两角和与差的正弦余弦正切公式练习题(答案)

合集下载

(完整版)两角和与差及二倍角公式经典例题及答案

(完整版)两角和与差及二倍角公式经典例题及答案

成功是必须的:两角和与差及其二倍角公式知识点及典例知识要点: 1、 两角和与差的正弦、余弦、正切公式 C( a — 3 ): cos( a — 3 )= S( a + 3 ): sin( a + 3 )=T( a + 3 ): tan( a + 3 )=2、 二倍角的正弦、余弦、正切公式 S 2 : sin2 a = C( a + 3 ): cos( a + 3 )= S( a — 3 ): T( a — 3 ): 2h例 2 设 cos a —21 9’T 2 : tan2 . asin 2 — 23,其中n 2,n0, 2,求 cos( a+ 3).sin( a — 3 )= tan( a — 3 )= C 2 : cos2 a =— — ,3、 在准确熟练地记住公式的基础上 ,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。

如T( a± 3可变形为:tan a± tan 3= 考点自测: 1、已知tan A 、7 11 B、 tan 3 = 3, 7 11 变式2:已知03.ncos(— 4 435,sin( 4)—,求 sin( a + 3 )的值. 13则 tan( a C 、? 13 tan a an 3= 3)=( 13 题型3给值求角已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;值(要求该三角函数应在角的范围内严格单调 );(3)求出角。

1 1例 3 已知 a, 3^ (0, n,且 tan (a — 3 ="2, tan 3=— 7 求 2 a — 3 的值.(2)求角的某一个三角函数n a — 6 +A —症A . 5 2、已知cos 3、在厶ABC 中,若 sin a= 43」 B辺B.5 4 q 5cosA = 5,cosB = 13, B 56 B.65sin 7 n a+舀的值是( C . — 4 5 则cosC 的值是( c 丄或56 C.65或65 4、若 cos2 9+ cos 0= 0,贝U sin2 0+ sin B 的值等于( )C . 0 或 3 4D ・516 65 0或土 3A . 0B . ± 3 一.卜 2cos55 — j‘3sin55、二角式 A 辽 2 题型训练 题型1给角求值 一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 cos5B.o■值为( 例 1 求[2si n50 sin 10 (1 3tan10)]? 2sin 280 的值• 11变式3:已知tan a =, tan 3 =-,并且a , 3均为锐角,求a +23的值.7 3题型4辅助角公式的应用J 22asinx bcosx a b sin x (其中 角所在的象限由 a, b 的符号确定,角的值由btan —确定)在求最值、化简时起着重要作用。

两角和与差的正弦余弦正切公式练习题(含答案)

两角和与差的正弦余弦正切公式练习题(含答案)

两角和与差的正弦余弦正切公式练习题(含答案)两角和差的正弦余弦正切公式练题一、选择题1.给出如下四个命题:①对于任意的实数α和β,等式cos(α+β)=cosαcosβ-sinαsinβ恒成立;②存在实数α,β,使等式cos(α+β)=cosαcosβ+sinαsinβ能成立;③公式tan(α+β)=tanα+tanβ成立的条件是α≠kπ+π(k∈Z)且β≠kπ+π(k∈Z);1-tanαtanβ/2④不存在无穷多个α和β,使sin(α-β)=sinαcosβ-cosαsinβ。

其中假命题是()A。

①②B。

②③C。

③④D。

②③④2.函数y=2sinx(sinx+cosx)的最大值是()A。

1+2B。

2-1C。

2D。

2/33.当x∈[-π/2,π/2]时,函数f(x)=sinx+3cosx的()A。

最大值为1,最小值为-1B。

最大值为1,最小值为-1/2C。

最大值为2,最小值为-2D。

最大值为2,最小值为-14.已知tan(α+β)=7,tanαtanβ=2/3,则cos(α-β)的值()A。

1/2B。

2/2C。

-2D。

±25.已知π/2<β<α<3π/4,cos(α-β)=12/13,sin(α+β)=-3/5,则sin2α=()A。

56/65B。

-56/65C。

6565/56D。

-5/66.sin15°sin30°sin75°的值等于()A。

3/4B。

3/8C。

1/8D。

1/47.函数f(x)=tan(x+π/4)+1+tanx/4,g(x)=1-tanx,h(x)=cot(π/4-x)。

其中为相同函数的是()A。

f(x)与g(x)B。

g(x)与h(x)C。

h(x)与f(x)D。

f(x)与g(x)及h(x)8.α、β、γ都是锐角,tanα=1/2,tanβ=1/5,tanγ=1/8,则α+β+γ等于()A。

π/3B。

π/4C。

π/5D。

2022秋新教材高中数学第五章两角和与差的正弦余弦正切公式课后提能训练新人教A版必修第一册

2022秋新教材高中数学第五章两角和与差的正弦余弦正切公式课后提能训练新人教A版必修第一册

第五章 5.5.1 第2课时A级——基础过关练1.sin 105°的值为( )A.B.C.D.【答案】D 【解析】sin 105°=sin(45°+60°)=sin 45°·cos 60°+cos 45°sin 60°=×+×=.2.(多选)下列四个选项,化简正确的是( )A.cos(-15°)=B.cos 15°cos 105°+sin 15°sin 105°=cos(15°-105°)=0C.cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α)=D.sin 14°cos 16°+sin 76°cos 74°=【答案】BCD 【解析】对于A,(方法一)原式=cos(30°-45°)=cos 30°cos 45°+sin 30°sin 45°=×+×=,(方法二)原式=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°=×+×=,A错误.对于B,原式=cos(15°-105°)=cos(-90°)=cos 90°=0,B正确.对于C,原式=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=,C正确.对于D,原式=cos 76°cos 16°+sin 76°sin 16°=cos(76°-16°)=cos 60°=,D正确.故选BCD.3.(2020年青岛高一期中)已知α,β为锐角,tan α=,cos(α+β)=-,则tan β=( )A.2B.C.D.【答案】A 【解析】因为α,β为锐角,所以0<α+β<π,所以sin(α+β)==,tan(α+β)==-2,则tan β=tan[(α+β)-α]===2.故选A.4.(2020年抚州高一期中)已知cos=2cos(π+α),且tan(α+β)=,则tan β的值为( )A.-7B.7C.1D.-1【答案】B 【解析】因为cos=2cos(π+α),所以sin α=-2cos α,即 tan α=-2.又因为tan(α+β)===,解得tan β=7.故选B.5.已知cos(α-β)=,sin β=-,且α∈,β∈,则cos α=( )A.B.C.- D.-【答案】B 【解析】因为0<α<,-<β<0,所以0<α-β<π.又cos(α-β)=,所以sin(α-β)=.因为-<β<0,sin β=-,所以cos β=.所以cos α=cos[(α-β)+β]=cos(α-β)cos β-sin(α-β)sin β=×-×=.6.(2020年上海黄浦区高一期中)已知sin x=,x∈,则tan的值等于________.【答案】- 【解析】因为sin x=,x∈,所以cos x=-,tan x=-.所以tan===-.7.若sin α+2cos α=0(0<α<π),则tan α=________,tan=________.【答案】-2 - 【解析】因为sin α+2cos α=0(0<α<π),所以sin α=-2cos α,即tan α=-2.所以tan===-.8.(2020年湘潭高一期中)已知tan α,tan β是方程2x2+3x-5=0的两个实数根,则tan(α+β)=________.【答案】- 【解析】因为tan α,tan β是方程2x2+3x-5=0的两个实数根,所以tan α+tan β=-,tan αtan β=-.所以tan(α+β)===-.9.已知cos α=(α为第一象限角),求cos,sin的值.解:因为cos α=,且α为第一象限角,所以sin α= ==.所以cos=cos cos α-sin sin α=×-×=,sin=sincos α+cossin α=×+×=.B级——能力提升练10.sin(θ+75°)+cos(θ+45°)-cos(θ+15°)=( )A.±1B.1C.-1D.0【答案】D 【解析】原式=sin[60°+(θ+15°)]+cos(θ+45°)-cos(θ+15°)=-cos(θ+15°)+sin(θ+15°)+cos(θ+45°)=sin(θ-45°)+cos(θ+45°)=0.故选D.11.已知tan(α+β)=3,tan(α-β)=5,则tan 2α的值为( )A.-B.C.D.-【答案】A 【解析】tan 2α=tan[(α+β)+(α-β)]====-.12.在△ABC中,cos A=,cos B=,则△ABC的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形【答案】B 【解析】由题意得sin A=,sin B=,所以cos C=cos(π-A-B)=-cos(A+B)=-cos A·cos B+sin A sin B=-×+×=-=-=-<0,所以C是钝角,故△ABC是钝角三角形.13.在△ABC中,tan A+tan B+=tan A·tan B,则角C等于( )A.B.C.D.【答案】A 【解析】由已知,得tan A+tan B=·(tan A tan B-1),即=-.所以tan(A +B)=-.所以tan C=tan[π-(A+B)]=-tan(A+B)=,得C=.14.已知cos α=,sin(α-β)=,且α,β∈.(1)求cos(2α-β)的值;(2)求β的值.解:(1)因为α,β∈,所以α-β∈.又因为sin(α-β)=>0,所以0<α-β<.所以sin α==,cos(α-β)==.cos(2α-β)=cos[α+(α-β)]=cos αcos(α-β)-sin αsin(α-β)=×-×=.(2)cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=×+×=.又因为β∈,所以β=.C级——探究创新练15.已知函数f(x)=(sin x+cos x)2-2cos2x(x∈R).(1)求函数f(x)的周期和递增区间;(2)若函数g(x)=f(x)-m在上有两个不同的零点x1,x2,求tan(x1+x2)的值.解:(1)因为f(x)=(sin x+cos x)2-2cos2x=1+2sin x·cos x-2cos2x=sin 2x-cos 2x=sin(x∈R),所以函数f(x)的周期T==π.因为函数y=sin x的单调递增区间为(k∈Z),所以函数f(x)的单调递增区间由2kπ-≤2x-≤2kπ+(k∈Z),化简得kπ-≤x≤kπ+(k∈Z),即(k∈Z).(2)因为方程g(x)=f(x)-m=0同解于f(x)=m.在直角坐标系中画出函数f(x)=sin在上的图象,如图,当且仅当m∈[1,)时,方程f(x)=m在上的区间和有两个不同的解x1、x2,且x1与x2关于直线x=对称,即=,所以x1+x2=,故tan(x1+x2)=tan=-1.。

