际问题中各变量之间的关系,建立实际问题的数学模型,写出实际问题中变量之间的函数关系y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)写出答案.§3.4 生活中的优化问题举例答案知识梳理1.优化问题 导数 导数 优化问题 作业设计1.B [V ′(x )=60x -32x 2=0,x =0或x =40.可见当x 2.C [y ′=-x 2+81,令y ′=0,得x =9或x =-9(舍去).当0<x <9时,y ′>0;当x >9时,y ′<0,故当x =9时,函数有极大值,也是最大值.]3.A [要求材料最省就是要求新砌的墙壁总长度最短,如图所示,设场地宽为x 米,则长为512x米,因此新墙壁总长度L =2x +512x(x >0),则L ′=2-512x 2.令L ′=0,得x =±16.∵x >0,∴x =16.当x =16时,L 极小值=L min =64,此时堆料场的长为51216=32(米).]4.C [设底面边长为a ,直三棱柱高为h . 体积V =3a 2h ,所以h =4V 3a2, 表面积S =2·34a 2+3a ·4V 3a2=32a 2+43Va , S ′=3a -43Va 2,由S ′=0,得a =34V .经验证,当a =34V 时,表面积最小.]5.D [设高为x cm ,则底面半径为202-x 2 cm , 体积V =π3x ·(202-x 2) (0<x <20),V ′=π3(400-3x 2),由V ′=0,得x =2033或x =-2033(舍去).当x ∈⎝⎛⎭⎪⎫0,2033时,V ′>0,当x ∈⎝ ⎛⎭⎪⎫2033,20时,V ′<0,所以当x =2033时,V 取最大值.]6.D [由题意,总成本为c =20 000+100x , 所以总利润为p =r -c=⎩⎨⎧300x -x 22-20 000x60 000-100x x,p ′=⎩⎪⎨⎪⎧300-x x -x,p ′=0,当0≤x ≤400时,得x =300; 当x >400时,p ′<0恒成立, 易知当x =300时,总利润最大.] 7.5解析 依题意可设每月土地占用费y 1=k 1x,每月库存货物的运费y 2=k 2x ,其中x 是仓库到车站的距离.于是由2=k 110,得k 1=20;由8=10k 2,得k 2=45.因此两项费用之和为y =20x +4x 5,y ′=-20x 2+45,令y ′=-20x 2+45=0得x =5(x =-5舍去),经验证,此点即为最小值点.故当仓库建在离车站5千米处时,两项费用之和最小. 8.1∶1解析 设窗户面积为S ,周长为L ,则S =π2x 2+2hx ,h =S 2x -π4x ,所以窗户周长L =πx +2x +2h =π2x +2x +S x ,L ′=π2+2-Sx 2.由L ′=0,得x =2Sπ+4,x ∈⎝⎛⎭⎪⎫0, 2S π+4时,L ′<0, x ∈⎝⎛⎭⎪⎫ 2Sπ+4,+∞时,L ′>0,所以当x =2Sπ+4时,L 取最小值, 此时h x =2S -πx 24x 2=2S 4x 2-π4=π+44-π4=1.9.3解析 设半径为r ,则高h =27ππr 2=27r 2.∴水桶的全面积S (r )=πr 2+2πr ·27r2=πr 2+54πr.S ′(r )=2πr -54πr2,令S ′(r )=0,得r =3.∴当r =3时,S (r )最小.10.解 (1)设需新建n 个桥墩,则(n +1)x =m , 即n =mx-1 (0<x <m ),所以y =f (x )=256n +(n +1)(2+x )x =256⎝ ⎛⎭⎪⎫m x -1+mx(2+x )x=256m x+m x +2m -256 (0<x <m ).(2)由 (1)知,f ′(x )=-256m x 2+12mx -12=m 2x 2(x 32-512). 令f ′(x )=0,得x 32=512,所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数;当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数,所以f (x )在x =64处取得最小值,此时n =m x -1=64064-1=9.故需新建9个桥墩才能使y 最小.11.解 (1)设商品降低x 元时,多卖出的商品件数为kx 2,若记商品在一个星期的销售利润为f (x ),则依题意有f (x )=(30-x -9)·(432+kx 2) =(21-x )·(432+kx 2),又由已知条件24=k ·22,于是有k =6, 所以f (x )=-6x 3+126x 2-432x +9 072,x ∈[0,30]. (2)根据(1),有f ′(x )=-18x 2+252x -432 =-18(x -2)(x -12).当x 变化时,f (x )与f ′(x )的变化情况如下表:极小值30-12=18(元)能使一个星期的商品销售利润最大.12.解 设楼房每平方米的平均综合费用为f (x )元,则f (x )=(560+48x )+2 160×10 0002 000x=560+48x +10 800x(x ≥10,x ∈N *),f ′(x )=48-10 800x2,令f ′(x )=0得x =15. 当x >15时,f ′(x )>0; 当0<x <15时,f ′(x )<0.因此,当x =15时,f (x )取最小值f (15)=2 000.所以为了使楼房每平方米的平均综合费用最少,该楼房应建为15层.13.解 收入R =q ·p =q ⎝ ⎛⎭⎪⎫25-18q =25q -18q 2.利润L =R -C =⎝ ⎛⎭⎪⎫25q -18q 2-(100+4q )=-18q 2+21q -100 (0<q <200),L ′=-14q +21,令L ′=0,即-14q +21=0,解得q =84.因为当0<q <84时,L ′>0; 当84<q <200时,L ′<0, 所以当q =84时,L 取得最大值. 所以产量q 为84时,利润L 最大.。

