平均数、中位数、众数与方差
人教八年级数学平均数、加权平均数、中位数、众数、极差和方差归纳与复习
![人教八年级数学平均数、加权平均数、中位数、众数、极差和方差归纳与复习](https://img.taocdn.com/s3/m/233edee881c758f5f61f67eb.png)
平均数、加权平均数、中位数、众数、极差和方差归纳与复习一、回顾与梳理。
平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
即x=(x1+x2+……+xn)÷n中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
平均数:一组数据的平均值,平均水平.平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。
平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动.平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点。
反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点。
平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。
平均数易受极端数据的影响,从而使人对平均数产生怀疑。
中位数:在有序排列的一组数据中最居中的那个数据中等水平.中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。
中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点。
简单明了,很少受一组数据的极端值的影响。
中位数的缺点。
中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。
当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。
众数:一组数据中出现次数最多的那个数据。
集中趋势众数告诉我们,这个值出现次数最多,一组数据可以有不止一个众数,也可以没有众数。
众数着眼于对各数据出现的频数的考查,其大小只与这组数据中的部分数据有关.一组数据中的众数不止一个.当一组数据中有相同数据多次出现时,其众数往往是我们关心的.众数的优点。
数理统计平均数、中位数、众数,极差、标准差、方差
![数理统计平均数、中位数、众数,极差、标准差、方差](https://img.taocdn.com/s3/m/13da2e78011ca300a6c390fd.png)
平均数、中位数和众数的知识归纳与梳理:(一)平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
即x=(x1+x2+……+xn)÷n中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
平均数:一组数据的平均值平均水平平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。
平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点。
反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点。
平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。
平均数易受极端数据的影响,从而使人对平均数产生怀疑。
中位数:在有序排列的一组数据中最居中的那个数据中等水平中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。
中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点。
简单明了,很少受一组数据的极端值的影响。
中位数的缺点。
中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。
当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。
众数一组数据中出现次数最多的那个数据。
集中趋势众数告诉我们,这个值出现次数最多,一组数据可以有不止一个众数,也可以没有众数。
众数着眼于对各数据出现的频数的考查,其大小只与这组数据中的部分数据有关.一组数据中的众数不止一个.当一组数据中有相同数据多次出现时,其众数往往是我们关心的.众数的优点比较容易了解一组数据的大致情况,不受极端数据的影响,并且求法简便。
统计学参数概念
![统计学参数概念](https://img.taocdn.com/s3/m/0f3f1ff15ebfc77da26925c52cc58bd630869359.png)
统计学参数概念
统计学参数是用来描述数据分布特征的量,用于对数据进行分析和比较。
常用的统计学参数包括:
1. 均值:一组数据的总和除以数据的个数,代表数据的中心趋势。
2. 方差:各个数据与均值的差的平方和的平均数,代表数据的离散程度。
3. 标准差:方差的平方根,代表数据离散程度的大小。
4. 中位数:把数据按大小排列,位于中间位置的值,代表数据的中等水平。
5. 众数:在一组数据中出现次数最多的值,代表数据的普遍趋势。
6. 偏度:描述数据分布偏斜程度的统计量,取值为负表示左偏,取值为正表示右偏。
7. 峰度:描述数据分布峰部陡峭或平坦程度的统计量,取值为负表示峰部平坦,取值为正表示峰部陡峭。
以上是常用的统计学参数,不同的参数可以用来描述数据的不同特征和趋势。
在数据分析中,常常需要结合使用多个参数来全面了解数据的情况和特征。
北师大必修三数学 平均数、中位数、众数、极差、方差 标准差
![北师大必修三数学 平均数、中位数、众数、极差、方差 标准差](https://img.taocdn.com/s3/m/c65febc965ce0508763213a1.png)
首页
上一页
下一页
末页
结束
数字特征与统计图表的综合问题 [典例] (1)为了普及环保知识,增强环保意识,某大学随机 抽取 30 名学生参加环保知识测试,得分(十分制)如图所示,假 设得分值的中位数为 me,众数为 mo,平均值为 x ,则( )
A.me=mo= x B.me=mo< x C.me<mo< x D.mo<me< x
x
=
2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10 30
≈5.97.
于是得 mo<me< x .
首页
上一页
下一页
末页
结束
(2)观察图形可得:样本 A 的数据均小于或等于 10,样本 B 的数据均大于或等于 10,故 x A< x B,又样本 B 的波动范围 较小,故 sA>sB.