两角和与差的正弦余弦和正切公式专题及解析

两角和与差的正弦余弦和正切公式专题及解析

两角和与差的正弦、余弦和正切公式教学目标 1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系。

知 识 梳 理1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin αcos β±cos αsin β. cos(α∓β)=cos αcos β±sin αsin β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan αtan β).(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4.4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a 或f (α)=a 2+b 2·cos(α-φ)⎝ ⎛⎭⎪⎫其中tan φ=a b . 诊 断 自 测1.判断正误(在括号内打“√”或“×”)精彩PPT 展示(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( ) (4)存在实数α,使tan 2α=2tan α.( )解析 (3)变形可以,但不是对任意的α,β都成立,α,β,α+β≠π2+k π,k ∈Z .答案 (1)√ (2)√ (3)× (4)√2.(2016·全国Ⅲ卷)若tan θ=-13,则cos 2θ=( )A.-45B.-15C.15D.45解析 cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45.答案 D3.(2015·重庆卷)若tan α=13,tan(α+β)=12,则tan β等于( ) A.17B.16C.57D.56解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)·tan α=12-131+12×13=17,故选A. 答案 A4.(2017·广州调研)已知sin α+cos α=13,则sin 2⎝ ⎛⎭⎪⎫π4-α=( )A.118B.1718C.89D.29解析 由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin 2⎝ ⎛⎭⎪⎫π4-α=1-cos ⎝ ⎛⎭⎪⎫π2-2α2=1-sin 2α2=1+892=1718,故选B.答案 B5.(必修4P137A13(5)改编)sin 347°cos 148°+sin 77°·cos 58°=________. 解析 sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58° =(-cos 77°)·(-sin 58°)+sin 77°cos 58° =sin 58°cos 77°+cos 58°sin 77° =sin(58°+77°)=sin 135°=22. 答案 22考点一 三角函数式的化简【例1】 (1)(2016·合肥模拟)cos(α+β)cos β+sin(α+β)sin β=( ) A.sin(α+2β) B.sin α C.cos(α+2β)D.cos α(2)化简:(1+sin α+cos α)·⎝⎛⎭⎪⎫cos α2-sin α22+2cos α(0<α<π)=________.解析 (1)cos(α+β)cos β+sin(α+β)sin β=cos[(α+β)-β]=cos α.(2)原式=⎝⎛⎭⎪⎫2cos 2α2+2sin α2cos α2·⎝ ⎛⎭⎪⎫cos α2-sin α24cos 2α2=cos α2⎝⎛⎭⎪⎫cos 2α2-sin 2α2⎪⎪⎪⎪⎪⎪cos α2=cos α2cos α⎪⎪⎪⎪⎪⎪cos α2.因为0<α<π,所以0<α2<π2,所以cos α2>0,所以原式=cos α.答案 (1)D (2)cos α【训练1】 (1)2+2cos 8+21-sin 8的化简结果是________.(2)化简:2cos 4α-2cos 2α+122tan ⎝ ⎛⎭⎪⎫π4-αsin 2⎝ ⎛⎭⎪⎫π4+α=________.解析 (1)原式=4cos 24+2(sin 4-cos 4)2 =2|cos 4|+2|sin 4-cos 4|,因为54π<4<32π,所以cos 4<0,且sin 4<cos 4, 所以原式=-2cos 4-2(sin 4-cos 4)=-2sin 4. (2)原式=12(4cos 4α-4cos 2α+1)2×sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α·cos 2⎝ ⎛⎭⎪⎫π4-α=(2cos 2α-1)24sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α=cos 22α2sin ⎝ ⎛⎭⎪⎫π2-2α=cos 22α2cos 2α=12cos 2α. 答案 (1)-2sin 4 (2)12cos 2α 考点二 三角函数式的求值【例2】 (1)[2sin 50°+sin 10°(1+3tan 10°)]·2sin 280=________. (2)已知cos ⎝ ⎛⎭⎪⎫π4+α=35,17π12<α<7π4,则sin 2α+2sin 2α1-tan α的值为________.(3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________. 解析 (1)原式=(2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°)·2sin 80°=(2sin 50°+2sin 10°·12cos 10°+32sin 10°cos 10°)·2cos 10°=22[sin 50°·cos 10°+sin 10°·cos(60°-10°)] =22sin(50°+10°)=22×32= 6. (2)sin 2α+2sin 2α1-tan α=2sin αcos α+2sin 2α1-sin αcos α=2sin αcos α(cos α+sin α)cos α-sin α=sin 2α1+tan α1-tan α=sin 2α·tan ⎝ ⎛⎭⎪⎫π4+α.由17π12<α<7π4得5π3<α+π4<2π,又cos ⎝ ⎛⎭⎪⎫π4+α=35,所以sin ⎝ ⎛⎭⎪⎫π4+α=-45,tan ⎝ ⎛⎭⎪⎫π4+α=-43.cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-π4=-210,sin α=-7210,sin 2α=725.所以sin 2α+2sin 2α1-tan α=-2875.(3)∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0, 又α∈(0,π),∴0<α<π2, 又∵tan 2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0,∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1. ∵tan β=-17<0,∴π2<β<π,-π<2α-β<0, ∴2α-β=-3π4.答案 (1)6 (2)-2875 (3)-3π4【训练2】 (1)4cos 50°-tan 40°=( )A. 2B.2+32C. 3D.22-1(2)已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos α的值为________.(3)已知cos α=17,cos(α-β)=1314(0<β<α<π2),则tan 2α=________,β=________.解析 (1)原式=4sin 40°-sin 40°cos 40°=4cos 40°sin 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (120°-40°)-sin 40°cos 40°=3cos 40°+sin 40°-sin 40°cos 40°=3cos 40°cos 40°=3,故选C.(2)由sin ⎝⎛⎭⎪⎫α+π3+sin α=-435,得32sin α+32cos α=-435,sin ⎝ ⎛⎭⎪⎫α+π6=-45.又-π2<α<0,所以-π3<α+π6<π6, 于是cos ⎝⎛⎭⎪⎫α+π6=35.所以cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6-π6=33-410.(3)∵cos α=17,0<α<π2, ∴sin α=437,tan α=43,∴tan 2α=2tan α1-tan 2α=2×431-48=-8347. ∵0<β<α<π2,∴0<α-β<π2, ∴sin(α-β)=3314, ∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12, ∴β=π3. 答案 (1)C (2)33-410 (3)-8347 π3考点三 三角变换的简单应用【例3】 已知△ABC 为锐角三角形,若向量p =(2-2sin A ,cos A +sin A )与向量q =(sin A -cos A ,1+sin A )是共线向量. (1)求角A ;(2)求函数y =2sin 2B +cosC -3B2的最大值.解 (1)因为p ,q 共线,所以(2-2sin A )(1+sin A ) =(cos A +sin A )(sin A -cos A ),则sin 2A =34. 又A 为锐角,所以sin A =32,则A =π3.(2)y =2sin 2 B +cos C -3B 2=2sin 2B +cos ⎝ ⎛⎭⎪⎫π-π3-B -3B2=2sin 2B +cos ⎝ ⎛⎭⎪⎫π3-2B =1-cos 2B +12cos 2B +32sin 2B =32sin 2B -12cos 2B +1=sin⎝⎛⎭⎪⎫2B -π6+1. 因为B ∈⎝ ⎛⎭⎪⎫0,π2,所以2B -π6∈⎝ ⎛⎭⎪⎫-π6,5π6,所以当2B -π6=π2时,函数y取得最大值,此时B =π3,y max =2.【训练3】 (2017·合肥模拟)已知函数f (x )=(2cos 2x -1)·sin 2x +12cos 4x . (1)求f (x )的最小正周期及单调减区间;(2)若α∈(0,π),且f ⎝ ⎛⎭⎪⎫α4-π8=22,求tan ⎝ ⎛⎭⎪⎫α+π3的值.解 (1)f (x )=(2cos 2x -1)sin 2x +12cos 4x =cos 2x sin 2x +12cos 4x=12(sin 4x +cos 4x )=22sin ⎝ ⎛⎭⎪⎫4x +π4,∴f (x )的最小正周期T =π2.令2k π+π2≤4x +π4≤2k π+32π,k ∈Z , 得k π2+π16≤x ≤k π2+5π16,k ∈Z .∴f (x )的单调减区间为⎣⎢⎡⎦⎥⎤k π2+π16,k π2+5π16,k ∈Z .(2)∵f ⎝ ⎛⎭⎪⎫α4-π8=22,即sin ⎝ ⎛⎭⎪⎫α-π4=1.因为α∈(0,π),-π4<α-π4<3π4, 所以α-π4=π2,故α=3π4.因此tan ⎝⎛⎭⎪⎫α+π3=tan 3π4+tan π31-tan 3π4tan π3=-1+31+3=2- 3.基础巩固题组(建议用时:40分钟)一、选择题1.(2015·全国Ⅰ卷)sin 20°cos 10°-cos 160°sin 10°=()A.-32 B.32 C.-12 D.12解析sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=1 2.答案 D2.(1+tan 17°)(1+tan 28°)的值是()A.-1B.0C.1D.2 解析原式=1+tan 17°+tan 28°+tan 17°·tan 28°=1+tan 45°(1-tan 17°·tan 28°)+tan 17°·tan 28°=1+1=2.答案 D3.(2017·西安二检)已知α是第二象限角,且tan α=-13,则sin 2α=()A.-31010 B.31010 C.-35 D.35解析因为α是第二象限角,且tan α=-1 3,所以sin α=1010,cosα=-31010,所以sin 2α=2sin αcos α=2×1010×⎝⎛⎭⎪⎫-31010=-35,故选C.答案 C4.(2017·河南六市联考)设a=12cos 2°-32sin 2°,b=2tan 14°1-tan214°,c=1-cos 50°2,则有()A.a<c<bB.a<b<cC.b<c<aD.c<a<b解析由题意可知,a=sin 28°,b=tan 28°,c=sin 25°,∴c<a<b.答案 D5.(2016·肇庆三模)已知sin α=35且α为第二象限角,则tan ⎝ ⎛⎭⎪⎫2α+π4=( )A.-195B.-519C.-3117D.-1731解析 由题意得cos α=-45,则sin 2α=-2425, cos 2α=2cos 2α-1=725.∴tan 2α=-247,∴tan ⎝ ⎛⎭⎪⎫2α+π4=tan 2α+tan π41-tan 2αtan π4=-247+11-⎝ ⎛⎭⎪⎫-247×1=-1731. 答案 D 二、填空题6.(2016·石家庄模拟)若cos ⎝ ⎛⎭⎪⎫α-π3=13,则sin ⎝ ⎛⎭⎪⎫2α-π6的值是________.解析 sin ⎝ ⎛⎭⎪⎫2α-π6=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α-π3+π2=cos 2⎝ ⎛⎭⎪⎫α-π3=2cos 2⎝ ⎛⎭⎪⎫α-π3-1=2×19-1=-79.答案 -797.(2017·南昌一中月考)已知α∈⎝ ⎛⎭⎪⎫π4,3π4,β∈⎝ ⎛⎭⎪⎫0,π4,且cos ⎝ ⎛⎭⎪⎫π4-α=35,sin ⎝ ⎛⎭⎪⎫54π+β=-1213,则cos(α+β)=________. 解析 ∵α∈⎝ ⎛⎭⎪⎫π4,3π4,cos ⎝ ⎛⎭⎪⎫π4-α=35,∴sin ⎝ ⎛⎭⎪⎫π4-α=-45,∵sin ⎝ ⎛⎭⎪⎫54π+β=-1213,∴sin ⎝ ⎛⎭⎪⎫π4+β=1213,又∵β∈⎝ ⎛⎭⎪⎫0,π4,∴cos ⎝ ⎛⎭⎪⎫π4+β=513,∴cos(α+β)=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+β-⎝ ⎛⎭⎪⎫π4-α=35×513-45×1213=-3365.答案 -33658.已知θ∈⎝ ⎛⎭⎪⎫0,π2,且sin ⎝⎛⎭⎪⎫θ-π4=210,则tan 2θ=________. 解析 sin ⎝⎛⎭⎪⎫θ-π4=210,得sin θ-cos θ=15,① θ∈⎝ ⎛⎭⎪⎫0,π2,①平方得2sin θcos θ=2425,可求得sin θ+cos θ=75,∴sin θ=45,cos θ=35,∴tan θ=43,tan 2θ=2tan θ1-tan 2 θ=-247. 答案 -247三、解答题9.(2017·淮海中学模拟)已知向量a =(cos θ,sin θ),b =(2,-1).(1)若a ⊥b ,求sin θ-cos θsin θ+cos θ的值; (2)若|a -b |=2,θ∈⎝ ⎛⎭⎪⎫0,π2,求sin ⎝⎛⎭⎪⎫θ+π4的值. 解 (1)由a ⊥b 可知,a ·b =2cos θ-sin θ=0,所以sin θ=2cos θ,所以sin θ-cos θsin θ+cos θ=2cos θ-cos θ2cos θ+cos θ=13. (2)由a -b =(cos θ-2,sin θ+1)可得,|a -b |=(cos θ-2)2+(sin θ+1)2=6-4cos θ+2sin θ=2,即1-2cos θ+sin θ=0.又cos 2θ+sin 2θ=1,且θ∈⎝⎛⎭⎪⎫0,π2, 所以sin θ=35,cos θ=45.所以sin ⎝⎛⎭⎪⎫θ+π4=22(sin θ+cos θ)=22⎝ ⎛⎭⎪⎫35+45=7210. 10.设cos α=-55,tan β=13,π<α<3π2,0<β<π2,求α-β的值.解 法一 由cos α=-55,π<α<3π2,得sin α=-255,tan α=2,又tanβ=13,于是tan(α-β)=tan α-tan β1+tan αtan β=2-131+2×13=1.又由π<α<3π2,0<β<π2可得-π2<-β<0,π2<α-β<3π2,因此,α-β=5π4.法二 由cos α=-55,π<α<3π2得sin α=-255. 由tan β=13,0<β<π2得sin β=110,cos β=310. 所以sin(α-β)=sin αcos β-cos αsin β=⎝⎛⎭⎪⎫-255⎝ ⎛⎭⎪⎫310-⎝ ⎛⎭⎪⎫-55⎝ ⎛⎭⎪⎫110=-22. 又由π<α<3π2,0<β<π2可得-π2<-β<0,π2<α-β<3π2,因此,α-β=5π4.能力提升题组 (建议用时:20分钟)11.(2016·云南统一检测)cos π9·cos 2π9·cos ⎝⎛⎭⎪⎫-23π9=( ) A.-18 B.-116 C.116 D.18解析 cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-239π=cos 20°·cos 40°·cos 100°=-cos 20°· cos 40°·cos 80°=-sin 20°cos 20°cos 40°cos 80°sin 20°=-12sin 40°·cos 40°·cos 80°sin 20°=-14sin 80°·cos 80°sin 20°=-18sin 160°sin 20°=-18sin 20°sin 20°=-18. 答案 A 12.(2017·武汉调研)设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为( )A.[-2,1]B.[-1,2]C.[-1,1]D.[1,2]解析 ∵sin αcos β-cos αsin β=1,∴sin(α-β)=1,∵α,β∈[0,π],∴α-β=π2,由⎩⎪⎨⎪⎧0≤α≤π,0≤β=α-π2≤π⇒π2≤α≤π, ∴sin(2α-β)+sin(α-2β)=sin ⎝⎛⎭⎪⎫2α-α+π2+sin(α-2α+π)=cos α+sin α=2sin ⎝ ⎛⎭⎪⎫α+π4,∵π2≤α≤π,∴3π4≤α+π4≤54π,∴-1≤2sin ⎝⎛⎭⎪⎫α+π4≤1,即所求的取值范围是[-1,1],故选C.答案 C13.已知cos 4α-sin 4α=23,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos ⎝ ⎛⎭⎪⎫2α+π3=________. 解析 ∵cos 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α)=cos 2α=23,又α∈⎝⎛⎭⎪⎫0,π2,∴2α∈(0,π),∴sin 2α=1-cos 22α=53, ∴cos ⎝⎛⎭⎪⎫2α+π3=12cos 2α-32sin 2α=12×23-32×53=2-156. 答案 2-15614.(2016·西安模拟)如图,现要在一块半径为1 m ,圆心角为π3的扇形白铁片AOB 上剪出一个平行四边形MNPQ ,使点P 在弧AB 上,点Q 在OA 上,点M ,N 在OB 上,设∠BOP =θ,平行四边形MNPQ 的面积为S .(1)求S 关于θ的函数关系式.(2)求S 的最大值及相应的θ角.解 (1)分别过P ,Q 作PD ⊥OB 于D ,QE ⊥OB 于E ,则四边形QEDP 为矩形.由扇形半径为1 m ,得PD =sin θ,OD =cos θ.在Rt △OEQ 中,OE =33QE =33PD ,MN =QP =DE =OD -OE =cos θ-33sin θ,S =MN ·PD =⎝ ⎛⎭⎪⎫cos θ-33sin θ·sin θ=sin θcos θ-33·sin 2θ,θ∈⎝ ⎛⎭⎪⎫0,π3.(2)由(1)得S =12sin 2θ-36(1-cos 2θ)=12sin 2θ+36cos 2θ-36=33sin ⎝ ⎛⎭⎪⎫2θ+π6-36, 因为θ∈⎝ ⎛⎭⎪⎫0,π3,所以2θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,sin ⎝ ⎛⎭⎪⎫2θ+π6∈⎝ ⎛⎦⎥⎤12,1. 当θ=π6时,S max =36(m 2).。