【专业资料】新版高中数学人教A版选修1-1习题:第二章 圆锥曲线与方程 2.1.2.2 含解析

【专业资料】新版高中数学人教A版选修1-1习题:第二章 圆锥曲线与方程 2.1.2.2 含解析

2.1.2椭圆的简单几何性质(二)课时过关·能力提升基础巩固1.椭圆x 225+y24=1的两个焦点为F1,F2,过点F2的直线交椭圆于A,B两点.若|AB|=8,则|AF1|+|BF1|的值为()A.10B.12C.16D.18|AB|+|AF1|+|BF1|=4a, ∴|AF1|+|BF1|=4×5-8=12.2.已知直线l:x+y-3=0,椭圆x 24+y2=1,则直线与椭圆的位置关系是() A.相交 B.相切C.相离D.相切或相交y=3-x代入x 24+y2=1,得5x2-24x+32=0.Δ=(-24)2-4×5×32=576-640=-64<0,方程无解.故直线l与椭圆相离.3.直线y=x+1被椭圆x 24+y22=1所截得的弦的中点坐标是()A.(23,53)B.(43,73)C.(-2,1)D.(-13,17)A(x1,y1),B(x2,y2)为直线与椭圆的交点,中点M(x0,y0),由{y=x+1,x24+y22=1,得3x2+4x-2=0.x0=x1+x22=12×(-43)=−23,y0=x0+1=13,故中点坐标为(-23,13).4.直线y=kx-k+1与椭圆x 29+y 24=1的位置关系是( ) A.相交 B.相切 C.相离D.不确定1=k (x-1)+1,所以直线过点(1,1).又因为点(1,1)在椭圆内,所以直线与椭圆相交.5.若点(x ,y )在椭圆4x 2+y 2=4上,则yx -2的最小值为( ) A.1B.-1C.−23√3D.以上都不对6.已知中心在原点,焦点在坐标轴上,焦距为4的椭圆与直线x +√3y +4=0有且仅有一个交点,则椭圆的长轴长为( ) A.3√2或4√2B.2√6或2√7 C.2√5或2√7D.√5或√7mx 2+ny 2=1(m ≠n ,且m ,n>0),与直线方程x +√3y +4=0联立,消去x ,得(3m+n )y 2+8√3my +16m −1=0, 由Δ=0,得3m+n=16mn ,即3n +1m=16.① 又c=2,即1m −1n =±4,② 由①②联立得{m =17,n =13或{m =1,n =15, 故椭圆的长轴长为2√7或2√5.7.若直线y=x+2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是 .{x 2m+y 23=1,y =x +2,得(m+3)x2+4mx+m=0.∵直线与椭圆有两个公共点,∴Δ=(4m)2-4m(m+3)=16m2-4m2-12m=12m2-12m>0,解得m>1或m<0.又m>0,且m≠3,∴m>1,且m≠3.∪(3,+∞)8.若直线3x-y-2=0截焦点为(0,±5√2)的椭圆所得弦中点的横坐标是12,则该椭圆的标准方程是.y2a2+x2b2=1(a>b>0),由{y2a2+x2b2=1,3x-y-2=0,联立得(a2+9b2)x2-12b2x+4b2-a2b2=0,x1+x2=12b2a2+9b2=1,∴a2=3b2.①又由焦点为(0,±5√2)知,a2-b2=50.②由①②,得a2=75,b2=25.故所求椭圆方程为x225+y275=1.y275=19.椭圆ax2+by2=1(a>0,b>0,且a≠b)与直线x+y-1=0相交于A,B两点,C是AB的中点,若|AB|=2√2,直线OC的斜率为√22,求椭圆的方程.,得{ax2+by2=1,x+y=1,则(a+b)x2-2bx+b-1=0.设A(x1,y1),B(x2,y2),则|AB|=√(1+k2)[(x1+x2)2-4x1x2]=√2·√4b2-4(a+b)(b-1)(a+b)2.∵|AB|=2√2,∴√a+b-aba+b=1.①设C(x,y),则x=x1+x22=ba+b,y=1−x=aa+b.∵直线OC 的斜率为√22,∴a b =√22. 代入①得a =13,b =√23. ∴椭圆方程为x 23+√2y 23=1. 10.