北师大版七年级下册数学第一章整式的乘除

合集下载

北师大版七年级数学下册_第1章_整式的乘除_第一章_回顾与思考

北师大版七年级数学下册_第1章_整式的乘除_第一章_回顾与思考
14 多项式除以单项式,就是多项式的每一项 去除单项式,再把所得的商相加。
1. a a
3
× 2 3 23 5 2. x (x ) x x √
m m 1
3
2a
3
3. x (x ) x 4. (b )

2 3 4 4 m

×
24 2m
b
2 3 4
b

×
(1) (2ab ) (a c ) 1 1 3 0 (2) ( ) 2 ( 2010 ) 3 (3) 2ab 3a 2 2ab 4b 2
2 2


(4) 3a 6a 9a
4 3

2

(5) (2a b )(4a b )(b 2a )

3 积的乘方等于 每一个因数乘方的积 。
(a b)n =an bn (n是正整数)
4 同底数幂相除,底数 不变 ,指数 相减 。 am ÷ an = a m - n (a≠0,m、n都是正整数,m>n) 5 规定:a0 =1,(a≠0),
1 p a = p a
( a≠0 ,且 p为正整数)
n 6 科学计数法: a 10 (1 a 10)
本章知识结构
同底数幂的运算法则 单项式的乘法
单项式与多项式的乘法
单项式的除法
多项式与单项式的除法
多项式的乘法
乘法公式
1 同底数幂相乘,底数 不变 ,指数 相加 am · an=a m + n (m、n都是正整数) 2 幂的乘方,底数 不变 ,指数 相乘 。 (a m ) n=a m n (m、n都是正整数)
2 2
1 2 3 a

北师大版数学七年级下册:第一章整式的乘除回顾与思考(教案)

北师大版数学七年级下册:第一章整式的乘除回顾与思考(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式的乘除的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对整式乘除的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-难点四:整式的除法法则。在整式除法中,确定商的每一项系数是学生遇到的困难之一。教师应通过具体例题,指导学生如何确定商的每一项系数,并强调余数概念。
-难点五:实际应用题的解决。将整式的乘除应用于解决实际问题时,学生可能会感到难以理解问题的实质,不知如何建模。教师应提供丰富的实际情境题,引导学生学会提取信息,建立数学模型。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“整式的乘除在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解整式乘除的基本概念。整式的乘除是指如何将单项式与单项式、单项式与多项式、多项式与多项式相乘或相除。它在数学运算中占有重要地位,帮助我们简化表达式,解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将整式的乘除应用于实际中,比如计算矩形的面积和体积。
3.多项式乘多项式:运用分配律,将一个多项式的每一项分别与另一个多项式的每一项相乘,再将结果相加。

(完整版)最新北师大版数学七年级下册第一章_整式的乘除知识点总结及练习题

(完整版)最新北师大版数学七年级下册第一章_整式的乘除知识点总结及练习题

☆☆☆ 北师大版数学七年级【下册】第一章 整式的乘除一、 同底数幂的乘法同底数幂的乘法法则: n m n ma a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是 一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n ma a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m nm a a a⋅=+(m 、n 均为正整数)二.幂的乘方与积的乘方1。

幂的乘方法则:mnnm a a =)((m ,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2. ),()()(都为正数n m a a a mn mn nm ==.3。

底数有负号时,运算时要注意,底数是a 与(-a )时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成—a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。

5.要注意区别(ab )n与(a+b)n意义是不同的,不要误以为(a+b )n=a n+b n(a 、b 均不为零).6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即nnnb a ab =)((n 为正整数)。

7.幂的乘方与积乘方法则均可逆向运用。

三. 同底数幂的除法1。

同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n ma a a -=÷ (a ≠0,m 、n 都是正数,且m 〉n ).2。

在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除"而且0不能做除数,所以法则中a ≠0。

北师版初一下第一章整式的乘除复习课件

北师版初一下第一章整式的乘除复习课件

(x)3 (x)2 (x) (x)6 x6
2、幂的乘方
法则:幂的乘方,底数不变,指数相乘。
数学符号表示: (a m ) n a mn
(其中m、n为正整数)
[(a m )n ] p amnp (其中m、n、P为正整数)
练习:判断下列各式是否正确。
(a4)4 a44 a8,[(b2)3]4 b234 b24
A 1,2; B 2,1 C 1,1, D 1,3
2、下列运算正确的是:( C )
A x3·x2=x6
B x3-x2=x
C(-x)2·(-x)=-x3 D x6÷x2=x3
3、已知代数式3y2-2y+6的值为8,则代数式 1.5y2-y+1的值为(B )
A1 B2
C 3 D4
4请你观察图形,依据图形面积间的关系,不需要添加辅助线,便 可得到两个你非常熟悉的公式,这两个公式分别是
1 c= 20 x+21
,则代
数式 a2+b2+c2-ab-bc-ca 的值是( B )
A. 4
B.3
C.2
D.1
12、若a,b都是有理数且满足 2a2 -2ab+b 2 +4a+4=0 ,
则2ab的值等于( B )
A. -8
B. 8
C.32
D.2004
13、下列算式正确的是( D )
A、—30=1
9、完全平方公式 法则:两数和(或差)的平方,等于这两数 的平方和再加上(或减去)这两数积的2倍。
数学符号表示:
(a b)2 a2 2ab b2; (a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.