3.1两角和与差的正弦、余弦和正切公式

3.1两角和与差的正弦、余弦和正切公式

3.1 两角和与差的正弦、余弦和正切公式例题1.求下列各式的值(1)cos1050; (2)cos460cos160+sin460sin160例题2.求值:(1)cos150cos1050+sin150sin1050;(2)cos (α﹣350)·cos (250+α)+sin (α﹣350)·sin (250+α)(3)cos400cos700+cos200cos500(4)00008cos 8sin 15sin 7cos -例题3.已知α是第一象限角,sin α=53,β是第四象限角,cos β=54,求cos (α+β)和cos (α﹣β)的值。

例题4.求下列各式的值:(1)sin1650;(2)sin (540﹣x )cos (360+x )+cos (540﹣x )sin (360+x )例题5.已知cos (α+β)=31-,cos2α=135-,α、β均为锐角,求sin (α﹣β)例题6.化简下列各式:(1)⎪⎭⎫ ⎝⎛-απ4tan ;(2)000076tan 74tan 176tan 74tan -+;(3)0015tan 3115tan 3+-;(4)000070tan 50tan 370tan 50tan -+例题7.0000008sin 15sin 7cos 8sin 15cos 7sin -∙+例题8.求值:(1)12cos 12sin 22ππ-;(2)sin750cos750;(3)0215sin 3432-;(4)02015tan 115tan 2-;例题9.(1)求125cos 12cos ππ的值;(2)已知215sin -=x ,求⎪⎭⎫⎝⎛-42sin πx 的值;例题10.求值:(1)sin100sin500sin700;(2)sin60sin420sin660sin780例题11.求值:(1+tan10)(1+tan20)(1+tan30)…(1+tan440)例题12.化简:(1)cos720·cos360;(2)cos200·cos400·cos600·cos800;(3)1322cos 2cos 2cos 2cos cos -∙∙∙∙n ααααα例题13.化简:αααα3cos cos 3sin sin 33+例题14.已知31sin sin -=-βα,21cos cos =-βα,求)cos(βα-的值。

第3讲 两角和与差的正弦、余弦、 正切公式(练习)原卷版

第3讲 两角和与差的正弦、余弦、 正切公式(练习)原卷版

第3讲 两角和与差的正弦、余弦、 正切公式(练习)夯实基础一、单选题1.(2020·上海高一课时练习)满足cos cos sin sin 2=+αβαβ的一组,αβ的值是( ).A .133,124==απβπ B .,23==ππαβC .,26ππαβ==D .,36ππαβ==2.(2020·上海高一课时练习)若sin cos ()2,()2,==∈x x f x g x x R ,则函数()()f x g x ⋅必有( )A .最大值4B .最小值4C .最大值D .最小值3.(2020·上海高一课时练习)下列关系中,角α存在的是( ) A .3sin cos 2αα+=B .4sin cos 3αα+=C .1sin 3α=且2cos 3α= D .cos sin -=αα4.(2020·上海高一课时练习)如果21tan(),tan 544παββ⎛⎫+=-= ⎪⎝⎭,那么tan 4πα⎛⎫+ ⎪⎝⎭的值为( ) A .1318B .1322C .322D .165.(2020·上海高一课时练习)已知α、β均为锐角,则下列不等式一定成立的是( )A .()sin sin sin αβαβ+>+B .()sin sin sin αβαβ+<+C .()cos cos cos αβαβ+>+D .()cos sin sin αβαβ+<+6.44x x ππ⎛⎫⎛⎫-+⎪ ⎪⎝⎭⎝⎭的化简结果是()A .512x π⎛⎫+⎪⎝⎭B .512x π⎛⎫-⎪⎝⎭C .712x π⎛⎫+⎪⎝⎭D .712x π⎛⎫-⎪⎝⎭二、填空题7.(2020·上海高一课时练习)化简:在ABC 中,cos cos()sin sin()⋅++⋅+=A A C B B C ________.8.(2020·上海高一课时练习)若31sin cos 444x x ππ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭,则cos 4x =______. 9.(2020·上海高一课时练习)sin15°+cos15°=__.10.(2020·上海高一课时练习)若3sin α4cos α,则tan 4πα⎛⎫-= ⎪⎝⎭________.11.(2020·上海高一课时练习)若tan 36⎛⎫+= ⎪⎝⎭πα,则tan α=_________. 12.(2020·上海高一课时练习)求值:tan 22tan 383tan 22tan 38++⋅=____________.13.(2020·上海高一课时练习)若4sin 5α,cot 3β=,且α是第二象限角,则tan αβ________.14.(2020·上海高一课时练习)将cos αα化成cos()(0,0)A A αϕϕπ+><<的形式是____________.15.sin -x x 写成sin()(0,0)+><<A x A ϕϕπ的形式为___________.16.(2020·上海高一课时练习)若35sin ,6536⎛⎫+=<< ⎪⎝⎭ππααπ,则5sin 12⎛⎫+=⎪⎝⎭πα________.17.(2020·上海高一课时练习)将2sin -αα化为sin()(0,02)A A αϕϕπ+>≤<的形式为___________.18.(2020·上海高一课时练习)若3sin ,,452⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭ππθθπ,则cos θ=_________. 19.(2020·上海高一课时练习)若43sin ,,252⎛⎫=-∈ ⎪⎝⎭ααππ,则sin 6πα⎛⎫+=⎪⎝⎭________.20.(2020·上海高一课时练习)在三角形ABC 中,若cos cos sin sin =A B A B ,则三角形ABC 是三角形______.21.(2020·上海高一课时练习)求值:sin28cos73sin62cos17︒︒︒︒-=_________.22.(2020·上海高一课时练习)关于x 的方程46sin 4m x x m-=-有解,则实数m 的取值范围是_________三、解答题23.(2020·上海高一课时练习)已知21sin(),sin()35+=-=αβαβ,求tan cot ⋅αβ的值.24.(2020·上海高一课时练习)已知31tan(),tan443⎛⎫+=+=⎪⎝⎭παββ,求tan4πα⎛⎫-⎪⎝⎭的值.25.(2020·上海高一课时练习)化简下列各式:(1)1tan151tan15︒︒-+;(2)tan 20tan 4020tan 40︒︒︒︒++⋅;(3)tan tan tan tan 44⎛⎫⎛⎫+-+⋅-⎪ ⎪⎝⎭⎝⎭ππθθθθ.26.(2020·上海高一课时练习)求证:1csc1022︒︒-=.27.(2020·上海高一课时练习)已知3sin 3cos ),(0,2)-=+∈αααϕϕπ,求ϕ的值.28.(2020·上海高一课时练习)已知,αβ是锐角,且sin==αβ,求αβ+的值.29.(2020·上海高一课时练习)在斜三角形ABC 中,求证:tan tan tan tan tan tan A B C A B C ++=.30.(2020·上海高一课时练习)已知8sin 17α=,5cos 13β=-,,,2παβπ⎛⎫∈ ⎪⎝⎭,求()cos αβ+.31.(2020·上海高一课时练习)是否存在锐角,αβ,使得:223παβ+=,tantan 22αβ⋅=,αβ的值;若不存在,说明理由.32.(2020·上海高一课时练习)已知tan α=α+β)=-1114,α,β均为锐角,求cos β的值.33.(2020·上海高一课时练习)已知3,24ππβα<<<且123cos()sin()135αβαβ-=+=-,,求:cos2α的值.能力提升一、填空题1.若1cos()cos()3αβαβ+-=,则22cos cos +=αβ_________.2.若23sin ,,,tan ,3272ππααπββπ⎛⎫⎛⎫=∈=∈ ⎪ ⎪⎝⎭⎝⎭,则sin()αβ-=________.3.若3tan ,,42⎛⎫=-∈ ⎪⎝⎭πθθπ,则sin 6πθ⎛⎫+= ⎪⎝⎭_________. 4.sin cos sin sin 44⎛⎫⎛⎫+⋅--⋅⎪ ⎪⎝⎭⎝⎭ππαααα的值为_________.二、解答题5.若0,sin cos ,sin cos 4<<<+=+=p q παβααββ,判断下列结论是否正确,并说明理由.(1)1<pq ; (2)p q <; (3)2>pq .6.化简下列各式:(1cos 66ππαα⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭;(2)()cos101sin 40︒︒︒+;(3)sin 2cos 3⎛⎫-+-⎪⎝⎭πααα.7.已知,αβ都是锐角,且11sin )14=+=-ααβ,求角β的值.8.已知3,,,sin 2510⎛⎫∈=-=- ⎪⎝⎭παβπαβ,求角αβ-的值.9.已知tan ,tan αβ是方程23410x x +-=的两根,0,,,22⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭ππαβπ. 求:(1)角αβ+的值;(2)cot()-αβ的值.10.(1)证明:22sin3sin1sin 2sin 1=-;(2)推广上述结论,使(1)成为其特例,并证明推广的等式.11.在ABC 中,已知35sin ,cos 513A B ==,求sin C 和cos C 的值.12.已知343sin(),cos(),,5522+=--=-<<<<παβαβπαπβπ,求sin2β.13.已知13cos(),cos,0,,0,3422⎛⎫⎛⎫-==-∈∈⎪ ⎪⎝⎭⎝⎭ππαββαββ,求sinα的值.14.已知23sin(),sin()34+=-=αβαβ,求tantanαβ的值.15.已知3cos45πα⎛⎫-=⎪⎝⎭,35sin413πβ⎛⎫+=⎪⎝⎭,344ππα<<,04πβ<<,求()cosαβ+的值.。

两角和与差的正弦余弦正切公式课后练习

两角和与差的正弦余弦正切公式课后练习

3.1.1 两角和与差的余弦基础巩固 新人教A 版必修4一、选择题1.cos75°cos15°-sin435°sin15°的值是( ) A .0B .12C .32D .-122.在△ABC 中,若sin A sin B <cos A cos B ,则△ABC 一定为( ) A .等边三角形 B .直角三角形 C .锐角三角形D .钝角三角形3.化简sin(x +y )sin(x -y )+cos(x +y )cos(x -y )的结果是( ) A .sin2x B .cos2y C .-cos2xD .-cos2y4.sin15°cos75°+cos15°sin105°等于( ) A .0B .12C .32D .15.sin π12-3cos π12的值是( )A .0B .- 2C . 2D .26.△ABC 中,cos A =35,且cos B =513,则cos C 等于( )A .-3365B .3365 C .-6365D .6365二、填空题7.若cos α=15,α∈(0,π2),则cos(α+π3)=________.8.已知cos x -cos y =14,sin x -sin y =13,则cos(x -y )=________.三、解答题9.已知sin α+sin β=sin γ,cos α+cos β=cos γ.求证:cos(α-γ)=12.一、选择题1.函数y =cos 2x -sin 2x 的最小正周期是( ) A .π B .π2C .π4D .2π2.在△ABC 中,若tan A ·tan B >1,则△ABC 一定是( ) A .等边三角形 B .直角三角形 C .锐角三角形D .钝角三角形3.在锐角△ABC 中,设x =sin A ·sin B ,y =cos A ·cos B ,则x 、y 的大小关系为( ) A .x ≤y B .x >y C .x <yD .x ≥y4.(2014·山东潍坊重点中学高一期末测试)函数f (x )=sin x -cos(x +π6)的值域为( )A .[-2,2]B .[-3,3]C .[-1,1]D .[-32,32] 二、填空题5.形如⎪⎪⎪⎪⎪⎪ab cd 的式子叫做行列式,其运算法则为⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,则行列式⎪⎪⎪⎪⎪⎪⎪⎪cos π3 sinπ6sin π3 cos π6的值是________. 6.已知cos(α+β)=13,cos(α-β)=15,则tan α·tan β=________.三、解答题7.已知cos(α-30°)=1517,30°<α<90°,求cos α的值.8.已知向量a =(2cos α,2sin α),b =(3cos β,3sin β),若向量a 与b 的夹角为60°,求cos(α-β)的值.9.已知函数f (x )=2cos(ωx +π6)(其中ω>0,x ∈R)的最小正周期为10π.(1)求ω的值;(2)设α、β∈[0,π2],f (5α+5π3)=-65,f (5β-5π6)=1617,求cos(α+β)的值.。

两角和与差的正弦余弦正切公式练习题(答案)

两角和与差的正弦余弦正切公式练习题(答案)

