一元二次方程根的判别式专题训练
(完整版)一元二次方程的根的判别式练习题
一元二次方程的根的判别式1、方程2x 2+3x -k=0根的判别式是 ;当k 时,方程有实根。
2、关于x 的方程kx 2+(2k+1)x -k+1=0的实根的情况是 。
3、方程x 2+2x+m=0有两个相等实数根,则m= 。
4、关于x 的方程(k 2+1)x 2-2kx+(k 2+4)=0的根的情况是 。
5、当m 时,关于x 的方程3x 2-2(3m+1)x+3m 2-1=0有两个不相等的实数根。
6、如果关于x 的一元二次方程2x(ax -4)-x 2+6=0没有实数根,那么a 的最小整数值是 。
7、关于x 的一元二次方程mx 2+(2m -1)x -2=0的根的判别式的值等于4,则m= 。
8、设方程(x -a)(x -b)-cx=0的两根是α、β,试求方程(x -α)(x -β)+cx=0的根。
9、不解方程,判断下列关于x 的方程根的情况:(1)(a+1)x 2-2a 2x+a 3=0(a>0)(2)(k 2+1)x 2-2kx+(k 2+4)=010、m 、n 为何值时,方程x 2+2(m+1)x+3m 2+4mn+4n 2+2=0有实根?11、求证:关于x 的方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。
12、已知关于x 的方程(m 2-1)x 2+2(m+1)x+1=0,试问:m 为何实数值时,方程有实数根? 13、 已知关于x 的方程x 2-2x -m=0无实根(m 为实数),证明关于x 的方程x 2+2mx+1+2(m 2-1)(x 2+1)=0也无实根。
14、已知:a>0,b>a+c,判断关于x 的方程ax 2+bx+c=0根的情况。
15、m 为何值时,方程2(m+1)x 2+4mx+2m -1=0。
(1)有两个不相等的实数根;(2)有两个实数根;(3)有两个相等的实数根;(4)无实数根。
16、当一元二次方程(2k -1)x2-4x -6=0无实根时,k 应取何值? 17、已知:关于x 的方程x 2+bx+4b=0有两个相等实根,y 1、y 2是关于y 的方程y 2+(2-b)y+4=0的两实根,求以1y 、2y 为根的一元二次方程。
第2章 一元二次方程根的判别式问题专题测试(含解析)
浙教版八下数学第2章《一元二次方程》根的判别式问题专题测试考试时间:120分钟满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.一元二次方程有两个相等的实数根,那么实数的取值为()A. >2B. ≥2C. =2D. =2.如果关于x的一元二次方程有两个不相等的实数根,那么k的取值范围是( )A. B. 且 C. D. 且3.关于的方程的两个根互为相反数,则k值是()A. -1B.C. 2D. -24.下列方程①,②,③,④没有实数根的是()A. ①②③④B. ①③C. ②④D. ②③④5.若关于x的方程x2+2x+ a =0不存在实数根,则a 的取值范围是()A. B. C. D.6.若关于的一元二次方程有实数根,则的非负整数值是()A. 1B. 0,1C. 1,2D. 1,2,37.已知的三边长为a,b,c,且满足方程a2x2-(c2-a2-b2)x+b2=0,则方程根的情况是()。
A. 有两相等实根B. 有两相异实根C. 无实根D. 不能确定8.已知a、b、c分别为Rt△ABC(∠C=90°)的三边的长,则关于x的一元二次方程(c+a)x2+2bx+(c-a)=0根的情况是().A. 方程无实数根B. 方程有两个不相等的实数根C. 方程有两个相等的实数根D. 无法判断9.关于x的方程x2+2kx+k-1=0的根的情况描述正确的是().A. k为任何实数,方程都没有实数根B. k为任何实数,方程都有两个不相等的实数根C. k为任何实数,方程都有两个相等的实数根D. 根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种10.已知b2-4ac是一元二次方程ax2+bx+c=0(a≠0)的一个实数根,则ab的取值范围为()A. B. C. D.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是________12.若关于x的方程有两个相等的实数根,则式子的值为________13.如果恰好只有一个实m数是关于x的方程的根,则k=________.14.如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k的最小整数值是________.15.若关于x的一元二次方程(m+3)x2+5x+m2+2m-3=0有一个根是0,则m=________,另一根为________。
一元二次方程之判别式专项练习60题
一元二次方程判别式专项练习60题(有答案)1.已知关于x的一元二次方程2x2﹣5x﹣a=0(1)如果此方程有两个不相等的实数根,求a的取值范围.(2)当a为何值时,方程的两个根互为倒数,求出此时方程的解.2.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:方程有两个不相等的实数根;(2)当p=2时,求该方程的根.3.已知关于x的方程x2+2kx+(k﹣2)2=x有两个相等的实数根,求k的值与方程的根.4.若关于x的方程 x2+4x﹣a+3=0有实数根.(1)求a的取值范围;(2)若a为符合条件的最小整数,求此时方程的根.5.已知关于x的方程.(1)如果此方程有两个不相等的实数根,求m的取值范围;(2)在(1)中,若m为符合条件的最大整数,求此时方程的根.6.已知关于x的方程x2+3x﹣m=8有两个不相等的实数根.(1)求m的最小整数值是多少?(2)将(1)中求出的m值,代入方程x2+3x﹣m=8中解出x的值.7.已知关于x的一元二次方程mx2﹣5x+3=0的判别式为1,求m的值及该方程的根.8.已知关于x的方程kx2﹣2x+1=0有两个实数根x1、x2.(1)求k的取值范围;(2)是否存在k使(x1+1)(x2+1)=k﹣1成立?如果存在,求出k的值;如果不存在,请说明理由.9.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0(1)判断方程根的情况;(2)k为何值时,方程有两个相等的实数根,并求出此时方程的根.10.若关于x的一元二次方程有两个不相等的实数根.(1)求k的取值范围;(2)为k选取一个符合要求的值,并求出此方程的根.11.已知关于x的一元二次方程 x2+2mx+(m+2)(m﹣1)=0(m为常数).(2)如果方程有两个相等的实数根,求m的值;如果方程没有实数根,求m的取值范围.12.当k取什么值时,关于x的一元二次方程(1)有两个不相等的实数根?(2)没有实数根?13.已知关于x的方程是ax2﹣3(a﹣1)x﹣9=0.(1)证明:不论a取何值,总有一个根是x=3;(2)当a≠0时,利用求根公式求出它的另一个根.14.若k是一个整数,已知关于x 的一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k最大可以取多少?为什么?15.已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m=﹣2时,方程的两根互为相反数吗?并求出此时方程的解.16.已知关于x的方程x2+2x+k﹣1=0,(1)若方程有一个根是1,求k的值;(2)若方程没有实数根,求实数k的取值范围.17.已知关于x的方程x2+(m﹣2)x﹣9=0(1)求证:无论m取什么实数,这个方程总有两个不相等的实数根;(2)若这个方程两个根α,β满足2α+β=m+1,求m的值.18.已知p为质数,使二次方程x2﹣2px+p2﹣5p﹣1=0的两根都是整数,求出p19.m是什么实数时,方程x2﹣4|x|+5=m有4个互不相等的实数根?20.设关于x的方程x2﹣4x+(y﹣1)|x﹣2|+2﹣2y=0恰有两个实数根,求y的负整数值.21.已知关于x的方程x2+2mx+m+2=0.(1)方程两根都是正数时,求m的取值范围;(2)方程一个根大于1,另一个根小于1,求m的取值范围.22.已知关于x的一元二次方程x2﹣2mx+m2﹣2m=0.(1)当m=1时,求方程的根.(2)试判断方程根的情况.23.已知a、b、c是三角形的三条边长,且关于x的方程(c﹣b)x2+2(b﹣a)x+(a﹣b)=0有两个相等的实数根,试判断三角形的形状.24.已知关于x的一元二次方程x2﹣mx+m﹣2=0,求证:无论m取何值,该方程总有两个不相等的实数根.25.已知关于x的一元二次方程x2﹣(m﹣1)x+m+2=0.(1)若方程有两个相等的实数根,求m的值;(2)若方程的两实数根之积等于m2﹣9m+2,求的值.26.关于x的方程x2﹣2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)若k﹣1是方程x2﹣2x+k﹣1=0的一个解,求k的值.27.已知关于x的方程x2+2x+m﹣1=0(1)若1是方程的一个根,求m的值;(2)若方程有两个不相等的实数根,求m的取值范围.28.若关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,求k的取值范围.29.已知关于x的方程x2+(3k﹣2)x﹣6k=0,(1)求证:无论k取何实数值,方程总有实数根;(2)若等腰三角形ABC的一边a=6,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.30.已知一元二次方程x2﹣5x+k=0.(1)当k=6时,解这个方程;(2)若方程x2﹣5x+k=0有两个不相等的实数根,求k的取值范围;(3)设此方程的两个实数根分别为x1,x2,且2x1﹣x2=2,求k的值.31.已知关于x的方程x2﹣(m+1)x+m=0(1)求证:不论m取何实数,方程都有实数根;(2)为m选取一数,使方程有两个不相等的整数根,并求出这两个实数根.32.已知关于x的方程x2﹣2x+2k﹣3=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为符合条件的最大整数,求此时方程的根.33.已知关于x的方程(k+1)x2+(3k﹣1)x+2k﹣2=0.(1)讨论此方程根的情况;(2)若方程有两个整数根,求正整数k的值.(1)求p的取值范围;(2)若,求p的值.35.实数k取何值时,一元二次方程x2﹣(2k﹣3)x+2k﹣4=0(1)有两个正根;(2)有两个异号根,且正根的绝对值较大;(3)一个根大于3,一个根小于3.36.已知关于x的方程x2+(2k+1)x+k2+2=0有两个不相等的实数根.①求k的取值范围;②试判断直线y=(2k﹣3)x﹣4k+7能否通过点A(﹣2,5),并说明理由.37.已知关于x的一元二次方程x2﹣mx﹣2=0.(1)若﹣1是方程的一个根,求m的值和方程的另一个根.(2)对于任意实数m,判断方程根的情况,并说明理由.38.证明:无论m为何值,关于x的方程x2﹣2mx﹣2m﹣4=0总有两个不相等的实数根.39.已知关于x的一元二次方程x2﹣(m﹣1)x+m+2=0,若方程有两个相等的实数根,求m的值.40.已知关于x的一元二次方程x2﹣kx﹣2=0.(1)求证:无论k取何值,方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2,且满足x1+x2=x1•x2,求k的值.41.已知方程m2x2+(2m+1)x+1=0有实数根,求m的取值范围.42.已知关于x的一元二次方程x2﹣2x+m=0有两个实数根.(1)求m的范围;(2)若方程两个实数根为x1、x2,且x1+3x2=8,求m的值.43.如果关于x的一元二次方程(1﹣m)x2﹣2x﹣1=0有两个不相等的实数根,当m在它的取值范围内取最大整数时,求的值.44.若关于x的一元二次方程x2+2kx+(k2+2k﹣5)=0有两个实数根,分别是x1,x2.(1)求k的取值范围;(2)若有x1+x2=x1x2,则k的值是多少.45.已知关于x的方程k2x2+(2k﹣1)x+1=0有两个实数根x1、x2(1)求k的取值范围;(2)是否存在k的值,可以使得这两根的倒数和等于0?如果存在,请求出k,若不存在,请说明理由.46.已知关于x的方程x2﹣(k+1)x+k=0.(1)求证:无论k取什么实数值,这个方程总有实根.(2)若等腰△ABC的一腰长a=4,另两边b、c恰好是这个方程的两根,求△ABC 的周长.47.已知x2+(2k+1)x+k2﹣2=0是关于x的一元二次方程方程.(1)方程有两根不相等的实数根,求k的取值范围.(2)方程有一根为1,求k的取值.(3)方程的两根两根互为倒数,求k的取值.48.已知关于x的方程(k﹣1)x2+2x﹣5=0有两个不相等的实数根,求:①k的取值范围.②当k为最小整数时求原方程的解.49.已知关于x的方程(m﹣1)x2﹣(2m﹣1)x+2=0.(1)求证:无论m取任何实数,方程总有实数根;(2)若方程只有整数根,求整数m的值.50.已知关于x的方程2x2+kx﹣1=0.(1)小明同学说:“无论k为何实数,方程总有实数根.”你认为他说的有道理吗?(2)若方程的一个根是﹣1,求另一根及k的值.51.已知关于x的一元二次方程.(1)m取什么值时,方程有两个实数根?(2)设此方程的两个实数根为a、b,若y=ab﹣2b2+2b+1,求y的取值范围.52.已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0有实根(1)求k的取值范围(2)若方程的两实根的平方和等于11,求k的值.53.如果一元二方程x2+mx+2m﹣n=0有一个根为2,且根的判别式为0,求m、n 的值.54.已知,关于x的一元二次方程:ax2+4x﹣1=0,(1)当a取什么值时,方程有实数根?(2)设x1,x2为方程两根,y=x1+x2﹣x1•x2,试比较y与0的大小.55.已知关于x的一元二次方程x2﹣mx﹣2=0(1)x=2是方程的一个根,求m的值和方程的另一个根.(2)对于任意实数m,判断方程的根的情况,并说明理由.56.已知关于x的方程.(1)若方程只有一个根,求k的值并求出此时方程的根;(2)若方程有两个相等的实数根,求k的值.57.已知关于x的方程4x2+4(k﹣1)x+k2=0和2x2﹣(4k+1)x+2k2﹣1=0,它们都有实数根,试求实数k的取值范围.58.已知关于x的一元二次方程kx2+2(k+4)x+(k﹣4)=0(1)若方程有实数根,求k的取值范围(2)若等腰三角形ABC的边长a=3,另两边b和c恰好是这个方程的两个根,求△ABC的周长.59.已知关于2x2+kx﹣1=0.(1)求证:该方程一定有两个不相等的实数根.(2)若已知该方程的一个根是﹣1,请求出另一个根.60.已知12<m<40,且关于x的二次方程x2﹣2(m+1)x+m2=0有两个整数根,求整数m.参考答案:1.(1)∵方程有两个不相等的实数根,∴△=(﹣5)2﹣4×2×(﹣a)>0,解得a >﹣,即a的取值范围为a >﹣;(2)根据题意得=1,解得a=﹣2,方程化为2x2﹣5x+2=0,变形为(2x﹣1)(x﹣2)=0,解得x1=,x2=2.2.(1)证明:方程整理为x2﹣5x+6﹣p2=0,△=(﹣5)2﹣4×1×(6﹣p2)=1+4p2,∵4p2≥0,∴△>0,∴这个方程总有两个不相等的实数根;(2)解:当p=2时,方程变形为x2﹣5x+2=0,△=1+4×4=17,∴x=,∴x1=,x2=.3.方程整理得x2+(2k﹣1)x+(k﹣2)2=0①,由题意得(2k﹣1)2﹣4(k﹣2)2=0,解得.将代入①得,解得4.(1)△=42﹣4(3﹣a)=4+4a.∵该方程有实数根,∴4+4a≥0.解得a≥﹣1.(2)当a为符合条件的最小整数时,a=﹣1.此时方程化为x2+4x+4=0,方程的根为x1=x2=﹣2 5.(1)∵该方程有两个不相等的实数根,∴△=32﹣4×1×=9﹣3m>0.解得m<3.∴m的取值范围是m<3;(2)∵m<3,∴符合条件的最大整数是m=2.此时方程为x2+3x+=0,解得x==.∴方程的根为x1=,x2=.故答案为:m<3,x1=,x2=6.(1)化为一般形式得:x2+3x﹣m﹣8=0△=9+4(m+8)>0,解得m >﹣,∴m的最小整数值m=﹣10.(2)把m=﹣10代入原方程得x2+3x+10=8,即x2+3x+2=0解得:x1=﹣1,x2=﹣27.∵△=(﹣5)2﹣4×m×3=25﹣12m,∴由题意得:25﹣12m=1,∴m=2,当m=2时,方程为2x2﹣5x+3=0,两根为x1=1,x2=.答:m的值为2,方程的根为1和.8.(1)根据题意得k≠0且△≥0,即4﹣4k≥0,解得k ≤1,所以k的取值范围为k≤1且k≠0;(2)存在,k=﹣1.理由如下:根据题意得x1+x2=,x1•x2=,∵(x1+1)(x2+1)=k﹣1,∴x1•x2+x1+x2+1=k﹣1,即++1=k﹣1,化为整式方程得k2﹣2k﹣3=0,∴(k﹣3)(k+1)=0,∴k1=3,k2=﹣1,∵k≤1且k≠0;∴k=﹣19.