北师大版七年级数学下册课件第一章第四节整式的乘法

北师大版七年级数学下册课件第一章第四节整式的乘法
举例:-4a2·3b3a=[(-4)×3]·(a2·a)·b3=-12a3b3.
对点训练
1.(1)计算a·3a的结果是( B )
A.a2
B.3a2
C.ห้องสมุดไป่ตู้a D.4a
(2)化简(-3x2)·2x3的结果是( C ) A.-3x5 B.18x5 C.-6x5 D.-18x5
知识点二:单项式与单项式相乘的一般步骤
(2)4y·(-2xy2);
解:(1)原式=(3×5)(x2·x3)=15x5.
(2)原式=[4×(-2)]x(y·y2)=-8xy3.
(3)(3x2y)3·(-4x);
(4)(-2a)3·(-3a)2.
解:(3)原式=27x6y3·(-4x)=[27×(-4)](x6·x)y3=-108x7y3.
第一章 整式的乘除
整式的乘法(1)
学习目标
1.经历探索整式乘法运算法则的过程,进一步体会类比方法的 作用,以及乘法分配律在整式乘法运算中的作用. 2.(课标)能进行简单的整式乘法运算(单项式乘单项式).
知识要点 知识点一:单项式乘单项式法则 单项式与单项式相乘的运算法则: 单项式与单项式相乘,把它们的 系数 、相同字母的幂分 别 相乘 ,其余字母连同它的 指数不变 ,作为积的因式.
3
27
=-2x5y5- 1x7y5.
3
7.【例4】(北师7下P15)一家住房的结构如图所示,这家房子 的主人打算把卧室以外的部分都铺上地砖,至少需要多少平 方米的地砖?如果某种地砖的价格是a元/m2,那么购买所需地 砖至少需要多少元?
解:根据题意,得xy+2xy+8xy=11xy(m2), 则把卧室以外的部分都铺上地砖,至少需要11xy m2的地砖,购 买所需地砖至少需要11axy元.

7年级下册数学书北师大版

7年级下册数学书北师大版

7年级下册数学书北师大版一、整式的乘除。

1. 同底数幂的乘法。

- 法则:a^m· a^n=a^m + n(m,n为正整数)。

例如2^3·2^4=2^3 + 4=2^7。

- 意义:表示相同底数的幂相乘时,底数不变,指数相加。

2. 幂的乘方与积的乘方。

- 幂的乘方:(a^m)^n=a^mn(m,n为正整数)。

如(3^2)^3=3^2×3=3^6。

- 积的乘方:(ab)^n=a^nb^n(n为正整数)。

例如(2×3)^2=2^2×3^2=4×9 = 36。

3. 同底数幂的除法。

- 法则:a^m÷ a^n=a^m - n(a≠0,m,n为正整数,m>n)。

例如5^6÷5^3=5^6 -3=5^3。

- 零指数幂:a^0=1(a≠0)。

- 负整数指数幂:a^-p=(1)/(a^p)(a≠0,p为正整数)。

4. 整式的乘法。

- 单项式乘单项式:系数相乘,同底数幂相乘。

例如3x^2·2x^3=(3×2)(x^2·x^3) = 6x^5。

- 单项式乘多项式:m(a + b)=ma+mb。

如2x(x + 3)=2x^2+6x。

- 多项式乘多项式:(a + b)(c + d)=ac+ad+bc+bd。

5. 平方差公式。

- 公式:(a + b)(a - b)=a^2-b^2。

例如(3 + 2)(3 - 2)=3^2-2^2=9 - 4 = 5。

6. 完全平方公式。

- (a± b)^2=a^2±2ab + b^2。

如(x+3)^2=x^2+6x + 9,(x - 3)^2=x^2-6x+9。

- 整式的除法:单项式除以单项式,多项式除以单项式等运算规则。

二、相交线与平行线。

1. 两条直线的位置关系。

- 相交线:对顶角相等,邻补角互补。

- 垂直:当两条直线相交成直角时,这两条直线互相垂直,其中一条直线叫做另一条直线的垂线。

(新)北师大版七年级数学下册课件(1-3章,共624张PPT)

(新)北师大版七年级数学下册课件(1-3章,共624张PPT)

解:2a+b+3=2பைடு நூலகம்•2b•23=5×3×8=120. 【类比精练】 2.若xm=3,xn=5,则xm+n15 = 解:∵xm=3,xn=5, ∴xm+n=xm•xn=3×5=15. 故答案为:15

Listen attentively
课堂精讲
知识点3 同底数幂的乘法应用 【例3】一个长方形的长是4.2×104 cm,宽是 2×104 cm,求此长方形的面积及周长. 解:面积=长×宽 =4.2×104×2×104=8.4×108cm2. 周长=2(长+宽)=2(4.2×104+2×104) =1.24×105cm. 综上可得长方形的面积为8.4×108cm2. 周长为1.24×105cm.
知识小测 B ) 2.(2014•温州)计算:m6•m3的结果( A.m18 B.m9 C.m3 D.m2 3.(2016•濉溪县二模)计算﹣a2•a3的结果是 B ( ) A.a5 B.﹣a5 C.﹣a6 D.a6
Listen attentively
课前小测
4.(2016•江岸区模拟)如果等式x3•xm=x6成立, 那么m=( B) A.2 B.3 C.4 D.5 5.(2016春•沛县期末)若am=2,an=3,则 am+n的值为( ) B A.5 B.6 C.8 D.9 5 3 2 x 6.(2016•南通)计算:x •x = . a2 . 7.(2015•柳州)计算:a×a= 8.(2016春•张家港市期末)已知:xa=4,xb=2, 则xa+b=8 .
目录 contents
课堂精讲
Listen attentively
课堂精讲
知识点1 同底数幂的乘法 【例1】计算:﹣(﹣a)•(﹣a)2•(﹣a). 解:原式=﹣a4.

