银行家算法实验报告(C语言版)
银行家算法实验报告
银行家算法实验报告银行家算法是为了实现避免出现死锁的状态而采取的一种算法,本实验则是用C语言实现。
一、银行家算法数据结构1、可利用资源数量Avail。
这是一个含M个元素的数组,其中每一个元素代表一类可用的资源数目,定义为int型,Avail[m]。
2、最大需求矩阵Max。
这是一个nxm的二维矩阵,它定义了系统中n个进程的每一个进程对m类资源的最大需求,定义为int型,Max[n][m]。
3、分配矩阵Alloc。
这是一个nxm的二维矩阵,它定义了系统中每一类资源当前已分配给每一进程的资源数。
定义为int型,Alloc[n][m]。
4、需求矩阵Need。
这也是一个nxm的二维矩阵,用以表示每一个进程尚需的各类资源数。
定义为int型,Need[n][m]。
5、请求资源数目Request。
这是一个含M个元素的数组,它表示进程请求的资源数目,定义为int型,Request[m]。
6、系统当前可用的资源矩阵Work,这是一个含M个元素的数组,表示系统还可以分配的资源数目,用于对安全算法的检测。
定义为int型,Work[m]。
7、记录安全序号的数组sequence,用于记录系统的安全信号,便于在后面输出。
定义为int型,sequence[n].二、银行家算法过程步骤如下:1、判断请求的资源是否超过他所宣布需要的最大值,即如果request[j]>need[i][j],则判断出错,否则继续执行。
2、判断请求的资源是否超过系统可分配的数目,即如果request[j]>Avail[j],则判断出错,否则继续执行。
3、系统试探着把资源分配给进程Pi。
并修改其中的数据Avail、Alloc、Need。
4、系统进行安全性算法的检查。
三、安全性算法其中有两个信号量,Work和Finish。
分别用于表示系统可提供给进程的继续运行所需的各类资源的数目,含m个int型的元素。
而Finish用于标识系统是否有足够的资源分配给进程,使之运行完成,默认为1(不能),从而只有在finish都为0时才能表示安全算法成功。
银行家算法-实验报告
淮海工学院计算机工程学院实验报告书课程名:《操作系统原理》题目:银行家算法班级:学号:姓名:一、实验目的银行家算法是操作系统中避免死锁的典型算法,本实验可以加深对银行家算法的步骤和相关数据结构用法的更好理解。
实验环境Turbo C 2.0/3.0或VC++6.0实验学时4学时,必做实验。
二、实验内容用C语言编写一个简单的银行家算法模拟程序,用银行家算法实现资源分配。
程序能模拟多个进程共享多种资源的情形。
进程可动态地申请资源,系统按各进程的申请动态地分配资源。
要求程序具有显示和打印各进程的某一时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源数量以及为某进程分配资源后的有关资源数据的情况。
三、实验说明实验中进程的数量、资源的种类以及每种资源的总量Total[j]最好允许动态指定。
初始时每个进程运行过程中的最大资源需求量Max[i,j]和系统已分配给该进程的资源量Allocation[i,j]均为已知(这些数值可以在程序运行时动态输入),而算法中其他数据结构的值(包括Need[i,j]、Available[j])则需要由程序根据已知量的值计算产生。
四、实验步骤1、理解本实验中关于两种调度算法的说明。
2、根据调度算法的说明,画出相应的程序流程图。
3、按照程序流程图,用C语言编程并实现。
五、分析与思考1.要找出某一状态下所有可能的安全序列,程序该如何实现?答:要找出这个状态下的所有可能的安全序列,前提是要是使这个系统先处于安全状态,而系统的状态可通过以下来描述:进程剩余申请数=最大申请数-占有数;可分配资源数=总数-占有数之和;通过这个描述来算出系统是否安全,从而找出所有的安全序列。
2.银行家算法的局限性有哪些?答:银行家算法是一种最有代表性的避免死锁的算法。
银行家算法即把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。
操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。
操作系统课程设计实验报告用C实现银行家算法
操作系统实验报告(2)学院:计算机科学与技术学院班级:计091学号:姓名:时间:2011/12/30目录1.实验名称 (3)2.实验目的 (3)3.实验内容 (3)4.实验要求 (3)5.实验原理 (3)6.实验环境 (4)7.实验设计 (4)7.1数据结构设计 (4)7.2算法设计 (6)7.3功能模块设计 (7)8.实验运行结果 (8)9.实验心得 (9)附录:源代码(部分) (9)一、实验名称:用C++实现银行家算法二、实验目的:通过自己编程来实现银行家算法,进一步理解银行家算法的概念及含义,提高对银行家算法的认识,同时提高自己的动手实践能力。
各种死锁防止方法能够阻止发生死锁,但必然会降低系统的并发性并导致低效的资源利用率。
死锁避免却与此相反,通过合适的资源分配算法确保不会出现进程循环等待链,从而避免死锁。
本实验旨在了解死锁产生的条件和原因,并采用银行家算法有效地防止死锁的发生。
三、实验内容:利用C++,实现银行家算法四、实验要求:1.完成银行家算法的设计2.设计有n个进程共享m个系统资源的系统,进程可动态的申请和释放资源,系统按各进程的申请动态的分配资源。
五、实验原理:系统中的所有进程放入进程集合,在安全状态下系统收到进程的资源请求后,先把资源试探性的分配给它。
之后,系统将剩下的可用资源和进程集合中的其他进程还需要的资源数作比较,找出剩余资源能够满足的最大需求量的进程,从而保证进程运行完毕并归还全部资源。
这时,把这个进程从进程集合中删除,归还其所占用的所有资源,系统的剩余资源则更多,反复执行上述步骤。
最后,检查进程集合,若为空则表明本次申请可行,系统处于安全状态,可以真正执行本次分配,否则,本次资源分配暂不实施,让申请资源的进程等待。
银行家算法是一种最有代表性的避免死锁的算法。
在避免死锁方法中允许进程动态地申请资源,但系统在进行资源分配之前,应先计算此次分配资源的安全性,若分配不会导致系统进入不安全状态,则分配,否则等待。
操作系统实验报告--C语言实现银行家算法