①∵△=(2k+1)2﹣4×1×4(k ﹣)=4k2+4k+1﹣16k+8=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程有两个实根;②若方程有两个相等的实数根,则△=b2﹣4ac=0,∴(2k﹣3)2=0,解得:k=,∴k=时,方程有两个相等的实数根;把k=时代入原式得:x2﹣(2×+1)x+4(﹣)=0x2﹣4x+4=0,解得:x=2;∴方程两根均为2.10.(1)根据题意得k≠0且△=(k+2)2﹣4k ×=4k+4>0,解得k>﹣1且k≠0;(2)取k=1,方程化为x2+3x+=0,△=4k+4=8,∴x==,∴x1=,x2=11.△=(2m)2﹣4(m+2)(m﹣1)=4m2﹣4m2﹣4m+8=﹣4m+8.(1分)(1)因为方程有两个不相等的实数根,所以﹣4m+8>0,所以m<2.(2分)(2)因为方程有两个相等的实数根,所以﹣4m+8=0,所以m=2.(2分)因为方程没有实数根,所以﹣4m+8<0,所以m>212.(1)根据题题意得k≠0且△=(k﹣2)2﹣4k •>0,解得k<1且k≠0;(2)根据题意得k≠0且△=(k﹣2)2﹣4k •<0,解得k>113.(1)证明,将x=3代入方程,得左边=9a﹣9(a﹣1)﹣9=9﹣9=0=右边,所以,方程总有一个根是x=3;(2)当a≠0时,△=9(a﹣1)2+4×9=9(a+1)2,所以,x1==3,x2==﹣,即方程的另一个根是x=﹣.14.∵一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,∴1﹣k≠0,且△>0,即22﹣4×(1﹣k)×(﹣1)>0,解得k<2,又∵k是整数,∴k的取值范围为:k<2且k≠1的整数,∴k最大可以取0.15.(1)证明:△=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,∴方程有两个不相等的实数根;(2)解:当m=﹣2时,方程变形为x2﹣5=0,解得x1=,x2=﹣,∴方程的两根互为相反数16.(1)∵x=1是方程x2+2x+k﹣1=0的一个根,∴12+2×1+k﹣1=0,解得,k=﹣2;(2)∵方程没有实数根,∴b2﹣4ac<0,即22﹣4(k﹣1)<0,解得k>217.(1)证明:方程的根的判别式△=(m﹣2)2﹣4×1×(﹣9)=(m﹣2)2+36∵无论m取何实效(m﹣2)2+36>0恒成立∴这个方程总有两个不相等的实数根(2)解由根与系数的关系.得α+β=2﹣m则2α+β=α+α+β=α+2﹣m∵2α+β=m+1,∴α+2﹣m=m+1,则α=2m﹣1∵α是方程的根,∴α2+(m﹣2)α﹣9=0则(2m﹣1)2+(m﹣2)(2m﹣1)﹣9=0整理,得2m2﹣3m一2=0解,得m1=2,m2=﹣.18.∵已知的整系数二次方程有整数根,∴△=4p2﹣4(p2﹣5p﹣1)=4(5p+1)为完全平方数,从而,5p+1为完全平方数设5p+1=n2,注意到p≥2,故n≥4,且n为整数∴5p=(n+1)(n﹣1),则n+1,n﹣1中至少有一个是5的倍数,即n=5k±1(k为正整数)∴5p+1=25k2±10k+1,p=k(5k±2),由p是质数,5k±2>1,∴k=1,p=3或7当p=3时,已知方程变为x2﹣6x﹣7=0,解得x1=﹣1,x2=7;当p=7时,已知方程变为x2﹣14x+13=0,解得x1=1,x2=13 所以p=3或p=7.19.∵△=b2﹣4ac=16﹣4(5﹣m)=4m﹣4>0∴m>1当x≥0时,方程是x2﹣4x+5﹣m=0,方程有两个不同的根,则两个的积一定大于0,即5﹣m>0,则m<5∴1<m<5当x<0时,方程是x2+4x+5﹣m=0,方程有两个不同的根,则两个根的积一定大于0,即5﹣m>0,则m<5则1<m<5∴1<m<5时,方程x2﹣4|x|+5=m有4个互不相等的实数根20.原式可变形为:|x﹣2| 2+(y﹣1)|x﹣2|﹣2﹣2y=0,(|x﹣2|﹣2)[|x﹣2|+(1+y)]=0,则|x﹣2|=2或|x﹣2|=﹣(y+1),故2=﹣(y+1),则y=﹣3,当|x﹣2|=2,且1+y>0时,则y>﹣1,故y的负整数值为:﹣321.(1)根据题意,m 应当满足条件…(3分)即∴﹣2<m≤﹣1…(7分)(2)根据题意,m 应当满足条件…(10分),即∴m<﹣122.(1)当m=1时,原方程变为:x2﹣2x﹣1=0解得:;(2)△=b2﹣4ac=(﹣2m)2﹣4×(m2﹣2m)=8m,当m>0时,原方程有两个不相等的实数根;当m=0时,原方程有两个相等的实数根;m<0时,原方程没有实数根23.由已知条件△=4(b﹣a)2﹣4(c﹣b)(a﹣b)=4(a ﹣b)(a﹣c)=0,∴a=b或a=c,∵c﹣b≠0则c≠b,∴这个三角形是等腰三角形24.△=m2﹣4(m﹣2)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,∴无论m取何值,该方程总有两个不相等的实数根.25.(1)∵方程有两个相等的实数根,∴(m﹣1)2﹣4(m+2)=0,∴m2﹣2m+1﹣4m﹣8=0,m2﹣6m﹣7=0,∴m=7或﹣1;(2)∵方程的两实数根之积等于m2﹣9m+2,∴m2﹣9m+2=m+2,∴m2﹣10m=0,∴m=0或m=10,当m=0时,方程为:x2+x+2=0,方程没有实数根,舍去;∴m=10,∴=426.(1)由题意,知(﹣2)2﹣4(k﹣1)>0,解得k<2,即k 的取值范围为k<2.(2)由题意,得(k﹣1)2﹣2(k﹣1)+k﹣1=0即k2﹣3k+2=0解得k1=1,k2=2(舍去)∴k的值为127.(1)把x=1代入方程,得1+2+m﹣1=0,所以m=﹣2;(2)∵方程有两个不相等的实数根,∴△>0,即22﹣4(m﹣1)>0,解得m<2.所以m的取值范围为m<228.∵关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,∴,解得k >.所以k的取值范围是k >且k≠2.29.(1)证明:∵△=b2﹣4ac=(3k﹣2)2﹣4•(﹣6k)=9k2﹣12k+4+24k=9k2+12k+4=(3k+2)2≥0∴无论k取何值,方程总有实数根.(2)解:①若a=6为底边,则b,c为腰长,则b=c,则△=0.∴(3k+2)2=0,解得:k=﹣.此时原方程化为x2﹣4x+4=0∴x1=x2=2,即b=c=2.此时△ABC三边为6,2,2不能构成三角形,故舍去;②若a=b为腰,则b,c中一边为腰,不妨设b=a=6代入方程:62+6(3k﹣2)﹣6k=0∴k=﹣2则原方程化为x2﹣8x+12=0(x﹣2)(x﹣6)=0∴x1=2,x2=6即b=6,c=2此时△ABC三边为6,6,2能构成三角形,综上所述:△ABC三边为6,6,2.∴周长为6+6+2=14.30.(1)k=6,方程变为x2﹣5x+6=0,即(x﹣2)(x﹣3)=0,∴x1=2,x2=3;(2)根据题意△=(﹣5)2﹣4k>0,解得k <;(3)根据题意得x1+x2=5,x1,•x2=k,而2x1﹣x2=2,∴x1=,∴x2=,∴k=×=31.(1)∵△=[﹣(m﹣1)]2﹣4m=m2+2m+1﹣4m=(m﹣1)2,又∵不论m取何实数,总有(m﹣1)2≥0,∴△≥0,∴不论m取何实数,方程都有实数根.(2)∵由求根公式得=∴x1=m,x2=1,∴只要m取整数(不等于1),则方程的解就都为整数且不相等.如取m=2,则原方程有两个不相等的整数根,分别是x1=2,x2=1.32.(1)△=(﹣2)2﹣4(2k﹣3)=8(2﹣k).∵该方程有两个不相等的实数根,∴8(2﹣k)>0,解得k<2.(2)当k为符合条件的最大整数时,k=1.此时方程化为x2﹣2x﹣1=0,方程的根为x==1±.即此时方程的根为x1=1+,x2=1﹣.33.(1)当k=﹣1时,方程﹣4x﹣4=0为一元一次方程,此方程有一个实数根;当k≠﹣1时,方程(k+1)x2+(3k﹣1)x+2k﹣2=0是一元二次方程,△=(3k﹣1)2﹣4(k+1)(2k﹣2)=(k﹣3)2.∵(k﹣3)2≥0,即△≥0,∴k为除﹣1外的任意实数时,此方程总有两个实数根.综上,无论k取任意实数,方程总有实数根;(2)∵方程(k+1)x2+(3k﹣1)x+2k﹣2=0中a=k+1,b=3k ﹣1,c=2k﹣2,∴x=,∴x1=﹣1,x2=﹣2,∵方程的两个根是整数根,且k为正整数,∴当k=1时,方程的两根为﹣1,0;当k=3时,方程的两根为﹣1,﹣1.∴k=1,334.(1)∵方程x2﹣x+p﹣1=0有两个实数根x1、x2,∴△≥0,即12﹣4×1×(p﹣1)≥0,解得p ≤,∴p的取值范围为p ≤;(2)∵方程x2﹣x+p﹣1=0有两个实数根x1、x2,∴x12﹣x1+p﹣1=0,x22﹣x2+p﹣1=0,∴x12﹣x1=﹣p+1=0,x22﹣x2=﹣p+1,∴(﹣p+1﹣2)(﹣p+1﹣2)=9,∴(p+1)2=9,∴p1=2,p2=﹣4,∵p ≤,∴p=﹣435.(1)设方程的两个正根为x1、x2,则:△=(2k﹣3)2﹣4(2k﹣4)≥0 ①,x1+x2=2k﹣3>0,x1x2=2k﹣4>0 ②,解①,得:k为任意实数,解②,得:k>2,所以k的取值范围是k>2;(2)设方程的两个根为x1、x2,则:△=(2k﹣3)2﹣4(2k﹣4)>0 ①,x1+x2=2k﹣3>0,x1x2=2k﹣4<0 ②,解①,得:k ≠,解②,得:<k<2,所以k 的取值范围是<k<2;(2)设方程的两个根为x1、x2,则:△=(2k﹣3)2﹣4(2k﹣4)>0 ①,(x1﹣3)(x2﹣3)<0 ②,解①,得:k ≠,由②,得:x1x2﹣3(x1+x2)+9<0,又x1+x2=2k﹣3>0,x1x2=2k﹣4,代入整理,得﹣4k+14<0,解得k >.则k >.36.(1)∵关于x的方程x2+(2k+1)x+k2+2=0有两个不相等的实数根,∴△=b2﹣4ac>0∴(2k+1)2﹣4(k2+2)>0∴4k2+4k+1﹣4k2﹣8>0,∴4k>7,解得,k >;(2)假设直线y=(2k﹣3)x﹣4k+7能否通过点A(﹣2,5),∴5=(2k﹣3)×(﹣2)﹣4k+7,即﹣8=﹣8k,解得k=1<;又由(1)知,k >;∴k=1不符合题意,即直线y=(2k﹣3)x﹣4k+7不通过点A(﹣2,5)37.(1)把x=﹣1代入原方程得:1+m﹣2=0,解得:m=1,∴原方程为x2﹣x﹣2=0.解得:x=﹣1或2,∴方程另一个根是2;(2)∵△=b2﹣4ac=m2+8>0,∴对任意实数m方程都有两个不相等的实数根.38.∵△=(﹣2m)2﹣4×1×(﹣2m﹣4)=4(m2+2m)+16=4(m2+2m+1﹣1)+16=4(m+1)2+12>0,∴关于x的方程x2﹣2mx﹣2m﹣4=0总有两个不相等的实数根.39.∵关于x的一元二次方程x2﹣(m﹣1)x+m+2=0有两个相等的实数根,∴△=b2﹣4ac=0,即:(m﹣1)2﹣4(m+2)=0,解得:m=7或m=﹣1,∴m的值为7或﹣140.1)证明:∵a=1,b=﹣k,c=﹣2∴△=b2﹣4ac=(﹣k)2﹣4×1×(﹣2)=k2+8,∵k2>0,∴△>0,∴无论k取何值,方程有两个不相等的实数根.(2)解:∵,;又∵x1+x2=x1•x2∴k=﹣2.41.当m2=0,即m=0,方程变为:x+1=0,有解;当m2≠0,即m≠0,原方程要有实数根,则△≥0,即△=(2m+1)2﹣4m2=4m+1≥0,解得m ≥﹣,则m的范围是m ≥﹣且m≠0;所以,m的取值范围为m ≥﹣42.(1)△=4﹣4m,∵有两个实数根,∴4﹣4m≥0,∴m≤1;(2)∵,解得,,∴m=x1x2=﹣343.∵一元二次方程有两个不相等的实数根,∴△=4+4(1﹣m)=8﹣4m>0,且1﹣m≠0,∴m<2,且m ≠1.当m=0时,无意义,故m≠0,则m的最大整数值为﹣1,所以=4×1+1=5.答:=5.44.(1)∵方程x2+2kx+(k2+2k﹣5)=0有两个实数根,∴△≥0,即4k2﹣4( k2+2k﹣5 )≥0,∴﹣8k+20≥0∴k ≤;(2)∵x1+x2=﹣2k,x1x2=k2+2k﹣5,而x1+x2=x1x2,∴﹣2k=k2+2k﹣5,即k2+4k﹣5=0解得k1=﹣5,k2=1,又∵k ≤,∴k=﹣5或145.(1)(2k﹣1)2﹣4k2×1≥0,解得:k ≤,且:k2≠0,∴k≠0,∴k ≤且k≠0;(2)不存在,∵方程有两个的实数根,∴x1+x2=﹣,x1x2=,∴==﹣=﹣2k+1=0,k=,∵k ≤且k≠0;∴不存在46.(1)∵△=[﹣(k+1)]2﹣4k=k2+2k+1﹣4k=(k﹣1)2≥0,∴无论k取什么实数值,这个方程总有实根;(2)∵等腰△ABC的一边长a=4,∴另两边b、c中必有一个数为4,把4代入关于x的方程x2﹣(k+1)x+k=0中得,∴16﹣4(k+1)+k=0,解得:k=4,所以b+c=k+1=5∴△ABC的周长=4+5=9.47.(1)∵方程有两根不相等的实数根,∴△=(2k+1)2﹣4×1×(k2﹣2)>0,∴k >﹣;(2)把x=1代入原方程得1+(2k+1)+k2﹣2=0,整理得k2+2k=0,解得k=0或﹣2;(3)设两实数根为:x1,x2,由根与系数的关系:x1x2=k2﹣2=1,解得k=±48.①由题意得,22﹣4(k﹣1)•(﹣5)>0.解得,.且k﹣1≠0,即k≠1故且k≠1.(2)k的最小整数是k=2.则原方程为x2+2x﹣5=0故此时方程的解为:,49.(1)证明:∵△=[﹣(2m﹣1)]2﹣4×(m﹣1)×2=4m2﹣12m+9=(2m﹣3)2≥0,∴无论m取任何实数,方程总有实数根;(2)x==,x1==2,x2==,∵方程只有整数根,∴m﹣1=±1,解得:m=0或250.(1)有道理,△=k2﹣4×2×(﹣1)=k2+8,∴k2≥0,∴k2+8>0,∴无论k为何实数,方程总有实数根;(2)∵方程的一个根是﹣1,∴2×(﹣1)2﹣k﹣1=0,解得:k=1,把k=1代入方程2x2+kx﹣1=0得方程2x2+x﹣1=0,解得:x1=﹣1,x2=,故另一根是,k的值是151.(1)∵△≥0,方程有两个实数根,∴12﹣4×1×m≥0,解得m≤1,∴当m≤1时,方程有两个实数根;(2)∵方程的两个实数根为a、b,∴b2﹣b+m=0,ab=m,∴y=m﹣2(b2﹣b)+1=m﹣2×(﹣m)+1=m+1,∵m≤1,∴y ≤+1,即y ≤.52.(1)∵关于x的一元二次方程x2+(2k+1)x+k2﹣2=0有实根,∴△=(2k+1)2﹣4×1×(k2﹣2)≥0,解得:;(2)设方程x2+(2k+1)x+k2﹣2=0设其两根为x1,x2,得x1+x2=﹣(2k+1),x1•x2=k2﹣2,∵x12+x22=11,∴(x1+x2)2﹣2x1x2=11,∴(2k+1)2﹣2(k2﹣2)=11,解得k=1或﹣3;∵k ≥﹣,∴k=1.53.∵一元二方程x2+mx+2m﹣n=0有一个根为2,∴4+4m﹣n=0①,又∵根的判别式为0,∴△=m2﹣4×(2m﹣n)=0,即m2﹣8m+4n=0②,由①得:n=4+4m,把n=4+4m代入②得:m2+8m+16﹣0,解得m=﹣4,代入①得:n=﹣12,所以m=﹣4,n=﹣12.54.(1)∵方程有实数根,∴△≥0,即16+4a≥0,解得a≥﹣4.由于ax2+4x﹣1=0是关于x的一元二次方程,可知a≠0,∴a≥﹣4且a≠0.(2)∵ax2+4x﹣1=0是关于x的一元二次方程,∴x1+x2=﹣,x1•x2=﹣,∴y=﹣+=﹣.当﹣4≤a<0时,y=﹣+=﹣>0;当a>0时,y=﹣+=﹣<0.55.(1)将x=2代入方程得:4﹣2m﹣2=0,解得:m=1,方程为x2﹣x﹣2=0,即(x﹣2)(x+1)=0,解得:x=2或x=﹣1,则方程的另一根为﹣1;(2)∵△=m2+8≥8>0,∴方程有两个不相等的实数根.56.(1)∵方程只有一个根,∴此方程是一元一次方程,即k ﹣=0,∴k=;代入原方程得﹣x=1,解得x=﹣;(2)∵方程有两个相等的实数根,∴,∴k1=0,k2=﹣6.57.∵两个一元二次方程都有实数根,∴,解得﹣≤k ≤.58.(1)∵关于x的一元二次方程kx2+2(k+4)x+(k﹣4)=0方程有实数根,∴b2﹣4ac=[2(k+4)]2﹣4k(k﹣4)≥0,解得:k ≥﹣且k≠0;(2)①若a=3为底边,则b,c为腰长,则b=c,则△=0.∴b2﹣4ac=[2(k+4)]2﹣4k(k﹣4)=0,解得:k=﹣.此时原方程化为x2﹣4x+4=0∴x1=x2=2,即b=c=2.此时△ABC三边为3,2,2能构成三角形,∴△ABC的周长为:3+2+2=8;②若a=b为腰,则b,c中一边为腰,不妨设b=a=3代入方程:kx2+2(k+4)x+(k﹣4)=0得:k×32+2(k+4)×3+(k﹣4)=0∴解得:k=﹣,∵x1×x2=bc====3c,∴c=,∴△ABC的周长为:3+3+=.59.(1)证明:∵△=k2﹣4×2×(﹣1)=k2+4>0,∴该方程一定有两个不相等的实数根;(2)解:设另一个根为x1,根据根与系数的关系可得:x1•x2=﹣,∵一个根是﹣1,∴x1•(﹣1)=﹣,解得:x1=60.∵一元二次方程x2﹣2(m+1)x+m2=0有两个整数根,∴△=b2﹣4ac=4(m+1)2﹣4m2=8m+4≥0,∴,∵12<m<40,由求根公式,∵一元二次方程x2﹣2(m+1)x+m2=0有两个整数根,∴2m+1必须是完全平方数,∴m=24。
一元二次方程根的判别式基础练习30题含详细答案
(3)设该方程的两个实数根为x1,x2,若x12+x22+m(x1+x2)=m2+1,求m的值.