两角和差的正弦余弦正切公式练习题知 识 梳 理1.两角和与差的正弦、余弦和正切公式 s in (α±β)=s in_αcos _β±cos_αsin _β. cos(α∓β)=cos_αc os_β±sin_αsin_β. t an(α±β)=错误!.2.二倍角的正弦、余弦、正切公式 s in 2α=2sin_αcos_α.cos 2α=cos 2α-sin2α=2cos 2α-1=1-2sin 2α. ta n 2α=错误!. 3.有关公式的逆用、变形等(1)ta n α±tan β=t an(α±β)(1∓ta n_αt an_β). (2)co s2α=\f(1+cos 2α,2),sin 2α=错误!.(3)1+sin 2α=(si n α+co s α)2,1-sin 2α=(sin α-cos α)2,sin α±co s α=\r(2)sin 错误!.4.函数f (α)=a sin α+bcos α(a ,b 为常数),可以化为f (α)=a 2+b 2s in(α+φ),其中t an φ=\f(b,a ) 一、选择题1.给出如下四个命题ﻩﻩ①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立;②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβαβαtan tan 1tan ⋅-+an 成立的条件是)(2Z k k ∈+≠ππα且)(2Z k k ∈+≠ππβ;④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是 ﻩ( )A .①②ﻩB.②③ C.③④ﻩD.②③④2.函数)cos (sin sin 2x x x y +=的最大值是ﻩﻩ( )A .21+ﻩB .12-ﻩC .2ﻩD . 2 3.当]2,2[ππ-∈x 时,函数x x x f cos 3sin )(+=的ﻩﻩ( ) A.最大值为1,最小值为-1ﻩB .最大值为1,最小值为21-C .最大值为2,最小值为-2D .最大值为2,最小值为-14.已知)cos(,32tan tan ,7)tan(βαβαβα-=⋅=+则的值ﻩﻩ( ) A.21 B .22 C.22-D.22±5.已知=-=+=-<<<αβαβαπαβπ2sin ,53)sin(,1312)cos(,432则 ( )A.6556ﻩB .-6556ﻩC.5665 D.-5665 6. 75sin 30sin 15sin ⋅⋅的值等于ﻩﻩ( ) A .43 B .83ﻩC.81 D.417.函数)4cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+=+=ππ其中为相同函数的是ﻩﻩ( )A.)()(x g x f 与B .)()(x h x g 与C.)()(x f x h 与ﻩD.)()()(x h x g x f 及与8.α、β、γ都是锐角,γβαγβα++===则,81tan ,51tan ,21tan 等于 ( ) A.3πB.4πﻩC.π65ﻩD.π45 9.设0)4tan(tan 2=++-q px x 是方程和θπθ的两个根,则p 、q 之间的关系是( )A.p +q +1=0 B .p-q +1=0ﻩC.p+q-1=0 D .p-q-1=0 10.已知)tan(),sin(4sin ,cos βαβααβ++==则a 的值是( )A.412--a a ﻩB.-412--a a ﻩC.214a a --± D .412--±a a11.在△ABC 中,90C >,则B A tan tan ⋅与1的关系为ﻩ( )A.1tan tan >+B A ﻩB .1tan tan <⋅B A C.1tan tan =⋅B A D.不能确定 12. 50sin 10sin 70cos 20sin +的值是ﻩ( )A.41B.23ﻩC.21D.43二、填空题(每小题4分,共16分,将答案填在横线上)13.已知m =-⋅+)sin()sin(αββα,则βα22cos cos -的值为 . 14.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B=.15.若),24cos()24sin(θθ-=+ 则)60tan( +θ= . 16.若y x y x cos cos ,22sin sin +=+则的取值范围是 . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34sin(x +⋅π.18.已知 0βαβαcos ,cos ,90且 <<<是方程02150sin 50sin 222=-+- x x 的两根,求)2tan(αβ-的值.19.求证:yx xy x y x 22sin cos 2sin )tan()tan(-=-++.20.已知α,β∈(0,π)且71tan ,21)tan(-==-ββα,求βα-2的值.21.证明:xx xx x 2cos cos sin 22tan 23tan +=-.22.已知△ABC 的三个内角满足:A+C=2B,B C A cos 2cos 1cos 1-=+求2cos CA -的值. 两角和差的正弦余弦正切公式练习题参考答案一、1.C 2.A 3.D 4.D 5.B 6.C 7.C 8.B 9.B 10.D 11.B 12.A二、13.m 14.3π15.32-- 16.]214,214[- 三、17.原式=)34cos()33sin()33cos()34sin(x x x x -----ππππ=462-.18.)4550sin(2)2150(sin 4)50sin 2(50sin 222 ±=---±=x ,12sin 95cos5,sin 5cos85,x x ∴====ﻩ3275tan )2tan(+==- αβ. 19.证:y x y x y x y x y x y x y x y x 2222sin sin cos cos )]()sin[()cos()sin()cos()sin(⋅-⋅-++=--+++=左=-=+-=yx xy x x x x 222222sin cos 2sin sin )sin (cos cos 2sin 右. 20.13tan ,tan(2)1,2.34ααβαβπ=-=-=-21.左==+=⋅=⋅-x x x x x x x x x x x x 2cos cos sin 22cos23cos sin 2cos 23cos 2sin23cos 2cos 23sin右.22.由题设B=60°,A +C=120°,设2CA -=α知A=60°+α, C=60°-α,22cos ,2243cos cos cos 1cos 12=-=-=+ααα即CA 故222cos =-C A .。

最新两角和与差的正弦余弦正切公式练习题(含答案)

最新两角和与差的正弦余弦正切公式练习题(含答案)

两角和差的正弦余弦正切公式练习题一、选择题1.给出如下四个命题①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβαβαtan tan 1tan ⋅-+an 成立的条件是)(2Z k k ∈+≠ππα且)(2Z k k ∈+≠ππβ;④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是( )A .①②B .②③C .③④D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是( )A .21+B .12-C .2D . 2 3.当]2,2[ππ-∈x 时,函数x x x f cos 3sin )(+=的( ) A .最大值为1,最小值为-1 B .最大值为1,最小值为21-C .最大值为2,最小值为-2D .最大值为2,最小值为-1 4.已知)cos(,32tan tan ,7)tan(βαβαβα-=⋅=+则的值 ( )A .21 B .22 C .22-D .22±5.已知=-=+=-<<<αβαβαπαβπ2sin ,53)sin(,1312)cos(,432则 ( )A .6556B .-6556C .5665D .-56656. 75sin 30sin 15sin ⋅⋅的值等于( )A .43 B .83 C .81D .41 7.函数)4cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+=+=ππ其中为相同函数的是 ( )A .)()(x g x f 与B .)()(x h x g 与C .)()(x f x h 与D .)()()(x h x g x f 及与8.α、β、γ都是锐角,γβαγβα++===则,81tan ,51tan ,21tan 等于 ( )A .3π B .4π C .π65D .π459.设0)4tan(tan 2=++-q px x 是方程和θπθ的两个根,则p 、q 之间的关系是( )A .p+q+1=0B .p -q+1=0C .p+q -1=0D .p -q -1=0 10.已知)tan(),sin(4sin ,cos βαβααβ++==则a 的值是( )A .412--a aB .-412--a aC .214a a --±D .412--±a a11.在△ABC 中,90C >,则B A tan tan ⋅与1的关系为( )A .1tan tan >+B A B .1tan tan <⋅B AC .1tan tan =⋅B AD .不能确定12. 50sin 10sin 70cos 20sin +的值是( )A .41B .23C .21D .43二、填空题(每小题4分,共16分,将答案填在横线上)13.已知m =-⋅+)sin()sin(αββα,则βα22cos cos -的值为 . 14.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B=.15.若),24cos()24sin(θθ-=+ 则)60tan( +θ= . 16.若y x y x cos cos ,22sin sin +=+则的取值范围是 . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34sin(x +⋅π.18.已知 0βαβαcos ,cos ,90且 <<<是方程02150sin 50sin 222=-+- x x 的两根,求)2tan(αβ-的值.19.求证:yx xy x y x 22sin cos 2sin )tan()tan(-=-++.20.已知α,β∈(0,π)且71tan ,21)tan(-==-ββα,求βα-2的值.21.证明:xx xx x 2cos cos sin 22tan 23tan +=-.22.已知△ABC 的三个内角满足:A+C=2B ,B C A cos 2cos 1cos 1-=+求2cos CA -的值.两角和差的正弦余弦正切公式练习题参考答案一、1.C 2.A 3.D 4.D 5.B 6.C 7.C 8.B 9.B 10.D 11.B 12.A二、13.m 14.3π15.32-- 16.]214,214[-三、17.原式=)34cos()33sin()33cos()34sin(x x x x -----ππππ=462-.18.)4550sin(2)2150(sin 4)50sin 2(50sin 222 ±=---±=x ,12sin 95cos5,sin 5cos85,x x ∴====3275tan )2tan(+==- αβ.19.证:yx y x y x y x y x y x y x y x 2222sin sin cos cos )]()sin[()cos()sin()cos()sin(⋅-⋅-++=--+++=左=-=+-=yx xy x x x x 222222sin cos 2sin sin )sin (cos cos 2sin 右. 20.13tan ,tan(2)1,2.34ααβαβπ=-=-=-21.左==+=⋅=⋅-x x x x x x x x x x x x 2cos cos sin 22cos23cos sin 2cos 23cos 2sin23cos 2cos 23sin右.22.由题设B=60°,A+C=120°,设2CA -=α知A=60°+α, C=60°-α,22cos ,2243cos cos cos 1cos 12=-=-=+ααα即CA故222cos =-C A .。

两角和与差的正弦、余弦和正切公式(含解析)

两角和与差的正弦、余弦和正切公式(含解析)

两角和与差的正弦、余弦和正切公式(含解析)1.两角和与差的正弦、余弦、正切公式1) $cos(\alpha-\beta): cos(\alpha-\beta)=cos\alphacos\beta+sin\alpha sin\beta$2) $cos(\alpha+\beta): cos(\alpha+\beta)=cos\alpha cos\beta-sin\alpha sin\beta$3) $sin(\alpha+\beta): sin(\alpha+\beta)=sin\alphacos\beta+cos\alpha sin\beta$4) $sin(\alpha-\beta): sin(\alpha-\beta)=sin\alpha cos\beta-cos\alpha sin\beta$5) $tan(\alpha+\beta):tan(\alpha+\beta)=\frac{tan\alpha+tan\beta}{1-tan\alpha tan\beta}$6) $tan(\alpha-\beta): tan(\alpha-\beta)=\frac{tan\alpha-tan\beta}{1+tan\alpha tan\beta}$2.二倍角的正弦、余弦、正切公式1) $sin2\alpha: sin2\alpha=2sin\alpha cos\alpha$2) $cos2\alpha: cos2\alpha=cos^2\alpha-sin^2\alpha=2cos^2\alpha-1=1-2sin^2\alpha$3) $tan2\alpha: tan2\alpha=\frac{2tan\alpha}{1-tan^2\alpha}$3.常用的公式变形1) $tan(\alpha\pm\beta)=\frac{tan\alpha\pm tan\beta}{1\mp tan\alpha tan\beta}$2) $cos2\alpha=\frac{1+cos2\alpha}{2}$,$sin2\alpha=\frac{1-cos2\alpha}{2}$3) $1+sin2\alpha=(sin\alpha+cos\alpha)^2$,$1-sin2\alpha=(sin\alpha-cos\alpha)^2$,$\sin\alpha+\cos\alpha=2\sin\frac{\alpha+\beta}{4}$基础题必做1.若$tan\alpha=3$,则$\frac{sin2\alpha}{2sin\alphacos\alpha}$的值等于$2tan\alpha=2\times3=6$。