()
A.平均数
B.极差
C.中位数
D.方差
解析:选 C 判断是不是能进入决赛,只要判断是不是前 8 名,
所以只要知道其他 15 位同学的成绩中是不是有 8 个高于他,
也就是把其他 15 位同学的成绩排列后看第 8 个的成绩即可,
小刘的成绩高于这个成绩就能进入决赛,低于这个成绩就不能
进入决赛,这个第 8 名的成绩就是这 15 位同学成绩的中位数.
1.平均数、中位数、众数
(1)平均数
如果有 n 个数 x1,x2,…,xn,那么 x =
x1+x2+…+xn n
,
叫作这 n 个数的平均数.
(2)中位数
把一组数据按从小到大的顺序排列,把处于 最中间位置的那个
数(或中间两数的平均数)称为这组数据的中位数.
(3)众数
一组数据中重复出现次数 最多的数称为这组数的众数,一组数
平均数、众数、中位数、方差
![平均数、众数、中位数、方差](https://img.taocdn.com/s3/m/cdf81c9d6529647d2628520e.png)
一组数据中出现次数最多的数据叫做这组数据 的众数.
14.某公司共有51名员工(包括经理1名),经理 的工资高于其他员工的工资.今年经理的工资从去 年的200 000元增加到225 000元,而其他员工的 工资同去年一样,这样,这家公司所有员工今年 工资的平均数和中位数与去年相比将会( (A)平均数和中位数不变 )
初中数学 九年级(上册)
平均数、中位数、众数 方差
定义1
,x2, ,xn, 一般地,如果有n 个数 x1
那么
通常,平均数可以用来表示一组数据的“平均水平”.
x1 x2 xn x n
“ ”
.
叫做这 n 个数的算术平均数,简称平均数,
读作 x 拔 . “x”
定义2
一般地,设
x1,x2, xn 为n 个数据,
w1,w2, wn 依次为这 n 个数据的权数, 则称 x1w1 x2 w2 xn wn 为这组数 w1 w2 wn
据的加权平均数.
定义3
将一组数据按大小顺序排列,如果数据 的个数是奇数,那么处于中间位置的数叫做 这组数据的中位数;如果数据的个数是偶数, 那么处于中间位置的两个数的平均数叫做这 组数据的中位数.
元).现公司需增加一名销售员,三人应聘试用三
个月,平均每人每月的销售额分别为:甲是上述 数据的平均数,乙是中位数,丙是众数.最后正
式录用三人中平均月销售额最高的人是_____.
20、某商店有220升,215升,185 升,182升四种型号的某种名牌电冰
箱,在一周内分别销售了6台,30
台,14台,8台.在研究电冰箱销售情
2
方差越小,离散程度越小,说明数据越稳定.
归纳
在有些情况下,需要用方差的算术平方根, 即
中位数平均数众数方差
![中位数平均数众数方差](https://img.taocdn.com/s3/m/cebc73ef88eb172ded630b1c59eef8c75fbf95ee.png)
A.304.6 B.303.6 C.302.6 D.
解析:
=303.6.
答案:B
3.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差 为( )
分数
5
4
3
2
1
人数
20
10
30
30
10
A.
B.
C.3
D.
解析:由标准差公式计算可得.
答案:B
4.( ·湖北卷)如图是样本容量为200的频率 分布直方图. 根据样本的频率分布直方图估计, 样本数据落在[6,10)内的频数为________, 数据落在[2,10)内的概率约为________. 解析:200××4=64;(0.02+0.08)×4=0.4. 答案:64
C.丙地:中位体数为方2,差众是数为反3映总体的波动情况的一个量,二者反映的角度不同,不可相
A.甲地:总体均值为3,中位数为4
(2)由于每个品种的数据都只有25个,样本不大,画茎叶图很方便;
A.甲地:总体互均值比为较3,,中位但数有为4些问题在总体期望值差距不大时,可考虑用总体方差进一
根据样本的频率分布直方图估计,
4.众数、中位数、平均数
(1)在一组数据中,出现次数 较多 的数据叫做这组数据的众数.
(2)将一组数据按大小依次排列,把处在中间 位置的一个数据(或中间两个数据的平
均数)叫做这组数据的中位数.
(3)如果有n个数x1,x2,…,xn,那么 5.标准差和方差
叫做这n个数的平均数.
(1)标准差是样本数据到平均数的一种 平均距离 .