21.已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)若方程的两根x1,x2满足x12+x22=16,求k的值.
【点睛】
此题主要考查一元二次方程根的情况,解题的关键是熟知根的判别式特点.
5.B
【分析】
先根据一元二次方程的解的定义得到α2+2α﹣2015=0,则α2+2α=2015,于是α2+3α+β可化为2015+α+β,再利用根与系数的关系得到α+β=﹣2,然后利用整体代入的方法计算.
【详解】
解:∵α是方程x2+2x﹣2015=0的根,
16.若关于x的一元二次方程kx2-4x+3=0有实数根,则k的取值范围是_____.
三、解答题
17.关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根.
(1)求k的取值范围.
(2)若x1+2x2=3,求|x1﹣x2|的值.
18.已知关于x的方程x2+(2m﹣1)x+m2=0有实数根.
(1)若方程的一个根为1,求m的值;
7.D
【分析】
要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.
【详解】
解:A、x2+1=0中 ,没有实数根,故本选项错误;
专题1.3一元二次方程根的判别式根与系数的关系(3个考点八大题型)(原卷版)_1
专题 1.3 一元二次方程根的判别式、根与系数的关系(3个考点八大题型)【题型1 由根的判别式判断方程根的情况】【题型2 由方程方程根的情况求字母的取值范围】【题型3 由根的判别式证明方程求根的必然情况】【题型4 由根与系数的关系求代数式(直接)】【题型5 由根与系数的关系求代数式(代换)】【题型6 由根与系数的关系求代数式(降次)】【题型7 构造一元二次方程求代数式的值】【题型8 已知方程根的情况判断另一个根】【题型1 由根的判别式判断方程根的情况】1.(2023春•南岗区校级期中)一元二次方程x2﹣2x﹣3=0根的情况是()A.有两个相等的实数根B.无实数根C.有一个实数根D.有两个不等的实数根2.(2023•平顶山二模)定义运算:a※b=a2b+ab﹣1,例如:2※3=22×3+2×3﹣1=17,则方程x※1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根3.(2023•柘城县二模)一元二次方程x2+2x﹣5=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根4.(2023•桂林二模)一元二次方程2x2﹣5x+6=0的根的情况为()A.无实数根B.只有一个实数根C.有两个相等的实数根D.有两个不等的实数根5.(2023•长春模拟)方程x2﹣3x﹣1=0的根的情况是()A.没有实数根B.有一个实数根C.有两个相等的实数根D.有两个不相等的实数根6.(2023•三门峡一模)一元二次方程(x﹣1)2=x+3的根的情况()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根7.(2023春•瑞安市期中)关于x的一元二次方程x2+kx+k﹣1=0的根的情况,下列说法中正确的是()A.有两个实数根B.有两个不相等的实数根C.有两个相等的实数根D.无实数根【题型2 由方程方程根的情况求字母的取值范围】8.(2023•淅川县一模)若关于x的一元二次方程x2﹣x+k=0有两个不相等的实数根,则k的取值范围是()A.B.C.D.9.(2023•阳谷县一模)关于x的一元二次方程(2m﹣1)x2﹣3x+1=0有实数根,则m的取值范围是()A.且B.且C.D.且10.(2023•银川一模)若关于x的一元二次方程ax2+2x﹣1=0有两个实数根,则a的取值范围是()A.a≠0B.a>﹣1且a≠0C.a≥﹣1且a≠0D.a>﹣1 11.(2023•白云区二模)若关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值是()A.0B.1C.2D.3 12.(2023•卧龙区一模)关于x的一元二次方程kx2﹣2kx+2=0有两个相等的实数根,则k的值是()A.0或2B.2C.0或﹣2D.﹣2 13.(2023•大兴区一模)若关于x的一元二次方程x2+2x+m=0有实数根,则实数m的取值范围为()A.m<1B.m≤1C.m>1D.m≥1 14.(2023•江阳区一模)关于x的一元二次方程(a﹣2)x2+3x﹣1=0有实数根,则a的取值范围是()A.B.C.且a≠2D.且a≠2 15.(2023•济源一模)若关于x的一元二次方程x2+4x+m+5=0有实数根,则m 的取值范围是()A.m≤1B.m≤﹣1C.m<﹣1 D.m≥﹣1且m≠0【题型3 由根的判别式证明方程求根的必然情况】16.(2023春•蜀山区校级期中)已知关于x的一元二次方程x2+(2k﹣1)x﹣k ﹣1=0.(1)求证:无论k取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1、x2,且x1+x2﹣4x1x2=2,求k的值.17.(2023春•庐阳区校级期中)已知关于x的一元二次方程x2﹣(m+2)x+m ﹣1=0.(1)求证:无论m取何值,方程总有两个不相等的实数根.(2)若a和b是这个一元二次方程的两个根,且a2+b2=9,求m的值.18.(2023春•丰泽区校级期中)已知关于x的一元二次方程x2+3x+k﹣2=0有实根.(1)求实数k的取值范围.(2)方程的两个实数根分别为x1,x2,若(x1﹣1)(x2﹣1)=﹣1,求k的值.19.(2023•谷城县模拟)已知关于x的一元二次方程x2+2x+k﹣1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若+=4,求k的值.20.(2023春•涡阳县期中)已知关于x的一元二次方程x2﹣2mx+m2﹣1=0.(1)判断方程的根的情况;(2)若△ABC为等腰直角三角形,且其两条边长恰好是该方程的根,求m的值.【题型4 由根与系数的关系求代数式(直接)】21.(2023•西华县二模)已知m和n是方程x2﹣x﹣2023=0的两个根,则代数式m+n的值是()A.2023B.﹣2023C.﹣1D.1 22.(2023春•庐阳区校级期中)已知一元二次方程x2+4x﹣1=0的两根分别为m,n,则m+n+mn的值是()A.﹣5B.﹣3C.3D.5 23.(2023•天津一模)若一元二次方程x2﹣4x+3=0的两个根是x1,x2,则x1•x2的值是()A.3B.﹣3C.﹣4D.4 24.(2023•东莞市二模)已知方程x2﹣3x+1=0的两个根分别为x1、x2,则x1+x2﹣x1•x2的值为()A.7B.5C.3D.2 25.(2023•汶上县一模)已知m,n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m的值为()A.3B.﹣10C.0D.10【题型5 由根与系数的关系求代数式(代换)】26.(2023•南山区三模)若关于x的一元二次方程x2﹣4x+3=0有两个不相等的实数根x1、x2,则的值是()A.B.C.D.27.(2023•潍城区二模)若x1、x2是关于x的一元二次方程x2﹣3x﹣5=0的两根,则的值为()A.19B.9C.1D.﹣1 28.(2023•汉阳区校级模拟)若实数m,n满足条件:m2﹣2m﹣1=0,n2﹣2n ﹣1=0,则的值是()A.2B.﹣4C.﹣6D.2或﹣6 29.(2023•兴庆区校级二模)已知m、n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m的值为()A.﹣10B.10C.3D.0 30.(2023•临沭县一模)已知m,n是一元二次方程x2+2x﹣2023=0的两个实数根,则代数式m2+4m+2n的值等于()A.2023B.2022C.2020D.2019【题型6 由根与系数的关系求代数式(降次)】31.(2023•河东区一模)已知x1,x2是方程x2﹣x﹣2023=0的两个实数根,则代数式的值是()A.4047B.4045C.2023D.1【题型7 构造一元二次方程求代数式的值】32.(2023•安丘市模拟)已知方程x2+2023x﹣5=0的两根分别是α和β,则代数式α2+β+2024α的值为()A.0B.﹣2018C.﹣2023D.﹣2024 33.(2023•肥城市一模)已知m、n是一元二次方程x2﹣x﹣2024=0的两个实数根,则代数式m2﹣2m﹣n的值为()A.2020B.2021C.2022D.2023 34.(2023•鼓楼区校级模拟)已知a、b是关于x的方程x2+3x﹣2010=0的两根,则a2﹣a﹣4b的值是()A.2020B.2021C.2022D.2023 34.(2023•东港区校级一模)已知m、n是一元二次方程x2﹣x﹣2022=0的两个实数根,则代数式m2﹣2m﹣n的值等于()A.2020B.2021C.2022D.2023【题型8 已知方程根的情况判断另一个根】35.(2023•阿克苏市二模)若x=2是方程x2﹣x+m=0的一个根,则此方程的另一个根是()A.﹣1B.0C.1D.2 36.(2020秋•甘井子区期末)关于x的方程x2﹣4x+m=0有一个根为﹣1,则另一个根为()A.﹣2B.2C.﹣5D.5 37.(2020春•宣城期末)关于x的一元二次方程2x2+kx﹣4=0的一个根x1=﹣2,则方程的另一个根x2和k的值为()A.x2=1,k=2B.x2=2,k=2C.x2=1,k=﹣1D.x2=2,k=﹣1 38.(2023•诸暨市模拟)关于x的一元二次方程x2+mx﹣2=0有一个解为x=1,则该方程的另一个解为()A.0B.﹣1C.2D.﹣2 39.(2023•洛阳一模)已知关于x的一元二次方程x2+kx﹣2=0有一个根是﹣2,则另一个根是()A.1B.﹣1C.2D.﹣2。
一元二次方程的根的判别式练习题
一元二次方程的根的判别式一、新课预习关于x的一元二次方程ax2+bx+c=0(a≠0)的根的判别式及求根公式.(1)b2-4ac>0⇔方程有_______个_________的实数根,x=_______________.(2)b2-4ac=0⇔方程有________个________的实数根,x1=x2=______________.(3)b2-4ac<0⇔方程__________实数根.二、例变讲练例1 方程3x2-2x-1=0的根的判别式为b2-4ac=16,此方程有两个__________的实数根.变1 下列关于x的一元二次方程中,有两个不相等的实数根的方程是( )A.x2+4=0 B.4x2-4x+1=0 C.x2+x+3=0 D.x2+2x-1=0例2 已知关于x的方程x2-3x+2-m2=0.(1)求方程的根的判别式(用含m的代数式表示);(2)说明不论m取何值,方程总有两个不相等的实数根.变2 已知关于x的一元二次方程x2+(m-3)x-3m=0.求证:无论实数m取何值,方程总有两个实数根.例3 若一元二次方程x2+2x-m=0有实数解,则m的取值范围是______________.变3 已知关于x的方程x2-2x+m=0没有实数根,则m的取值范围是__________.例4 若关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是_______________.变4 若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是__________三、课堂训练一级1. 若关于x的方程x2-4x-c=0的根的判别式Δ=4,则c=_________.2. 下列方程中有两个不相等的实数根的方程是( )A.(x-1)2=0 B.x2+2x-19=0 C.x2+4=0 D.x2+x+1=03. 如果关于x的一元二次方程x2+4x-m=0没有实数根,那么m的取值范围是_________.4. 若关于x的方程x2-x-k=0有两个相等的实数根,则k=______,方程的两根为x=x=_____________5. 若关于x的方程x2+x-94a=0有两个不相等的实数根,则实数a的取值范围是__________.6. 已知关于x的一元二次方程(m-1)x2-2x+1=0有实数根,则m的取值范围是( ) A.m≤2 B.m≥2C.m≤2且m≠1 D.m≥-2且m≠17. 若关于x的一元二次方程(k-1)x2-4x-5=0没有实数根,则k的取值范围是_________.8. 求证:不论m为任何实数,关于x的一元二次方程x2+(4m+1)x+2m-1=0总有两个不相等的实数根.四、能力提升9. 已知关于x的一元二次方程x2-(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长.10. 等腰三角形的边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,求n的值.第7课时 一元二次方程的根的判别式一、新课预习关于x 的一元二次方程ax 2+bx +c =0(a≠0)的根的判别式及求根公式.(1)b 2-4ac >0⇔方程有_______个_________的实数根,x =_______________. 两,不相等,-b±b2-4ac 2a(2)b 2-4ac =0⇔方程有________个________的实数根,x 1=x 2=______________.(3)b 2-4ac <0⇔方程__________实数根.两,相等,-b 2a,无 二、例变讲练例1 方程3x 2-2x -1=0的根的判别式为b2-4ac =16,此方程有两个__________的实数根.不相等变1 下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .x 2+4=0B .4x 2-4x +1=0C .x 2+x +3=0D .x 2+2x -1=0 D例2 已知关于x 的方程x 2-3x +2-m 2=0.(1)求方程的根的判别式(用含m 的代数式表示);解:b 2-4ac =4m 2+1;(2)说明不论m 取何值,方程总有两个不相等的实数根.解:b 2-4ac =4m 2+1≥1>0,∴无论m 取何值,方程总有两个不相等的实数根.变2 已知关于x 的一元二次方程x 2+(m -3)x -3m =0.求证:无论实数m 取何值,方程总有两个实数根.解:Δ=(m -3)2-4×(-3m)=m 2-6m +9+12m=m 2+6m +9=(m +3)2,∵无论实数m 取何值,总有(m +3)2≥0,即Δ≥0,∴无论实数m 取何值,方程总有两个实数根.例3 若一元二次方程x 2+2x -m =0有实数解,则m 的取值范围是______________.m≥-1变3 已知关于x 的方程x 2-2x +m =0没有实数根,则m 的取值范围是__________. m>1例4 若关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是_______________.k>-1且k≠0变4 若关于x 的一元二次方程(k -1)x 2+4x +1=0有实数根,则k 的取值范围是__________,k≤5且k≠1三、课堂训练一级1. 若关于x 的方程x 2-4x -c =0的根的判别式Δ=4,则c =_________.-32. 下列方程中有两个不相等的实数根的方程是( )A .(x -1)2=0B .x 2+2x -19=0C .x 2+4=0D .x 2+x +1=0B 3. 如果关于x 的一元二次方程x 2+4x -m =0没有实数根,那么m 的取值范围是_________.m<-44. 若关于x 的方程x 2-x -k =0有两个相等的实数根,则k=______,方程的两根为 x =x=_____________-14, x 1=x 2=125. 若关于x 的方程x 2+x -94a =0有两个不相等的实数根,则实数a 的取值范围是__________.a>-196. 已知关于x 的一元二次方程(m -1)x 2-2x +1=0有实数根,则m 的取值范围是( )A .m≤2B .m≥2C .m≤2且m≠1D .m≥-2且m≠1C7. 若关于x 的一元二次方程(k -1)x2-4x -5=0没有实数根,则k 的取值范围是_________.k <158. 求证:不论m 为任何实数,关于x 的一元二次方程x 2+(4m +1)x +2m -1=0总有两个不相等的实数根.证明:根据题意得:Δ=(4m +1)2-4(2m -1)=16m 2+8m +1-8m +4=16m 2+5,∵m2≥0,∴16m 2+5>0,即Δ>0,∴不论m 为任何实数,原方程总有两个不相等的实数根.四、能力提升9. 已知关于x 的一元二次方程x 2-(m +2)x +2m =0.(1)求证:不论m 为何值,该方程总有两个实数根;证明:Δ=[-(m +2)]2-4×1×2m =m 2-4m +4=(m -2)2.∵(m -2)2≥0,即Δ≥0,∴不论m 为何值,该方程总有两个实数根.(2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长.解:将x =1代入原方程,得:1-(m +2)+2m =0,∴m =1,∴方程的另一个根为2×11=2. 当1,2为直角边长时,斜边长=12+22=5,∴围成直角三角形的周长=1+2+5=3+5;当2为斜边长时,另一直角边长=22-12=3,∴围成直角三角形的周长=1+2+3=3+ 3.综上所述:以此两根为边长的直角三角形的周长为3+5或3+ 3.10. 等腰三角形的边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程x 2-6x +n -1=0的两根,求n 的值.解:∵三角形是等腰三角形,∴①a =2或b =2,②a =b 两种情况,①当a =2或b =2时,∵a ,b 是关于x 的一元二次方程x2-6x +n -1=0的两根,∴x =2,把x =2代入x 2-6x +n -1=0得22-6×2+n -1=0,解得:n =9,当n =9时,方程的两根是2和4,而2,4,2不能组成三角形,故n =9不合题意,②当a =b 时,方程x2-6x +n -1=0有两个相等的实数根,∴Δ=(-6)2-4(n -1)=0,解得:n =10,综上所述:n =10.。