如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)经过点A(0,−1),且离心率为√22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.c a =√22,b =1,结合a 2=b 2+c 2,解得a =√2. 所以椭圆的方程为x 22+y2=1.,直线PQ 的方程为y=k (x-1)+1(k ≠2),代入x 22+y2=1,得(1+2k 2)x 2-4k (k-1)x+2k (k-2)=0. 由已知Δ>0.设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k2,x1x2=2k (k -2)1+2k2.从而直线AP ,AQ 的斜率之和 k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k+(2-k )(1x 1+1x 2)=2k +(2−k)x 1+x2x 1x 2=2k+(2-k )4k (k -1)2k (k -2)=2k −2(k −1)=2.能力提升1.设P ,Q 分别为圆x 2+(y-6)2=2和椭圆x 210+y2=1上的点,则P,Q 两点间的最大距离是( )A.5√2B.√46+√2C.7+√2D.6√2Q (x ,y ),则该点到圆心的距离d =√(x -0)2+(y -6)2=√x 2+(y -6)2=√10(1-y 2)+(y -6)2=√-9y 2-12y +46,y ∈[-1,1], ∴当y=−-122×(-9)=−23时,d max =√-9×(-23)2-12×(-23)+46=√50=5√2.∴圆上点P 和椭圆上点Q 的距离的最大值为d max +r=5√2+√2=6√2.故选D.2.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是( ) A.x-2y=0 B.x+2y-4=0 C.2x+3y+4=0D.x+2y-8=0l 与椭圆的两交点分别为(x 1,y 1),(x 2,y 2),则有{x 1236+y 129=1, ①x 2236+y 229=1,②①-②,得(x 1+x 2)(x 1-x 2)36+(y 1+y 2)(y 1-y 2)9=0.由x 1+x 2=8,y 1+y 2=4,可得2(x 1-x 2)+4(y 1-y 2)=0,即y 1-y2x 1-x 2=−12.故方程为y-2=−12(x −4), 即x+2y-8=0.3.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为√32,过右焦点F 且斜率为k(k >0)的直线与C 相交于A,B 两点,若AF ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则k 等于( ) A.1 B .√2C .√3D.2C 的离心率为√3,得c =√3a,b2=a 2. ∴椭圆C :x 22+4y 22=1. 设A (x A ,y A ),B (x B ,y B ),F (√32a ,0).∵AF⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ , ∴(√32a -x A ,-y A )=3(x B -√32a ,y B ).∴{√32a -x A =3(x B -√32a),-y A =3y B , 即{x A +3x B =2√3a ,y A +3y B =0.①将点A ,B 的坐标代入椭圆C ,得{x A2a 2+4y A2a 2=1,x B2a 2+4y B 2a2=1,②③③×9-②,得9x B 2-x A2a 2=8,(3x B +x A )(3x B -x A )a 2=8,∴3x B -x A =4√33a.④联立①④,得{x A +3x B =2√3a ,3x B -x A =4√33a , 解得x A =√33a,xB =5√39a. ∴y A =−√66a,yB =√618a. ∴k =y B -y A x B -x A=√618a+√66a 5√39a -√33a=√2.4.若直线ax+by+4=0和圆x 2+y 2=4没有公共点,则过点(a ,b )的直线与椭圆x 29+y 24=1的公共点个数为 .