高一 两角和与差的余弦、正弦、正切公式知识点+例题+练习 含答案

高一 两角和与差的余弦、正弦、正切公式知识点+例题+练习 含答案

1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C (α-β))cos(α+β)=cos αcos β-sin αsin β (C (α+β))sin(α-β)=sin αcos β-cos αsin β (S (α-β))sin(α+β)=sin αcos β+cos αsin β (S (α+β))tan(α-β)=tan α-tan β1+tan αtan β(T (α-β)) tan(α+β)=tan α+tan β1-tan αtan β(T (α+β)) 2.二倍角公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;tan 2α=2tan α1-tan 2α. 3.公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan αtan β);(2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( √ )1.化简cos 40°cos 25°1-sin 40°= . 答案 2解析 原式=cos 40°cos 25°1-cos 50°=cos (90°-50°)cos 25°·2sin 25°=sin 50°22sin 50°= 2. 2.若sin α+cos αsin α-cos α=12,则tan 2α= . 答案 34解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3, 则tan 2α=2tan α1-tan 2α=34. 3.(2015·重庆改编)若tan α=13,tan(α+β)=12,则tan β= . 答案 17解析 tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17. 4.(教材改编)sin 347°cos 148°+sin 77°cos 58°= .答案 22 解析 sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58°=(-cos 77°)·(-sin 58°)+sin 77°cos 58°=sin 58°cos 77°+cos 58°sin 77°=sin(58°+77°)=sin 135°=22. 5.设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为 . 答案 17250解析 ∵α为锐角,cos(α+π6)=45, ∴α+π6∈⎝⎛⎭⎫π6,2π3,∴sin(α+π6)=35, ∴sin(2α+π3)=2sin(α+π6)cos(α+π6)=2425, ∴cos(2α+π3)=2cos 2(α+π6)-1=725, ∴sin(2α+π12)=sin(2α+π3-π4) =22[sin(2α+π3)-cos(2α+π3)]=17250.题型一 三角函数公式的基本应用例1 (1)已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)= . (2)设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是 .答案 (1)-75(2) 3 解析 (1)cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝⎛⎭⎫π2,π, ∴cos α=-45. ∴原式=-75. (2)∵sin 2α=2sin αcos α=-sin α,∴cos α=-12, 又α∈⎝⎛⎭⎫π2,π,∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2 α=-231-(-3)2= 3. 思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.(2)使用公式求值,应先求出相关角的函数值,再代入公式求值.(1)若α∈(π2,π),tan(α+π4)=17,则sin α= . (2)已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是 . 答案 (1)35(2)-1 解析 (1)∵tan(α+π4)=tan α+11-tan α=17, ∴tan α=-34=sin αcos α, ∴cos α=-43sin α. 又∵sin 2α+cos 2α=1,∴sin 2α=925. 又∵α∈(π2,π),∴sin α=35. (2)cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x ) =3cos(x -π6)=-1. 题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为 . (2)求值:cos 15°+sin 15°cos 15°-sin 15°= . 答案 (1)22(2) 3 解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos [90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin [(65°-x )+(x -20°)]=sin 45°=22. (2)原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为 .(2)函数f (x )=2sin 2(π4+x )-3cos 2x 的最大值为 . 答案 (1)π4(2)3 解析 (1)由题意知:sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C=-1=-tan A ,所以A =π4.(2)f (x )=1-cos ⎣⎡⎦⎤2(π4+x )-3cos 2x =sin 2x -3cos 2x +1=2sin ⎝⎛⎭⎫2x -π3+1, 可得f (x )的最大值是3.题型三 角的变换问题例3 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β= . (2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是 . 答案 (1)2525 (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45. 又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β).因为45>55>-45, 所以cos(α+β)=-45. 于是cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525. (2)∵cos(α-π6)+sin α=453, ∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453, ∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45. 思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等. 若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2= . 答案 539解析 cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2 =cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2, ∵0<α<π2,∴π4<π4+α<3π4, ∴sin ⎝⎛⎭⎫π4+α=223.又-π2<β<0,则π4<π4-β2<π2, ∴sin ⎝⎛⎭⎫π4-β2=63. 故cos ⎝⎛⎭⎫α+β2=13×33+223×63=539.5.三角函数求值忽视角的范围致误典例 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,则cos(α+β)的值为 .(2)已知在△ABC 中,sin(A +B )=23,cos B =-34,则cos A = . 易错分析 (1)角α2-β,α-β2的范围没有确定准确,导致开方时符号错误. (2)对三角形中角的范围挖掘不够,忽视隐含条件,B 为钝角.解析 (1)∵0<β<π2<α<π, ∴-π4<α2-β<π2,π4<α-β2<π, ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β=53, sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2=459,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1 =2×49×5729-1=-239729. (2)在△ABC 中,∵cos B =-34, ∴π2<B <π,sin B =1-cos 2B =74. ∵π2<B <A +B <π,sin(A +B )=23, ∴cos(A +B )=-1-sin 2(A +B )=-53, ∴cos A =cos [(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B=⎝⎛⎭⎫-53×⎝⎛⎭⎫-34+23×74=35+2712. 答案 (1)-239729 (2)35+2712温馨提醒 在解决三角函数式的求值问题时,要注意题目中角的范围的限制,特别是进行开方运算时一定要注意所求三角函数值的符号.另外,对题目隐含条件的挖掘也是容易忽视的问题,解题时要加强对审题深度的要求与训练,以防出错.[方法与技巧]1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2, 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[失误与防范]1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在三角函数求值时,一定不要忽视题中给出的或隐含的角的范围.A 组 专项基础训练(时间:40分钟)1.cos 85°+sin 25°cos 30°cos 25°= . 答案 12解析 原式=sin 5°+32sin 25°cos 25°=sin (30°-25°)+32sin 25°cos 25°=12cos 25°cos 25°=12. 2.若θ∈[π4,π2],sin 2θ=378,则sin θ= . 答案 34解析 由sin 2θ=378和sin 2θ+cos 2θ=1得 (sin θ+cos θ)2=378+1=(3+74)2, 又θ∈[π4,π2],∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34. 3.若tan θ=3,则sin 2θ1+cos 2θ= . 答案3 解析 sin 2θ1+cos 2θ=2sin θcos θ1+2cos 2θ-1=tan θ= 3. 4.已知cos α=-55,tan β=13,π<α<32π,0<β<π2,则α-β的值为 . 答案 54π 解析 因为π<α<32π,cos α=-55,所以sin α=-255,tan α=2,又tan β=13,所以tan(α-β)=2-131+23=1,由π<α<32π,-π2<-β<0得π2<α-β<32π,所以α-β=54π. 5.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4= . 答案 322解析 因为α+π4+β-π4=α+β, 所以α+π4=(α+β)-⎝⎛⎭⎫β-π4, 所以tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322. 6.sin 250°1+sin 10°= .答案 12解析 sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12. 7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α= . 答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.8.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)= . 答案 7210解析 因为sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45, 又由θ∈(0,π4),得2θ∈(0,π2), 所以cos 2θ=1-sin 22θ=35, 所以sin(2θ+π4) =sin 2θcos π4+cos 2θsin π4=45×22+35×22=7210. 9.已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值;(2)求tan α-1tan α的值.解 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35 =-43+310. B 组 专项能力提升(时间:20分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)= . 答案 -255解析 由tan(α+π4)=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0, 所以sin α=-1010. 故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α =-255. 12.已知α∈⎝⎛⎭⎫0,π2,且sin 2α-sin αcos α-2cos 2α=0,则tan ⎝⎛⎭⎫π3-α= . 答案 8-5311解析 ∵sin 2α-sin αcos α-2cos 2α=0,cos α≠0,∴tan 2α-tan α-2=0.∴tan α=2或tan α=-1,∵α∈⎝⎛⎭⎫0,π2,∴tan α=2, tan ⎝⎛⎭⎫π3-α=tan π3-tan α1+tan π3tan α =3-21+23=(3-2)(23-1)(23-1)(23+1)=8-5312-1=8-5311. 13.已知cos 4α-sin 4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3= . 答案 2-156解析 ∵cos 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α)=cos 2α=23, 又α∈⎝⎛⎭⎫0,π2, ∴2α∈(0,π),∴sin 2α=1-cos 22α=53, ∴cos ⎝⎛⎭⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156. 14.设f (x )=1+cos 2x 2sin ⎝⎛⎭⎫π2-x +sin x +a 2sin ⎝⎛⎭⎫x +π4的最大值为2+3,则常数a = . 答案 ±3解析 f (x )=1+2cos 2x -12cos x+sin x +a 2sin ⎝⎛⎭⎫x +π4=cos x +sin x +a 2sin ⎝⎛⎭⎫x +π4 =2sin ⎝⎛⎭⎫x +π4+a 2sin ⎝⎛⎭⎫x +π4 =(2+a 2)sin ⎝⎛⎭⎫x +π4. 依题意有2+a 2=2+3, ∴a =±3.15.已知函数f (x )=1-2sin ⎝⎛⎭⎫x +π8 ·⎣⎡⎦⎤sin ⎝⎛⎭⎫x +π8-cos ⎝⎛⎭⎫x +π8. (1)求函数f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤-π2,π12,求函数f ⎝⎛⎭⎫x +π8的值域. 解 (1)函数f (x )=1-2sin ⎝⎛⎭⎫x +π8[sin ⎝⎛⎭⎫x +π8-cos ⎝⎛⎭⎫x +π8] =1-2sin 2⎝⎛⎭⎫x +π8+2sin ⎝⎛⎭⎫x +π8cos ⎝⎛⎭⎫x +π8 =cos ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x +π4=2sin ⎝⎛⎭⎫2x +π2 =2cos 2x ,所以f (x )的最小正周期T =2π2=π. (2)由(1)可知f ⎝⎛⎭⎫x +π8=2cos ⎝⎛⎭⎫2x +π4. 由于x ∈⎣⎡⎦⎤-π2,π12, 所以2x +π4∈⎣⎡⎦⎤-3π4,5π12, 所以cos ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1, 则f ⎝⎛⎭⎫x +π8∈[-1,2], 所以f ⎝⎛⎭⎫x +π8的值域为[-1,2].。

两角和与差的正弦、余弦和正切公式Word版含答案

两角和与差的正弦、余弦和正切公式Word版含答案

两角和与差的正弦、余弦和正切公式【课前回顾】1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β; cos(α∓β)=cos_αcos_β±sin_αsin_β; tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.公式的常用变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【课前快练】1.sin 20°cos 10°-cos 160°sin 10°=( ) A .-32B.32C .-12D.12解析:选D 原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.设角θ的终边过点(2,3),则tan ⎝⎛⎭⎫θ-π4=( ) A.15 B .-15C .5D .-5解析:选A 由于角θ的终边过点(2,3),因此tan θ=32,故tan ⎝⎛⎭⎫θ-π4=tan θ-11+tan θ=32-11+32=15,选A. 3.(2017·山东高考)已知cos x =34,则cos 2x =( )A .-14B.14 C .-18D.18解析:选D ∵cos x =34,∴cos 2x =2cos 2x -1=18.4.化简:2sin (π-α)+sin 2αcos 2α2=________.解析:2sin (π-α)+sin 2αcos 2α2=2sin α+2sin αcos α12(1+cos α)=4sin α(1+cos α)1+cos α=4sin α.答案:4sin α5.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4 =tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:75考点一 三角函数公式的直接应用三角函数公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.【典型例题】1.已知cos α=-35,α是第三象限角,则cos ⎝⎛⎭⎫π4+α的值为( ) A.210B .-210 C.7210D .-7210解析:选A ∵cos α=-35,α是第三象限的角,∴sin α=-1-cos 2α=-1-⎝⎛⎭⎫-352=-45, ∴cos ⎝⎛⎭⎫π4+α=cos π4cos α-sin π4sin α =22×⎝⎛⎭⎫-35-22×⎝⎛⎭⎫-45=210. 2.已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112解析:选A 因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.因为tan(π-β)=12=-tan β,所以tan β=-12,则tan(α-β)=tan α-tan β1+tan αtan β=-211.3.已知α∈⎝⎛⎭⎫π2,π,sin α=55,则cos ⎝⎛⎭⎫5π6-2α的值为______. 解析:因为α∈⎝⎛⎭⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-255. sin 2α=2sin αcos α=2×55×⎝⎛⎭⎫-255=-45, cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫552=35, 所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α =⎝⎛⎭⎫-32×35+12×⎝⎛⎭⎫-45 =-4+3310.答案:-4+3310考点二 三角函数公式的逆用与变形用1.注意三角函数公式逆用和变形用的2个问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.2.熟记三角函数公式的2类变式 (1)和差角公式变形:sin αsin β+cos(α+β)=cos αcos β, cos αsin β+sin(α-β)=sin αcos β, tan α±tan β=tan(α±β)·(1∓tan α·tan β). (2)倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2. 考法(一) 三角函数公式的逆用 1.sin 10°1-3tan 10°=________. 解析:sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10°=2sin 10°cos 10°4⎝⎛⎭⎫12cos 10°-32sin 10°=sin 20°4sin (30°-10°)=14.答案:142.在△ABC 中,若tan A tan B = tan A +tan B +1, 则cos C =________.解析:由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B =-1,即tan(A +B )=-1,又A +B ∈(0,π),所以A +B =3π4,则C =π4,cos C =22.答案:223.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435,∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45, ∴sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 答案:-45考法(二) 三角函数公式的变形用 4.化简sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-15.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换1.迁移要准(1)看到角的范围及余弦值想到正弦值;看到β,α+β,α想到凑角β=(α+β)-α,代入公式求值.(2)看到两个角的正切值想到两角和与差的正切公式;看到α+β,β,α-β想到凑角.2.思路要明(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.3.思想要有转化思想是实施三角变换的主导思想,恒等变形前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.【典型例题】1.(2018·南充模拟)已知α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且cos α=17,cos(α+β)=-1114,则sin β=________.解析:因为α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且cos α=17,cos(α+β)=-1114,所以α+β∈(0,π), 所以sin α=1-cos 2α=437, sin(α+β)=1-cos 2(α+β)=5314, 则sin β=sin[(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α =5314×17-⎝⎛⎭⎫-1114×437=32. 答案:322.已知tan(α+β)=25,tan β=13,则tan(α-β)的值为________.解析:∵tan(α+β)=25,tan β=13,∴tan α=tan[(α+β)-β]=tan (α+β)-tan β1+tan (α+β)·tan β=25-131+25×13=117,tan(α-β)=tan α-tan β1+tan αtan β=117-131+117×13=-726.答案:-726【针对训练】1.(2017·全国卷Ⅰ)已知α∈⎝⎛⎭⎫0,π2,tan α=2,则cos ⎝⎛⎭⎫α-π4=________. 解析:∵α∈⎝⎛⎭⎫0,π2,tan α=2,∴sin α=255,cos α=55, ∴cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4 =22×⎝⎛⎭⎫255+55=31010. 答案:310102.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,从而-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. 【课后演练】1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12 C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin ⎝⎛⎭⎫θ+π3=3sin(π-θ),则tan θ等于( ) A .-33B.32C.233D .2 3解析:选B 由已知得sin θ+3cos θ=3sin θ, 即2sin θ=3cos θ,所以tan θ=32. 3.(2018·石家庄质检)若sin(π-α)=13,且π2≤α≤π,则sin 2α的值为( )A .-429B .-229C.229D.429解析:选A 因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.4.(2018·衡水调研)若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118 B.118 C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.5.计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B.12C.32D .-32解析:选Bsin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310° =cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.6.(2017·全国卷Ⅲ)函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( ) A.65B .1C.35D.15解析:选A 因为cos ⎝⎛⎭⎫x -π6=cos ⎣⎡⎦⎤⎝⎛⎭⎫x +π3-π2=sin ⎝⎛⎭⎫x +π3,所以f (x )=65sin ⎝⎛⎭⎫x +π3,于是f (x )的最大值为65.7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2018·贵州适应性考试)已知α是第三象限角,且cos(α+π)=45,则tan 2α=________.解析:由cos(α+π)=-cos α=45,得cos α=-45,又α是第三象限角,所以sin α=-35,tan α=34,故tan 2α=2tan α1-tan 2α=247. 答案:2479.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3=________. 解析:cos x +cos ⎝⎛⎭⎫x -π3 =cos x +12cos x +32sin x=32cos x +32sin x =3cos ⎝⎛⎭⎫x -π6 =3×⎝⎛⎭⎫-33 =-1. 答案:-110.(2018·石家庄质检)已知α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫α+π3=-23,则cos α=________. 解析:因为α∈⎝⎛⎭⎫0,π2,所以α+π3∈⎝⎛⎭⎫π3,5π6, 所以sin ⎝⎛⎭⎫α+π3=53,所以cos α=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3-π3=cos ⎝⎛⎭⎫α+π3cos π3+sin ⎝⎛⎭⎫α+π3sin π3=-23×12+53×32=15-26. 答案:15-2611.(2018·陕西高三教学质量检测)已知角α的终边过点P (4,-3),则cos ⎝⎛⎭⎫α+π4的值为( )A .-7210 B.7210 C .-210D.210解析:选B 由于角α的终边过点P (4,-3),则cos α=442+(-3)2=45,sin α=-342+(-3)2=-35,故cos ⎝⎛⎭⎫α+π4=cos αcos π4-sin αsin π4=45×22-⎝⎛⎭⎫-35×22=7210. 12.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π3的值为( ) A.1225 B.2425 C .-2425D .-1225解析:选B 因为α为锐角,且cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6= 1-cos 2⎝⎛⎭⎫α+π6=35, 所以sin ⎝⎛⎭⎫2α+π3=sin2⎝⎛⎭⎫α+π6 =2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6=2×35×45=2425. 13.(2018·广东肇庆模拟)已知sin α=35且α为第二象限角,则tan ⎝⎛⎭⎫2α+π4=( ) A .-195 B .-519 C .-3117D .-1731解析:选D 由题意得cos α=-45,则sin 2α=-2425,cos 2α=2cos 2α-1=725.∴tan 2α=-247, ∴tan ⎝⎛⎭⎫2α+π4=tan 2α+tan π41-tan 2αtan π4=-247+11-⎝⎛⎭⎫-247×1=-1731. 14.若锐角α,β满足tan α+tan β=3-3tan αtan β,则α+β=________. 解析:由已知可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3. 又α+β∈(0,π),所以α+β=π3. 答案:π315.(2018·安徽两校阶段性测试)若α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫π4-α=22cos 2α,则sin 2α=________.解析:由已知得22(cos α+sin α)=22(cos α-sin α)·(cos α+sin α),所以cos α+sin α=0或cos α-sin α=14,由cos α+sin α=0得tan α=-1,因为α∈⎝⎛⎭⎫0,π2,所以cos α+sin α=0不满足条件;由cos α-sin α=14,两边平方得1-sin 2α=116,所以sin 2α=1516. 答案:151616.(2018·广东六校联考)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12 =sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2, 所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ) =22×⎝⎛⎭⎫2425-725=17250. 17.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解:(1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-1-sin 2α=-32. (2)因为π2<α<π,π2<β<π, 所以-π2<α-β<π2. 又由sin(α-β)=-35,得cos(α-β)=45. 所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×⎝⎛⎭⎫-35=-43+310. 18.已知cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 解:(1)cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+αsin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3,∴cos ⎝⎛⎭⎫2α+π3=-32, ∴ sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3 =-12×12-⎝⎛⎭⎫-32×32=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。