根判别式含参数一元二次方程专项练习60题(有答案)
一元二次方程专项练习60题1.已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当时,求m的值.2.关于x的方程2x2﹣(a2﹣4)x﹣a+1=0,(1)若方程的一根为0,求实数a的值;(2)若方程的两根互为相反数,求实数a的值.3.已知关于x的方程x2﹣(k+1)x+k+2=0的两个实数根分别为x1和x2,且x12+x22=6,求k的值?4.已知关于x的方程kx2+2(k+1)x﹣3=0.(1)请你为k选取一个合适的整数,使方程有两个有理根,并求出这两个根;(2)若k满足不等式16k+3>0,试讨论方程实数根的情况.5.已知方程2(m+1)x2+4mx+3m=2,根据下列条件之一求m的值.(1)方程有两个相等的实数根;(2)方程有两个相反的实数根;(3)方程的一个根为0.6.已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=﹣1,求m 的值.7.已知x1,x2是关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,且满足,求m 的值.8.已知关于x的一元二次方程x2+2(2一m)x+3﹣6m=0.(1)求证:无论m取何实数,方程总有实数根;(2)若方程的两个实数根x l和x2满足x l+x2=m,求m的值.9.已知关于x的一元二次方程x2﹣(8+k)x+8k=0(1)求证:无论k取任何实数,方程总有实数根;(2)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.10.已知关于x的一元二次方程x2﹣2(1﹣m)x+m2=0的两根为x1,x2.(1)求m的取值范围;(2)若x12+12m+x22=10,求m的值.11.已知:关于x的一元二次方程kx2+(2k+1)x+k﹣2=0的两个实数根是x1和x2.(1)求k的取值范围;(2)若x12=11﹣x22,求k的值.12.已知关于x的一元二次方程x2+5x﹣m=0有两个实数根(1)求m的取值范围;(2)若x=﹣1是方程的一个根,求m的取值及方程的另一个根.13.已知关于x的一元二次方程x2﹣(m+2)x+m﹣2=0.(1)求证:无论m取何值时,方程总有两个不相等的实数根.(2)若方程的两实数根之积等于m2+9m﹣11,求的值.14.一元二次方程x2+kx﹣(k﹣1)=0的两根分别为x1,x2.且x12﹣x22=0,求k值.15.在正实数范围内,只存在一个数是关于x的方程的解,求实数k的取值范围.16.关于x的方程4kx2+4(k+2)x+k=0有两个不相等的实数根.(1)求k的取值范围.(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.17.已知关于x的二次方程a2x2+2ax+1=﹣3x的两个实数根的积为1,且关于x的二次方程x2+2(a+n)x﹣a2=4﹣18.关于的方程2x3+(2﹣m)x2﹣(m+2)x﹣2=0有三个实数根分别为α、β、x0,其中根x0与m无关.(1)如(α+β)x0=﹣3,求实数m的值.(2)如α<a<b<β,试比较:与的大小,并说明你的理由.19.已知x1,x2是关于x的一元二次方程x2+(3a﹣1)x+2a2﹣1=0的两个实数根,其满足(3x1﹣x2)(x1﹣3x2)=﹣80.求实数a的所有可能值.20.已知关于x的方程x2+(2m﹣3)x+m2+6=0的两根x1,x2的积是两根和的两倍,①求m的值;②求作以为两根的一元二次方程.21.已知关于x的方程x2﹣(2k﹣3)x+k2+1=0.问:(1)当k为何值时,此方程有实数根;(2)若此方程的两实数根x1、x2,满足|x1|+|x2|=3,求k的值.22.已知,关于x的方程x2﹣2mx=﹣m2+2x的两个实数根x1、x2满足|x1|=x2,求实数m的值.23.设m为整数,且4<m<40,方程x2﹣2(2m﹣3)x+4m2﹣14m+8=0有两个整数根,求m的值.24.已知关于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.25.已知关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根的平方和为23,求m的值.26.已知关于x的方程x2+2(m﹣2)x+m2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m的值.27.已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当(x1+x2)•(x1﹣x2)=0时,求m的值.(友情提示:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则:,)28.关于x的方程有两个不相等的实数根.(1)求k的取值范围;229.已知x1、x2是方程4x2﹣(3m﹣5)x﹣6m2=0的两根,且,求m的值.30.已知关于x的方程k有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两实根为x1和x2(x1≠x2),那么是否存在实数k,使成立?若存在,请求出k的值;若不存在,请说明理由.31.已知:关于x的方程x2+kx+k﹣1=0(1)求证:方程一定有两个实数根;(2)设x1,x2是方程的两个实数根,且(x1+x2)(x1﹣x2)=0,求k的值.32.设关于x的二次方程(a2+1)x2﹣4ax+2=0的两根为x1,x2,若2x1x2=x1﹣3x2,试求a的值.33.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根x1,x2,(1)求a的取值范围;(2)若5x1+2x1x2=2a﹣5x2;求a的值.34.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.35.一元二次方程8x2﹣(m﹣1)x+m﹣7=0,(1)m为何实数时,方程的两个根互为相反数?(2)m为何实数时,方程的一个根为零?(3)是否存在实数m,使方程的两个根互为倒数?36.已知一元二次方程kx2+x+1=0(1)当它有两个实数根时,求k的取值范围;(2)问:k为何值时,原方程的两实数根的平方和为3?37.关于x的方程为x2+(m+2)x+2m﹣1=0.(1)证明:方程有两个不相等的实数根.(2)是否存在实数m,使方程的两个实数根互为相反数?若存在,求出m的值及两个实数根;若不存在,请说明理由.38.已知:关于的方程x2﹣kx﹣2=0.(1)求证:无论k为何值时,方程有两个不相等的实数根.(2)设方程的两根为x1,x2,若2(x1+x2)>x1x2,求k的取值范围.39.已知:关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m为何值时,方程总有两个实数根?(2)设方程的两实根分别为x1、x2,当x12+x22﹣x1x2=78时,求m的值.40.已知x1,x2是关于x的方程x2﹣(2m+3)x+m2=0的两个实数根,且=1时求m的值.41.已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程有一根为2,求m的值,并求出此时方程的另一根.42.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7.求(x1﹣x2)2的值.43.已知方程x2+2(k﹣2)x+k2+4=0有两个实数根,且这两个实数根的平方和比两根的积大21,求k的值和方程的两个根.44.若关于x的一元二次方程4kx2+4(k+2)x+k=0有两个不相等的实数根,是否存在实数k,使方程的两个实数根之和等于0?若存在,求出k的值;若不存在,请说明理由.46.已知x1、x2是方程x2﹣2mx+3m=0的两根,且满足(x1+2)(x2+2)=22﹣m2,求m的值.47.已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.(1)求证:无论k为何值时,该方程总有实数根;(2)若两个实数根平方和等于5,求k的值.48.若关于x的方程x2+(m+1)x+m+4=0两实数根的平方和是2,求m的值.49.m为何值时,方程2x2+(m2﹣2m﹣15)x+m=0两根互为相反数?50.已知△ABC的两边AB、AC的长度是关于x的一元二次方程x2﹣(2k+2)x+k2+2k=0的两个根,第三边长为10,问k为何值时,△ABC是等腰三角形?并求出这个等腰三角形的周长.51.已知关于x的一元二次方程x2﹣2(k﹣1)x+k2=0(1)当k取什么值时,原方程有实数根;(2)对k选取一个合适的数,使方程有两个实数根,并求出这两个实数根的平方和.52.已知x1,x2是关于x的方程x2+(2a﹣1)x+a2=0的两个实数根,(1)当a取何值时,方程两根互为倒数?(2)如果方程的两个实数根x1、x2满足|x1|=x2,求a的值.53.已知关于x的方程(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;(2)是否存在正数m,使方程的两个实数根的平方和等于224.若存在,求出满足条件的m的值;若不存在,请说明理由.54.已知一元二次方程8x2﹣(2m+1)x+m﹣7=0,根据下列条件,分别求出m的值:(1)两根互为倒数;(2)两根互为相反数;(3)有一根为零;(4)有一根为1.55.已知关于x的一元二次方程(a﹣1)x2﹣(2a﹣3)x+a=0有实数根.(1)求a的取值范围;(2)设x1,x2是一元二次方程(a﹣1)x2﹣(2a﹣3)x+a=0的两个根,且x12+x22=9,求a的值.56.已知一元二次方程8y2﹣(m+1)y+m﹣5=0.(1)m为何值时,方程的一个根为零?(2)m为何值时,方程的两个根互为相反数?57.已知一元二次方程(m+1)x2﹣x+m2﹣3m﹣3=0有一个根是1,求m的值及方程的另一个根.58.若关于x的方程(a2﹣3)x2﹣2(a﹣2)x+1=0的两个实数根互为倒数,求a的值.59.已知△ABC的一边为5,另外两边恰是方程x2﹣6x+m=0的两个根.(1)求实数m的取值范围.(2)当m取最大值时,求△ABC的面积.60.已知等腰三角形的一边长a=1,另两边b、c恰是方程x2﹣(k+2)x+2k=0的两根,求△ABC的周长..参考答案:1.解:(1)根据题意得△=(2m﹣1)2﹣4m2≥0,解得m≤;(2)根据题意得x1+x2=﹣(2m﹣1),x1•x2=m2,∵,∴(x1+x2)2﹣2x1•x2=7,∴(2m﹣1)2﹣2m2=7,整理得m2﹣2m﹣3=0,解得m1=3,m2=﹣1,∵m≤,∴m=﹣12.解:(1)把x=0代入原方程得﹣a+1=0,解得a=1;(2)设方程两个为x1,x2,根据题意得x1+x2==0,解得a=±2,当a=﹣2时,原方程化为2x2+3=0,此方程无实数解,∴a=23.解:由根与系数的关系可得:x1+x2=k+1,x1•x2=k+2,又知x12+x22=(x1+x2)2﹣2x1•x2=(k+1)2﹣2(k+2)=6解得:k=±3.∵△=b2﹣4ac=(k+1)2﹣4(k+2)=k2﹣2k﹣7≥0,∴k=﹣34.解:(1)比如:取k=3,原方程化为3x2+8x﹣3=0.…(1分)即:(3x﹣1)(x+3)=0,解得:x1=﹣3,x2=;…(2分)(2)由16+k>0,解得k>﹣.…(3分)∵当k=0时,原方程化为2x﹣3=0;解得:x=,∴当k=0时,方程有一个实数根…(4分)∵当k>﹣且k≠0时,方程kx2+2(k+1)x﹣3=0为一元二次方程,∴△=[2(k+1)]2﹣4×k×(﹣3)=4k2+8k+4+12k=4k2+20k+4=[(2k)2+2×2k×1+1]+(16k+3)=(2k+1)2+16k+3,…(5分)∵(2k+1)2≥0,16k+3>0,∴△=(2k+1)2+16k+3>0.…(6分)∴当k>﹣且k≠0时,一元二次方程kx2+2(k+1)x ﹣3=0有两个不等的实数根5.解:(1)∵△=16m2﹣8(m+1)(3m﹣2)=﹣8m2﹣8m+16,而方程有两个相等的实数根,∴△=0,即﹣8m2﹣8m+16=0,求得m1=﹣2,m2=1;(2)因为方程有两个相等的实数根,所以两根之和为0且△≥0,则﹣=0,求得m=0;(3)∵方程有一根为0,∴3m﹣2=0,∴m=.6.解:根据条件知:α+β=﹣(2m+3),αβ=m2,.∴+==﹣1,∴=﹣1,即:m2﹣2m﹣3=0,解得:m=3或﹣1,当m=3时,方程为x2+9x+9=0,此方程有两个不相等的实数根,当m=﹣1时,方程为x2+x+1=0,此方程无实根,不合题意,舍去,∴m=37.解:根据题意得△=(2m+3)2﹣4m2>0,解得m >﹣;根据根与系数的关系得x1+x2=2m+3,则2m+3=m2,整理得m2﹣2m﹣3=0,即(m﹣3)(m+1)=0,解得m1=3,m2=﹣1,则m=38.(1)证明:方程根的判别式△=[2(2﹣m)]2﹣4×1×(3﹣6m)=4(4﹣4m+m2)﹣4(3﹣6m)=4(4﹣4m+m2﹣3+6m)=4(1+2m+m2)=4(m+1)2(4分)∵无论m为何实数,4(m+1)2≥0恒成立,即△≥0恒成立.(5分)∴无论m取何实数,方程总有实数根;(6分)(2)解:由根与系数关系得x1+x2=﹣2(2﹣m)(7分)由题知x1+x2=m,∴m=﹣2(2﹣m)(8分)解得m=4.9.解:(1)∵△=(8+k)2﹣4×8k=(k﹣8)2,∵(k﹣8)2,≥0,∴△≥0,∴无论k取任何实数,方程总有实数根;(2)解方程x2﹣(8+k)x+8k=0得x1=k,x2=8,①当腰长为5时,则k=5,∴周长=5+5+8=18;②当底边为5时,∴x1=x2,∴k=8,∴周长=8+8+5=2110.解:(1)△=[2(1﹣m)]2﹣4m2=4﹣8m,∵方程有两根,∴△≥0,即4﹣8m≥0,∴m≤.(2)∵x1+x2=2(1﹣m),x1•x2=m2,且x12+12m+x22=10,∴m2+2m﹣3=0,解得m1=﹣3,m2=1,又∵m≤,∴m=﹣311.解:(1)∵方程有两个实数根,∴k≠0且△=(2k+1)2﹣4k(k﹣2)≥0,解得:k≥﹣且k≠0,∴k 的取值范围:k≥﹣且k≠0.(2)∵一元二次方程kx2+(2k+1)x+k﹣2=0的两个实数根是x1和x2,∴x1+x 2=﹣,x 1x2=,∵x12=11﹣x22,∴x12+x22=11,∴(x1+x2)2﹣2x1x2=11,∴﹣2()=11,.解得:k=﹣或k=1,∵k≥﹣且k≠0,∴k=112.