直线ax+by+4=0与圆x 2+y 2=4没有公共点,∴√a 2+b 2>2,∴√a 2+b 2<2.∴点(a ,b )在椭圆内,即过点(a ,b )的直线与椭圆相交,有2个公共点.★5.如图,过点M (-2,0)的直线m 与椭圆x 22+y2=1交于点P1,P2,线段P1P2的中点为P,设直线m 的斜率为k1(k1≠0),直线OP 的斜率为k 2,则k 1k 2的值为 .P 1(x 1,y 1),P 2(x 2,y 2),代入椭圆方程得{x 122+y 12=1,x 222+y 22=1,两式相减并变形整理得y 2-y 1x 2-x 1·y 1+y 2x 1+x 2=−12.设P (x 0,y 0),则y 1+y 2=2y 0,x 1+x 2=2x 0,k 2=y 0x 0,k1=y 2-y 1x 2-x 1,故k 1k 2=−12.16.在平面直角坐标系xOy 中,点P 到两点(0,−√3),(0,√3)的距离之和等于4,设点P 的轨迹为C. (1)写出C 的方程;(2)设直线y=kx+1与C 交于A ,B 两点,则k 为何值时,OA⃗⃗⃗⃗⃗ ⊥OB ⃗⃗⃗⃗⃗ ?此时|AB|的值是多少?设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,−√3),(0,√3)为焦点,长半轴长为2的椭圆.它的焦距为2√3,所以短半轴的平方为1,故曲线C 的方程为x 2+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2), 其坐标满足{x2+y 24=1,y =kx +1.消去y ,并整理得(k 2+4)x 2+2kx-3=0, 故x 1+x 2=−2k k 2+4,x1x2=−3k 2+4.∵OA⃗⃗⃗⃗⃗ ⊥OB ⃗⃗⃗⃗⃗ ,∴x1x2+y1y2=0. ∵y 1y 2=k 2x 1x 2+k (x 1+x 2)+1, ∴x 1x 2+y 1y 2 =−3k 2+4−3k2k 2+4−2k2k 2+4+1=-4k 2+1k 2+4.又x 1x 2+y 1y 2=0, ∴k=±12.当k=±12时,x 1+x 2=∓417,x1x2=−1217. |AB|=√(x 2-x 1)2+(y 2-y 1)2=√(1+k 2)(x 2-x 1)2,而(x 2-x 1)2=(x 2+x 1)2-4x 1x 2=(417)2+4×1217=43×13172,∴|AB|=√54×43×13172=4√6517. ★7.已知椭圆G :x 24+y2=1,过点(m,0)作圆x2+y2=1的切线l 交椭圆G 于A,B 两点. (1)求椭圆G 的焦点坐标和离心率;(2)将|AB|表示为m 的函数,并求|AB|的最大值.由已知得a=2,b=1,所以c =√a 2-b 2=√3.所以椭圆G 的焦点坐标为(−√3,0),(√3,0), 离心率为e =c a =√32. (2)由题意知,|m|≥1.当m=1时,切线l 的方程为x=1, 点A ,B 的坐标分别为(1,√32),(1,-√32).此时|AB|=√3.当m=-1时,同理可得|AB|=√3. 当|m|>1时,设切线l 的方程为y=k (x-m ).由{y =k (x -m ),x 24+y 2=1,得(1+4k 2)x 2-8k 2mx+4k 2m 2-4=0. 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1+x 2=8k 2m 1+4k2,x1x2=4k 2m 2-41+4k2. 又由l 与圆x 2+y 2=1相切,|km |√k +1=1,即m 2k 2=k 2+1.所以|AB|=√1+k 2|x1−x2|=√(1+k 2)[(x 1+x 2)2-4x 1x 2]=√(1+k 2)[64k 4m 2(1+4k 2)2-4(4k 2m 2-4)1+4k 2]=4√3|m |m 2+3.因为当m=±1时,|AB|=√3, 所以|AB|=4√3|m |m 2+3,m ∈(-∞,-1]∪[1,+∞). 因为|AB|=4√3|m |m 2+3=4√3|m |+3|m |≤2,且当m=±√3时,|AB|=2, 所以|AB|的最大值为2.。