思维点拨:已知一组数据x1,x2,…,xn,其平均数为 ,方差为
平均数、中位数、众数描述其集中趋势,方差和标准
平均数、众数、中位数、方差
![平均数、众数、中位数、方差](https://img.taocdn.com/s3/m/03a88962f90f76c660371a0b.png)
(D)平均数和中. 位数都增加
5
15、一组数据:3a,3b,3c, 4b, 3a,3d,2a的众数是______,
若0<a<c<d<b,则中位数是___.
.
6
16、 对于数据3,3,2,6,3,10,3,6,3,2.
(1) 众数是3;
(2) 众数与中位数的数值不等;
(3) 中位数与平均数的 数值相等;
则称 x1w1x2w2xnwn 为这组数 w1w2wn
据的加权平均数.
.
3
定义3
将一组数据按大小顺序排列,如果数据 的个数是奇数,那么处于中间位置的数叫做 这组数据的中位数;如果数据的个数是偶数, 那么处于中间位置的两个数的平均数叫做这 组数据的中位数.
一组数据中出现次数最多的数据叫做这组数据 的众数.
.
4
14.某公司共有51名员工(包括经理1名),经理的
工资高于其他员工的工资.今年经理的工资从去年
的200 000元增加到225 000元,而其他员工的工资
同去年一样,这样,这家公司所有员工今年工资的
平均数和中位数与去年相比将会( )
(A)平均数和中位数不变
(B)平均数增加,中位数不变
(C)平均数不变,中位数增加
初中数学 九年级(上册)
平均数、中位数、众数 方差
.
1
定义1
通常,平均数可以用来表示一组数据的“平均水平”.
一般地,如果有n 个数 x1,x2, L,xn,
那么 xx1x2Lxn . n
叫做这 n 个数的算术平均数,简称平均数,
“ x ” 读作 “x 拔”.
.
2
定义2
一般地,设 x1,x2,L xn 为n 个数据, w1,w2, L wn 依次为这 n 个数据的权数,
专题:综合分析数据--平均数、中位数、众数、方差
![专题:综合分析数据--平均数、中位数、众数、方差](https://img.taocdn.com/s3/m/8656853130b765ce0508763231126edb6f1a76de.png)
20.20专题:综合分析数据--平均数、中位数、众数、方差一.【知识要点】1.平均数、中位数、众数、方差的综合运用。
二.【经典例题】1.某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:(1)在图①中,“80分”所在扇形的圆心角度数为___;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知=135,=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价。
2. 某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x<100):b.A课程成绩在70≤x<80这一组的是:三.【题库】【A】【B】【C】1.(本题满分7分)如图是甲.乙两人在一次射击比赛中击中靶的情况(击中靶中心的圆面为10环,靶中各数字表示该数所在圆环被击中所得的环数)每人射击了6次。
(1)请用列表法将他俩的射击成绩统计出来;(2分)(2)请你用学过的统计知识(平均数,中位数,众数,方差等),将他俩的射击成绩进行比较;(5分)2.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如表:关于以上数据,说法正确的是( )A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【D】1.某排球6名队员的身高(单位:cm)是180,184,188,190,192,194。
现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小 B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大。
平均数、众数、中位数、极差、方差、标准差
![平均数、众数、中位数、极差、方差、标准差](https://img.taocdn.com/s3/m/171792ad9ec3d5bbfd0a7478.png)
平均数、众数、中位数、极差、方差、标准差说明6个基本统计量(平均数、众数、中位数、极差、方差、标准差)的内涵,学生学习过程中可能产生的困难及主要原因、应对策略.首先,结合简单实例认真把握这6个基本统计量的内涵。
一、平均数、众数、中位数是刻画一组数据的“平均水平”的数据代表。
(八上《第八章数据的代表》)平均数分算术平均数和加权平均数,算术平均数是指n个数据的和的平均值,学生理解与计算都不成问题,只要注意细心运算就是其中的取标准值后的简便算法也都是在小学早已熟练的(公式:x=1/n(x1+x2+x3+……+xn);而加权平均数是一组数据里的各个数据乘各自的“权”之后的平均数。