解:(1)∵方程x2+5x﹣m=0有两个实数根,∴△=25+4m≥0,解得:m≥﹣;(2)将x=﹣1代入方程得:1﹣5﹣m=0,即m=﹣4,∴方程为x2+5x+4=0,设另一根为a,∴﹣1+a=﹣5,即a=﹣4,则m的值为﹣4,方程另一根为﹣413.解:(1)由题意得:△=[﹣(m+2)]2﹣4(m﹣2)=m2+12,∵无论m取何值时,m2≥0,∴m2+12≥12>0即△>0恒成立,∴无论m取何值时,方程总有两个不相等的实数根.(2)设方程两根为x1,x2,由韦达定理得:x1•x2=m﹣2,由题意得:m﹣2=m2+9m﹣11,解得:m1=﹣9,m2=1,∴14.解:∵x12﹣x22=0,∴(x1+x2)(x1﹣x2)=0,∴x1+x2=0或x1﹣x2=0,当x1+x2=0,则x1+x2=﹣k=0,解得k=0,原方程变形为x2+1=0,此方程没有实数根,当x1﹣x2=0,则△=k2﹣4(k﹣1)=0,解得k1=k2=2,∴k的值为215.解:原方程可化为2x2﹣3x﹣(k+3)=0,①(1)当△=0时,,满足条件;(2)若x=1是方程①的根,得2×12﹣3×1﹣(k+3)=0,k=﹣4;此时方程①的另一个根为,故原方程也只有一根;(3)当方程①有异号实根时,,得k>﹣3,此时原方程也只有一个正实数根;(4)当方程①有一个根为0时,k=﹣3,另一个根为,此时原方程也只有一个正实根.综上所述,满足条件的k的取值范围是或k=﹣4或k≥﹣316.解:(1)由△=[4(k+2)]2﹣4×4k•k>0,∴k>﹣1又∵4k≠0,∴k的取值范围是k>﹣1,且k≠0;(2)不存在符合条件的实数k理由:设方程4kx2+4(k+2)x+k=0的两根分别为x1、x2,由根与系数关系有:x1+x2=﹣,x 1•x 2=,又==﹣=0,∴k=﹣2,由(1)知,k=﹣2时,△<0,原方程无实解,∴不存在符合条件的k的值17.解:∵关于x的二次方程a2x2+2ax+1=﹣3x∴a2x2+2ax+3x+1=0,∵关于x的二次方程a2x2+2ax+1=﹣3x的两个实数根的积为1,∴=1,∴a=±1,∵12a+9≥0,∴a=1∴关于x的二次方程x2+2(a+n)x﹣a2=4﹣6a﹣2n可化简为:x2+2(1+n)x+(1+2n)=0∴x1=﹣1,x2=﹣1﹣2n,...∵关于x 的二次方程x 2+2(a+n )x ﹣a 2=4﹣6a ﹣2n 有小于2的正实根, ∴0<﹣1﹣2n <2, ∴n 的整数值为﹣118.解:(1)由2x 3+(2﹣m )x 2﹣(m+2)x ﹣2=0得(x+1)(2x 2﹣mx ﹣2)=0,∴x 0=﹣1,(2分) α、β是方程2x 2﹣mx ﹣2=0的根∴, ∵(α+β)x 0=﹣3,所以m=6(4分)(2)设T=﹣=(5分)∵a <b ,∴b ﹣a >0,又a 2+1>0,b 2+1>0,∴>0(6分)设f (x )=2x 2mx ﹣2,所以α、β是f (x )=2x 2mx ﹣2与x 轴的两个交点, ∵α<a <b <β ∴,即∴ma+mb >2a 2+2b 2﹣4(8分)∴4﹣4ab+ma+mb >2(a ﹣b )2>0(9分) ∴T >0,即>19.解:∵x 1,x 2是关于x 的一元二次方程x 2+(3a ﹣1)x+2a 2﹣1=0的两个实数根,∴△≥0,即(3a ﹣1)2﹣4(2a 2﹣1)=a 2﹣6a+5≥0 所以a ≥5或a ≤1.…(3分) ∴x 1+x 2=﹣(3a ﹣1),x 1•x 2=2a 2﹣1,∵(3x 1﹣x 2)(x 1﹣3x 2)=﹣80,即3(x 12+x 22)﹣10x 1x 2=﹣80,∴3(x 1+x 2)2﹣16x 1x 2=﹣80, ∴3(3a ﹣1)2﹣16(2a 2﹣1)=﹣80, 整理得,5a 2+18a ﹣99=0,∴(5a+33)(a ﹣3)=0,解得a=3或a=﹣,当a=3时,△=9﹣6×3+5=﹣4<0,故舍去, 当a=﹣时,△=(﹣)2﹣6×(﹣)+6=()2+6×+6>0,∴实数a 的值为﹣20.解:(1)∵原方程有两实根∴△=(2m ﹣3)2﹣4(m 2+6)=﹣12m ﹣15≥0得①…(3分)∵x 1+x 2=﹣(2m ﹣3)x 1x 2=m 2+6…(4分) 又∵x 1x 2=2(x 1+x 2),∴m 2+6=﹣2(2m ﹣3)整理得m 2+4m=0解得m=0或m=﹣4…(6分) 由①知m=﹣4…(7分) (2)∵…(9分),…(11分)由韦达定理得所求方程为…21.解:(1)若方程有实数根,则△=(2k ﹣3)2﹣4(k 2+1)≥0, ∴k ≤,∴当k ≤,时,此方程有实数根;(2)∵此方程的两实数根x 1、x 2,满足|x 1|+|x 2|=3,..∴(|x 1|+|x 2|)2=9, ∴x 12+x 22+2|x 1x 2|=9,∴(x 1+x 2)2﹣2x 1x 2+2|x 1x 2|=9, 而x 1+x 2=2k ﹣3,x 1x 2=k 2+1,∴(2k ﹣3)2﹣2(k 2+1)+2(k 2+1)=9, ∴2k ﹣3=3或﹣3,∴k=0或3,k=3不合题意,舍去; ∴k=022.解:方程整理为x 2﹣2(m+1)x+m 2=0,∵关于x 的方程x 2﹣2mx=﹣m 2+2x 的两个实数根x 1、x 2, ∴△=4(m+1)2﹣4m 2≥0,解得m ≥﹣; ∵|x 1|=x 2,∴x 1=x 2或x 1=﹣x 2,当x 1=x 2,则△=0,所以m=﹣,当x 1=﹣x 2,即x 1+x 2=2(m+1)=0,解得m=﹣1,而m ≥﹣,所以m=﹣1舍去, ∴m 的值为﹣23.解:∵a=1,b=﹣2(2m ﹣3),c=4m 2﹣14m+8, ∴△=b 2﹣4ac=4(2m ﹣3)2﹣4(4m 2﹣14m+8)=4(2m+1).∵方程有两个整数根,∴△=4(2m+1)是一个完全平方数, 所以2m+1也是一个完全平方数. ∵4<m <40, ∴9<2m+1<81,∴2m+1=16,25,36,49或64, ∵m 为整数, ∴m=12或24. 代入已知方程,得x=16,26或x=38,52. 综上所述m 为12,或2424.解:(1)方程(k ﹣1)x 2+(2k ﹣3)x+k+1=0有两个不相等的实数根x 1,x 2, 可得k ﹣1≠0,∴k ≠1且△=﹣12k+13>0, 可解得且k ≠1;(2)假设存在两根的值互为相反数,设为 x 1,x 2, ∵x 1+x 2=0, ∴, ∴,又∵且k ≠1 ∴k 不存在25.解:设关于x 的一元二次方程x 2﹣mx+2m ﹣1=0的两个实数根分别为x 1,x 2,则:x 1+x 2=m ,x 1•x 2=2m ﹣1,∵关于x 的一元二次方程x 2﹣mx+2m ﹣1=0的两个实数根的平方和为23,∴x 12+x 22=(x 1+x 2)2﹣2x 1•x 2=m 2﹣2(2m ﹣1)=m 2﹣4m+2=23,解得:m 1=7,m 2=﹣3,当m=7时,△=m 2﹣4(2m ﹣1)=﹣3<0(舍去), 当m=﹣3时,△=m 2﹣4(2m ﹣1)=37>0, ∴m=﹣326.解:设x 的方程x 2+2(m ﹣2)x+m 2+4=0有两个实数根为x 1,x 2,∴x 1+x 2=2(2﹣m ),x 1x 2=m 2+4, ∵这两根的平方和比两根的积大21, ∴x 12+x 22﹣x 1x 2=21,即:(x1+x2)2﹣3x1x2=21,∴4(m﹣2)2﹣3(m2+4)=21,解得:m=17或m=﹣1,∵△=4(m﹣2)2﹣4(m2+4)≥0,解得:m≤0.故m=17舍去,∴m=﹣127.解:∵x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2,∴△=(2m﹣1)2﹣4m2=1﹣4m≥0,解得:m≤;(2)∵x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2,∴x1+x2=1﹣2m,x1x2=m2,∴(x1+x2)•(x1﹣x2)=0,当1﹣2m=0时,1﹣2m=0,解得m=(不合题意).当x1=x2时,(x1+x2)2﹣4x1x2=4m2﹣4m+1﹣4m2=0,解得:m=.故m的值为:28.解:(1)依题意得△=(k+2)2﹣4k•>0,解之得k>﹣1,又∵k≠0,∴k的取值范围是k>﹣1,且k≠0;(2)设方程的两个实数根分别为x1,x2,则x1+x2=k+1,x1•x2=k+2,∴x12+x22=(x1+x2)2﹣2x1x2=6,即(k+1)2﹣2(k+2)=6,解得:k=±3,当k=3时,△=16﹣4×5<0,∴k=3(舍去);当k=﹣3时,△=4﹣4×(﹣1)>0,∴k=﹣329.解:∵a=4,b=5﹣3m,c=﹣6m2,∴△=(5﹣3m)2+4×4×6m2=(5﹣3m)2+96m2,∵5﹣3m=0与m=0不能同时成立.△=(5﹣3m)2+96m2>0则:x1x2≤0,又∵,∴,又∵,,∴,∴,解得:m1=1,m2=530.解:(1)由>0,解得k>﹣1,又∵k≠0,∴k的取值范围是k>﹣1且k≠0;(2)不存在符合条件的实数k,理由如下:∵,,又,.∴,解得经检验k=﹣是方程的解.由(1)知,当时,△<0,故原方程无实根∴不存在符合条件的k的值31.(1)证明:△=k2﹣4(k﹣1)=k2﹣4k+4=(k﹣2)2,∵(k﹣2)2≥0,即△≥0,∴方程一定有两个实数根;(2)根据题意得x1+x2=﹣k,x1•x2=k﹣1,∵(x1+x2)(x1﹣x2)=0,∴x1+x2=0或x1﹣x2=0,当x1+x2=0,则﹣k=0,解得k=0,当x1﹣x2=0,则△=0,即(k﹣2)2=0,解得k=2,∴k的值为0或232.解:∵关于x的二次方程(a2+1)x2﹣4ax+2=0的两根为x1,x2,∴①,②∵2x1x2=x1﹣3x2,∴2x1x2+(x1+x2)=2(x1﹣x2),平方得4(x1x2)2+4x1x2(x1+x2)=3(x1+x2)2﹣16x1x2,将式①、②代入后,解得a=3,a=﹣1,当a=3时,原方程可化为10x2﹣12x+2=0,△=122﹣4×10×2=64>0,原方程成立;当a=﹣1时,原方程可化为2x2+4x+2=0,△=42﹣4×2×2=0,原方程成立.∴a=3或a=﹣133.解:(1)根据题意得a﹣1≠0且△=4﹣4(a﹣1)>0,解得a<2且a≠1;(2)根据题意得x 1+x2=,x1•x2=,∵5x1+2x1x2=2a﹣5x2,∴5(x1+x2)+2x1x2=2a,∴+=2a,整理得a2﹣a﹣6=0,解得a1=3,a2=﹣2,∵a<2且a≠1,∴a=﹣234.解:(1)关于x的一元二次方程x2﹣(2k+1)x+4k ﹣3=0,△=(2k+1)2﹣4(4k﹣3)=4k2﹣12k+13=4+4>0恒成立,故无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理得:b2+c2=a2=31①因为两条直角边b和c恰好是这个方程的两个根,则b+c=2k+1②,bc=4k﹣3③,因为(b+c)2﹣2bc=b2+c2=31,即(2k+1)2﹣2(4k﹣3)=31,整理得:4k2+4k+1﹣8k+6﹣31=0,即k2﹣k﹣6=0,解得:k1=3,k2=﹣2(舍去),则b+c=2k+1=7,又因为a=,则△ABC的周长=a+b+c=+7.35.解:(1)∵一元二次方程8x2﹣(m﹣1)x+m﹣7=0的两个根互为相反数,.∴x1+x2==0,解得m=1;(2)∵一元二次方程8x2﹣(m﹣1)x+m﹣7=0的一个根为零,∴x1•x2==0,解得m=7;(3)设存在实数m,使方程8x2﹣(m﹣1)x+m﹣7=0的两个根互为倒数,则x1•x2==1,解得m=15;则原方程为4x2﹣7x+4=0,△=49﹣4×4×4=﹣15<0,所以原方程无解,这与存在实数m,使方程8x2﹣(m﹣1)x+m﹣7=0有两个根相矛盾.故不存在这样的实数m36.解:(1)∵方程有两个实数根,∴△=1﹣4k≥0且k≠0.故k≤且k≠0.(2)设方程的两根分别是x1和x2,则:x1+x2=﹣,x1x2=,x12+x22=(x1+x2)2﹣2x 1x2,=﹣=3,整理得:3k2+2k﹣1=0,(3k﹣1)(k+1)=0,∴k1=,k 2=﹣1.∵k ≤且k≠0,∴k=(舍去).故k=﹣1 37.(1)证明:△=(m+2)2﹣4(2m﹣1)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,∴方程有两个不相等的实数根.(2)存在实数m,使方程的两个实数根互为相反数.由题知:x1+x2=﹣(m+2)=0,解得:m=﹣2,将m=﹣2代入x2+(m+2)x+2m﹣1=0,解得:x=,∴m的值为﹣2,方程的根为x=38.解:(1)证明:由方程x2﹣kx﹣2=0知a=1,b=﹣k,c=﹣2,∴△=b2﹣4ac=(﹣k)2﹣4×1×(﹣2)=k2+8>0,∴无论k为何值时,方程有两个不相等的实数根;(2)∵方程x2﹣kx﹣2=0.的两根为x1,x2,∴x1+x2=k,x1x2=﹣2,又∵2(x1+x2)>x1x2,∴2k>﹣2,即k>﹣139.解:(1)∵△≥0时,一元二次方程总有两个实数根,△=[2(m+1)]2﹣4×1×(m2﹣3)=8m+16≥0,m≥﹣2,所以m≥﹣2时,方程总有两个实数根.(2)∵x12+x22﹣x1x2=78,∴(x1+x2)2﹣3x1x2=78,∵x1+x2=﹣,x1•x2=,.。
一元二次方程之判别式专项练习60题(有答案)ok
一元二次方程之判别式专项练习60题(有答案)ok1.1) 对于方程2x-5x-a=0,根据一元二次方程的求根公式,判别式为Δ=25+8a,要使方程有两个不相等的实数根,即Δ>0,所以25+8a>0,解得a>-25/8,所以a的取值范围为a>-25/8.2) 当方程的两个根互为倒数时,根据一元二次方程的求根公式,有x1x2=-a/2,又因为x1x2=1/x1,所以x1^2=-a/2,代入原方程得2x-5x-2x1^2=0,解得x1=±√(5/2),代入x1x2=-a/2得a=5.2.1) 将方程展开得x^2-5x+6-p=0,根据一元二次方程的求根公式,判别式为Δ=25-24+4p=1+4p,要使方程有两个不相等的实数根,即Δ>0,所以1+4p>0,解得p>-1/4,所以p的取值范围为p>-1/4.2) 当p=2时,代入方程得(x-3)(x-2)=2,展开得x^2-5x+4=0,根据一元二次方程的求根公式,解得x1=1,x2=4.3.将方程化简得2kx+k-2=0,由于方程有两个相等的实数根,所以判别式Δ=0,解得k=1,代入方程得3x-1=0,解得x=1/3.4.1) 将方程化简得x^2+(4-a)x+3=0,根据一元二次方程的求根公式,判别式为Δ=(4-a)^2-12,要使方程有实数根,即Δ≥0,所以(4-a)^2-12≥0,解得a∈(-∞,4-2√3]∪[4+2√3,+∞)。
2) 当a=4-2√3时,代入方程得x^2+(4-4+2√3)x+3=0,解得x1=√3-1,x2=-(√3+1)。
5.1) 将方程化简得4x^2-4mx+m^2-4m+1=0,根据一元二次方程的求根公式,判别式为Δ=16m-4m^2,要使方程有两个不相等的实数根,即Δ>0,所以m∈(-∞,0)∪(1,4]。
2) 当m=4时,代入方程得4x^2-16x+17=0,根据一元二次方程的求根公式,解得x1=(4-√3)/2,x2=(4+√3)/2.6.1) 将方程化简得4x^2-3x-m=0,由于方程有两个不相等的实数根,所以判别式Δ=9+16m>0,解得m>-9/16,所以m的最小整数值为-1.2) 当m=-1时,代入方程得4x^2-3x+1=0,根据一元二次方程的求根公式,解得x1=1/4,x2=1.7.根据一元二次方程的求根公式,判别式Δ=25-12m,要使判别式为1,即Δ=1,解得m=2或m=1/3.当m=2时,代入方程得2x^2-10x+3=0,根据一元二次方程的求根公式,解得x1=(5-√13)/2,x2=(5+√13)/2.当m=1/3时,代入方程得x^2-5/3x+1=0,根据一元二次方程的求根公式,解得x1=(5-√5)/6,x2=(5+√5)/6.8.删除此段落。
一元二次方程之判别式专项练习60题有答案