最新精编高中人教A版选修1-1高中数学强化训练1.1.2四种命题和答案

最新精编高中人教A版选修1-1高中数学强化训练1.1.2四种命题和答案

1.1.2 四种命题课时目标 1.了解四种命题的概念.2.认识四种命题的结构,会对命题进行转换.1.四种命题的概念:(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的______________,那么我们把这样的两个命题叫做互逆命题,其中的一个命题叫做原命题,另一个命题叫做原命题的逆命题.(2)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的否命题.(3)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互为逆否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆否命题.2.四种命题的结构:用p和q分别表示原命题的条件和结论,用綈p,綈q分别表示p和q的否定,四种形式就是:原命题:若p成立,则q成立.即“若p,则q”.逆命题:________________________.即“若q,则p”.否命题:______________________.即“若綈p,则綈q”.逆否命题:________________________.即“若綈q,则綈p”.一、选择题1.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A.1 B.2 C.3 D.42.命题“若A∩B=A,则A⊆B”的逆否命题是( )A.若A∪B≠A,则A⊇BB.若A∩B≠A,则A⊆BC.若A⊆B,则A∩B≠AD.若A⊇B,则A∩B≠A3.对于命题“若数列{a n}是等比数列,则a n≠0”,下列说法正确的是( ) A.它的逆命题是真命题B.它的否命题是真命题C.它的逆否命题是假命题D.它的否命题是假命题4.有下列四个命题:①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④若“A∪B=B,则A⊇B”的逆否命题.其中的真命题是( )A.①②B.②③C.①③D.③④5.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是( )A.4 B.3 C.2 D.06.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是( )2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数A.若loga2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若loga2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数C.若logaD.若log2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数a题号12345 6答案二、填空题7.命题“若x>y,则x3>y3-1”的否命题是________________________.8.命题“各位数字之和是3的倍数的正整数,可以被3整除”的逆否命题是________________________;逆命题是______________________;否命题是________________________.9.有下列四个命题:①“全等三角形的面积相等”的否命题;②若a2+b2=0,则a,b全为0;③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;④命题“若A∩B=B,则A⊆B”的逆命题.其中是真命题的是________(填上你认为正确的命题的序号).三、解答题10.把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等.11.写出下列命题的逆命题、否命题、逆否命题.(1)实数的平方是非负数;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.能力提升12.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数13.命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.1.对条件、结论不明显的命题,可以先将命题改写成“若p则q”的形式后再进行转换.2.分清命题的条件和结论,然后进行互换和否定,即可得到原命题的逆命题,否命题和逆否命题.1.1.2 四种命题答案知识梳理1.(1)结论和条件(2)条件的否定和结论的否定(3)结论的否定和条件的否定2.若q成立,则p成立若綈p成立,则綈q成立若綈q成立,则綈p成立作业设计1.B [由a>-3⇒a>-6,但由a>-6 a>-3,故真命题为原命题及原命题的逆否命题,故选B.]2.C [先明确命题的条件和结论,然后对命题进行转换.]3.D 4.C5.C [原命题和它的逆否命题为真命题.]2≥0,则6.A [由互为逆否命题的关系可知,原命题的逆否命题为:若loga函数x(a>0,a≠1)在其定义域内不是减函数.]f(x)=loga7.若x≤y,则x3≤y3-18.不能被3整除的正整数,其各位数字之和不是3的倍数能被3整除的正整数,它的各位数字之和是3的倍数各位数字之和不是3的倍数的正整数,不能被3整除9.②③10.解(1)原命题:“若a是正数,则a的平方根不等于0”.逆命题:“若a的平方根不等于0,则a是正数”.否命题:“若a不是正数,则a的平方根等于0”.逆否命题:“若a的平方根等于0,则a不是正数”.(2)原命题:“若x=2,则x2+x-6=0”.逆命题:“若x2+x-6=0,则x=2”.否命题:“若x≠2,则x2+x-6≠0”.逆否命题:“若x2+x-6≠0,则x≠2”.(3)原命题:“若两个角是对顶角,则它们相等”.逆命题:“若两个角相等,则它们是对顶角”.否命题:“若两个角不是对顶角,则它们不相等”.逆否命题:“若两个角不相等,则它们不是对顶角”.11.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.否命题:若一个数不是实数,则它的平方不是非负数.逆否命题:若一个数的平方不是非负数,则这个数不是实数.(2)逆命题:若两个三角形全等,则这两个三角形等高.否命题:若两个三角形不等高,则这两个三角形不全等.逆否命题:若两个三角形不全等,则这两个三角形不等高.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧.逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线.12.B [命题“若p,则q”的否命题为“若綈p,则綈q”,而“是”的否定是“不是”,故选B.]13.解逆命题:已知a、b为实数,若a2-4b≥0,则关于x的不等式x2+ax+b≤0有非空解集.否命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0没有非空解集,则a2-4b<0.逆否命题:已知a、b为实数,若a2-4b<0,则关于x的不等式x2+ax+b≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.。