实验报告程序源代码:#include <stdio.h>#include <stdlib.h>#include <conio.h># define m 50int no1; //进程数int no2; //资源数int r;int allocation[m][m],need[m][m],available[m],max[m][m];char name1[m],name2[m]; //定义全局变量void main(){void check();void print();int i,j,p=0,q=0;char c;int request[m],allocation1[m][m],need1[m][m],available1[m];printf("**********************************************\n");printf("* 银行家算法的设计与实现 *\n");printf("**********************************************\n");printf("请输入进程总数:\n");scanf("%d",&no1);printf("请输入资源种类数:\n");scanf("%d",&no2);printf("请输入Max矩阵:\n");for(i=0;i<no1;i++)for(j=0;j<no2;j++)scanf("%d",&max[i][j]); //输入已知进程最大资源需求量printf("请输入Allocation矩阵:\n");for(i=0;i<no1;i++)for(j=0;j<no2;j++)scanf("%d",&allocation[i][j]); //输入已知的进程已分配的资源数for(i=0;i<no1;i++)for(j=0;j<no2;j++)need[i][j]=max[i][j]-allocation[i][j]; //根据输入的两个数组计算出need矩阵的值printf("请输入Available矩阵\n");for(i=0;i<no2;i++)scanf("%d",&available[i]); //输入已知的可用资源数print(); //输出已知条件check(); //检测T0时刻已知条件的安全状态if(r==1) //如果安全则执行以下代码{do{q=0;p=0;printf("\n请输入请求资源的进程号(0~4):\n");for(j=0;j<=10;j++){scanf("%d",&i);if(i>=no1){printf("输入错误,请重新输入:\n");continue;}else break;}printf("\n请输入该进程所请求的资源数request[j]:\n");for(j=0;j<no2;j++)scanf("%d",&request[j]);for(j=0;j<no2;j++)if(request[j]>need[i][j]) p=1;//判断请求是否超过该进程所需要的资源数if(p)printf("请求资源超过该进程资源需求量,请求失败!\n");else{for(j=0;j<no2;j++)if(request[j]>available[j]) q=1;//判断请求是否超过可用资源数if(q)printf("没有做够的资源分配,请求失败!\n");else //请求满足条件{for(j=0;j<no2;j++){available1[j]=available[j];allocation1[i][j]=allocation[i][j];need1[i][j]=need[i][j];//保存原已分配的资源数,仍需要的资源数和可用的资源数available[j]=available[j]-request[j];allocation[i][j]+=request[j];need[i][j]=need[i][j]-request[j];//系统尝试把资源分配给请求的进程}print();check(); //检测分配后的安全性if(r==0) //如果分配后系统不安全{for(j=0;j<no2;j++){available[j]=available1[j];allocation[i][j]=allocation1[i][j];need[i][j]=need1[i][j];//还原已分配的资源数,仍需要的资源数和可用的资源数}printf("返回分配前资源数\n");print();}}}printf("\n你还要继续分配吗?Y or N ?\n");//判断是否继续进行资源分配c=getche();}while(c=='y'||c=='Y');}}void check() //安全算法函数{int k,f,v=0,i,j;int work[m],a[m];bool finish[m];r=1;for(i=0;i<no1;i++)finish[i]=false; // 初始化进程均没得到足够资源数并完成for(i=0;i<no2;i++)work[i]=available[i];//work[i]表示可提供进程继续运行的各类资源数k=no1;do{for(i=0;i<no1;i++){if(finish[i]==false){f=1;for(j=0;j<no2;j++)if(need[i][j]>work[j])f=0;if(f==1) //找到还没有完成且需求数小于可提供进程继续运行的资源数的进程{finish[i]=true;a[v++]=i; //记录安全序列号for(j=0;j<no2;j++)work[j]+=allocation[i][j]; //释放该进程已分配的资源}}}k--; //每完成一个进程分配,未完成的进程数就减1 }while(k>0);f=1;for(i=0;i<no1;i++) //判断是否所有的进程都完成{if(finish[i]==false){f=0;break;}}if(f==0) //若有进程没完成,则为不安全状态{printf("系统处在不安全状态!");r=0;}else{printf("\n系统当前为安全状态,安全序列为:\n");for(i=0;i<no1;i++)printf("p%d ",a[i]); //输出安全序列}}void print() //输出函数{int i,j;printf("\n");printf("*************此时刻资源分配情况*********************\n");printf("进程名/号 | Max | Allocation | Need |\n"); for (i = 0; i < no1; i++){printf(" p%d/%d ",i,i);for (j = 0; j < no2; j++){printf("%d ",max[i][j]);}for (j = 0; j < no2; j++){printf(" %d ",allocation[i][j]);}for (j = 0; j < no2; j++){printf(" %d ",need[i][j]);}printf("\n");}printf("\n");printf("各类资源可利用的资源数为:");for (j = 0; j < no2; j++){printf(" %d",available[j]);}printf("\n");}程序运行调试结果:1、程序初始化2、检测系统资源分配是否安全结果。
银行家算法操作系统实验报告
竭诚为您提供优质文档/双击可除银行家算法操作系统实验报告篇一:计算机操作系统银行家算法实验报告计算机操作系统实验报告一、实验名称:银行家算法二、实验目的:银行家算法是避免死锁的一种重要方法,通过编写一个简单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
三、问题分析与设计:1、算法思路:先对用户提出的请求进行合法性检查,即检查请求是否大于需要的,是否大于可利用的。