此处理解“权”的概念可能产生很大困难,因为“权”的理解的确不易,若是照搬教材直接给出其定义,学生会迷惑成团,再进行应用更是不可思议。
所以应对措施:讲好、用好加权平均数就要先举例、后分析、再给出定义,比如:某同学的一次考试各科成绩如下:语文110、数学105、英语106、物理95、化学90、政治86、历史98、地理66、生物89,你可以先让学生算算各科的平均数,再按中考计分法将语、数、英各取120%,物、化、政各取100%,史、地、生各取40%后的平均值算出,两个结果一比较,学生就会很容易发现不同的原因是加入了所谓的“权”,这样,不仅通俗易懂,而且对“权”内涵的理解和应用就不再困难。
众数是一组数据中出现次数最多的数。
其内涵很好理解和掌握,就是结合实际应用也顺理成章,如商店老板进货号多大的男鞋好?那当然是“众数”(调查数据最多的号)所代表的。
中位数顾名思义是一组数据中间位置的数,但考虑一组数可能有偶数个或奇数个,所以要注意强调取中位数的方法。
教材上给出的内涵很好:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
如一组数据1.5,1.5,1.6,1.65,1.7,1.7,1.75,1.8的中位数是1/2(1.65+1.7),即1.675。
高中数学课件- 平均数、中位数、众数、极差、方差 4.2 标准差 课
![高中数学课件- 平均数、中位数、众数、极差、方差 4.2 标准差 课](https://img.taocdn.com/s3/m/51edfe5083d049649a6658d4.png)
2.在一次射击训练中,一小组的成绩如下表所示:
环数
7
8
9
人数
2
3
已知该小组的平均成绩为 8.1 环,那么成绩为 8 环的人数是
() A.5 C.4
B.6 D.7
解析:选 A.设成绩为 8 环的人数为 x,
则有7×2x++82x++39×3=8.1,
解得 x=5,故选 A.
3.甲、乙两个小组各 8 名同学的英语口语测试成绩的茎叶图如 图所示,则甲、乙两组的平均数与中位数之差较大的组是 ________.
(12 分)
第一章 统 计
栏目 导引
第一章 统 计
栏目 导引
第一章 统 计
栏目 导引
第一章 统 计
栏目 导引
(1)对实际问题的分析评价,不仅要依据单个样本数字特征,还 要综合考虑样本分布的影响,养成从多角度看问题的习惯. (2)本例题仅涉及一些简单的样本数字特征的计算,但在没有任 何提示的情况下,要根据这些数据进行分析和判断,会令人束 手无策.要正确解答这道题,首先要抓住问题中的关键词语, 全方位地进行评价,如本例中的“满分人数”.注意要在恰当 的评估后,组织正确的语言作出结论.
明理由.
【解】 (1)甲组成绩的众数为 90 分,乙组成绩的众数为 70 分,
从成绩的众数看,甲组成绩较好.
(2 分)
(2)甲、乙两组成绩的中位数、平均数都是 80 分.其中,甲组
成绩在 80 分以上(包括 80 分)的有 33 人,乙组成绩在 80 分以
上(包括 80 分)的有 26 人,从这一角度看,甲组成绩较好.
解析:
- x
=10+6+58+5+6=7,
所以 s2=15[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=156
平均数、中位数和众数、方差教案
![平均数、中位数和众数、方差教案](https://img.taocdn.com/s3/m/dc241b8dcf2f0066f5335a8102d276a20029602a.png)
平均数、中位数和众数、方差教案一、教学目标1. 理解平均数的含义,掌握求平均数的方法。
2. 了解中位数和众数的概念,能够求出一组数据的中位数和众数。
3. 理解方差的概念,掌握求方差的方法。
4. 能够运用平均数、中位数、众数和方差解决实际问题。
二、教学内容1. 平均数:求平均数的方法,平均数的应用。
2. 中位数:中位数的定义,求中位数的方法,中位数的特点。
3. 众数:众数的定义,求众数的方法,众数的特点。
4. 方差:方差的定义,求方差的方法,方差的意义。
三、教学重点与难点1. 教学重点:平均数、中位数、众数的求法及应用,方差的求法及意义。
2. 教学难点:方差的计算方法及应用。
四、教学方法1. 采用问题驱动法,引导学生通过探索、思考、解决问题来学习平均数、中位数、众数和方差。
2. 利用实例分析,让学生直观地理解平均数、中位数、众数和方差的概念及应用。
3. 采用小组合作学习,让学生通过讨论、交流、合作解决问题,提高学生的团队协作能力。
五、教学准备1. 教学素材:准备一些实际问题,用于引导学生运用平均数、中位数、众数和方差解决问题。
2. 教学工具:多媒体课件、黑板、粉笔。
【教学内容】1. 介绍平均数的概念,解释平均数的求法。
2. 介绍中位数的概念,解释中位数的求法。
3. 介绍众数的概念,解释众数的求法。
4. 介绍方差的概念,解释方差的求法。
【教学过程】1. 导入:通过一个实际问题,引导学生思考如何求解平均数。