人教A版高中数学选修1-1课后习题 1.1.1 命题

人教A版高中数学选修1-1课后习题 1.1.1 命题

第一章常用逻辑用语课后篇巩固提升基础巩固A.周期函数的和是周期函数吗?B.sin 45°=1C.x2+2x-1>0D.x2+y2=02.若a>1,则函数f(x)=a x是增函数( )A.两条直线B.一个平面C.垂直D.两条直线垂直于同一个平面A.a>b,c>d⇒ac>bdB.a<b⇒a2<b2C.|a|<|b|⇒a<bD.a>b,c<d⇒a-c>b-dA.4B.2C.0D.-3,当a≠0时,Δ=a 2-4<0,即-2<a<2,当a=0时,x 2+1=0无实根,综上a=0适合题意.二元一次不等式x+ay-1≥0表示直线x+ay-1=0的右上方区域(包含边界) 真A=60°,B=30°时,sin2A=sin120°=√32,sin2B=sin60°=√32,此时sin2A=sin2B,但A 与B 不相等.故A=60°,B=30°.) ①若a ⊥b,b ⊥c,则a ∥c;②若a,b 是异面直线,b,c 是异面直线,则a,c 也是异面直线; ③若a 和b 相交,b 和c 相交,则a 和c 也相交; ④若a 和b 共面,b 和c 共面,则a 和c 也共面.(1)末位是0的整数能被5整除;(2)在△ABC 中,若∠A=∠B,则sin A=sin B; (3)余弦函数是周期函数吗?(4)求证:当x ∈R 时,方程x 2+x+2=0无实根.能力提升A.m<2B.m<4C.m>2D.m>4,可知m<4的范围要比题干中m的范围大,所以取m<4,故选B.A.若log2x<2,则0<x<4B.若a与b共线,则a与b的夹角为0°C.已知各项都不为零的数列{a n}满足a n+1-2a n=0,则该数列为等比数列D.点(π,0)是函数y=sin x图象上一点①若a>b>0,则1a >1b;②若a>b>0,则a-1a >b-1b;③若a>b>0,则2a+ba+2b >ab;④若a>0,b>0,且2a+b=1,则2a +1b的最小值为9.a>b>0两端同乘以1ab 可得1b>1a,故①错;②由于(a-1a)−(b-1b )=(a-b)(1+1ab)>0,故②正确;③由于2a+ba+2b−ab=b2-a2(a+2b)b<0,即2a+ba+2b<a b ,故③错;④由2a+1b=(2a+1b)(2a+b)=5+2ba+2ab≥5+2√2ba·2ab=9,当且仅当2ba =2ab,即a=b=13时取得等号,故④正确.u=≤-4.∞,-4]∪[4,+∞)(1)体对角线相等的四棱柱是长方体;(2)整数的平方是非负整数;(3)能被10整除的数既能被2整除,也能被5整除.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新人教版数学精品教学资料
人教A 版选修1-1,1-2课本例题习题改编