(完整版)两角和与差的正弦、余弦、正切经典练习题

(完整版)两角和与差的正弦、余弦、正切经典练习题

两角和与差的正弦、余弦、正切一、两角和与差的余弦βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-1、求值:(1) 15cos (2) 20802080sin sin cos cos +(3) 1013010130sin sin cos cos +(4)cos105°(5)sin75°(6)求cos75°cos105°+sin75°sin105°(7)cos (A +B )cosB +sin (A +B )sinB .(8) 29912991sin sin cos cos -2. (1)求证:cos (2π-α) =sin α.(2)已知sin θ=1715,且θ为第二象限角,求cos (θ-3π)的值. (3)已知sin (30°+α)=,60°<α<150°,求cos α.3. 化简cos (36°+α)cos (α-54°)+sin (36°+α)sin (α-54°).4. 已知32=αsin ,⎪⎭⎫ ⎝⎛∈ππα,2,53-=βcos ,⎪⎭⎫ ⎝⎛∈23ππβ,,求)cos(βα+的值.5.已知1312-=αcos ,⎪⎭⎫ ⎝⎛∈23ππα,,求)cos(4πα+的值。

6. 已知α,β都是锐角,31=αcos ,51-=+)cos(βα,求βcos 的值。

7.在△ABC 中,已知sin A =53,cos B =135,求cos C 的值.二、两角和与差的正弦sin()sin cos cos sin αβαβαβ+=+sin()sin cos cos sin αβαβαβ-=-1利用和差角公式计算下列各式的值(1)sin 72cos 42cos 72sin 42︒︒-︒︒ (2)13cos sin 22x x -(3)3sin cos x x + (4)22cos 2sin 222x x -二、证明: )4cos(2)cos (sin 2)3()4sin(2sin cos )2()6sin(cos 21sin 23)1(ππθθθπααα-=++=++=+x x x3(1)已知3sin 5α=-,α是第四象限角,求sin()4πα-的值。

高三复习:两角和与差的正弦、余弦、正切公式含解析参考答案(教师版+学生版)

高三复习:两角和与差的正弦、余弦、正切公式含解析参考答案(教师版+学生版)

§4.5 两角和与差的正弦、余弦、正切公式知识梳理:1.两角和与差的余弦、正弦、正切公式cos(α-β)= (C (α-β));cos(α+β)= (C (α+β)); sin(α-β)= (S (α-β));sin(α+β)= (S (α+β)); tan(α-β)= (T (α-β));tan(α+β)= (T (α+β)). 2.二倍角公式sin2α= cos2α= = = ;tan2α= .3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T (α±β)可变形为tan α±tan β= 试一试1.已知α∈R ,sin α+2cos α=102,则tan2α= .2.若sin α+cos αsin α-cos α=12,则tan2α= .3.(2014·课标全国Ⅱ)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为 .考点一 三角函数公式的基本应用例1 (1)设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为. (2)若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)=.变式 (1)若α∈(π2,π),tan(α+π4)=17,则sin α=.(2)计算:1+cos20°2sin20°-sin10°(1tan5°-tan5°)=.题型二 三角函数公式的灵活应用例2 (1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=.(2)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为.题型三 三角函数公式运用中角的变换例3 (1)已知α,β均为锐角,且sin α=35,tan(α-β)=-13.则sin(α-β)=,cos β=.课堂练习:1.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4= .2.已知tan α=4,则1+cos2α+8sin 2αsin2α的值为 .3.(2013·重庆)4cos50°-tan40°= .4.已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是 .5.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值.思维升华 1.解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等.两角和与差的正弦、余弦、正切公式作业1. 已知α∈⎝⎛⎭⎫-π2,0,cos α=35,则tan ⎝⎛⎭⎫α+π4=________.2.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=_______.3.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)=_______.4.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos2α=14,则tan α的值为_______.5.函数y =sin(πx +φ)(φ>0)的部分图象如图所示,设P 是图象的最高点,A ,B 是图象与x 轴的交点,记∠APB =θ,则sin2θ的值是_______.6. .(2013·浙江高考改编)已知α∈R ,sin α+2cos α=102,则tan 2α=________. 7. 3tan12°-3(4cos 212°-2)sin12°=________.8. (1)若tan2θ=-22,π<2θ<2π,则2cos 2θ2-sin θ-12sin (θ+π4)=.(2)(2014·课标全国Ⅰ改编)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则2α-β=.9.已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.10. 已知f (x )=(1+1tan x )sin 2x -2sin(x +π4)·sin(x -π4).(1)若tan α=2,求f (α)的值;(2)若x ∈[π12,π2],求f (x )的取值范围.§4.5 两角和与差的正弦、余弦、正切公式知识梳理:1.两角和与差的余弦、正弦、正切公式cos(α-β)= (C (α-β));cos(α+β)= (C (α+β)); sin(α-β)= (S (α-β));sin(α+β)= (S (α+β)); tan(α-β)= (T (α-β));tan(α+β)= (T (α+β)). 2.二倍角公式sin2α= cos2α= = = ;tan2α= .3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T (α±β)可变形为 tan α±tan β=试一试1.已知α∈R ,sin α+2cos α=102,则tan2α=. 答案 -34解析 ∵sin α+2cos α=102, ∴sin 2α+4sin αcos α+4cos 2α=52.化简得:4sin2α=-3cos2α, ∴tan2α=sin2αcos2α=-34. 2.若sin α+cos αsin α-cos α=12,则tan2α=.答案 34解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3,则tan2α=2tan α1-tan 2α=34.3.(2014·课标全国Ⅱ)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为. 答案 1解析 ∵f (x )=sin(x +2φ)-2sin φcos(x +φ) =sin [(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ) =sin(x +φ)cos φ-cos(x +φ)sin φ =sin [(x +φ)-φ]=sin x , ∴f (x )的最大值为1.考点一 三角函数公式的基本应用例1 (1)设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为. (2)若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)=.答案 (1)-3 (2)539解析 (1)由根与系数的关系可知 tan α+tan β=3,tan αtan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.(2)cos(α+β2)=cos[(π4+α)-(π4-β2)]=cos(π4+α)cos(π4-β2)+sin(π4+α)sin(π4-β2).∵0<α<π2,则π4<π4+α<3π4, ∴sin(π4+α)=223.又-π2<β<0,则π4<π4-β2<π2, 则sin(π4-β2)=63.故cos(α+β2)=13×33+223×63=539.思维升华 三角函数公式对使公式有意义的任意角都成立.使用中要注意观察角之间的和、差、倍、互补、互余等关系.变式 (1)若α∈(π2,π),tan(α+π4)=17,则sin α=.(2)计算:1+cos20°2sin20°-sin10°(1tan5°-tan5°)=.答案 (1)35 (2)32解析 (1)∵tan(α+π4)=tan α+11-tan α=17,∴tan α=-34=sin αcos α,∴cos α=-43sin α.又∵sin 2α+cos 2α=1, ∴sin 2α=925.又∵α∈(π2,π),∴sin α=35.(2)原式=2cos 210°4sin10°cos10°-sin10°·cos 25°-sin 25°sin5°cos5°=cos10°2sin10°-sin20°sin10°=cos10°-2sin20°2sin10°=cos10°-2sin (30°-10°)2sin10°=cos10°-2sin30°cos10°+2cos30°sin10°2sin10°=32. 题型二 三角函数公式的灵活应用例2 (1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=.(2)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为.答案 (1)cos α (2) 3 解析 (1)原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)4cos 2α2.因为α∈(0,π),所以cos α2>0,所以原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)2cosα2=(cos α2+sin α2)·(cos α2-sin α2)=cos 2α2-sin 2α2=cos α.(2)因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =2π3,A +C 2=π3,tan A +C 2=3,所以tan A 2+tan C 2+3tan A 2tan C2=tan ⎝⎛⎭⎫A 2+C 2⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C 2 =3⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C2= 3. 题型三 三角函数公式运用中角的变换例3 (1)已知α,β均为锐角,且sin α=35,tan(α-β)=-13.则sin(α-β)=,cos β=.(2)(2013·课标全国Ⅱ改编)已知sin2α=23,则cos 2⎝⎛⎭⎫α+π4=. 答案 (1)-1010 95010 (2)16解析 (1)∵α,β∈(0,π2),从而-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010,cos(α-β)=31010. ∵α为锐角,sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =45×31010+35×(-1010)=91050. (2)因为cos 2⎝⎛⎭⎫α+π4=1+cos2⎝⎛⎭⎫α+π42=1+cos ⎝⎛⎭⎫2α+π22=1-sin2α2,所以cos 2⎝⎛⎭⎫α+π4=1-sin2α2=1-232=16.思维升华 1.解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等.变式 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β=. (2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是.答案 (1)2525 (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos [(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)∵cos(α-π6)+sin α=453,∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453,∴sin(π6+α)=45,7ππ4方法与技巧 1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos2α2,sin 2α=1-cos2α2,配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. 失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通. 2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的. 3.在三角求值时,往往要估计角的范围后再求值.课堂练习:1.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4=. 答案322解析 因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝⎛⎭⎫β-π4,所以 tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322.2.已知tan α=4,则1+cos2α+8sin 2αsin2α的值为.答案654解析 1+cos2α+8sin 2αsin2α=2cos 2α+8sin 2α2sin αcos α,∵tan α=4,∴cos α≠0,分子、分母都除以cos 2α得2+8tan 2α2tan α=654.3.(2013·重庆)4cos50°-tan40°=. 答案3解析 4cos50°-tan40°=4sin40°cos40°-sin40°cos40°=2sin80°-sin40°cos40°=2sin (50°+30°)-sin40°cos40°=3sin50°+cos50°-sin40°cos40°=3sin50°cos40°= 3.4.已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是.答案 -1解析 cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x )=3cos(x -π6)=-1.10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32. (2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310.两角和与差的正弦、余弦、正切公式作业1. 已知α∈⎝ ⎛⎭⎪⎫-π2,0,cos α=35,则tan ⎝⎛⎭⎪⎫α+π4=________. [解析] 由α∈⎝⎛⎭⎪⎫-π2,0,cos α=35,得sin α=-1-cos 2α=-45,tan α=sin αcos α=-43,tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=tan α+11-tan α =-43+11+43=-17. [答案] -172.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=. 答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β, cos β(cos α-sin α)+sin β(cos α-sin α)=0, 即(cos β+sin β)(cos α-sin α)=0. 又α、β为锐角,则sin β+cos β>0, ∴cos α-sin α=0,∴tan α=1.3.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)=.答案7210解析 因为sin2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45, 又由θ∈(0,π4),得2θ∈(0,π2),所以cos2θ=1-sin 22θ=35,所以sin(2θ+π4)=sin2θcos π4+cos2θsin π4=45×22+35×22=7210.4.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos2α=14,则tan α的值为. 答案3解析 ∵α∈⎝⎛⎭⎫0,π2,且sin 2α+cos2α=14, ∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14,∴cos α=12或-12(舍去),∴α=π3,∴tan α= 3.5.函数y =sin(πx +φ)(φ>0)的部分图象如图所示,设P 是图象的最高点,A ,B 是图象与x 轴的交点,记∠APB =θ,则sin2θ的值是.答案1665PD =1,根据函数的图象,可得AD =12,BD =32.在Rt △APD 和Rt △BPD 中,sin ∠APD =15,cos ∠APD =25,sin ∠BPD =313,cos ∠BPD =213.所以sin θ=sin(∠APD +∠BPD )=865,cos θ=cos(∠APD +∠BPD )=165,故sin2θ=2sin θcos θ=2×865×165=1665.6. .(2013·浙江高考改编)已知α∈R ,sin α+2cos α=102,则tan 2α=________.[解析] 把条件中的式子两边平方,得sin 2α+4sin αcos α+4cos 2α=52,即3cos 2α+4sin αcos α=32,所以3cos 2α+4sin αcos αcos 2α+sin 2α=32,所以3+4tan α1+tan 2α=32,即3tan 2α-8tan α-3=0,解得tan α=3或tan α=-13,所以tan 2α=2tan α1-tan 2α=-34. [答案] -347.3tan12°-3(4cos 212°-2)sin12°=.答案 -4 3解析 原式=3sin12°cos12°-32(2cos 212°-1)sin12°23⎝⎛⎭⎫12sin12°-32cos12°cos12°=23sin (-48°)2cos24°sin12°cos12°=-23sin48°sin24°cos24° =-23sin48°12sin48°=-4 3.8. (1)若tan2θ=-22,π<2θ<2π,则2cos 2θ2-sin θ-12sin (θ+π4)=.(2)(2014·课标全国Ⅰ改编)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则2α-β=.解析 (1)原式=cos θ-sin θsin θ+cos θ=1-tan θ1+tan θ,又tan2θ=2tan θ1-tan 2θ=-22,即2tan 2θ-tan θ-2=0,解得tan θ=-12或tan θ= 2. ∵π<2θ<2π,∴π2<θ<π.∴tan θ=-12,故原式=1+121-12=3+2 2.(2)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin(π2-α).∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),∴由sin(α-β)=sin(π-α),得α-β=π-α,∴2α-β=π2.9.已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.(1)解 ∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+cos ⎝⎛⎭⎫x -π4-π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明 由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45,两式相加得2cos βcos α=0, ∵0<α<β≤π2,∴β=π2,∴[f (β)]2-2=4sin 2π4-2=0.10. 已知f (x )=(1+1tan x )sin 2x -2sin(x +π4)·sin(x -π4).(1)若tan α=2,求f (α)的值;(2)若x ∈[π12,π2],求f (x )的取值范围.解 (1)f (x )=(sin 2x +sin x cos x )+2sin ⎝⎛⎭⎫x +π4· cos ⎝⎛⎭⎫x +π4 =1-cos2x 2+12sin2x +sin ⎝⎛⎭⎫2x +π2 11=12(sin2x +cos2x )+12. 由tan α=2,得sin2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45.cos2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35. 所以,f (α)=12(sin2α+cos2α)+12=35.(2)由(1)得f (x )=12(sin2x +cos2x )+12=22sin ⎝⎛⎭⎫2x +π4+12. 由x ∈⎣⎡⎦⎤π12,π2,得5π12≤2x +π4≤5π4. 所以-22≤sin ⎝⎛⎭⎫2x +π4≤1,0≤f (x )≤2+12, 所以f (x )的取值范围是⎣⎢⎡⎦⎥⎤0,2+12. 11. 10.已知f (x )=-3sin 2x +sin x cos x ,(1)求f ⎝ ⎛⎭⎪⎫25π6的值;(2)设α∈(0,π),f ⎝ ⎛⎭⎪⎫α2=14-32,求sin α的值. [解] f (x )=-3sin 2x +sin x cos x =-3×1-cos 2x 2+12sin 2x =-32+12sin 2x +32cos 2x =-32+sin ⎝ ⎛⎭⎪⎫2x +π3,(1)f ⎝ ⎛⎭⎪⎫25π6=-32+sin ⎝ ⎛⎭⎪⎫25π3+π3=-32+sin ⎝ ⎛⎭⎪⎫8π+2π3=-32+sin 2π3=-32+32=0.(2)f ⎝ ⎛⎭⎪⎫α2=-32+sin ⎝ ⎛⎭⎪⎫α+π3=14-32, ∴sin ⎝ ⎛⎭⎪⎫α+π3=14. ∵α∈(0,π),∴α+π3∈⎝ ⎛⎭⎪⎫π3,4π3,又0<sin ⎝ ⎛⎭⎪⎫α+π3=14<12, ∴α+π3∈⎝ ⎛⎭⎪⎫5π6,4π3. ∴cos ⎝ ⎛⎭⎪⎫α+π3=-1-sin 2⎝ ⎛⎭⎪⎫α+π3=-1-⎝ ⎛⎭⎪⎫142=-154, ∴sin α=sin ⎝ ⎛⎭⎪⎫α+π3-π3=sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3 =14×12+154×32=1+358.。