若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。
若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。
2、银行家算法步骤:(1)如果Requesti<or=need,则转向步骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。
(2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。
(3)系统试探把要求的资源分配给进程pi,并修改下面数据结构中的数值:Available=Available-Request[i];Allocation=Allocation+Request;need=need-Request;(4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。
3、安全性算法步骤:(1)设置两个向量①工作向量work。
它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,work=Allocation;②布尔向量Finish。
它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true。
(2)从进程集合中找到一个能满足下述条件的进程:①Finish[i]=false②need 如找到,执行步骤(3);否则,执行步骤(4)。
(3)当进程p获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行:work=work+Allocation;Finish[i]=true;转向步骤(2)。
操作系统课程设计实验报告用C实现银行家算法
操作系统实验报告2学院:计算机科学与技术学院班级:计091学号:姓名:时间:2011/12/30目录1.实验名称 (3)2.实验目的 (3)3.实验内容 (3)4.实验要求 (3)5.实验原理 (3)6.实验环境 (4)7.实验设计 (4)数据结构设计 (4)算法设计 (6)功能模块设计 (7)8.实验运行结果 (8)9.实验心得 (9)附录:源代码部分 (9)一、实验名称:用C++实现银行家算法二、实验目的:通过自己编程来实现银行家算法,进一步理解银行家算法的概念及含义,提高对银行家算法的认识,同时提高自己的动手实践能力;各种死锁防止方法能够阻止发生死锁,但必然会降低系统的并发性并导致低效的资源利用率;死锁避免却与此相反,通过合适的资源分配算法确保不会出现进程循环等待链,从而避免死锁;本实验旨在了解死锁产生的条件和原因,并采用银行家算法有效地防止死锁的发生;三、实验内容:利用C++,实现银行家算法四、实验要求:1.完成银行家算法的设计2.设计有n个进程共享m个系统资源的系统,进程可动态的申请和释放资源,系统按各进程的申请动态的分配资源;五、实验原理:系统中的所有进程放入进程集合,在安全状态下系统收到进程的资源请求后,先把资源试探性的分配给它;之后,系统将剩下的可用资源和进程集合中的其他进程还需要的资源数作比较,找出剩余资源能够满足的最大需求量的进程,从而保证进程运行完毕并归还全部资源;这时,把这个进程从进程集合中删除,归还其所占用的所有资源,系统的剩余资源则更多,反复执行上述步骤;最后,检查进程集合,若为空则表明本次申请可行,系统处于安全状态,可以真正执行本次分配,否则,本次资源分配暂不实施,让申请资源的进程等待;银行家算法是一种最有代表性的避免的算法;在避免死锁方法中允许进程动态地申请资源,但系统在进行资源分配之前,应先计算此次分配资源的安全性,若分配不会导致系统进入不安全状态,则分配,否则等待;为实现银行家算法,系统必须设置若干;要解释银行家算法,必须先解释操作系统安全状态和不安全状态;安全序列是指一个进程序列{P1,…,Pn}是安全的,如果对于每一个进程Pi1≤i≤n,它以后尚需要的资源量不超过系统当前剩余资源量与所有进程Pj j < i 当前占有资源量之和;安全状态:如果存在一个由系统中所有进程构成的安全序列P1,…,Pn,则系统处于安全状态;安全状态一定是没有死锁发生;不安全状态:不存在一个安全序列;不安全状态不一定导致死锁;我们可以把看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款;为保证资金的安全,银行家规定:1 当一个顾客对资金的最大需求量不超过银行家现有的资金时就可接纳该顾客;2 顾客可以分期贷款,但贷款的总数不能超过最大需求量;3 当银行家现有的资金不能满足顾客尚需的贷款数额时,对顾客的贷款可推迟支付,但总能使顾客在有限的时间里得到贷款;4 当顾客得到所需的全部资金后,一定能在有限的时间里归还所有的资金.操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配;当进程在执行中继续申请资源时,先测试该进程本次申请的资源数是否超过了该资源所剩余的总量;若超过则拒绝分配资源,若能满足则按当前的申请量分配资源,否则也要推迟分配;六、实验环境:Win-7系统Visual C++七、实验设计:1.数据结构设计定义结构体:struct Process0, 0, 0;}}};class DataInit法设计class FindSafeListdb->available; db->pdb->ruleri.currentAvail db->pdb->ruleri-1.currentAvail;db->pdb->ruleri-1.allocation;db->pdb->ruleri.currentAvail{ return false; }db->sum{ return false; }}return true; laim_allocation{ return 1; }Source sdb->pi.allocation; db->ask;db->pi.db->ask;ifexsitSafeListdb db->ask;db->pi.db->ask;return 2;}db->0,0,0; 能模块设计class Data0, 0, 0;}}};class DataInitr1,r2,r3;cout<<'p'<<i<<" max allocationclaimR1,R2,R3: ";r1,r2,r3;r1=db->pi.>pi.;pi.;r3=db->pi.