2. 讲解:讲解平均数的求法,举例说明。
3. 练习:让学生练习求解平均数,并提供反馈。
4. 过渡:引入中位数的概念,引导学生思考中位数的特点。
5. 讲解:讲解中位数的求法,举例说明。
6. 练习:让学生练习求解中位数,并提供反馈。
7. 过渡:引入众数的概念,引导学生思考众数的特点。
8. 讲解:讲解众数的求法,举例说明。
9. 练习:让学生练习求解众数,并提供反馈。
10. 过渡:引入方差的概念,引导学生思考方差的意义。
第 11次课 平均数、中位数、众数、方差、极差、标准差(学生版)
![第 11次课 平均数、中位数、众数、方差、极差、标准差(学生版)](https://img.taocdn.com/s3/m/54ffcbdf80eb6294dd886cfc.png)
【教师寄语:昨天很残酷,明天很残酷,不要倒在今天晚上!】 平均数、中位数、众数、方差、 标准差 一、考点、热点回顾考点一、平均数1、平均数:是指一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标。
2、求平均数的方法 (1)定义法当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x nx +++= (2)加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nf x f x f x x kk ++=2211,其中n f f f k =++ 21。
(3)新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。
其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11',a x x -=22',…,a x x n n -='。
)'''(1'21n x x x nx +++=是新数据的平均数(通常把,,,,21n x x x 叫做原数据,,',,','21n x x x 叫做新数据)。
考点二、中位数1、中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数。
2、中位数的找法:将该组数从小到大排列,取中间的数3、当一组数有偶位数时,该组数的中位数为中间两个数的平均数;当一组数有奇位数时,该组数的中位数为中间那个数。
考点三:众数众数:在一组数据中出现次数最多的数众数:在一组数据中出现次数最多的数叫做这组数据的众数。
考点四:极差、频数、频率1、极差:一组数据中最大值与最小值的差叫做这组数据的极差。
2、频数:将数据分组后落在各小组内的数据个数叫做该小组的频数。
3、频率:每一小组的频数与样本容量的比值叫做这一小组的频率。
4、频数和频率的基本关系式:频率 = ——————频数样本容量5、各小组频数的总和等于样本容量,各小组频率的总和等于1。
平均数、中位数、众数、极差、方差标准差的概念讲解
![平均数、中位数、众数、极差、方差标准差的概念讲解](https://img.taocdn.com/s3/m/3ee15a160722192e4436f62d.png)
【微思考】 (1)在极差、众数、平均数、中位数中哪些是一定出现在已知 数据的数?哪些不一定出现在已知数据中? 提示:众数一定出现在已知数据中;极差、平均数、中位数不一 定出现在已知数据中.
(2)在极差、众数、平均数、中位数中哪些反映了该组数据的 集中趋势?哪些反映了数据的分散程度? 提示:众数、平均数、中位数都反映了数据的集中趋势;极差反 映了数据的分散程度.
2.标准差与方差
(1)方差的求法:标准差的平方s2叫做方差.
s2=__n1[___x_1 __x__2 ___x_2 __x__2 ______x_n__x__2_]_,其中,xn是样本数据,
n是样本容量, x是样本平均数. (2)标准差的求法:标准差是样本数据到平均数的一种平均距
于是得m0<mxe< .
(2)①平均数是
x=1 500+4 000 3 500 2 000 2 1 500 1 000 5 500 3 0 20 33
≈1 500+591=2 091(元),
中位数是1 500元,众数是1 500元.
②平均数是
x=1 500+28 500 18 500 2 000 2 1 500 1 000 5 500 3 0 20 33
【解析】(1)平均分数= 40×75+ 6×080=78.
100
100
答案:78
(2) x=
1×(9.4+9.4+9.4+9.6+9.7)=9.5,
5
所以s2=1 ×[(9.4-9.5)2+(9.4-9.5)2+(9.4-9.5)2+(9.6-9.5)2
5
+(9.7-9.5)2]=0.016.
众数、中位数、平均数(1)标准差、方差
![众数、中位数、平均数(1)标准差、方差](https://img.taocdn.com/s3/m/34dc6030f011f18583d049649b6648d7c1c7083d.png)
好;
(4)乙队很少不失球.