北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。

该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。

为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。

这样可以既可以防止公式的混淆又杜绝了运算符号的出错。

北师大版七年级数学下册第一章 整式的乘除6 第1课时 完全平方公式的认识

北师大版七年级数学下册第一章  整式的乘除6 第1课时 完全平方公式的认识

典例精析 例1 利用完全平方公式计算:
(1) (2x-3)2;
解:(2x-3)2 = (2x)2- 2 • (2x) • 3 + 32
( a-b )2 = a2 - 2ab + b2 =4x2-12x + 9;
(2) (4x+5y)2; (2) (4x+5y)2 = (4x)2 +2 • (4x) • 5y +(5y)2
(2) (x-y)2 = x2-y2;
× x2-2xy + y2
(3) (-x + y)2 = x2 + 2xy + y2;× x2 -2xy + y2
(4) (2x + y)2 = 4x2 + 2xy + y2. × 4x2 + 4xy + y2
2. 运用完全平方公式计算: (1) (6a + 5b)2; = 36a2 + 如果 36x2+(m+1)xy+25y2 是一个完全平方式,求 m 的值.
解:∵ 36x2+(m+1)xy+25y2 =(±6x)2+(m+1)xy+(±5y)2,
∴ (m+1)xy=±2 ·6x ·5y.
∴ m+1=±60.
∴ m=59或-61.
方法总结:两数的平方和加上或减去它们积的 2 倍, 就构成了一个完全平方式.注意积的 2 倍的符号,避 免漏解.
完全平 方公式
法则 注意
(a±b)2 = a2±2ab+b2
1. 项数、符号、字母及其指数
2. 弄清完全平方公式和平方差 公式的不同点(从公式结构 特点及结果两方面)
1.下面各式的计算是否正确?如果不正确,结果应当 怎样改正?
(1) (x + y)2 = x2 + y2;

北师大版七年级下册数学第一章整式的乘除《平方差公式》

北师大版七年级下册数学第一章整式的乘除《平方差公式》

北师大版七年级下册数学第一章整式的乘除《平方差公式》知识点总结平方差公式:(a+b)(a-b)=a²-b²两个数的和与这两个数的差的积,等于这两个数的平方差。

要点诠释:在这里,a,b既可以是具体数字,也可以是单项式或多项式。

抓住公式的几个变形形式利于理解公式。

但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如(a+b)(a-b)利用加法交换律可以转化为公式的标准型(2)系数变化:如(3x+5y)(3x-5y)(3)指数变化:如(m3+n2)(m3-n2)(4)符号变化:如(-a-b)(a-b)(5)增项变化:如(m+n+p)(m-n+p)(6)增因式变化:如(a-b)(a+b)(a2+b2)(a4+b4)做题步骤:1)先判断能否使用平方差公式。

判断依据:一对相等项,一对相反项。

2)如果可以使用,则一般情况下我们可以将相等的一项放在多项式的第一位进行计算(第一个数的平方减去第二个数的平方);3)不管能否使用平方差公式,多项式乘以多项式是基本方法。

表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式公式运用可用于某些分母含有根号的分式:1/(3-4倍根号2)化简:1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23注意事项:(1)有公因式(包括负号)则先提取公因式;(2)整式乘法的平方差公式与因式分解的平方差公式是互逆关系;(3)平方差公式中的a与b既可以是单项式,又可以是多项式;第一关:直接运用公式1.(a+3)(a-3)2..( 2a+3b)(2a-3b)3. (1+2c)(1-2c)4. (-x+2)(-x-2)5. (2x+1/2)(2x-1/2)6. (a+2b)(a-2b)7. (2a+5b)(2a-5b)8. (-2a-3b)(-2a+3b)第二关:运用公式使计算简便1、1998×20022、498×5023、999×10014、1.01×0.995、30.8×29.26、100-1/3×99-2/37、20-1/9×19-8/9第三关:两次运用平方差公式1、(a+b)(a-b)(a2+b2)2、(a+2)(a-2)(a2+4)3、(x-1/2)(x2+1/4)(x+1/2)第四关:需要先变形再用平方差公式1、(-2x-y)(2x-y)2、(y-x)(-x-y)3.(-2x+y)(2x+y) 4.(4a-1)(-4a-1)5.(b+2a)(2a-b)6.(a+b)(-b+a)7.(ab+1)(-ab+1)第五关:每个多项式含三项1.(a+b+c)(a+b-c)2.(a+b-3)(a-b+3)3.x-y+z)(x+y-z)4.(m-n+p)(m-n-p)课后练习导学案图文导学。