>pi.;db->pi.r1, r2, r3;}}};class Displaylaim;cout<<"\t\t";displaySourcepi.allocation;cout<<endl;}cout<<endl;}void displaySafeListData db urrentAvail;cout<<" ";displaySourcedb->pdb->ruleri.claim;cout<<" ";displaySourcedb->pdb->ruleri.allocation;cout<<" ";displaySourcedb->pdb->ruleri.claim_allocation;cout<<" true";cout<<endl;}}void displayAskResultData db,int n db->available;db->pdb->ruleri.currentAvail db->pdb->ruleri-1.currentAvail;db->pdb->ruleri-1.allocation;db->pdb->ruleri.currentAvail{ return false; }db->sum{ return false; }}return true; laim_allocation{ return 1; }Source sdb->pi.allocation; db->ask;db->pi.db->ask;ifexsitSafeListdb db->ask;db->pi.db->ask;return 2;}db->0,0,0; //找到安全序列,将请求资源置零,返回3return 3;}};void main{Data db;db=new Data;ifdb{ cout<<"errorno enough memory space"; return; } DataInit dataInit;db; //设置进程个数db; //设置系统总资源量db; //设置当前系统可获得资源量db; //设置t0时刻进程基本状态Display display;FindSafeList findSafeList;int r1=0,r2=0,r3=0;int c;db->r1,r2,r3; //设置请求资源为0,即无请求c=db,0; //寻找安全序列,返回结果ifc=3{ cout<<"t0时刻的进程组不存在安全序列\n"; return; }int choice=1;int pi;whilechoice{cout<<"\n 选择操作:\n 1 查看进程情况\n 2 请求分配资源\n 0 退出\n ";cin>>choice;switchchoice{case 1:{cout<<"当前资源量availableR1,R2,R3:\n ";db->available;cout<<endl;cout<<"\n当前进程资源分配情况piR1,R2,R3: \n";cout<<" 进程\tclaim\t\tallocation\n";db->p,db->pLength;break;}case 2:{cout<<"输入请求资源进程序号:";cin>>pi;cout<<"输入请求资源R1,R2,R3: 0,0,0表示当前进程组无请求\n";cin>>r1>>r2>>r3;db->r1,r2,r3;c=db,pi;db,c;cout<<endl;break;}case 0:{ break; }default:{ cout<<"input errortry again\n"; break; }}}}。
银行家算法实验报告
操作系统实验报告——银行家算法计科101班张昊翔1007300204一.实验目的1. 加深对死锁概念的理解。
2. 能够利用银行家算法,有效避免死锁的发生,或检测死锁的存在。
二.主要思想我们可以把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。
操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。
当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。
若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。
三.实验原理在多道程序系统中,虽可借助于多个进程的并发执行,来改善系统的资源利用率,提高系统的吞吐量,但可能发生一种危险——死锁。
所谓死锁,是指多个进程在运行过程中因争夺资源而造成的一种僵局,当进程处于这种僵局状态时,若无外力作用,它们都将无法再向前推进。
为保证系统中诸进程的正常运行,应事先采取必要的措施,来预防死锁。
最有代表性的避免死锁的方法,是Dijkstra的银行家算法。
银行家算法是避免死锁的一种重要方法,通过编写一个简单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
死锁的产生,必须同时满足四个条件,第一个为互斥条件,即一个资源每次只能由一个进程占用;第二个为请求和保持条件,指进程已经保持了至少一个资源,但又提出了新的资源请求,而该资源又被其他进程占有,此时请求进程阻塞,但又对自己已获得的其他资源保持不放;第三个为非剥夺条件,即在出现死锁的系统中一定有不可剥夺使用的资源;第四个为循环等待条件,系统中存在若干个循环等待的进程,即其中每一个进程分别等待它前一个进程所持有的资源。
银行家算法实验报告
银行家算法实验报告 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】计算机操作系统实验报告一、实验名称:银行家算法二、实验目的:银行家算法是避免死锁的一种重要方法,通过编写一个简单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
三、问题分析与设计:1、算法思路:先对用户提出的请求进行合法性检查,即检查请求是否大于需要的,是否大于可利用的。
若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。
若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。
2、银行家算法步骤:(1)如果Requesti<or =Need,则转向步骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。
(2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。
(3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值:Available=Available-Request[i];Allocation=Allocation+Request;Need=Need-Request;(4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。
3、安全性算法步骤:(1)设置两个向量①工作向量Work。
它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation;②布尔向量Finish。
它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true。
(2)从进程集合中找到一个能满足下述条件的进程:①Finish[i]=false②Need<or=Work如找到,执行步骤(3);否则,执行步骤(4)。
(3)当进程P获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行:Work=Work+Allocation;Finish[i]=true;转向步骤(2)。