高考专题练习: 第1课时 两角和与差的正弦、余弦和正切公式

高考专题练习: 第1课时 两角和与差的正弦、余弦和正切公式

1.两角和与差的正弦、余弦、正切公式 C (α-β):cos(α-β)=cos αcos β+sin αsin β. C (α+β):cos(α+β)=cos αcos β-sin αsin β. S (α+β):sin(α+β)=sin αcos β+cos αsin β. S (α-β):sin(α-β)=sin αcos β-cos αsin β. T (α+β):tan(α+β)=tan α+tan β1-tan αtan β⎝⎛⎭⎪⎫α,β,α+β≠π2+k π,k ∈Z .T (α-β):tan(α-β)=tan α-tan β1+tan αtan β⎝⎛⎭⎪⎫α,β,α-β≠π2+k π,k ∈Z .2.二倍角的正弦、余弦、正切公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎪⎫α≠π4+k π2,且α≠k π+π2,k ∈Z . 常用结论记准4个必备结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2. (2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β). (4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ) ⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=aa 2+b 2.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (2)对任意角α都有1+sin α=⎝ ⎛⎭⎪⎫sin α2+cos α22.( )(3)y =3sin x +4cos x 的最大值是7.( ) (4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tanαtan β),且对任意角α,β都成立. ( )答案:(1)√ (2)√ (3)× (4)× 二、易错纠偏常见误区| (1)不会逆用公式,找不到思路; (2)不会合理配角出错.1.tan 20°+tan 40°+3tan 20°·tan 40°=________. 解析:因为tan 60°=tan(20°+40°)=tan 20°+tan 40°1-tan 20°tan 40°,所以tan 20°+tan 40°=tan 60°(1-tan 20°tan 40°) =3-3tan 20°tan 40°,所以原式=3-3tan 20°tan 40°+3tan 20°tan 40°= 3. 答案: 32.sin 15°+sin 75°的值是________.解析:sin 15°+sin 75°=sin 15°+cos 15°=2sin(15°+45°)=2sin 60°=62. 答案:62第1课时 两角和与差的正弦、余弦和正切公式三角函数公式的直接应用(师生共研)(1)(2020·高考全国卷Ⅲ)已知sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3=1,则sin ⎝ ⎛⎭⎪⎫θ+π6=( )A .12 B .33 C .23D .22(2)已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6=________.【解析】 (1)因为sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3=32sin θ+32cos θ=3sin ⎝ ⎛⎭⎪⎫θ+π6=1, 所以sin ⎝ ⎛⎭⎪⎫θ+π6=33,故选B .(2)由cos ⎝ ⎛⎭⎪⎫α+π6-sin α=32cos α-12sin α-sin α=32cos α-32sin α=3⎝ ⎛⎭⎪⎫12cos α-32sin α=3cos ⎝ ⎛⎭⎪⎫α+π3=3sin ⎝ ⎛⎭⎪⎫π6-α=435,得sin ⎝ ⎛⎭⎪⎫π6-α=45.sin ⎝ ⎛⎭⎪⎫α+11π6=-sin ⎣⎢⎡⎦⎥⎤2π-⎝ ⎛⎭⎪⎫α+11π6=-sin ⎝ ⎛⎭⎪⎫π6-α=-45. 【答案】 (1)B (2)-45利用三角函数公式时应注意的问题(1)首先要注意公式的结构特点和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号相反”.(2)应注意与同角三角函数基本关系、诱导公式的综合应用. (3)应注意配方法、因式分解和整体代换思想的应用.1.(2021·湖北八校第一次联考)若sin ⎝ ⎛⎭⎪⎫π6-θ=35,则sin ⎝ ⎛⎭⎪⎫π6+2θ=( ) A .-2425 B .2425 C .-725D .725解析:选D .方法一:因为sin ⎝ ⎛⎭⎪⎫π6-θ=35,所以sin ⎝ ⎛⎭⎪⎫π6+2θ=sin ⎣⎢⎡⎦⎥⎤π2-2⎝ ⎛⎭⎪⎫π6-θ =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-θ=1-2sin 2⎝ ⎛⎭⎪⎫π6-θ=1-2×⎝ ⎛⎭⎪⎫352=725,故选D .方法二:因为sin ⎝ ⎛⎭⎪⎫π6-θ=cos ⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫π6-θ =cos ⎝ ⎛⎭⎪⎫π3+θ=35,所以cos ⎝ ⎛⎭⎪⎫2π3+2θ=2×⎝ ⎛⎭⎪⎫352-1=-725.因为cos ⎝ ⎛⎭⎪⎫π2+π6+2θ=-sin ⎝ ⎛⎭⎪⎫π6+2θ,所以sin ⎝ ⎛⎭⎪⎫π6+2θ=725,故选D . 2.(2021·六校联盟第二次联考)若tan ⎝ ⎛⎭⎪⎫π4-α=-2,则tan 2α=________.解析:由tan ⎝ ⎛⎭⎪⎫π4-α=-2可得tan π4-tan α1+tan π4tan α=-2,即1-tan α1+tan α=-2,化简得tan α=-3,所以tan 2α= 2 tan α1-tan 2 α=2×(-3)1-(-3)2=34. 答案:34三角函数公式的逆用与变形应用(师生共研)(1)在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22 B .22 C .12D .-12(2)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________. 【解析】 (1)由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B =-1,即tan(A +B )=-1,又(A +B )∈(0,π),所以A+B=3π4,所以C=π4,cos C=2 2.(2)因为sin α+cos β=1,cos α+sin β=0,所以sin2α+cos2β+2sin αcos β=1①,cos2α+sin2β+2cos αsin β=0②,①②两式相加可得sin2α+cos2α+sin2β+cos2β+2(sin α·cos β+cos αsin β)=1,所以sin(α+β)=-12.【答案】(1)B(2)-1 2(1)三角函数公式活用技巧①逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;②tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.(2)三角函数公式逆用和变形使用应注意的问题①公式逆用时一定要注意公式成立的条件和角之间的关系;②注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”以便构造适合公式的形式.1.(1-tan215°)cos215°=()A.1-32B.1C.32D.12解析:选C.(1-tan215°)cos215°=cos215°-sin215°=cos 30°=3 2.2.已知sin 2α=13,则cos 2⎝ ⎛⎭⎪⎫α-π4=( )A .-13 B .13 C .-23D .23解析:选D .cos 2⎝ ⎛⎭⎪⎫α-π4=1+cos ⎝ ⎛⎭⎪⎫2α-π22=12+12sin 2α=12+12×13=23. 3.cos 15°+sin 15°cos 15°-sin 15°=( ) A .33 B . 3 C .-33D .- 3解析:选B .原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.两角和、差及倍角公式的灵活应用(多维探究) 角度一 三角函数公式中变“角”已知α,β∈⎝ ⎛⎭⎪⎫3π4,π,sin(α+β)=-35,sin ⎝ ⎛⎭⎪⎫β-π4=2425,则cos ⎝ ⎛⎭⎪⎫α+π4=________.,【解析】 由题意知,α+β∈⎝ ⎛⎭⎪⎫3π2,2π,sin(α+β)=-35<0,所以cos(α+β)=45,因为β-π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以cos ⎝ ⎛⎭⎪⎫β-π4=-725,cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤(α+β)-⎝ ⎛⎭⎪⎫β-π4=cos(α+β)cos ⎝ ⎛⎭⎪⎫β-π4+sin(α+β)sin ⎝ ⎛⎭⎪⎫β-π4=-45.【答案】 -45角度二 三角函数公式中变“名”求值:1+cos 20°2sin 20°-sin 10°⎝ ⎛⎭⎪⎫1tan 5°-tan 5°. 【解】 原式=2cos 210°2×2sin 10°cos 10°-sin 10°⎝ ⎛⎭⎪⎫cos 5°sin 5°-sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32.三角函数公式应用的解题思路(1)角的转换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[提醒] 转化思想是实施三角恒等变换的主导思想,恒等变换前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.1.若tan(α+2β)=2,tan β=-3,则tan(α+β)=________,tan α=________. 解析:因为tan(α+2β)=2,tan β=-3,所以tan(α+β)=tan(α+2β-β)=tan(α+2β)-tan β1+tan(α+2β)tan β=2-(-3)1+2×(-3)=-1.tan α=tan(α+β-β)=-1-(-3)1+(-1)×(-3)=1 2.答案:-11 22.4sin 20°+tan 20°=________.解:原式=4sin 20°+sin 20°cos 20°=2sin 40°+sin 20°cos 20°=2sin (60°-20°)+sin 20°cos 20°=3cos 20°-sin 20°+sin 20°cos 20°= 3.答案: 3[A级基础练]1.计算-sin 133°cos 197°-cos 47°cos 73°的结果为()A.12B.33C.22D.32解析:选A.-sin 133°cos 197°-cos 47°cos 73°=-sin 47°(-cos 17°)-cos 47°sin 17°=sin(47°-17°)=sin 30°=12.2.(2021·开封市模拟考试)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sin α=13,则cos(α-β)=()A.-1 B.-7 9C .429D .79解析:选B .因为角α与角β均以Ox 为始边,且它们的终边关于y 轴对称,所以β=π-α+2k π,k ∈Z ,则cos(α-β)=cos(α-π+α-2k π)=cos(2α-π)=cos (π-2α)=-cos 2α,又sin α=13,所以cos 2α=1-2sin 2α=79,所以cos(α-β)=-79,故选B .3.(2020·福州市质量检测)若2cos 2x =1+sin 2x ,则tan x =( ) A .-1 B .13C .-1或13D .-1或13或3解析:选C .方法一:由题设得,2(cos 2x -sin 2x )=1+2sin x cos x ,所以2(cos x +sin x )(cos x -sin x )=(sin x +cos x )2,所以sin x +cos x =0或sin x +cos x =2cos x -2sin x ,所以tan x =-1或tan x =13.方法二:由2cos 2x =1+sin 2x ,得2(cos 2x -sin 2x )=sin 2x +cos 2x +2sin x cos x ,化简得cos 2 x -2sin x cos x -3sin 2x =0,所以(cos x -3sin x )(cos x +sin x )=0,所以cos x =3 sin x 或cos x =-sin x ,所以tan x =13或tan x =-1.方法三:由⎩⎪⎨⎪⎧2cos 2x =1+sin 2x sin 22x +cos 22x =1,得5sin 22x +2sin 2x -3=0,所以sin 2x =35,或sin 2x =-1.当sin 2x =35时, sin 2x =2sin x cos x sin 2x +cos 2x =2tan x tan 2x +1=35,所以3tan 2x-10tan x +3=0,解得tan x =13或tan x =3,但tan x =3时,cos 2x <0,1+sin 2x >0,不合题意舍去,经检验,tan x =13符合题意;当sin 2x =-1时,tan x =-1,经检验,tan x =-1符合题意.综上,tan x =13或tan x =-1.4.已知cos ⎝ ⎛⎭⎪⎫x -π6=14,则cos x +cos ⎝ ⎛⎭⎪⎫x -π3=( )A .34 B .-34 C .14D .±34解析:选A .因为cos ⎝ ⎛⎭⎪⎫x -π6=14,所以cos x +cos ⎝ ⎛⎭⎪⎫x -π3=cos x +12cos x +32sin x=3⎝ ⎛⎭⎪⎫32cos x +12sin x =3cos ⎝ ⎛⎭⎪⎫x -π6=3×14=34.故选A .5.已知sin(α+β)=12,sin(α-β)=13,则log 5⎝ ⎛⎭⎪⎫tan αtan β2=( ) A .2 B .3 C .4D .5解析:选C .因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=5,所以log 5⎝ ⎛⎭⎪⎫tan αtan β2=log552=4.故选C .6.(2020·高考浙江卷)已知tan θ=2,则cos 2θ=________,tan ⎝ ⎛⎭⎪⎫θ-π4=________.解析:方法一:因为tan θ=2,所以sin θ=2cos θ,由sin 2θ+cos 2θ=1可知,sin 2θ=45,cos 2θ=15,所以cos 2θ=cos 2θ-sin 2θ=15-45=-35,tan ⎝ ⎛⎭⎪⎫θ-π4=tan θ-11+tan θ=2-11+2=13. 