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

《整式的乘除》全章复习与巩固【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n na a -=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;需灵活地双向应用运算性质.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.2.单项式乘以多项式单项式与多项式相乘,就是根据分配率用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项包含前面的“+”“-”号.根据多项式的乘法,能得出一个应用广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除单项式相除、把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数和与这两个数差的积,等于这两个数的平方差. 要点诠释:1.在这里,a b ,既可以是具体数字,也可以是单项式或多项式.2.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是三项,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算1、已知:2m +3n =5,则4m •8n =( )A .16B .25C .32D .64 【解答】解:4m •8n =22m •23n =22m +3n =25=32,故选:C .2.下列各式正确的有( )①x 4+x 4=x 8;②﹣x 2•(﹣x )2=x 4;③(x 2)3=x 5;④(x 2y )3=x 3y 6;⑤(﹣3x 3)3=﹣9x 9;⑥2100×(﹣0.5)99=﹣2;A .1个B .2个C .3个D .4个【解答】解:①x 4+x 4=2x 4,此计算错误;②﹣x 2•(﹣x )2=﹣x 4,此计算错误;③(x 2)3=x 6,此计算错误;④(x 2y )3=x 6y 3,此计算错误;⑤(﹣3x 3)3=﹣27x 9,此计算错误;⑥2100×(﹣0.5)99=2×299×(﹣0.5)99=2×(﹣0.5×2)99=2×(﹣1) =﹣2,此计算正确;故选:A .3、阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a 2=2,b 3=3,比较a 、b 的大小(4)比较312×510与310×512的大小【解答】解;(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511, ∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961;(3)∵a 2=2,b 3=3,∴a 6=8,b 6=9,∵8<9,∴a 6<b 6,∴a <b ;(4)∵312×510=(3×5)10×32,310×512=(3×5)10×52,又∵32<52,∴312×510<310×512.类型二、整式的乘除法运算1、要使()()621x a x -+的结果中不含x 的一次项,则a 等于( )A.0B.1C.2D.3【答案】D ;【解析】先进行化简,得:,要使结果不含x 的一次项,则x 的一次项系数为0,即:62a -=0.所以3a =.【总结升华】代数式中不含某项,就是指这一项的系数为0.2.如图,一个边长为(m +2)的正方形纸片剪去一个边长为m 的正方形,剩余的部分可以拼成一个长方形,若拼成的长方形的一边长为2,则另一边长为 2m +2 .【解答】解:设另一边长为x ,根据题意得,2x =(m +2)2﹣m 2,解得x =2m +2.故答案为:2m +2.3.如图,现有A ,C 两类正方形卡片和B 类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片5张.【解答】解:长为3a+2b,宽为a+b的长方形的面积为:(3a+2b)(a+b)=3a2+5ab+2b2,∵A类卡片的面积为a2,B类卡片的面积为ab,C类卡片的面积为b2,∴需要A类卡片3张,B类卡片5张,C类卡片2张,故答案为:5.类型三、乘法公式1.如果x2﹣2(m+1)x+4是一个完全平方公式,则m=.【解答】解:∵x2﹣2(m+1)x+4是一个完全平方公式,∴﹣2(m+1)=±4,则m=﹣3或1.故答案为:﹣3或1.2、用简便方法计算:(1)1002﹣200×99+992(2)2018×2020﹣20192 (3)计算:(x﹣2y+4)(x+2y﹣4)【解答】解:(1)1002﹣200×99+992=1002﹣2×100×(100﹣1)+(100﹣1)2=[100﹣(100﹣1)]2=12=1;(2)2018×2020﹣20192=(2019﹣1)(2019+1)﹣20192=20192﹣1﹣20192=﹣1.(3)原式=x2﹣(2y﹣4)2=x2﹣4y2+16y﹣16;3.图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称抽)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是()A.ab B.a2+2ab+b2C.a2﹣b2D.a2﹣2ab+b2【解答】解:图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a +b ,∴正方形的面积为(a +b )2,∵原矩形的面积为4ab ,∴中间空的部分的面积=(a +b )2﹣4ab =a 2﹣2ab +b 2.故选:D .4、已知222246140x y z x y z ++-+-+=,求代数式2012()x y z --的值.【思路点拨】将原式配方,变成几个非负数的和为零的形式,这样就能解出,,x y z .【答案与解析】解:222246140x y z x y z ++-+-+= ()()()2221230x y z -+++-= 所以1,2,3x y z ==-=所以20122012()00x y z --==.【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.类型四、综合类大题1.在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):证明上述速算方法的正确性.【解答】解:(1)图(1)所表示的代数恒等式:(x+y)•2x=2x2+2xy,图(2)所表示的代数恒等式:(x+y)(2x+y)=2x2+3xy+y2图(3)所表示的代数恒等式:(x+2y)(2x+y)=2x2+5xy+2y2.(2)几何图形如图所示:拓展应用:(1)①几何模型:②用文字表述57×53的速算方法是:十位数字5加1的和与5相乘,再乘以100,加上个位数字3与7的积,构成运算结果;即57×53=(50+10)×50+3×7=6×5×100+3×7=3021;十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;故答案为十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;2.阅读下列材料并解决后面的问题材料:对数的创始人是苏格兰数学家纳皮尔(J.Npler,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣﹣1783)才发现指数与对数之间的联系,我们知道,n个相同的因数a相乘a•a…,a记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28,即log28=3一般地若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b,即log a b=n.如34=81,则4叫做以3为底81的对数,记为log381,即log381=4.(1)计算下列各对数的值:log24=,log216=,log264=(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是;(3)拓展延伸:下面这个一股性的结论成立吗?我们来证明log a M+log a N=log,a MN(a>0且a≠1,M>0,N>0)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m•a n=a m+n=M•N,∴log a MN=m+n,又∵log a M=m,log a N=n,∴log a M+log a N=log a MN(a>0且a≠1,M>0,N>0)(4)仿照(3)的证明,你能证明下面的一般性结论吗?log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)计算:log34+log39﹣log312的值为.【解答】解:(1)log24=log222=2,log216=log224=4,log264=log226=6;故答案为:2,4,6;(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是:log24+log216=log264;(4)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m÷a n=a m﹣n=,∴log a=m﹣n,又∵log a M=m,log a N=n,∴log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)log34+log39﹣log312,=log3,=log33,=1,故答案为:1.。

北师大版七年级数学下册第一章 整式的乘除4 第3课时 多项式与多项式相乘

北师大版七年级数学下册第一章  整式的乘除4 第3课时 多项式与多项式相乘
方法总结:化简求值的题型,一定要注意先化简, 再求值,不能先代值,再计算.
多项式乘 多项式
运算 法则
注意
多项式与多项式相乘,先用一个多 项式的每一项分别乘另一个多项式 的每一项,再把所得的积相加
(a + b)(m + n) = am + an + bm + bn 实质上是转化为单项式乘多项式, 再进一步转化为单项式乘单项式
观察上面四个等式,你能发现什么规律?并应用这 个规律解决下面的问题.
(x a)(x b) x2 _(_a__b_)x __a_b__ .
口答:(x-7)(x+5) x2 _(_-2_)_ x _(-_3_5_) .
看成一个整体,利用乘法分配
律:
n
m
a
(m + a)( n + b)=(m + a)n + (m + a)b
= ma + mb + na + nb. 或 (m + a)( n + b) = m(n + b) + a( n + b)
= ma + mb + na + nb.
交流讨论
(1) 你是用什么方法计算上面的问题的? (2) 如何进行多项式与多项式相乘的运算?
2a+3b
解:(1) S=(3a+2b)(2a+3b-a)
a
3a+2b
=(3a+2b)(a+3b)
=3a2+11ab+6b2.
(2) 当 a = 3,b = 6 时,
2a+3b
S=3×32+11×3×6+6×62=441.
答:当 a = 3,b = 6 时,S=441.