银行家算法课程设计实验报告
银行家算法课程设计实验报告摘要:本文主要介绍了一种新的实验方法——银行家算法课程设计实验,针对算法教学的实验设计,特别是在银行家算法这一领域,运用Visual C++ 语言,给出了一种实验实现及其相应的实验报告。
实验的通过对 Visual C++ 的开发环境及语法的掌握,实验证明了银行家算法的可行性和实际应用的安全性。
关键词:银行家算法;Visual C++;实验设计;实验报告1. 绪论随着网络技术的不断发展和深化,如今网络系统的仿真实验,尤其是银行家算法的仿真实验的需求量日益增大,该实验将把网络系统设计中的概念、原理以及运用的方法用于系统的实际应用,更直观地表达出网络实验中的概念。
本实验希望通过对 Visual C++语言的开发环境及语法的掌握,实现银行家算法在计算机系统中的运用,实现这种算法的可行性和实际应用的安全性,从而使网络系统仿真实验更加简单有效的实现。
2. 实验目的(1)熟悉 Visual C++ 语言的开发环境及语法;(2)了解银行家算法基本原理及其实现;(3)验证银行家算法的可行性及实际应用的安全性;(4)为网络系统仿真实验提供一种新的实验方法。
3. 实验内容(1)Visual C++编程环境的熟悉;(2)实现银行家算法的仿真实验;(3)验证银行家算法的可行性和实际应用的安全性;(4)实验报告的编写。
4. 实验环境实验环境主要包括实验平台、操作系统、语言编程工具和文本编辑器。
实验平台:实验所使用的计算机硬件平台为:Intel 酷睿i5-8400 处理器、 DDR4 8G 内存及 GTX 1050TI 4G 显卡;操作系统:实验所使用的操作系统为 Windows 10 家庭版;语言编程工具:实验所使用的语言编程工具为 Visual Studio 2017;文本编辑器:实验所使用的文本编辑器为 Notepad。
5. 实验过程实验过程主要包括 Visual C++ 编程环境的熟悉、银行家算法的仿真实现及实验报告的编写。
银行家算法 实验报告
淮海工学院计算机工程学院实验报告书课程名:《操作系统原理》题目:银行家算法班级:学号:姓名:一、实验目的银行家算法是操作系统中避免死锁的典型算法,本实验可以加深对银行家算法的步骤和相关数据结构用法的更好理解。
实验环境TurboC2.0/3.0或VC++6.0实验学时4学时,必做实验。
二、实验内容用C语言编写一个简单的银行家算法模拟程序,用银行家算法实现资源分配。
程序能模拟多个进程共享多种资源的情形。
进程可动态地申请资源,系统按各进程的申请动态地分配资源。
要求程序具有显示和打印各进程的某一时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源数量以及为某进程分配资源后的有关资源数据的情况。
三、实验说明实验中进程的数量、资源的种类以及每种资源的总量Total[j]最好允许动态指定。
初始时每个进程运行过程中的最大资源需求量Max[i,j]和系统已分配给该进程的资源量Allocation[i,j]均为已知(这些数值可以在程序运行时动态输入),而算法中其他数据结构的值(包括Need[i,j]、Available[j])则需要由程序根据已知量的值计算产生。
四、实验步骤1、理解本实验中关于两种调度算法的说明。
2、根据调度算法的说明,画出相应的程序流程图。
3、按照程序流程图,用C语言编程并实现。
五、分析与思考1.要找出某一状态下所有可能的安全序列,程序该如何实现?答:要找出这个状态下的所有可能的安全序列,前提是要是使这个系统先处于安全状态,而系统的状态可通过以下来描述:进程剩余申请数=最大申请数-占有数;可分配资源数=总数-占有数之和;通过这个描述来算出系统是否安全,从而找出所有的安全序列。
2.银行家算法的局限性有哪些?答:银行家算法是一种最有代表性的避免死锁的算法。
银行家算法即把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。
操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。
银行家算法实验报告c语言
银行家算法实验报告c语言银行家算法实验报告引言:计算机科学中的银行家算法是一种资源分配和避免死锁的算法。
它是由艾德加·戴克斯特拉(Edsger Dijkstra)在1965年提出的。
银行家算法通过判断一个系统是否处于安全状态来决定是否分配资源给进程。
本实验旨在使用C语言实现银行家算法,并通过一系列的实例来验证其有效性。
一、实验背景银行家算法是为了解决资源分配中的死锁问题而提出的。
在多进程系统中,每个进程都需要一定数量的资源来完成任务。
然而,如果资源分配不当,可能会导致死锁的发生,即所有进程都陷入无法继续执行的状态。
银行家算法通过合理地分配资源,避免了死锁的发生。
二、实验目的本实验的主要目的是通过C语言实现银行家算法,并通过实例验证其正确性和有效性。
具体而言,我们将模拟一个系统中的多个进程,并为每个进程分配资源。
然后,我们将使用银行家算法来判断系统是否处于安全状态,从而决定是否继续分配资源。
三、实验过程1. 创建进程和资源我们首先创建了5个进程和3种资源。
每个进程需要的资源数量是随机生成的,以模拟真实情况下的资源需求。
2. 分配资源根据银行家算法的原则,我们按照以下步骤来分配资源:- 首先,检查每个进程的资源需求是否小于等于系统当前可用的资源数量。
- 如果满足条件,将资源分配给该进程,并更新系统剩余资源数量。
- 如果不满足条件,暂时不分配资源给该进程,继续检查下一个进程。
3. 判断系统状态在每次资源分配后,我们需要判断系统是否处于安全状态。
为此,我们使用银行家算法的核心原则:只有当系统能够为每个进程提供所需的资源时,系统才是安全的。
我们通过遍历所有进程来检查其资源需求是否小于等于系统剩余资源数量,如果满足条件,说明系统是安全的。
4. 实例验证我们进行了多个实例验证,以确保银行家算法的正确性。
在每个实例中,我们模拟了不同的进程和资源需求,并观察系统的状态。
通过比较实验结果和预期结果,我们验证了银行家算法的有效性。
银行家算法实验报告
计算机操作系统实验报告何美西109253030212一、实验名称:银行家算法二、实验目的:银行家算法是避免死锁的一种重要方法,通过编写一个简单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
三、问题分析与设计:1、算法思路:先对用户提出的请求进行合法性检查,即检查请求是否大于需要的,是否大于可利用的。
若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。
若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。
2、银行家算法步骤:(1)如果Requesti<or =Need,则转向步骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。