一元二次方程判别式专项练习60题(有答案)1.已知关于x的一元二次方程2x2﹣5x﹣a=0(1)如果此方程有两个不相等的实数根,求a的取值范围.(2)当a为何值时,方程的两个根互为倒数,求出此时方程的解.2.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:方程有两个不相等的实数根;(2)当p=2时,求该方程的根.3.已知关于x的方程x2+2kx+(k﹣2)2=x有两个相等的实数根,求k的值与方程的根.4.若关于x的方程 x2+4x﹣a+3=0有实数根.(1)求a的取值范围;(2)若a为符合条件的最小整数,求此时方程的根.5.已知关于x的方程.(1)如果此方程有两个不相等的实数根,求m的取值范围;(2)在(1)中,若m为符合条件的最大整数,求此时方程的根.6.已知关于x的方程x2+3x﹣m=8有两个不相等的实数根.(1)求m的最小整数值是多少?(2)将(1)中求出的m值,代入方程x2+3x﹣m=8中解出x的值.7.已知关于x的一元二次方程mx2﹣5x+3=0的判别式为1,求m的值及该方程的根.8.已知关于x的方程kx2﹣2x+1=0有两个实数根x1、x2.(1)求k的取值范围;(2)是否存在k使(x1+1)(x2+1)=k﹣1成立?如果存在,求出k的值;如果不存在,请说明理由.9.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0(1)判断方程根的情况;(2)k为何值时,方程有两个相等的实数根,并求出此时方程的根.10.若关于x的一元二次方程有两个不相等的实数根.(1)求k的取值范围;(2)为k选取一个符合要求的值,并求出此方程的根.11.已知关于x的一元二次方程 x2+2mx+(m+2)(m﹣1)=0(m为常数).(1)如果方程有两个不相等的实数根,求m的取值范围;(2)如果方程有两个相等的实数根,求m的值;如果方程没有实数根,求m的取值范围.12.当k取什么值时,关于x的一元二次方程(1)有两个不相等的实数根?(2)没有实数根?13.已知关于x的方程是ax2﹣3(a﹣1)x﹣9=0.(1)证明:不论a取何值,总有一个根是x=3;(2)当a≠0时,利用求根公式求出它的另一个根.14.若k是一个整数,已知关于x 的一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k最大可以取多少?为什么?15.已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m=﹣2时,方程的两根互为相反数吗?并求出此时方程的解.16.已知关于x的方程x2+2x+k﹣1=0,(1)若方程有一个根是1,求k的值;(2)若方程没有实数根,求实数k的取值范围.17.已知关于x的方程x2+(m﹣2)x﹣9=0(1)求证:无论m取什么实数,这个方程总有两个不相等的实数根;(2)若这个方程两个根α,β满足2α+β=m+1,求m的值.18.已知p为质数,使二次方程x2﹣2px+p2﹣5p﹣1=0的两根都是整数,求出p的所有可能值.19.m是什么实数时,方程x2﹣4|x|+5=m有4个互不相等的实数根?20.设关于x的方程x2﹣4x+(y﹣1)|x﹣2|+2﹣2y=0恰有两个实数根,求y的负整数值.21.已知关于x的方程x2+2mx+m+2=0.(1)方程两根都是正数时,求m的取值范围;(2)方程一个根大于1,另一个根小于1,求m的取值范围.22.已知关于x的一元二次方程x2﹣2mx+m2﹣2m=0.(1)当m=1时,求方程的根.(2)试判断方程根的情况.23.已知a、b、c是三角形的三条边长,且关于x的方程(c﹣b)x2+2(b﹣a)x+(a﹣b)=0有两个相等的实数根,试判断三角形的形状.24.已知关于x的一元二次方程x2﹣mx+m﹣2=0,求证:无论m取何值,该方程总有两个不相等的实数根.25.已知关于x的一元二次方程x2﹣(m﹣1)x+m+2=0.(1)若方程有两个相等的实数根,求m的值;(2)若方程的两实数根之积等于m2﹣9m+2,求的值.26.关于x的方程x2﹣2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)若k﹣1是方程x2﹣2x+k﹣1=0的一个解,求k的值.27.已知关于x的方程x2+2x+m﹣1=0(1)若1是方程的一个根,求m的值;(2)若方程有两个不相等的实数根,求m的取值范围.28.若关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,求k的取值范围.29.已知关于x的方程x2+(3k﹣2)x﹣6k=0,(1)求证:无论k取何实数值,方程总有实数根;(2)若等腰三角形ABC的一边a=6,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.30.已知一元二次方程x2﹣5x+k=0.(1)当k=6时,解这个方程;(2)若方程x2﹣5x+k=0有两个不相等的实数根,求k的取值范围;(3)设此方程的两个实数根分别为x1,x2,且2x1﹣x2=2,求k的值.31.已知关于x的方程x2﹣(m+1)x+m=0(1)求证:不论m取何实数,方程都有实数根;(2)为m选取一数,使方程有两个不相等的整数根,并求出这两个实数根.32.已知关于x的方程x2﹣2x+2k﹣3=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为符合条件的最大整数,求此时方程的根.33.已知关于x的方程(k+1)x2+(3k﹣1)x+2k﹣2=0.(1)讨论此方程根的情况;(2)若方程有两个整数根,求正整数k的值.34.关于x的一元二次方程x2﹣x+p﹣1=0有两个实数根x1、x2.(1)求p的取值范围;(2)若,求p的值.35.实数k取何值时,一元二次方程x2﹣(2k﹣3)x+2k﹣4=0(1)有两个正根;(2)有两个异号根,且正根的绝对值较大;(3)一个根大于3,一个根小于3.36.已知关于x的方程x2+(2k+1)x+k2+2=0有两个不相等的实数根.①求k的取值范围;②试判断直线y=(2k﹣3)x﹣4k+7能否通过点A(﹣2,5),并说明理由.37.已知关于x的一元二次方程x2﹣mx﹣2=0.(1)若﹣1是方程的一个根,求m的值和方程的另一个根.(2)对于任意实数m,判断方程根的情况,并说明理由.38.证明:无论m为何值,关于x的方程x2﹣2mx﹣2m﹣4=0总有两个不相等的实数根.39.已知关于x的一元二次方程x2﹣(m﹣1)x+m+2=0,若方程有两个相等的实数根,求m的值.40.已知关于x的一元二次方程x2﹣kx﹣2=0.(1)求证:无论k取何值,方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2,且满足x1+x2=x1•x2,求k的值.41.已知方程m2x2+(2m+1)x+1=0有实数根,求m的取值范围.42.已知关于x的一元二次方程x2﹣2x+m=0有两个实数根.(1)求m的范围;(2)若方程两个实数根为x1、x2,且x1+3x2=8,求m的值.43.如果关于x的一元二次方程(1﹣m)x2﹣2x﹣1=0有两个不相等的实数根,当m在它的取值范围内取最大整数时,求的值.44.若关于x的一元二次方程x2+2kx+(k2+2k﹣5)=0有两个实数根,分别是x1,x2.(1)求k的取值范围;(2)若有x1+x2=x1x2,则k的值是多少.45.已知关于x的方程k2x2+(2k﹣1)x+1=0有两个实数根x1、x2(1)求k的取值范围;(2)是否存在k的值,可以使得这两根的倒数和等于0?如果存在,请求出k,若不存在,请说明理由.46.已知关于x的方程x2﹣(k+1)x+k=0.(1)求证:无论k取什么实数值,这个方程总有实根.(2)若等腰△ABC的一腰长a=4,另两边b、c恰好是这个方程的两根,求△ABC的周长.47.已知x2+(2k+1)x+k2﹣2=0是关于x的一元二次方程方程.(1)方程有两根不相等的实数根,求k的取值范围.(2)方程有一根为1,求k的取值.(3)方程的两根两根互为倒数,求k的取值.48.已知关于x的方程(k﹣1)x2+2x﹣5=0有两个不相等的实数根,求:①k的取值范围.②当k为最小整数时求原方程的解.49.已知关于x的方程(m﹣1)x2﹣(2m﹣1)x+2=0.(1)求证:无论m取任何实数,方程总有实数根;(2)若方程只有整数根,求整数m的值.50.已知关于x的方程2x2+kx﹣1=0.(1)小明同学说:“无论k为何实数,方程总有实数根.”你认为他说的有道理吗?(2)若方程的一个根是﹣1,求另一根及k的值.51.已知关于x的一元二次方程.(1)m取什么值时,方程有两个实数根?(2)设此方程的两个实数根为a、b,若y=ab﹣2b2+2b+1,求y的取值范围.52.已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0有实根(1)求k的取值范围(2)若方程的两实根的平方和等于11,求k的值.53.如果一元二方程x2+mx+2m﹣n=0有一个根为2,且根的判别式为0,求m、n的值.54.已知,关于x的一元二次方程:ax2+4x﹣1=0,(1)当a取什么值时,方程有实数根?(2)设x1,x2为方程两根,y=x1+x2﹣x1•x2,试比较y与0的大小.55.已知关于x的一元二次方程x2﹣mx﹣2=0(1)x=2是方程的一个根,求m的值和方程的另一个根.(2)对于任意实数m,判断方程的根的情况,并说明理由.56.已知关于x的方程.(1)若方程只有一个根,求k的值并求出此时方程的根;(2)若方程有两个相等的实数根,求k的值.57.已知关于x的方程4x2+4(k﹣1)x+k2=0和2x2﹣(4k+1)x+2k2﹣1=0,它们都有实数根,试求实数k的取值范围.58.已知关于x的一元二次方程kx2+2(k+4)x+(k﹣4)=0(1)若方程有实数根,求k的取值范围(2)若等腰三角形ABC的边长a=3,另两边b和c恰好是这个方程的两个根,求△ABC的周长.59.已知关于2x2+kx﹣1=0.(1)求证:该方程一定有两个不相等的实数根.(2)若已知该方程的一个根是﹣1,请求出另一个根.60.已知12<m<40,且关于x的二次方程x2﹣2(m+1)x+m2=0有两个整数根,求整数m.一元二次方程判别式专项练习60题参考答案:1.(1)∵方程有两个不相等的实数根,∴△=(﹣5)2﹣4×2×(﹣a)>0,解得a >﹣,即a的取值范围为a >﹣;(2)根据题意得=1,解得a=﹣2,方程化为2x2﹣5x+2=0,变形为(2x﹣1)(x﹣2)=0,解得x1=,x2=2.2.(1)证明:方程整理为x2﹣5x+6﹣p2=0,△=(﹣5)2﹣4×1×(6﹣p2)=1+4p2,∵4p2≥0,∴△>0,∴这个方程总有两个不相等的实数根;(2)解:当p=2时,方程变形为x2﹣5x+2=0,△=1+4×4=17,∴x=,∴x1=,x2=.3.方程整理得x2+(2k﹣1)x+(k﹣2)2=0①,由题意得(2k﹣1)2﹣4(k﹣2)2=0,解得.将代入①得,解得4.(1)△=42﹣4(3﹣a)=4+4a.∵该方程有实数根,∴4+4a≥0.解得a≥﹣1.(2)当a为符合条件的最小整数时,a=﹣1.此时方程化为x2+4x+4=0,方程的根为x1=x2=﹣2 5.(1)∵该方程有两个不相等的实数根,∴△=32﹣4×1×=9﹣3m>0.解得m<3.∴m的取值范围是m<3;(2)∵m<3,∴符合条件的最大整数是m=2.2解得x==.∴方程的根为x1=,x2=.故答案为:m<3,x1=,x2=6.(1)化为一般形式得:x2+3x﹣m﹣8=0△=9+4(m+8)>0,解得m >﹣,∴m的最小整数值m=﹣10.(2)把m=﹣10代入原方程得x2+3x+10=8,即x2+3x+2=0解得:x1=﹣1,x2=﹣27.∵△=(﹣5)2﹣4×m×3=25﹣12m,∴由题意得:25﹣12m=1,∴m=2,当m=2时,方程为2x2﹣5x+3=0,两根为x1=1,x2=.答:m的值为2,方程的根为1和.8.(1)根据题意得k≠0且△≥0,即4﹣4k≥0,解得k ≤1,所以k的取值范围为k≤1且k≠0;(2)存在,k=﹣1.理由如下:根据题意得x1+x2=,x1•x2=,∵(x1+1)(x2+1)=k﹣1,∴x1•x2+x1+x2+1=k﹣1,即++1=k﹣1,化为整式方程得k2﹣2k﹣3=0,∴(k﹣3)(k+1)=0,∴k1=3,k2=﹣1,∵k≤1且k≠0;∴k=﹣19.①∵△=(2k+1)2﹣4×1×4(k ﹣)=4k2+4k+1﹣16k+8=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程有两个实根;②若方程有两个相等的实数根,则△=b2﹣4ac=0,∴(2k﹣3)2=0,解得:k=,∴k=时,方程有两个相等的实数根;x2﹣(2×+1)x+4(﹣)=0x2﹣4x+4=0,解得:x=2;∴方程两根均为2.10.(1)根据题意得k≠0且△=(k+2)2﹣4k ×=4k+4>0,解得k>﹣1且k≠0;(2)取k=1,方程化为x2+3x+=0,△=4k+4=8,∴x==,∴x1=,x2=11.△=(2m)2﹣4(m+2)(m﹣1)=4m2﹣4m2﹣4m+8=﹣4m+8.(1分)(1)因为方程有两个不相等的实数根,所以﹣4m+8>0,所以m<2.(2分)(2)因为方程有两个相等的实数根,所以﹣4m+8=0,所以m=2.(2分)因为方程没有实数根,所以﹣4m+8<0,所以m>212.(1)根据题题意得k≠0且△=(k﹣2)2﹣4k •>0,解得k<1且k≠0;(2)根据题意得k≠0且△=(k﹣2)2﹣4k •<0,解得k>113.(1)证明,将x=3代入方程,得左边=9a﹣9(a﹣1)﹣9=9﹣9=0=右边,所以,方程总有一个根是x=3;(2)当a≠0时,△=9(a﹣1)2+4×9=9(a+1)2,所以,x1==3,x2==﹣,即方程的另一个根是x=﹣.14.∵一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,∴1﹣k≠0,且△>0,即22﹣4×(1﹣k)×(﹣1)>0,解得k<2,又∵k是整数,∴k的取值范围为:k<2且k≠1的整数,∴k最大可以取0.15.(1)证明:△=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,∴方程有两个不相等的实数根;(2)解:当m=﹣2时,方程变形为x2﹣5=0,解得x1=,x2=﹣,∴方程的两根互为相反数16.(1)∵x=1是方程x2+2x+k﹣1=0的一个根,∴12+2×1+k﹣1=0,解得,k=﹣2;(2)∵方程没有实数根,∴b2﹣4ac<0,即22﹣4(k﹣1)<0,解得k>217.(1)证明:方程的根的判别式△=(m﹣2)2﹣4×1×(﹣9)=(m﹣2)2+36∵无论m取何实效(m﹣2)2+36>0恒成立∴这个方程总有两个不相等的实数根(2)解由根与系数的关系.得α+β=2﹣m则2α+β=α+α+β=α+2﹣m∵2α+β=m+1,∴α+2﹣m=m+1,则α=2m﹣1∵α是方程的根,∴α2+(m﹣2)α﹣9=0则(2m﹣1)2+(m﹣2)(2m﹣1)﹣9=0整理,得2m2﹣3m一2=0解,得m1=2,m2=﹣.18.∵已知的整系数二次方程有整数根,∴△=4p2﹣4(p2﹣5p﹣1)=4(5p+1)为完全平方数,从而,5p+1为完全平方数设5p+1=n2,注意到p≥2,故n≥4,且n为整数∴5p=(n+1)(n﹣1),则n+1,n﹣1中至少有一个是5的倍数,即n=5k±1(k为正整数)∴5p+1=25k2±10k+1,p=k(5k±2),由p是质数,5k±2>1,∴k=1,p=3或7当p=3时,已知方程变为x2﹣6x﹣7=0,解得x1=﹣1,x2=7;当p=7时,已知方程变为x2﹣14x+13=0,解得x1=1,x2=13 所以p=3或p=7.19.∵△=b2﹣4ac=16﹣4(5﹣m)=4m﹣4>0∴m>1当x≥0时,方程是x2﹣4x+5﹣m=0,方程有两个不同的根,则两个的积一定大于0,即5﹣m>0,则m<5∴1<m<5当x<0时,方程是x2+4x+5﹣m=0,方程有两个不同的根,则两个根的积一定大于0,即5﹣m>0,则m<5则1<m<5∴1<m<5时,方程x2﹣4|x|+5=m有4个互不相等的实数根20.原式可变形为:|x﹣2| 2+(y﹣1)|x﹣2|﹣2﹣2y=0,(|x﹣2|﹣2)[|x﹣2|+(1+y)]=0,则|x﹣2|=2或|x﹣2|=﹣(y+1),故2=﹣(y+1),则y=﹣3,当|x﹣2|=2,且1+y>0时,则y>﹣1,故y的负整数值为:﹣321.(1)根据题意,m 应当满足条件…(3分)即∴﹣2<m≤﹣1…(7分)(2)根据题意,m 应当满足条件…(10分),即∴m<﹣122.(1)当m=1时,原方程变为:x2﹣2x﹣1=0解得:;(2)△=b2﹣4ac=(﹣2m)2﹣4×(m2﹣2m)=8m,当m>0时,原方程有两个不相等的实数根;当m=0时,原方程有两个相等的实数根;m<0时,原方程没有实数根23.