北师大版数学七年级下册第一章整式的乘除说课稿

北师大版数学七年级下册第一章整式的乘除说课稿
1.创设生活情境,让学生感受到数学知识在实际生活中的应用,提高学习兴趣。
2.采用分组合作、互动交流的学习方式,鼓励学生共同探讨问题,培养学生的合作意识和团队精神。
3.设计富有挑战性的问题,引导学生主动思考,激发学生的探究欲望。
4.利用多媒体教学手段,如动画、图表等,直观展示整式乘除运算的规律,增强学生的学习兴趣。
为快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:通过一个与整式乘除相关的生活实例,如购物时如何计算折扣,引发学生对整式乘除运算的思考,激发学生的学习兴趣。
2.提出问题:在情境中提出具有挑战性的问题,让学生感受到整式乘除运算在实际生活中的应用,进而产生学习动力。
3.复习旧知:简要回顾之新课的学习做好铺垫。
(2)熟练运用乘法公式进行计算。
(3)整式的除法运算。
2.教学难点:
(1)多项式乘多项式的运算法则。
(2)乘法公式的运用。
(3)整式的乘除混合运算。
二、学情分析导
(一)学生特点
本节课面向的是七年级下册的学生,他们正处于青春期,好奇心强,求知欲旺盛,具备一定的抽象思维能力,但在注意力集中和自我控制方面仍有待提高。在认知水平上,学生已经掌握了基本的代数知识,如单项式、多项式的基本概念和简单运算。他们对数学学习兴趣浓厚,但学习习惯参差不齐,部分学生可能缺乏自主学习的能力和良好的计算习惯。
1.知识与技能:
(1)掌握单项式乘单项式、单项式乘多项式、多项式乘多项式的运算法则。
(2)熟练运用乘法公式进行计算。
(3)掌握整式的除法运算,能够正确进行整式的乘除混合运算。
2.过程与方法:
(1)通过实际例子的分析,让学生理解整式乘除的运算规律。
(2)培养学生运用乘法公式简化计算的能力。

北师大版七年级数学下册第一章整式的乘除PPT课件全套

北师大版七年级数学下册第一章整式的乘除PPT课件全套

(1) (-y)3÷(-y)2 ; (2) x12÷x-4 ;
(2)由 (ab)3=a3b3 出发, 你能想到更为一 般的公式吗?
猜想 (ab)n= anbn
n个ab
(ab)n = ab·ab·……·ab (
幂的意) 义
n个a
n个b
=(a·a·……·a) (b·b·……·b) (
乘法交换律、结合律
)
=an·b ( 幂的意义 )
积的乘方法则
(ab)n = an·bn (m,n都是正整数)
解 :am an (a a a)(a a a)
m个a
n个a
aa a 不变 m n个a
=am+n
相加
am ·an =am+n(m,n都是正整数)
同底数幂相乘,底数 不变 ,指数相加 .
指数相加
即 am an amn
底数不变
例1.计 算 : (1)(3)7 (3)6; (3) x3 x5;
公示逆用
(ab)n = an·bn(m,n都是正整数)
反向使用: an·bn = (ab)n
计算:
(1) 23×53 ; (3) (-5)16 × (-2)15 ; (5)0.25100×4100
(2) 28×58 ; (4) 24 × 44 ×(-0.125)4 ; (6)812×0.12513
课堂小结
1. am an amn m, n都是正整数
同底数幂相乘,底数不变,指数相加.
2. (am)n=amn (m,n都是正整数)
幂的乘方,底数不变,指数相乘.
课后作业
完成课本习题1.2中1、2 拓展作业:
你能尝试运用今天所学的知识解决下面 的问题吗

北师大版七年级数学下册第一章整式的乘除同底数幂的乘法、幂的乘方PPT课件

北师大版七年级数学下册第一章整式的乘除同底数幂的乘法、幂的乘方PPT课件
(5)(-x)2 ·(-x)3 = (-x)5 ( √ )
(6)a2·a3- a3·a2 = 0 ( √ )
(7)x3·y5=(xy)8 ( × ) 对于计算出错的题目,你能分
析出错的原因吗?试试看!
(8) x7+x7=x14 ( × )
练一练
判断对错:
(1)(am )n amn
(2)a2 • a5 a10
等于什么呢?
(2)(a ) a a a a (m是正整数) = · = = 例七2年已级知数2学x+下5(y-BS3)=0,m求24x·32y的m值. m
m+m
2m
= a7 ·a3 =a10
请你观察上述结果的底数与指数有何变化?你能 am·an=am+n (m,n都是正整数)
am·an·ap = am+n+p (m、n、p都是正整数) (×)
指数
底数
103
=10×10×10