(2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。
(3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值:Available=Available-Request[i];Allocation=Allocation+Request;Need=Need-Request;(4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。
3、安全性算法步骤:(1)设置两个向量①工作向量Work。
它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation;②布尔向量Finish。
它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true。
(2)从进程集合中找到一个能满足下述条件的进程:①Finish[i]=false②Need<or=Work如找到,执行步骤(3);否则,执行步骤(4)。
(3)当进程P获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行:Work=Work+Allocation;Finish[i]=true;转向步骤(2)。
实验报告_银行家算法
1. 题目分析1.1 设计目的●理解死锁产生的原因和必要条件●了解避免死锁的几种基本方法●掌握银行家算法及安全性算法1.2 设计内容设计内容包括银行家算法和安全性算法,以及用VC界面实现输出1.3 相关知识概述银行家算法是一种最有代表性的避免死锁的算法。
要解释银行家算法,必须先解释操作系统安全状态和不安全状态。
安全状态:如果存在一个由系统中所有进程构成的安全序列P1,…,Pn,则系统处于安全状态。
安全状态一定是没有死锁发生。
不安全状态:不存在一个安全序列。
不安全状态一定导致死锁。
安全序列:一个进程序列{P1,…,Pn}是安全的,如果对于每一个进程Pi(1≤i≤n),它以后尚需要的资源量不超过系统当前剩余资源量与所有进程Pj (j < i )当前占有资源量之和。
2. 概要设计2.1主要数据结构描述static int MAX[5][3]; //最大需求矩阵static int AVAILABLE[3]; //可利用资源矩阵static int ALLOCATION[5][3]; //分配矩阵static int NEED[5][3]; //需求矩阵因为数组成员MAX,AVAILABLE, ALLOCATION, NEED的值每次调用一次银行家算法,如果分配成功,都会改变,所以将他们设定为静态成员变量。
int Request[3]; //请求向量int Work[3]; //工作向量bool FINISH[5];//标记系统是否有足够的资源分配给进程2.2 流程图(1)银行家算法流程图单击“执行银行家算法”按钮时会调用OnButton1()函数,相当于银行家算法注:只要不按“退出”按钮退出程序,数组MAX,A V AILABLE, ALLOCATION, NEED中会保留上一次执行完后变化的值,不停的单击“进行银行家算法”按钮,程序会在上一次执行完后的基础上反复的执行银行家算法。
(2)安全性算法流程图3. 详细设计3.1 主要算法描述当进程pi提出资源申请时,系统执行下列步骤:(1)若Request≤Need,转(2);否则错误返回(2)若Request≤Available,转(3);否则进程等待(3)假设系统分配了资源,则有:Available:=Available-Request;Allocation:=Allocation+Request;Need:=Need-Request若系统新状态是安全的,则分配完成若系统新状态是不安全的,则恢复原状态,进程等待安全性检查的步骤:(1) Work:=Available;Finish:=false;(2) 寻找满足条件的i:Finish=false;Need≤Work;如果不存在,则转(4)(3) Work:=Work+Allocation;Finish:=true;转(2)(4) 若对所有i,Finish=true,则系统处于安全状态,否则处于不安全状态3.2 程序界面设计4. 编码实现4.1 开发工具简介Visual C++集成开发环境下下实现的4.2 部分程序源码int CSisuoDlg::MAX[5][3]={{7,5,3},{3,2,2},{9,0,2},{2,2,2},{4,3,3}};int CSisuoDlg::AVAILABLE[3]={3,3,2};int CSisuoDlg::ALLOCATION[5][3]={{0,1,0},{2,0,0},{3,0,2},{2,1,1},{0,0,2}}; int CSisuoDlg::NEED[5][3]={{7,4,3},{1,2,2},{6,0,0},{0,1,1},{4,3,1}};int CSisuoDlg::safe(){int i,j,k,l=0;int Work[3];bool FINISH[5];int p[5];for(i=0;i<3;i++)Work[i]=AVAILABLE[i];for(i=0;i<5;i++){ FINISH[i]=false;}for(i=0;i<5;i++){if(FINISH[i]==true){ continue;}else{for(j=0;j<3;j++){if(NEED[i][j]>Work[j]){break;}}if(j==3)//找到满足要求的进程{FINISH[i]=true;for(k=0;k<3;k++){Work[k]+=ALLOCATION[i][k];}p[l++]=i;//记录安全序列i=-1;//每次都是从头开始找}else{continue;}}if(l==5){show+="经安全性检查,系统安全,本次分配成功。
操作系统实验报告(银行家算法c语言描述)
Inint(&processNum, &resourceNum);
printf("T0时刻安全性:");
if(safe(processNum, resourceNum))
{
isSafe=true;
printf("存在安全序列故系统是安全的!\n安全序列为:");
for(inti=0;i<processNum;++i)
{
if(Need[j][k]<=Work[k])
{
++count;
}
}
if(count==resourceNum)
{
for(intk=0;k<resourceNum;++k)
{
tempWork[j][k]=Work[k];
Work[k]=Work[k]+Allocation[j][k];
}
Finish[j]=true;
{intnum,typ源自;printf("输入进程数量和资源种类:");
scanf("%d%d",&num,&type);
*processNum=num;
*resourceNum=type;
printf("输入各类资源可用量:");
for(intj=0;j<type;++j)
{
scanf("%d",&Available[j]);