由已知条件△=4(b﹣a)2﹣4(c﹣b)(a﹣b)=4(a ﹣b)(a﹣c)=0,∴a=b或a=c,∵c﹣b≠0则c≠b,∴这个三角形是等腰三角形24.△=m2﹣4(m﹣2)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,∴无论m取何值,该方程总有两个不相等的实数根.25.(1)∵方程有两个相等的实数根,∴(m﹣1)2﹣4(m+2)=0,∴m2﹣2m+1﹣4m﹣8=0,m2﹣6m﹣7=0,∴m=7或﹣1;(2)∵方程的两实数根之积等于m2﹣9m+2,∴m2﹣9m+2=m+2,∴m2﹣10m=0,∴m=0或m=10,当m=0时,方程为:x2+x+2=0,方程没有实数根,舍去;∴m=10,∴=426.(1)由题意,知(﹣2)2﹣4(k﹣1)>0,解得k<2,即k 的取值范围为k<2.(2)由题意,得(k﹣1)2﹣2(k﹣1)+k﹣1=0即k2﹣3k+2=0解得k1=1,k2=2(舍去)∴k的值为127.(1)把x=1代入方程,得1+2+m﹣1=0,所以m=﹣2;(2)∵方程有两个不相等的实数根,∴△>0,即22﹣4(m﹣1)>0,解得m<2.所以m的取值范围为m<228.∵关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,∴,解得k >.所以k的取值范围是k >且k≠2.29.(1)证明:∵△=b2﹣4ac=(3k﹣2)2﹣4•(﹣6k)=9k2﹣12k+4+24k=9k2+12k+4=(3k+2)2≥0∴无论k取何值,方程总有实数根.(2)解:①若a=6为底边,则b,c为腰长,则b=c,则△=0.∴(3k+2)2=0,解得:k=﹣.此时原方程化为x2﹣4x+4=0∴x1=x2=2,即b=c=2.此时△ABC三边为6,2,2不能构成三角形,故舍去;②若a=b为腰,则b,c中一边为腰,不妨设b=a=6代入方程:62+6(3k﹣2)﹣6k=0∴k=﹣2则原方程化为x2﹣8x+12=0(x﹣2)(x﹣6)=0∴x1=2,x2=6即b=6,c=2此时△ABC三边为6,6,2能构成三角形,综上所述:△ABC三边为6,6,2.∴周长为6+6+2=14.30.(1)k=6,方程变为x2﹣5x+6=0,即(x﹣2)(x﹣3)=0,∴x1=2,x2=3;(2)根据题意△=(﹣5)2﹣4k>0,解得k <;(3)根据题意得x1+x2=5,x1,•x2=k,而2x1﹣x2=2,∴x1=,∴x2=,∴k=×=31.(1)∵△=[﹣(m﹣1)]2﹣4m=m2+2m+1﹣4m=(m﹣1)2,又∵不论m取何实数,总有(m﹣1)2≥0,∴△≥0,∴不论m取何实数,方程都有实数根.(2)∵由求根公式得=∴x1=m,x2=1,∴只要m取整数(不等于1),则方程的解就都为整数且不相等.如取m=2,则原方程有两个不相等的整数根,分别是x1=2,x2=1.32.(1)△=(﹣2)2﹣4(2k﹣3)=8(2﹣k).∵该方程有两个不相等的实数根,∴8(2﹣k)>0,解得k<2.(2)当k为符合条件的最大整数时,k=1.此时方程化为x2﹣2x﹣1=0,方程的根为x==1±.即此时方程的根为x1=1+,x2=1﹣.33.(1)当k=﹣1时,方程﹣4x﹣4=0为一元一次方程,此方程有一个实数根;当k≠﹣1时,方程(k+1)x2+(3k﹣1)x+2k﹣2=0是一元二次方程,△=(3k﹣1)2﹣4(k+1)(2k﹣2)=(k﹣3)2.∵(k﹣3)2≥0,即△≥0,∴k为除﹣1外的任意实数时,此方程总有两个实数根.综上,无论k取任意实数,方程总有实数根;(2)∵方程(k+1)x2+(3k﹣1)x+2k﹣2=0中a=k+1,b=3k ﹣1,c=2k﹣2,∴x=,∴x1=﹣1,x2=﹣2,∵方程的两个根是整数根,且k为正整数,∴当k=1时,方程的两根为﹣1,0;当k=3时,方程的两根为﹣1,﹣1.∴k=1,334.(1)∵方程x2﹣x+p﹣1=0有两个实数根x1、x2,∴△≥0,即12﹣4×1×(p﹣1)≥0,解得p ≤,∴p的取值范围为p ≤;(2)∵方程x2﹣x+p﹣1=0有两个实数根x1、x2,∴x12﹣x1+p﹣1=0,x22﹣x2+p﹣1=0,∴x12﹣x1=﹣p+1=0,x22﹣x2=﹣p+1,∴(﹣p+1﹣2)(﹣p+1﹣2)=9,∴(p+1)2=9,∴p1=2,p2=﹣4,∵p ≤,∴p=﹣435.(1)设方程的两个正根为x1、x2,则:△=(2k﹣3)2﹣4(2k﹣4)≥0 ①,x1+x2=2k﹣3>0,x1x2=2k﹣4>0 ②,解①,得:k为任意实数,解②,得:k>2,所以k的取值范围是k>2;(2)设方程的两个根为x1、x2,则:△=(2k﹣3)2﹣4(2k﹣4)>0 ①,x1+x2=2k﹣3>0,x1x2=2k﹣4<0 ②,解①,得:k ≠,解②,得:<k<2,所以k 的取值范围是<k<2;(2)设方程的两个根为x1、x2,则:△=(2k﹣3)2﹣4(2k﹣4)>0 ①,(x1﹣3)(x2﹣3)<0 ②,解①,得:k ≠,由②,得:x1x2﹣3(x1+x2)+9<0,又x1+x2=2k﹣3>0,x1x2=2k﹣4,代入整理,得﹣4k+14<0,解得k >.则k >.36.(1)∵关于x的方程x2+(2k+1)x+k2+2=0有两个不相等的实数根,∴△=b2﹣4ac>0∴(2k+1)2﹣4(k2+2)>0∴4k2+4k+1﹣4k2﹣8>0,∴4k>7,解得,k >;(2)假设直线y=(2k﹣3)x﹣4k+7能否通过点A(﹣2,5),∴5=(2k﹣3)×(﹣2)﹣4k+7,即﹣8=﹣8k,解得k=1<;又由(1)知,k >;∴k=1不符合题意,即直线y=(2k﹣3)x﹣4k+7不通过点A(﹣2,5)37.(1)把x=﹣1代入原方程得:1+m﹣2=0,解得:m=1,∴原方程为x2﹣x﹣2=0.解得:x=﹣1或2,∴方程另一个根是2;(2)∵△=b2﹣4ac=m2+8>0,∴对任意实数m方程都有两个不相等的实数根.38.∵△=(﹣2m)2﹣4×1×(﹣2m﹣4)=4(m2+2m)+16=4(m2+2m+1﹣1)+16=4(m+1)2+12>0,∴关于x的方程x2﹣2mx﹣2m﹣4=0总有两个不相等的实数根.39.∵关于x的一元二次方程x2﹣(m﹣1)x+m+2=0有两个相等的实数根,∴△=b2﹣4ac=0,即:(m﹣1)2﹣4(m+2)=0,解得:m=7或m=﹣1,∴m的值为7或﹣140.1)证明:∵a=1,b=﹣k,c=﹣2∴△=b2﹣4ac=(﹣k)2﹣4×1×(﹣2)=k2+8,∵k2>0,∴△>0,∴无论k取何值,方程有两个不相等的实数根.(2)解:∵,;又∵x1+x2=x1•x2∴k=﹣2.41.当m2=0,即m=0,方程变为:x+1=0,有解;当m2≠0,即m≠0,原方程要有实数根,则△≥0,即△=(2m+1)2﹣4m2=4m+1≥0,解得m ≥﹣,则m的范围是m ≥﹣且m≠0;所以,m的取值范围为m ≥﹣42.(1)△=4﹣4m,∵有两个实数根,∴4﹣4m≥0,∴m≤1;(2)∵,解得,,∴m=x1x2=﹣343.∵一元二次方程有两个不相等的实数根,∴△=4+4(1﹣m)=8﹣4m>0,且1﹣m≠0,∴m<2,且m ≠1.当m=0时,无意义,故m≠0,则m的最大整数值为﹣1,所以=4×1+1=5.答:=5.44.(1)∵方程x2+2kx+(k2+2k﹣5)=0有两个实数根,∴△≥0,即4k2﹣4( k2+2k﹣5 )≥0,∴﹣8k+20≥0∴k ≤;(2)∵x1+x2=﹣2k,x1x2=k2+2k﹣5,而x1+x2=x1x2,∴﹣2k=k2+2k﹣5,即k2+4k﹣5=0解得k1=﹣5,k2=1,又∵k ≤,∴k=﹣5或145.(1)(2k﹣1)2﹣4k2×1≥0,解得:k ≤,且:k2≠0,∴k≠0,∴k ≤且k≠0;(2)不存在,∵方程有两个的实数根,∴x1+x2=﹣,x1x2=,∴==﹣=﹣2k+1=0,k=,∵k ≤且k≠0;∴不存在46.(1)∵△=[﹣(k+1)]2﹣4k=k2+2k+1﹣4k=(k﹣1)2≥0,∴无论k取什么实数值,这个方程总有实根;(2)∵等腰△ABC的一边长a=4,∴另两边b、c中必有一个数为4,把4代入关于x的方程x2﹣(k+1)x+k=0中得,∴16﹣4(k+1)+k=0,解得:k=4,所以b+c=k+1=5∴△ABC的周长=4+5=9.47.(1)∵方程有两根不相等的实数根,∴△=(2k+1)2﹣4×1×(k2﹣2)>0,∴k >﹣;(2)把x=1代入原方程得1+(2k+1)+k2﹣2=0,整理得k2+2k=0,解得k=0或﹣2;(3)设两实数根为:x1,x2,由根与系数的关系:x1x2=k2﹣2=1,解得k=±48.①由题意得,22﹣4(k﹣1)•(﹣5)>0.解得,.且k﹣1≠0,即k≠1故且k≠1.(2)k的最小整数是k=2.则原方程为x2+2x﹣5=0故此时方程的解为:,49.(1)证明:∵△=[﹣(2m﹣1)]2﹣4×(m﹣1)×2=4m2﹣12m+9=(2m﹣3)2≥0,∴无论m取任何实数,方程总有实数根;(2)x==,x1==2,x2==,∵方程只有整数根,∴m﹣1=±1,解得:m=0或250.(1)有道理,△=k2﹣4×2×(﹣1)=k2+8,∴k2≥0,∴k2+8>0,∴无论k为何实数,方程总有实数根;(2)∵方程的一个根是﹣1,∴2×(﹣1)2﹣k﹣1=0,解得:k=1,把k=1代入方程2x2+kx﹣1=0得方程2x2+x﹣1=0,解得:x1=﹣1,x2=,故另一根是,k的值是151.(1)∵△≥0,方程有两个实数根,∴12﹣4×1×m≥0,解得m≤1,∴当m≤1时,方程有两个实数根;(2)∵方程的两个实数根为a、b,∴b2﹣b+m=0,ab=m,∴y=m﹣2(b2﹣b)+1=m﹣2×(﹣m)+1=m+1,∵m≤1,∴y ≤+1,即y ≤.52.(1)∵关于x的一元二次方程x2+(2k+1)x+k2﹣2=0有实根,∴△=(2k+1)2﹣4×1×(k2﹣2)≥0,解得:;(2)设方程x2+(2k+1)x+k2﹣2=0设其两根为x1,x2,得x1+x2=﹣(2k+1),x1•x2=k2﹣2,∵x12+x22=11,∴(x1+x2)2﹣2x1x2=11,∴(2k+1)2﹣2(k2﹣2)=11,解得k=1或﹣3;∵k ≥﹣,∴k=1.53.∵一元二方程x2+mx+2m﹣n=0有一个根为2,∴4+4m﹣n=0①,又∵根的判别式为0,∴△=m2﹣4×(2m﹣n)=0,即m2﹣8m+4n=0②,由①得:n=4+4m,把n=4+4m代入②得:m2+8m+16﹣0,解得m=﹣4,代入①得:n=﹣12,所以m=﹣4,n=﹣12.54.(1)∵方程有实数根,∴△≥0,即16+4a≥0,解得a≥﹣4.由于ax2+4x﹣1=0是关于x的一元二次方程,可知a≠0,∴a≥﹣4且a≠0.(2)∵ax2+4x﹣1=0是关于x的一元二次方程,∴x1+x2=﹣,x1•x2=﹣,∴y=﹣+=﹣.当﹣4≤a<0时,y=﹣+=﹣>0;当a>0时,y=﹣+=﹣<0.55.(1)将x=2代入方程得:4﹣2m﹣2=0,解得:m=1,方程为x2﹣x﹣2=0,即(x﹣2)(x+1)=0,解得:x=2或x=﹣1,则方程的另一根为﹣1;(2)∵△=m2+8≥8>0,∴方程有两个不相等的实数根.56.(1)∵方程只有一个根,∴此方程是一元一次方程,即k ﹣=0,∴k=;代入原方程得﹣x=1,解得x=﹣;(2)∵方程有两个相等的实数根,∴,∴k1=0,k2=﹣6.57.∵两个一元二次方程都有实数根,∴,解得﹣≤k ≤.58.(1)∵关于x的一元二次方程kx2+2(k+4)x+(k﹣4)=0方程有实数根,∴b2﹣4ac=[2(k+4)]2﹣4k(k﹣4)≥0,解得:k ≥﹣且k≠0;(2)①若a=3为底边,则b,c为腰长,则b=c,则△=0.∴b2﹣4ac=[2(k+4)]2﹣4k(k﹣4)=0,解得:k=﹣.此时原方程化为x2﹣4x+4=0∴x1=x2=2,即b=c=2.此时△ABC三边为3,2,2能构成三角形,∴△ABC的周长为:3+2+2=8;②若a=b为腰,则b,c中一边为腰,不妨设b=a=3代入方程:kx2+2(k+4)x+(k﹣4)=0得:k×32+2(k+4)×3+(k﹣4)=0∴解得:k=﹣,∵x1×x2=bc====3c,∴c=,∴△ABC的周长为:3+3+=.59.(1)证明:∵△=k2﹣4×2×(﹣1)=k2+4>0,∴该方程一定有两个不相等的实数根;(2)解:设另一个根为x1,根据根与系数的关系可得:x1•x2=﹣,∵一个根是﹣1,∴x1•(﹣1)=﹣,解得:x1=60.∵一元二次方程x2﹣2(m+1)x+m2=0有两个整数根,由求根公式∴△=b2﹣4ac=4(m+1)2﹣4m2=8m+4≥0,∴,∵12<m<40,,∵一元二次方程x2﹣2(m+1)x+m2=0有两个整数根,∴2m+1必须是完全平方数,∴m=24。
完整版)一元二次方程的根的判别式练习题
完整版)一元二次方程的根的判别式练习题1.方程2x+3x-k=0的根的判别式为b^2-4ac,即(3+2)^2-4(2)(-k)=k+13,当k>-13时,方程有实根。
2.关于x的方程kx+(2k+1)x-k+1=0可以化简为(3k+1)x-k+1=0,根的判别式为(2k+1)^2-4(k)(-k+1)=8k^2+8k+1,当k 不等于0时,方程有实根。
3.方程x+2x+m=0有两个相等实数根,即b^2-4ac=0,即4-4m=0,解得m=1.4.关于x的方程(k+1)x-2kx+(k+4)=0可以化简为(x-k)(x+k+4)=0,根的情况为一个实根为-k,一个实根为k+4.5.当m=-1时,关于x的方程3x-2(3m+1)x+3m-1=0化简为3x+7x-1=0,有两个不相等的实数根。
6.将2x(ax-4)-x+6=0化简为2ax^2-(8+a)x+6=0,根的判别式为(8+a)^2-4(2a)(6)=a^2+16a-23,要使方程没有实数根,根的判别式小于0,即a的最小整数值为-15.7.方程mx^2+(2m-1)x-2=0的根的判别式为(2m-1)^2-4(m)(-2)=16m+1,解得m=1或m=-1/4,但由于题目中要求判别式的值等于4,所以m=-1/4.8.将(x-α)(x-β)+cx=0展开化简得x^2-(α+β)x+αβ+cx=0,根据韦达定理,α+β=-c,αβ=c,所以方程的两个根为α和β。
9.1) 当a>0时,判别式为4a^4-4a^3,即a^3>1时有两个实数根,否则无实数根。
2) 判别式为4k^2-4(k^2+4),即-16,所以方程无实数根。
10.将方程x+2(m+1)x+3m+4mn+4n+2=0化简为x+(2m+2)x+(3m+4mn+2)=0,根的判别式为(2m+2)^2-4(3m+4mn+2)=4(m-n+1)^2-8,要使方程有实数根,根的判别式大于等于0,即(m-n+1)^2>=2,解得m-n=-1+sqrt(2),即m=n-1+sqrt(2)。
一元二次方程的根的判别式(练习)
一元二次方程的根的判别式同步练习一、填空题1.若方程ax2+bx+c=0(a≠0),则根的判别式为_________;当_________时,方程有两个不相等的实数根,当_______时,方程有两个相等的实数根,则_______时,方程无实数根.2.利用根的判别式,判断方程根的情况,首先将方程(x-2)(x-5)-16=0化成一般形式是_________,再代入判别式为_________,则方程根的情况___________.3.不解方程,判断方程根的情况:(1) 4p(p-1)-3=0.△_________,则方程____________.(2)△_________,则方程_________________.(3)△___________,则方程_________________.4.当k_________时,方程x2-2(k+1)x+(k2-2)=0有两个不相等的实数根.5.当m________时,方程x2-(m+1)x+4=0有两个相等的实数根.6.如果方程x2-2x+=0没有实数根,那么c的取值是__________.二、解答题7.已知关于x的方程(m2-2)x2-2(m+1)x+1=0有两个不相等的实数根,求m的取值范围.8.证明关于x的方程x2+(k-1)x+(k-3)=0有两个不相等的实数根.9.已知关于x的方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根,且a,b,c是△ABC的三条边,判断△ABC的形状.三、选择题10.关于x的方程x2-2有两个不相等的实数根,则k的取值范围是().(A)k≥0(B)k>0 (C)k>-1 (D)k≥-1 11.关于x的方程mx2-mx+1=0有两个相等的实数根,则m的取值范围是().(A)m=0 (B)m=7 (C)m=4 (D)m>4且m≠0 12.若关于x的二次方程2x(kx-4)-x2+6=0无实数根,则k的最小整数应是().(A)-1 (B)2 (C)3 (D)413.关于x的方程nx2-(2n-1)x+n=0有两个实数根,则n的值为( ).(A)n≤(B)≤且n≠0(C)n≥- (D)n≥-或n≠014.若关于y的方程y2-19y+k=0有两个相等的实数根,那么方程y2+19y-k=0的根的情况是( ).(A)有两个不相等的实数根 (B)有两个相等的实数根(C)无实数根 (D)无法判定四、填空题15.若方程组有一个实数根,则m值为__________.16.已知方程x2-有两个相等的实数根,求锐角a=_________.五、解答题17.判断关于y的方程y2+3(m-1)y+2m2-4m+=0的根的情况.18.当m>3时,讨论关于x的方程(m-5)x2-2(m+2)x+m=0的实数根的个数.19.关于x的方程x2+3x+a=0中有整数解,a为非负整数,求方程的整数解.20.当m=1时,求证关于x的方程(k-3)x2+kmx-m2+6m-4=0有实数根.。