1. 原题(选修1-1第三十五页例3)改编 已知点A 、B 的坐标分别是A (0,-1),B (0,1),直线AM 、BM 相交于点M ,且它们的斜率之积是-t ,t ∈(0,1].求M 的轨迹方程,并说明曲线的类型. 解:设M (x ,y ),则10BM y k x -=
- (x ≠0),(1)0AM y k x --=-(x ≠0),BM AM k k =-t ,10y x -- ∙(1)
y x ---=-t(x ≠0),整理得2
2
1x y t
+=1(x ≠0)(1)当t ∈(0,1)时,M 的轨迹为椭圆(除去A 和B 两点);(2)当t=1时,M 的轨迹为圆(除去A 和B 两点).
2.原题(选修1-1第五十四页习题2.2A 组第一题)改编 1F 、2F 是双曲线
22
11620
x y -=的焦点,点P 在双曲线上,若点P 到焦点1F 的距离等于9,则点P 到焦点2F 的距离等于
解:∵双曲线
22
11620
x y -=得:a=4,由双曲线的定义知||P 1F |-|P 2F ||=2a=8,|P 1F |=9, ∴|P 2F |=1<(不合,舍去)或|P 2F |=17,故|P 2F |=17.
3. 原题(选修1-1第六十八页复习参考题B 组第一题)改编 已知F 1、F 2分别为椭圆
19
162
2=+y x 的左、右焦点,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,求21F PF ∆的面积. 解:依题意,可知当以F 1或F 2为三角形的直角顶点时,点P 的坐标为97,4⎛

±±
⎪⎝⎭
,则点P 到x 轴的距离为
49,此时2
1F PF ∆的面积为479;当以点P 为三角形的直角顶点时,点P 的坐标为37
7
9>,舍去。

故21F PF ∆的面积为
4
7
9. 4. 原题(选修1-2第五十五页习题3.1B 组第二题)改编 设,C z ∈满足条件.12
141log 2
1
->--+-z z 的复数
z 所对应的点z 的集合表示什么图形?
1
2
14|1|4
log 12,12|1|2
|1|8
108z Z z Z Z Z -+-+>-<----->解:由可得0<化简得:
所以表示以(,)为圆心,以为半径的圆的外部。

5. 原题(选修1-2第六十三页复习参考题B 组第二题)改编 2012
432i i i i i +++++ 的值为________.
解:0432=+++i i i i 则2012432i i i i i +++++ =0
6. 原题(选修1-2第七十三页习题4.1A 组第二题)改编 阅读右边的程序框图,运行相应的程序,则输出s 的值为( )
A .-1
B .0
C .1
D .3 解:选B.当i =1时,s =1×(3-1)+1=3;当i =2时,s =3×(3-2)+1=4;当i =3时,s =4×(3-3)+1=1;当i =4时,s =1×(3-4)+1=0;紧接着i =5,满足条件i >4,跳出循环,输出s 的值为0.。

相关文档
最新文档