boolsafe(int,int);
boolIsValidate(int,int*,int,int);
voiddisplayInfo(int,int);
银行家算法(用C语言实现)课程设计报告
课程设计报告题目银行家算法程序设计课程名称操作系统课程设计院部名称信息技术学院专业计算机科学与技术班级学生姓名* *学号**********课程设计地点课程设计学时20指导教师* ********教务处制操作系统课程设计报告摘要Dijkstra提出的银行家算法,是最具代表性的避免死锁的算法。
本文对如何用银行家算法来处理操作系统给进程分配资源做了详细的说明,包括需求分析、概要设计、详细设计、测试与分析、总结、源程序清单。
首先做了需求分析,解释了什么是银行家算法,并指出它在资源分配中的重要作用。
然后给出了银行家算法的概要设计,包括算法思路、步骤,以及要用到的主要数据结构、函数模块及其之间的调用关系等。
在概要设计的基础上,又给出了详细的算法设计,实现概要设计中定义的所有函数,对每个函数写出核心算法,并画出了流程图。
接着对编码进行了测试与分析(并在最后附上Java编写的程序代码)。
最后对整个设计过程进行了总结。
关键词:安全状态;安全序列;银行家算法;安全性算法;安全序列;流程图。
目录摘要 (1)目录 (2)1.绪论 (3)1.1前言 (3)1.2研究意义 (4)1.3结构安排 (4)2.需求分析 (5)2.1题目描述 (5)2.2银行家算法 (5)2.3基本要求 (5)2.4目的 (6)3.概要设计 (7)3.1设备环境 (7)3.2算法思路 (7)3.3银行家算法步骤 (7)3.4安全性算法步骤 (8)3.5数据结构 (9)3.6系统结构图 (12)4.详细设计 (13)4.1主要函数的核心代码 (13)4.2程序流程图 (13)5.测试 (16)5.1测试用例 (16)5.2测试结果截图 (17)6.总结 (22)参考文献 (24)致谢 (25)附录 (26)1绪论1.1前言:Dijkstra (1965)提出了一种能够避免死锁的调度算法,称为银行家算法。
它的模型基于一个小城镇的银行家,他向一群客户分别承诺了一定的贷款额度,每个客户都有一个贷款额度,银行家知道不可能所有客户同时都需要最大贷款额,所以他只保留一定单位的资金来为客户服务,而不是满足所有客户贷款需求的最大单位。
银行家算法实验报告 (2)
一.绪论这次课程设计要求完成一个资源管理系统,该系统必须包括资源的添加、删除和修改等功能,并且允许其它进程来申请这里的资源,任何一个进程来申请资源时,必须先登记该进程对资源的申请要求,然后由系统检查当前资源的状况,并用银行家算法和安全性算法来检查是否允许分配资源给进程。
通过课程设计,加深我们对利用银行家算法避免死锁的理解。
在设计中主要的难点是用语言编写银行家算法和安全性算法,使系统资源分配能安全进行,避免系统死锁。
二.设计目的在多道程序系统中,虽可借助于多个进程的并发执行,来改善系统的资源利用提高吞吐量,但可能发生一种危险——死锁。
所谓死锁,是指多个进程运行中因争夺资源而造成的一种僵局,当进程处于这种僵持状态时,若无外力作用,他们都无法再向前推进。
虽然进程在运行过程中,可能发生死锁,但死锁的发生必须同时具备四个条件:互斥条件、请求和保持条件、不剥夺条件、环路等待条件;防止死锁的机构只须确保上述四个条件之一不出现,则系统不会发生死锁。
系统的状态分为安全状态和不安全状态,只要能使系统都处于安全状态,便可避免死锁。
所谓安全状态,是指系统能按某种进程顺序(P1,P2,…,P n),来为每个进程P i分配其所需分配,直至满足每个进程对资源的最大需求,使每个进程都可顺利地完成。
如果系统无法找到一个这样地安全系列,则称系统处于不安全状态。
在操作系统中研究资源分配策略时也有类似的问题,系统中有限的资源要供多个进程使用,必须保证得到资源的进程能在有限的时间内归还资源,以供它进程使用资源。
如果资源分配不得当就会发生进程循环等待资源,各进程都无法继续执行下去的死锁现象。
而最有代表性的避免死锁的算法,是Dijkstra的银行家算法。
银行家算法是避免死锁的一种重要方法,在课程设计中用C语言编写一个资源管理系统,并要用银行家算法和安全性算法检查是否允许分配资源给进程,避免死锁。
通过课程设计,加深我们对了解有关资源申请、避免死锁等概念,并加深我们对银行家算法理解。
银行家算法实验报告
计算机操作系统实验报告一、实验名称:银行家算法二、实验目的:银行家算法是避免死锁的一种重要方法,通过编写一个简单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
三、问题分析与设计:1、算法思路:先对用户提出的请求进行合法性检查,即检查请求是否大于需要的,是否大于可利用的。
若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。
若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。
2、银行家算法步骤:(1)如果Requesti<or =Need,则转向步骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。
(2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。
(3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值:Available=Available-Request[i];Allocation=Allocation+Request;Need=Need-Request;(4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。
3、安全性算法步骤:(1)设置两个向量①工作向量Work。
它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation;②布尔向量Finish。
它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true。
(2)从进程集合中找到一个能满足下述条件的进程:①Finish[i]=false②Need<or=Work如找到,执行步骤(3);否则,执行步骤(4)。
(3)当进程P获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行:Work=Work+Allocation;Finish[i]=true;转向步骤(2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
}
for(i=0;i<n;i++){
available[i]=available[i]-request[number][i];
allocation[number][i]=allocation[number][i]+request[number][i];