3个10相乘
( 2 )10×10×10×10×10可以写成什么形式? 10×10×10×10×10=105
导入新课
问题引入 我国国防科技大学成功研制的“天河二号”超
级计算机以每秒33.86千万亿(3.386×1016)次运算. 问:它工作103s可进行多少次运算?
一个正方体的棱长是102,则它的体积是
多x 少?
y
2x 5y
am·an·ap = am+n+p (m、n、p都是正整数)
提醒:计算同底数幂的乘法时,要注意算式里面的负号是属于幂的还是属于底数的.
(5)(y2)3·y; 七年级数学下(BS)
=22x·25y=22x+5y=23=8.
×(5×5×5 ×…×5)

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除4整式的乘法

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除4整式的乘法

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除4整式的乘法一. 教材分析北师大版七年级数学下册第一章整式的乘除4整式的乘法,这部分内容是学生在学习了整式的加减法之后,进一步深化对整式的运算法则的理解。

本节内容主要包括整式乘法的基本概念、运算法则以及具体的运算方法。

通过这部分的学习,使学生能够熟练掌握整式的乘法运算,为后续学习分式的乘除法和函数的初步概念打下基础。

二. 学情分析学生在学习这部分内容时,已经有了一定的数学基础,例如整式的加减法、有理数的乘除法等。

但是,对于整式的乘法,学生可能还存在着一定的困惑,例如整式乘法的运算法则、如何快速准确地进行计算等。

因此,在教学过程中,需要结合学生的实际情况,用学生熟悉的生活实例引入整式的乘法,让学生在理解的基础上掌握整式的乘法运算。

三. 说教学目标1.知识与技能目标:使学生理解整式乘法的概念,掌握整式乘法的运算法则,能够熟练地进行整式的乘法运算。

2.过程与方法目标:通过合作交流、自主探究的学习过程,培养学生解决问题的能力,提高学生的数学思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和细心,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:整式乘法的概念、运算法则以及运算方法。

2.教学难点:整式乘法的运算方法,尤其是如何正确地合并同类项。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、自主探究法等,引导学生主动参与学习,提高学生的学习兴趣和积极性。

2.教学手段:利用多媒体课件、教学卡片等辅助教学,使学生更直观地理解整式的乘法运算。

六. 说教学过程1.引入新课:通过生活实例,引导学生思考如何计算两个多项式的乘积,激发学生的学习兴趣。

2.讲解整式乘法的概念和运算法则:引导学生通过合作交流、自主探究的方式,总结整式乘法的运算法则。

3.演示整式乘法的运算方法:通过多媒体课件或教学卡片,展示整式乘法的具体运算过程,让学生更直观地理解。

北师大版七年级数学下册第一章 整式的乘除7 第1课时 单项式除以单项式

北师大版七年级数学下册第一章  整式的乘除7 第1课时 单项式除以单项式

(1) x5y÷x2 =
x5 y x2
x3 y. 8m2n2
(2) 8m2n2÷2m2n = 2m2n 4n.
(3) a4b2c÷3a2b =
a4b2c 3a 2b
1 a2bc . 3
注意:约分时,先约系数,再约同底数幂,分子中 单独存在的字母及其指数直接作为商的因式.
合作探究二
(1) x5y÷x2 = x3y;
=2a10b3c.
例2如图所示,三个大小相同的球恰好放在一个圆柱形盒 子里,三个球的体积之和占整个盒子容积的几分之几?
解:设圆柱形盒子底面圆半径为 r,
三个球的体积:3 4 r 3 4 r 3 3
盒子容积:πr2·(2r×3)=6πr3.
所以
4r 3 6r 3
2. 3
单项式 除以
单项式
运算法则
解:-5a5b3c ÷15a4b = (-5÷15)a5-4b3-1c = 1 ab2c.
3
2.计算: (1) -(x5y2)2÷(-xy2); 解:原式=-x10y4÷(-xy2)
=x9y2.
注意:先乘 方,再乘除
(2)-48a6b5c÷(24ab4)·(-a5b2).
解:原式=[(-48)÷24×(-1)]a6-1+5 ·b5-4+2 ·c
1. 系数相除; 2. 同底数的幂相除; 3. 只在被除式里的因式照搬
作为商的一个因式
注意
1. 不要遗漏只在被除式中有而 除式中没有的字母及字母的 指数;
2. 系数相除时,应连同它前面 的符号一起进行运算
1. 下列计算错在哪里?应怎样改正? 同底数幂相除,
(1) 4a8 ÷2a 2 = 2a 4 (2) 10a3 ÷5a2 = 5a

北师大版七年级下册第一章整式的乘除:幂的乘方、积的乘方与同底数幂除法教案

北师大版七年级下册第一章整式的乘除:幂的乘方、积的乘方与同底数幂除法教案
3.培养学生的数学建模能力:通过实际问题的引入,让学生运用所学知识构建数学模型,培养学生解决实际问题的能力。
4.培养学生的团队合作意识:在课堂讨论与小组活动中,鼓励学生积极参与,学会与他人合作,提高沟通能力,培养团队合作精神。
三、教学难点与重点
1.教学重点
(1)幂的乘方:学生需掌握同底数幂相乘的法则,即底数不变,指数相加。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解幂的乘方、积的乘方与同底数幂除法的基本概念。幂的乘方是指同一底数的幂相乘,积的乘方是指两个相同底数的幂相乘,而同底数幂除法则是指同一底数的幂相除。这些概念在数学运算中非常重要,它们帮助我们简化计算,提高效率。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要计算一个正方体的体积,它的边长是a,那么它的体积就是a^3。如果这个正方体扩大了两倍,那么新的体积就是(a^3)^(2),也就是a^(3*2),即a^6。这个案例展示了幂的乘方在实际中的应用,以及它如何帮助我们解决问题。
举例:a^3 * a^2 = a^(3+2) = a^5
(2)积的乘方:学生应理解两个相同底数的幂相乘,等于底数不变,指数相加的幂。
举例:(a^2)^3 = a^(2*3) = a^6
(3)同底数幂除法:学生需学会同底数幂相除的法则,即底数不变,指数相减。
举例:a^5 / a^2 = a^(5-2) = a^3
此外,今天的教学难点解析部分,我发现有些学生对同底数幂除法的掌握程度不够理想。在今后的教学中,我需要更加关注这部分学生,通过设计不同难度的练习题,帮助他们逐步突破难点。
今天的学习,我们了解了幂的乘方、积的乘方与同底数幂除法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在数学学习和日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