一元二次方程根的判别式练习题
一元二次方程根的判别式练习题一元二次方程根的判别式练题一)填空1.方程x^2+2x-1+m=0有两个相等实数根,则m=1.2.a是有理数,b是整数,方程2x^2+(a+1)x-(3a^2-4a+b)=0的根也是有理数.3.当k<1时,方程2(k+1)x^2+4kx+2k-1=0有两个实数根.4.若关于x的一元二次方程mx^2+3x-4=0有实数根,则m 的值为正数.5.方程4mx^2-mx+1=0有两个相等的实数根,则m=1/4.6.若m是非负整数且一元二次方程(1-m^2)x^2+2(1-m)x-1=0有两个实数根,则m的值为0或2.7.若关于x的二次方程kx^2+1=x-x^2有实数根,则k的取值范围是[0,1/4].8.二次方程(k^2-1)x^2-6(3k-1)x+72=0有两个实数根,则k=3或-2/3.9.若一元二次方程(1-3k)x^2+4x-2=0有实数根,则k的取值范围是[-1/3,1/3].二)选择10.关于x的方程:m(x^2+x+1)=x^2+x+2有两相等的实数根,则m值为[1/2].11.当m>4时,关于x的方程(m-5)x^2-2(m+2)x+m=0的实数根的个数为B.1个.12.如果m为有理数,为使方程x^2-4(m-1)x+3m^2-2m+2k=0的根为有理数,则k的值为(m-1)^2.13.若一元二次方程(1-2k)x^2+8x=6没有实数根,那么k的最小整数值是D.3.14.若一元二次方程(1-2k)x^2+12x-10=0有实数根,那么k 的最大整数值是A.1.15.方程2x(kx-5)-3x^2+9=0有实数根,k的最大整数值是D.2.16.若方程k(x^2-2x+1)-2x^2+x=0有实数根,则k=1/2.17.若方程(a-2)x^2+(-2a+1)x+a=0有实数根,则a∈(0,1/2]∪[2,∞).18.若m为有理数,且方程2x^2+(m+1)x-(3m^2-4m+n)=0的根为有理数,则n的值为D.-6.三)综合练19.如果a,b,c是三角形的三条边,求证:关于x的方程a^2x^2+(a^2+b^2-c^2)x+b^2=0无解.20.当 $a=-1$,$b=0$ 时,方程$x^2+2(1+a)x+(3a^2+4ab+4b^2+2)=0$ 有实数根。
九年级:一元二次方程-根的判别式-道经典考试题-有详细解答
九年级数学,一元二次方程,有一个非常重要的内容,就是根的判别式。
一元二次方程ax2+bx+c=0的根的判别式是,△=b2-4ac.①若△=b2-4ac>0,则一元二次方程有两个不相等实数根。
②若△=b2-4ac=0,则一元二次方程有两个相等的实数根。
③若△=b2-4ac<0,则一元二次方程没有实数根。
反之,亦成立。
题型一,根据△的情况来判定方程的根的情况。
例1题中,第1小题,原方程没有实数根,则△<0,得出m的取值范围。
再把m的取值范围,代入到第2小题的△=b2-4ac中,得出结论。
例2题,第1小题,不解方程,判定根的情况,是不是很简单?通过计算,△=b2-4ac=4>0,所以,原方程有两个不相等的实数根.第2小题,原方程有一个根是x=3,代入原方程,即可求出m的值.例3题,原方程有两个实数根,那么就有可能是两个相等,或者两个不相等实数根。
所以,△=b2-4ac≥0,即可求出t的值。
后面要是学了二次函数的同学就很容易理解,暂时还没有学到二次函数的同学,可以暂时略过。
例4题,a,b是等腰三角形的两边,而且是一元二次方程的两个根。
凡是讲到等腰三角形,没有明确腰和底的时候,一定要记得分类讨论。
不管是哪种题型,只要和等腰三角形有关.例5题,一元二次方程有两个相等的实数根,则△=b2-4ac=0,即可求出m的取值。
再分别代入代数式,求出代数式的值,非常简单常见的考试题型。
例6题,第1小题,求证方程总有两个不相等的实数根。
那么只要计算△=b2-4ac的结果,判定它的正负性,就好。
第2小题,把已知的一个根代入原方程,即可求出m的值。
当然,此题不需要求出m的取值,整体代入更简单。
例7题,先根据,根与系数的关系,分别得到两根之和,和两根之积的代数式,依据题意得出一个关于m的方程,解得m=6或者m=-4再根据题意,原方程有两个实数根,即△=b2-4ac≥0,求出m的取值范围,得出符合题型的m的值。
例8题,二次根式,被开方数≥0,一次函数X的系数≠0,所以k-1>0,求出k>1.再根据根的判别式,△=b2-4ac<0,所以原方程没有实数根。
专题:一元二次方程根的判别式(含答案)-
一元二次方程根的判别式姓名【1 】◆课前预习1.一元二次方程ax2+bx+c=0(a≠0)的根的情形可用b2-4ac来剖断,b2-4ac叫做________,通经常应用符号“△”为暗示.(1)b2-4ac>0方程_________;(2)b2-4ac=0方程_________;(3)b2-4ac<0方程_________.2.应用根的判别式之前应先把方程化为一元二次方程的________情势.◆互动教室【例1】不解方程,判别下列方程根的情形:(1)x2-5x+3=0(2)x2+2x+2=0;(3)3x2+2=4x(4)mx2+(m+n)x+n=0(m≠0,m≠n).【例2】若关于x的方程(m2-1)x2-2(m+2)x+1=0有实数根,求m的取值规模.【例3】已知关于x的一元二次方程x2-(2k+1)x+4(k-)=0.求证:无论k取什么实数值,这个方程总有实数根;【例4】已知关于x的方程x2-2(m+1)x+m2=0.(1)当m取何值时,方程有两个实数根?(2)为m拔取一个适合的整数,使方程有两个不相等的实数根,并求这两个根.◆跟进教室1.方程2x2+3x-4=0的根的判别式△=________.2.已知关于x的一元二次方程mx2-10x+5=0有实数根,则m的取值规模是______.3.假如方程x2-2x-m+3=0有两个相等的实数根,则m的值为_______,此时方程的根为________.4.若关于x的一元二次方程kx2+2x-1=0没有实数根,则k的取值规模是______.5.若关于x的一元二次方程mx2-2(3m-1)x+9m-1=0有两个实数根,则实数m的取值规模是_______.6.下列一元二次方程中,没有实数根的是().A.x2+2x-1=0 B.x2+2x+3=0 C.x2+x+1=0 D.-x2+x+2=07.假如方程2x(kx-4)-x2-6=0有实数根,则k的最小整数是().A.-1 B.0 C.1 D.28.下列一元二次方程中,有实数根的方程是().A.x2-x+1=0 B.x2-2x+3=0 C.x2+x-1=0 D.x2+4=09.假如关于x的一元二次方程kx2-6x+9=0有两个不相等的实数根,那么k的取值规模是().A.k<1 B.k≠0 C.k<1且k≠0 D.k>110.关于x的方程x2+(3m-1)x+2m2-m=0的根的情形是().A.有两个实数根B.有两个相等的实数根 C.有两个不相等的实数根 D.没有实数根◆课外功课1.鄙人列方程中,有实数根的是()(A)x2+3x+1=0 (B)=-1 (C)x2+2x+3=0 (D)=2.关于x的一元二次方程x2+kx-1=0的根的情形是A.有两个不相等的同号实数根B.有两个不相等的异号实数根C.有两个相等的实数根D.没有实数根3.关于x的一元二次方程(a-1)x2+x+a2+3a-4=0有一个实数根是x=0.则a的值为().A.1或-4B.1C.-4D.-1或44.若关于的一元二次方程有实数根,则的取值规模是.5.若0是关于x的方程(m-2)x2+3x+m2-2m-8=0的解,求实数m的值,并评论辩论此方程解的情形.6.不解方程,试剖断下列方程根的情形.(1)2+5x=3x2 (2)x2-(1+2)x++4=0(3 )x2-2kx+(2k-1)=0 (x为未知数)7.关于x的一元二次方程mx2-(3m-1)x+2m-1=0,其根的判别式的值为1,求m的值及该方程的解.8.已知a.b.c分离是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2ax=0有两个相等的实数根,试断定△ABC的外形.10.假如关于x的方程mx2-2(m+2)x+m+5=0没有实数根,试断定关于x的方程(m-•5)x2-2(m-1)x+m=0的根的情形.11.已知关于x的方程(n-1)x2+mx+1=0 ①有两个相等的实数根.(1)求证:关于y的方程m2y2-2my-m2-2n2+3=0 ②必有两个不相等的实数根;(2)假如方程①的一个根是-,求方程②的根.。
一元二次方程根的判别式的应用(基础+培优)
一元二次方程根的判别式的应用(基础+培优训练)一、△的运用1. 若关于x 的一元二次方程(k-1)x 2 +kx +1=0有实数根,则k 的取值范围是( )A. k ≠2B. k> 2C.k<2且k ≠1D.k ≠1的一切实数2. 若关于x 的方程(k-1)x 2 +kx +1=0有实数根,则k 的取值范围是3. 若关于x 的方程(k-1)x 2 +kx +1=0有两个实数根,则k 的取值范围是二、根与系数的关系1. 已知关于x 的一元二次方程0462=++-m x x 有两个实数根21,x x .(1)求m 的取值范围;(2)若21,x x 满足2321+=x x ,求m 的值.2.关于x 的一元二次方程01-32=++m x x 的两个实数根分别是21,x x .(1)求m 的取值范围;(2)若()01022121=+++x x x x ,求m 的值.3.已知关于x 的一元二次方程 x 2- 4x -m 2=0.(1)求证:该方程有两个不相等的实数根;(2)若该方程的两个实数根x 1,x 2 满足x 1+2x 2=9,求m 的值.4.已知关于x的一元二次方程x2-(m-3)x一m2=0.(1)求证:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x1,x2 ,且|x1|=|x2|一2,求m的值及方程的根.5.已知关于x的方程x2-2mx=-m2+2x的两个实数根x1,x2满足|x1|=x2,求实数m的值.6.已知关于x的一元二次方程 x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB.AC的长是方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.三、判断二次三项式在实数范围内是否可以分解1.如果关于x的二次三项式k2x2 - (2k +1)x+1在实数范围内总能分解成两个一次因式的积,那么k的取值范围是2.如果二次三项式3x2-4x+2k在实数范围内总能分解成两个一次因式的积,则k的取值范围是3.如果x2- 2(m+1)x+m2+5是一个完全平方式,则m=四、构造一元二次方程,由参数的存在性得出△的正负性1 .在△ABC中,∠B=60°,AC=1.求证AB+ BC≤2.2.如图,正方形ABCD的边长为1,点M,N分别在BC,CD上,△CMN的周长为2,求△AMN的面积的最小值.五、根的判别式的运用1.已知关于x的方程x2+(2m+1)x+m2 +2=0有两个不等的实数根,试判断直线y=(2m-3)x- 4m+7能否通过点A(-2,4),答: (填“能”或“不能”)2.a,b是实数,关于x的方程|x2+ax+b|=2有三个不等的实数根.(1)求证:a2-4b-8=0.(2)若该方程的三个不等的实数根恰为一个三角形三内角的度数,求证:该三角形必有一个内角为60°.(3)若该方程的三个不等的实数根恰为一直角三角形的三边长,求a,b的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程根的判别式专题训练
1. (2010 广西钦州市) 已知关于x 的一元二次方程x 2 +kx +1 =0有两个相等的实数根,则k = .
2. (2010 湖北省荆门市) 如果方程2210ax x ++=有两个不等实根,则实数a 的取值范围是____________.
3. (2010 江苏省苏州市) 若一元二次方程()2
220x a x a -++=的两个实数根分别是3b 、,则a b +=_________.
4. (2010 江苏省苏州市) 下列四个说法中,正确的是( )
A .一元二次方程22
452
x x ++=有实数根; B. 一元二次方程23
452
x x ++=有实数根; C. 一元二次方程25
453x x ++=
有实数根; D. 一元二次方程()2451x x a a ++=≥有实数根.
5. (2010 湖南省益阳市) 一元二次方程
)0(02≠=++a c bx ax 有两个不相等的实数根,则ac b 42
-满足的条件是 A.ac b 42
-=0 B.ac b 42->0
C.ac b 42-<0 D.ac b 42-≥0 6. (2010 山东省烟台市) 方程x2-2x-1=0的两个实数根分别为x1,x2,则(x1-1)(x2-1)= .
7. (2010 北京市) 已知关于 x 的一元二次方程 2410x x m -+-= 有两个相等的实数根,
求m 的值及方程的根.
8. 当k 是什么整数时, 方程(k2–1)x2–6(3k –1)x+72=0有两个不相等的正整数根?
9. 关于x 的一元二次方程()011222=-+--m x m x 与0544422=--+-m m mx x 的根都是整数,求m 的整数值, 并求出两方程的整数根.
10. (2010 重庆市江津区) 在等腰△ABC 中,三边分别为a 、b 、c ,其中5a =,若关于x
的方程()2
260x b x b +++-=有两个相等的实数根,求△ABC 的周长. 11. (2010 四川省乐山市) 若关于x 的一元二次方程012)2(222=++--k x k x 有实数根βα、.
(1)求实数k 的取值范围;
(2)设k t β
α+=,求t 的最小值.
12. (2010 甘肃省天水市) 已知A B C △的两边A B 、A C 的长是关于x 的一元二次方程22
(23)320x k x k k -++++=的两个实数根,第三边B C 的长为5. (1)当k 为何值时,A B C △是直角三角形;
(2)当k 为何值时,A B C △是等腰三角形,并求出A B C △的周长.
13.已知关于x 的两个一元二次方程: 方程:02132)12(22=+
-+-+k k x k x ① 方程:049
2)2(2=+++-k x k x
② (1)若方程①、②都有实数根,求k 的最小整数值;
(2)若方程①和②中只有一个方程有实数根;则方程①,②中没有实数根的方程是______(填方程的序号),并说明理由;
(3)在(2)的条件下,若k 为正整数,解出有实数根的方程的根.
14.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.
求证:a +c =2b .(a ,b ,c 是实数)
15.设两个方程的判别式分别为x 1,x 2,则x 1=a 2-4c ,x 2=b 2-4d .
∴x 1+x 2=a 2+b 2-2ab =(a -b )2≥0.
从而x 1,x 2中至少有一个非负数,即两个方程中至少有一个方程有实数根.
16.求证:不论k 取任何值,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根。