need[number][i]=need[number][i]-request[number][i];
(1)设置两个向量:工作向量Work,它表示系统可提供给进程继续运行所需的各类资源数目,在执行安全性算法开始时,Work= Available。工作向量Finish,它表示系统是否有足够的资源分配给进程,使之运行完成。开始时先做Finish[i]=false;当有足够的资源分配给进程时,再令Finish[i]=true。
}
printf("请输入分配矩阵:\n");
for (i=0;i<m;i++)
for (j=0;j<n;j++)
{
scanf("%d",&allocation[i][j]);
}
for (i=0;i<m;i++)
for (j=0;j<n;j++)
{
need[i][j]=max[i][j]-allocation[i][j];
(4)如果所有的Finish[i]=true都满足,则表示系统处于安全状态,否则,处于不安全状态。
四、实验结果及分析
1.实验设计说明
按0由用户输入,按1由系统提供数据
2.实验代码
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define max_process 50 //最大进程数
int finish[max_process];
int m=5,n=3;
void init();
int safe();
void bank();
void init2();
void print();
void print2();
void main()
{
int i;
printf("请输入测试数据,按0由用户输入测试数据,按1由系统提供测试数据:\n");
printf(" Ture\n");
for(p=0;p<n;p++)
work[p]=work[p]+allocation[l[i]][p];
if(i==4) return true;
}
}
else {printf("系统不安全\n"); return false;}
}
void bank(){
int i,number;
(3)若以上两个条件都满足,则系统试探着将资源分配给申请的进程,并修改下面数据结构中的数值:
Available[i,j]= Available[i,j]- Request [j];
Allocation[i][j]= Allocation[i][j]+ Request [j];
need[i][j]= need[i][j]- Request [j];
《操作系统》课程综合性实验报告
姓名:学号:2016年11月20日
实验题目
进程调度算法程序设计
一、实验目的
通过对安全性算法和银行家算法的模拟,进一步理解资源分配的基本概念,加深对资源申请,资源分配(银行家算法)以及系统是否能分配(安全性算法)资源的理解。
二、设备与环境
1.硬件设备:PC机一台
2.软件环境:安装Windows操作系统或者Linux操作系统,并安装相关的程序开发环境,如C \C++\Java等编程语言环境。
(4)试分配后,执行安全性检查,调用check()函数检查此次资源分配后系统是否处于安全状态。若安全,才正式将资源分配给进程。否则本次试探分配作废,恢复原来的资源分配状态,让该进程等待。
(5)用do{…}while循环语句实现输入字符y/n判断是否继续进行资源申请。
(二)安全性算法(safe()函数):
for(i=0;i<m;i++)
{ printf("p%d\t",i);
for(j=0;j<n;j++)
{
printf("%d\t",allocation[i][j]);
}
printf("\n");
}
printf("需求矩阵如下:\n");
for(i=0;i<m;i++)
{ printf("p%d\t",i);
for (i=0;i<n;i++) work[i]=available[i];
for(i=0;i<m;i++)
{
printf(" p%d |",l[i]);
for(p=0;p<n;p++)
printf("%3d ",work[p]);
printf("|");
for(p=0;p<n;p++)
{
printf("%3d ",need[l[i]][p]);
for(j=0;j<n;j++)
{
printf("%d\t",need[i][j]);
}
printf("\n");
}
printf("系统可提供资源如下:\n");
for(j=0;j<n;j++)
printf("%d\t",available[j]);
printf("\n");
}
int safe()
{
char answer;
while(1){
printf("\n请输入需申请资源的进程号(第一个进程号为0):\n");
scanf("%d",&number);
printf("请依次输入该进程所需申请的所有资源数目:\n");
for(i=0;i<n;i++)
scanf("%d",&request[number][i]);
scanf("%d",&n);
printf("请按顺序输入系统中可利用的每种资源量:\n");
for(i=0;i<n;i++)
scanf("%d",&available[i]);
printf("请输入最大需求矩阵:\n");
for (i=0;i<m;i++)
for (j=0;j<n;j++)
{
scanf("%d",&max[i][j]);
int i,j,k=0,l[m],p;
int work[n];
for (i=0;i<n;i++)
work[i]=available[i];
for (i=0;i<m;i++)
finish[i]=false;
for(i=0;i<m;i++)
{
if(finish[i]==true) continue;
else{
}
}
if(k==m)
{
printf("\n");
printf("**************************此时刻资源分配情况**************************\n");
printf("进程| Work | Need | Allo | W+Allo | Finish\n");
}
printf("|");
for(p=0;p<n;p++)
{
printf("%3d ",allocation[l[i]][p]);
}
printf("|");
for(p=0;p<n;p++)
{
printf("%3d ",allocation[l[i]][p]+work[p]);
}
printf("|");
for(i=0;i<n;i++) {
if(request[number][i]>need[number][i])
{
printf("申请的资源超过还需要的资源,请重新输入\n");
continue;
}
if(request[number][i]>available[i])
{
printf("申请的资源超过所能提供的资源,请重新输入\n");
scanf("%d",&i);
switch(i){
case 0: init();
break;
case 1: init2();
break;
}
print();