方法二:因为tan θ=2,所以cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-41+4=-35,tan ⎝ ⎛⎭⎪⎫θ-π4=tan θ-11+tan θ=2-11+2=13.答案:-35 137.sin 10°sin 50°sin 70°=________.解析:sin 10°sin 50°sin 70°=sin 10°cos 40°cos 20° =sin 10°cos 10°cos 20°cos 40°cos 10°=18sin 80°cos 10°=18. 答案:188.已知sin(α-β)cos α-cos(β-α)sin α=35,β是第三象限角,则sin ⎝ ⎛⎭⎪⎫β+5π4=________.解析:依题意可将已知条件变形为sin[(α-β)-α]=-sin β=35,所以sin β=-35. 又β是第三象限角,因此有cos β=-45,所以sin ⎝ ⎛⎭⎪⎫β+5π4=-sin ⎝ ⎛⎭⎪⎫β+π4=-sin βcos π4-cos βsin π4=7210.答案:72109.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝ ⎛⎭⎪⎫-35,-45.(1)求sin ()α+π的值;(2)若角β满足sin(α+β)=513,求cos β的值.解:(1)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得sin α=-45,所以sin(α+π)=-sin α=45.(2)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得cos α=-35,由sin(α+β)=513,得cos(α+β)=±1213. 由β=(α+β)-α得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.10.已知α,β为锐角,tan α=43,cos(α+β)=-55. (1)求cos 2α的值; (2)求tan(α-β)的值.解:(1)因为tan α=43,tan α=sin αcos α, 所以sin α=43cos α.因为sin 2 α+cos 2 α=1,所以cos 2 α=925, 所以cos 2α=2cos 2α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55, 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2.因为tan α=43,所以tan 2α=2tan α1-tan 2 α=-247, 所以tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[B 级 综合练]11.若α,β都是锐角,且cos α=55,sin(α-β)=1010, 则cos β=( ) A .22 B .210 C .22或-210D .22或210解析:选A .因为α,β都是锐角,且cos α=55,sin(α-β)=1010,所以sin α=255,cos(α-β)=31010,从而cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=22,故选A .12.已知α为第二象限角,且tan α+tan π12=2tan αtan π12-2,则sin ⎝ ⎛⎭⎪⎫α+5π6=( )A .-1010 B .1010 C .-31010D .31010解析:选C .tan α+tan π12=2tan αtan π12-2⇒tan α+tan π121-tan αtan π12=-2⇒tan ⎝ ⎛⎭⎪⎫α+π12=-2,因为α为第二象限角,所以sin ⎝ ⎛⎭⎪⎫α+π12=255,cos ⎝ ⎛⎭⎪⎫α+π12=-55,则sin ⎝ ⎛⎭⎪⎫α+5π6=-sin ⎝ ⎛⎭⎪⎫α-π6=-sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π12-π4=cos ⎝ ⎛⎭⎪⎫α+π12sin π4-sin ⎝ ⎛⎭⎪⎫α+π12cos π4=-31010.13.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6=________.解析:由cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, 所以3sin ⎝ ⎛⎭⎪⎫α+π6=435,即sin ⎝ ⎛⎭⎪⎫α+π6=45,所以sin ⎝ ⎛⎭⎪⎫α+7π6=-sin ⎝ ⎛⎭⎪⎫α+π6=-45.答案:-4514.已知sin α+cos α=355,α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,β∈⎝ ⎛⎭⎪⎫π4,π2.(1)求sin 2α和tan 2α的值; (2)求cos(α+2β)的值.解:(1)由题意得(sin α+cos α)2=95, 即1+sin 2α=95,所以sin 2α=45. 又2α∈⎝ ⎛⎭⎪⎫0,π2,所以cos 2α=1-sin 22α=35,所以tan 2α=sin 2αcos 2α=43.(2)因为β∈⎝ ⎛⎭⎪⎫π4,π2,所以β-π4∈⎝ ⎛⎭⎪⎫0,π4,又sin ⎝ ⎛⎭⎪⎫β-π4=35, 所以cos ⎝ ⎛⎭⎪⎫β-π4=45,于是sin 2⎝ ⎛⎭⎪⎫β-π4=2sin ⎝ ⎛⎭⎪⎫β-π4·cos ⎝ ⎛⎭⎪⎫β-π4=2425.又sin 2⎝ ⎛⎭⎪⎫β-π4=-cos 2β,所以cos 2β=-2425,又2β∈⎝ ⎛⎭⎪⎫π2,π,所以sin 2β=725,又cos 2α=1+cos 2α2=45,α∈⎝ ⎛⎭⎪⎫0,π4, 所以cos α=255,sin α=55.所以cos(α+2β)=cos αcos 2β-sin αsin 2β =255×⎝ ⎛⎭⎪⎫-2425-55×725=-11525.[C 级 提升练]15.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为m =2sin 18°,若m 2+n =4,则m n 2cos 227°-1=( )A .8B .4C .2D .1解析:选C .因为m =2sin 18°,m 2+n =4,所以n =4-m 2=4-4sin 218°=4cos 218°.所以m n 2cos 227°-1=2sin 18°4cos 218°2cos 227°-1=4sin 18°cos 18°2cos 227°-1=2sin 36°cos 54°=2sin 36°sin 36°=2.故选C .16.设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为________.解析:由sin αcos β-cos αsin β=1,得sin(α-β)=1, 又α,β∈[0,π],所以α-β=π2,所以⎩⎪⎨⎪⎧0≤α≤π,0≤β=α-π2≤π,即π2≤α≤π, 所以sin(2α-β)+sin(α-2β)=sin ⎝ ⎛⎭⎪⎫2α-α+π2+sin(α-2α+π)=cos α+sin α=2sin ⎝ ⎛⎭⎪⎫α+π4.因为π2≤α≤π, 所以3π4≤α+π4≤5π4, 所以-1≤2sin ⎝ ⎛⎭⎪⎫α+π4≤1,即取值范围为[-1,1]. 答案:[-1,1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两角和差的正弦余弦正切公式练习题
知 识 梳 理
1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β. cos(α∓β)=cos_αcos_β±sin_αsin_β. tan(α±β)=
tan α±tan β
1∓tan αtan β
.
2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α.
cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=
2tan α
1-tan 2α
.
3.有关公式的逆用、变形等
(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β). (2)cos 2α=
1+cos 2α2,sin 2
α=1-cos 2α2
. (3)1+sin 2α=(sin α+cos α)2
,1-sin 2α=(sin α-cos α)2
,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫
α±π4. 4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ),其中tan φ=b a
一、选择题
1.给出如下四个命题
①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(
-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(
+=+能成立; ③公式=+)tan(βαβ
αβαtan tan 1tan ⋅-+an 成立的条件是)(2
Z k k ∈+≠ππα且)(2
Z k k ∈+≠ππβ;
④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是
( )
A .①②
B .②③
C .③④
D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是
( )
A .21+
B .12-
C .2
D . 2
3.当]2
,2[π
π-
∈x 时,函数x x x f cos 3sin )(+=的 ( )
A .最大值为1,最小值为-1
B .最大值为1,最小值为2
1-
C .最大值为2,最小值为-2
D .最大值为2,最小值为-1 4.已知)cos(,3
2
tan tan ,7)tan(βαβαβα-=
⋅=+则的值 ( )
A .2
1 B .
2
2 C .2
2-
D .2

5.已知
=-=+=-<<<αβαβαπαβπ
2sin ,53
)sin(,1312)cos(,432则 ( )
A .6556
B .-6556
C .5665
D .-56
65
6. 75sin 30sin 15sin ⋅⋅的值等于
( )
A .
4
3 B .
8
3 C .8
1
D .
4
1 7.函数)4
cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+=+=π
π其中为相同函数的是
( )
A .)()(x g x f 与
B .)()(x h x g 与
C .)()(x f x h 与
D .)()()(x h x g x f 及与
8.α、β、γ都是锐角,γβαγβα++===
则,8
1
tan ,51tan ,21tan 等于 ( ) A .
3
π
B .
4
π C .π65 D .π4
5
9.设0)4
tan(tan 2=++-q px x 是方程和θπ
θ的两个根,则p 、q 之间的关系是( )
A .p+q+1=0
B .p -q+1=0
C .p+q -1=0
D .p -q -1=0 10.已知)tan(),sin(4sin ,cos βαβααβ++==则a 的值是
( )
A .
4
12
--a a
B .-
4
12
--a a
C .2
14a a --±
D .4
12
--±a a 11.在△ABC 中,90C >,则B A tan tan ⋅与1的关系为
( )
A .1tan tan >+
B A B .1tan tan <⋅B A
C .1tan tan =⋅B A
D .不能确定
12. 50sin 10sin 70cos 20sin +的值是
( )
A .4
1
B .
2
3
C .2
1
D .4
3
二、填空题(每小题4分,共16分,将答案填在横线上)
13.已知m =-⋅+)sin()sin(αββα,则βα22cos cos -的值为 .
14.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B=
.
15.若),24cos()24sin(θθ-=+ 则)60tan( +θ= . 16.若y x y x cos cos ,2
2
sin sin +=
+则的取值范围是 . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34
sin(x +⋅π

18.已知 0βαβαcos ,cos ,90且 <<<是方程02
1
50sin 50sin 222=-
+- x x 的两根,求)2tan(αβ-的值.
19.求证:y
x x
y x y x 2
2sin cos 2sin )tan()tan(-=-++.
20.已知α,β∈(0,π)且7
1
tan ,21)tan(-==-ββα,求βα-2的值.
21.证明:x
x x
x x 2cos cos sin 22tan 23tan +=-.
22.已知△ABC 的三个内角满足:A+C=2B ,
B C A cos 2cos 1cos 1-=+求2
cos C
A -的值.
两角和差的正弦余弦正切公式练习题参考答案
一、1.C 2.A 3.D 4.D 5.B 6.C 7.C 8.B 9.B 10.D 11.B 12.A
二、13.m 14.3π
15.32-- 16.]214,214[-
三、17.原式=)34
cos()33
sin()33
cos()34
sin(x x x x -----ππππ=
4
6
2-.
18.)4550sin(2
)
21
50(sin 4)50sin 2(50sin 222 ±=---±=x ,
12sin 95cos5,sin 5cos85,x x ∴====
3275tan )2tan(+==- αβ.
19.证:y x y x y x y x y x y x y x y x 2
222sin sin cos cos )]
()sin[()cos()sin()cos()sin(⋅-⋅-++=--+++=左
=-=+-=y
x x
y x x x x 222222sin cos 2sin sin )sin (cos cos 2sin 右. 20.13
tan ,
tan(2)1,
2.3
4
ααβαβπ=-=-=-
21.左=
=+=⋅=⋅-x x x x x x x x x x x x 2cos cos sin 22
cos
23cos sin 2cos 23cos 2sin
23cos 2cos 23sin
右.
22.由题设B=60°,A+C=120°,设2
C
A -=α知A=60°+α, C=60°-α, 22cos ,224
3cos cos cos 1
cos 12
=
-=-
=+ααα
即C A
故222cos =-C A .。

相关文档
最新文档