北师大版七年级数学下册第一章整式的乘除复习课件

北师大版七年级数学下册第一章整式的乘除复习课件

解:(1)原式=3x·(32)x·(33)x=3x·32x·33x=36x. ∵36x=312,∴6x=12,
解得x=2. (2)∵x=3m+2,∴3m=x-2.
∵y=9m+3m=32m+3m=(3m)2+3m=(x-2)2+x-2=x2-3x+2,
∴y=x2-3x+2.
∵这个多项式既不含二次项,也不含一次项,
∴m+2=0,2m+n=0. 解得m=-2,n=4.
5.下列各式中,结果等于x2-5x-6的是
A.(x-6)(x+1)
B.(x-2)(x+3)
C.(x+6)(x-1)
D.(x-2)(x-3)
(A )
方法点拨:本题求解的关键是得到二次项与一次项,因此在解题时 可以不展开这个乘积式的全部,而只计算x·mx+2·x2=(m+2)x2,x·n+ 2·mx=(2m+n)x,由此也能求得答案,从而避免了一些不必要的计算.
B.(-x)-9÷(-x)-3=x-6
C.x2-x2=1
D.-x(x2-x+1)=-x3-x2-x
3.化简:(-a2)·a5=___-__a_7__.
4.(202X年淮安期末)若a·a3·am=a8,则m=__4___.
5.下面的计算对不对?如果不对,应怎样改正? (1)(a3b)3=a3b3; 解:原式计算错误,应为(a3b)3=a9b3. (2)(6xy)2=12x2y2;
(2)-0.006 02;
解:-0.006 02 =-6.02×10-3.
(3)0.000 060 2; 解:0.000 060 2=6.02×10-5. (4)153.8;
解:153.8=1.538×102.
(5)-34 000.
解:-34 000=-3.4×104.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册——第一章 整式的乘除(复习)单项式整 式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式第1章 整式的乘除 单元测试卷一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( )A. 954a a a =+ B. 33333a a a a =⋅⋅ C. 954632a a a =⨯ D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( )A. 1-B. 1C. 0D. 1997 3.设()()A b a b a +-=+223535,则A=( )A. 30abB. 60abC. 15abD. 12ab4.已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19-5.已知,5,3==bax x 则=-ba x23( ) A 、2527 B 、109C 、53D 、526. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式:nm a ba①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( )A 、Q P >B 、Q P =C 、Q P <D 、不能确定 二、填空题(共6小题,每小题4分,共24分)11.设12142++mx x 是一个完全平方式,则m =_______。

12.已知51=+x x ,那么221xx +=_______。

13.方程()()()()41812523=-+--+x x x x 的解是_______。

14.已知2=+n m ,2-=mn ,则=--)1)(1(n m _______。

15.已知2a=5,2b=10,2c=50,那么a 、b 、c 之间满足的等量关系是___________. 16.若622=-n m ,且3=-n m ,则=+n m . 三、解答题(共8题,共66分) 17计算:(本题9分) (1)()()02201214.3211π--⎪⎭⎫ ⎝⎛-+--(2)(2)()()()()233232222x y x xy y x ÷-+-⋅(3)()()222223366m m n m n m -÷--18、(本题9分)(1)先化简,再求值:()()()()221112++++-+--a b a b a b a ,其中21=a ,2-=b 。

(2)已知31=-x ,求代数式4)1(4)1(2++-+x x 的值.(3)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中12-=a .19、(本题8分)如图所示,长方形ABCD 是“阳光小区”内一块空地,已知AB=2a ,BC=3b ,且E 为AB 边的中点,CF=13 BC ,现打算在阴影部分种植一片草坪,求这片草坪的面积。

20、(本题8分)若(x 2+mx-8) (x 2-3x+n)的展开式中不含x 2和x 3项,求m 和n 的值21、(本题8分)若a =2005,b =2006,c =2007,求ac bc ab c b a ---++222的值。

22、(本题8分).说明代数式[]y y y x y x y x +-÷-+--)2())(()(2的值,与y 的值无关。

23、(本题8分)如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形 地块,•规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面 积是多少平方米?•并求出当a=3,b=2时的绿化面积.24、(本题8分)某城市为了鼓励居民节约用水,对自来水用户按如下标准收费: 若每月每户用水不超过a 吨,每吨m 元;若超过a 吨,则超过的部分以每吨2m 元计算.•现有一居民本月用水x 吨,则应交水费多少元?参考答案一、选择题二、填空题11. 44± 12. 23 13. 1411-=x 14. -3 15. a+b=c 16. 2三、解答题17计算:(本题9分)4141)1(=-+=解原式3522642)2(4)2(y x x xy y x -=÷-⋅=解原式 122)3(2++-=n n 解原式13841,2,21244)1()1(44)1.(182222222=++=-==+-=++++-+-=原式时当解原式b a b ab a a b a b ab a(2)由31=-x 得13+=x化简原式=444122+--++x x x=122+-x x=1)13(2)13(2++-+=12321323+--++ =3(3)原式=a a 62+, 当12-=a 时,原式=324-.ab b a ab ab S 2221621619=⨯-⨯-=阴影解⎩⎨⎧==∴⎩⎨⎧=--=-∴-++--+-+=-+-+-++-=17308303,8)24()83()3(8248332032234223234n m m n m x x n x mn x m n x m x n x x mnx mx mx nx x x 项和不含解原式[]()3411212007,2006,2005,)()()(212122=++====-+-+-=原式时当解原式c b a c a c b b a无关代数式的值与解原式y x y y x y y y x y xy x ∴=+-=+-÷+-+-=)2()2(222222mamx ma mx am a x m am a x mx a x -=-+=-+≤222)(2,;,24时如果元应交水费时解如果φ63,2,335)()3)(2(.2322===+=+-++=原式时当解绿化b a aba b a b a b a S整式的乘除一、选择(每题2分,共24分)1.下列计算正确的是().A.2x2·3x3=6x3 B.2x2+3x3=5x5C.(-3x2)·(-3x2)=9x5 D.54x n·25x m=12x mn2.一个多项式加上3y2-2y-5得到多项式5y3-4y-6,则原来的多项式为(). A.5y3+3y2+2y-1 B.5y3-3y2-2y-6C.5y3+3y2-2y-1 D.5y3-3y2-2y-13.下列运算正确的是().A.a2·a3=a5 B.(a2)3=a5 C.a6÷a2=a3 D.a6-a2=a44.下列运算中正确的是().A.12a+13a=15a B.3a2+2a3=5a5 C.3x2y+4yx2=7 D.-mn+mn=05.下列说法中正确的是().A.-13xy2是单项式 B.xy2没有系数C.x-1是单项式 D.0不是单项式6.若(x-2y)2=(x+2y)2+m,则m等于().A.4xy B.-4xy C.8xy D.-8xy 7.(a-b+c)(-a+b-c)等于().A.-(a-b+c)2 B.c2-(a-b)2C.(a-b)2-c2 D.c2-a+b28.计算(3x2y)·(-43x4y)的结果是().A.x6y2 B.-4x6y C.-4x6y2 D.x8y9.等式(x+4)0=1成立的条件是().A.x为有理数 B.x≠0 C.x≠4 D.x≠-410.下列多项式乘法算式中,可以用平方差公式计算的是().A.(m-n)(n-m) B.(a+b)(-a-b)C.(-a-b)(a-b) D.(a+b)(a+b)11.下列等式恒成立的是().A.(m+n)2=m2+n2 B.(2a-b)2=4a2-2ab+b2C.(4x+1)2=16x2+8x+1 D.(x-3)2=x2-912.若A=(2+1)(22+1)(24+1)(28+1),则A-2003的末位数字是().A.0 B.2 C.4 D.6二、填空(每题2分,共28分)13.-xy2的系数是______,次数是_______.14.•一件夹克标价为a•元,•现按标价的7•折出售,则实际售价用代数式表示为______. 15.x_______=x n+1;(m+n)(______)=n2-m2;(a2)3·(a3)2=______.16.月球距离地球约为×105千米,一架飞机速度为8×102千米/时,•若坐飞机飞行这么远的距离需_________.17.a2+b2+________=(a+b)2 a2+b2+_______=(a-b)2(a-b)2+______=(a+b)218.若x2-3x+a是完全平方式,则a=_______.19.多项式5x2-7x-3是____次_______项式.20.用科学记数法表示-=________.21.若-3x m y5与+1是同类项,则m+n=______.22.如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是________.23.若x2+kx+14=(x-12)2,则k=_______;若x2-kx+1是完全平方式,则k=______.24.(-1615)-2=______;(x-)2=_______.25.22005×()668=________.26.有三个连续的自然数,中间一个是x,则它们的积是_______.三、计算(每题3分,共24分)27.(2x2y-3xy2)-(6x2y-3xy2) 28.(-32ax4y3)÷(-65ax2y2)·8a2y29.(45a3-16a2b+3a)÷(-13a) 30.(23x2y-6xy)·(12xy)31.(x-2)(x+2)-(x+1)(x-3) 32.(1-3y)(1+3y)(1+9y2)33.(ab+1)2-(ab-1)2四、运用乘法公式简便计算(每题2分,共4分)34.(998)2 35.197×203五、先化简,再求值(每题4分,共8分)36.(x+4)(x-2)(x-4),其中x=-1.37.[(xy+2)(xy-2)-2x2y2+4],其中x=10,y=-1 25.六、解答题(每题4分,共12分)38.任意给出一个数,按下列程度计算下去,在括号内写出每一步的运算结果.39.已知2x+5y=3,求4x·32y的值.40.已知a2+2a+b2-4b+5=0,求a,b的值.附加题(10分)1.下列每个图形都是由若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n(n≥2)个棋子,每个图案中的棋子总数为S,按下列的排列规律判断,•S与n之间的关系式并求当n=6,10时,S的值.2.设a (a -1)-(a 2-b )=2,求222a b -ab 的值.答案:一、1.C 2.D 3.A 4.D 5.A 6.D7.A 8.C 9.D 10.C 11.C 12.B二、13.-1 3 14.元 15.x n n-m a12 16.×102小时17.2ab -•2ab 4ab 18.9419.二三 20.-×10-821.5 22.±4 23.-1 ±2 24.225256x2-x+14•25.2 26.x3-x三、27.-4x2y 28.10a2x2y2 29.-135a2+12ab-930.13x2y2-3x2y 31.2x-1 32.1-81x4 •33.4ab四、34.996004 35.39991五、36.x2-2x2-16x+32 45 37.-xy 2 5六、38.略 39.8 40.a=-1,b=2附加题:1.S=4n-4,当n=6时,S=20;当n=10时,S=36 2.见疑难解析2.∵a(a-1)-(a2-b)=2,进行整理a2-a-a2+b=2,得b-a=2,再把222a b+-ab变形成2()222a b ab ab-+-=2.。

相关文档
最新文档