例题分析
例1 画出下列四组样本数据的条形图, 说明他们的异同点.
(1) 5,5,5,5,5,5,5,5,5; (2) 4,4,4,5,5,5,6,6,6;
频率
x5
1.0 0.8
s0
0.6
0.4
0.2
O 12345678
(1)
频率 x 5
1.0 0.8
s 0.82
0.6
0.4
4,x,7,14,中位数为5,则这组数据的平均数和
方差分别为
( A)
A.5,24 2 3
B.5,24 1 3
C.4,25 1
D.4,25 2
3
3
解析 ∵中位数为5,∴5= 4 x ,∴x=6.
2
x104671 45,
6
s2= 1 [(5+1)2+(5-0)2+(5-4)2+(5-6)2+
6
(5-7)2+(5-14)2]=24 2 . 3
0.000 4
三种数字特征的优缺点
1、众数体现了样本数据的最大集中点,但它对其它 数据信息的忽视使得无法客观地反映总体特征.
2、中位数它不受少数几个极端值的影响,这在某些 情况下是优点,但它对极端值的不敏感有时也会成为 缺点。
3、由于平均数与每一个样本的数据有关,所以任何 一个样本数据的改变都会引起平均数的改变,这是众 数、中位数都不具有的性质。也正因如此 ,与众数、 中位数比较起来,平均数可以反映出更多的关于样本 数据全体的信息,但平均数受数据中的极端值的影响 较大,使平均数在估计时可靠性降低。
频率 组距
0.5 0.4 0.3 0.2
解释平均数,中位数,众数,极差,方差的意思
![解释平均数,中位数,众数,极差,方差的意思](https://img.taocdn.com/s3/m/3dab5a24a200a6c30c22590102020740be1ecdaa.png)
解释平均数,中位数,众数,极差,方差的意思平均数是一组数据的总和除以数据的个数。
它是常用的统计指标之一,用来衡量一组数据的集中程度。
平均数可以帮助我们了解数据的总体趋势。
中位数是将一组数据按照大小顺序排列后,中间位置的数值。
它可以帮助我们了解一组数据的中间值,不受极端值的影响。
中位数通常用于处理数据分布不均匀或存在异常值的情况。
众数是一组数据中出现次数最多的数值。
它可以帮助我们找出数据中的主要趋势或最常见的值。
众数适用于处理离散型数据,例如某一班级中最常见的学生分数。
极差是一组数据中最大值与最小值之间的差值。
它可以帮助我们了解一组数据的范围大小。
极差较大表示数据分布较广泛,而极差较小表示数据集中在一个较小的范围内。
方差是一组数据与其平均数之间差异的平方的平均数。
它可以帮助我们衡量数据的离散程度或变异程度。
方差越大,表示数据的离散程度越大;方差越小,表示数据的离散程度越小。
这些统计指标在数据分析和研究中经常被使用。
通过对这些指标的计算和解释,我们可以更好地认识和理解数据的特征和变化趋势。
众数、中位数、平均数标准差、方差
![众数、中位数、平均数标准差、方差](https://img.taocdn.com/s3/m/baaae6f959eef8c75ebfb3aa.png)
连接频率分布直方图中各小长方形上端的中点, 得到频率分布折线图
总体密度曲线反映了总体在各个范围内取值的 百分比,精确地反映了总体的分布规律。是研究总 体分布的工具.
画茎叶图的步骤:
(1)将每个数据分为茎(高位)和叶(低位)两部分;
(2)将最小茎和最大茎之间的数按大小次序排成一列, 写在一侧; (3)将各个数据的叶按大小次序写在其茎的另一侧.
8 8 9 9 9 9 2 9 3 9 2 9 1 6 4 4 9 ,0 1 解析 当x8 ≥4 时9 8, 9 9 2 9 3 9 7 2 9 1 x 90 7
∴x<4,则
7
=91,∴x=1.
11.下图是某市有关部门根据该市干部的月收入情 况,作抽样调查后画出的样本频率分布直方图, 已知图中第一组的频数为4 000,请根据该图提供 的信息解答下列问题:(图中每组包括左端点, 不包 括右端点,如第一组表示收入在[1 000,1 500))
0.000 4
三种数字特征的优缺点
1、众数体现了样本数据的最大集中点,但它对其它 数据信息的忽视使得无法客观地反映总体特征.
2、中位数它不受少数几个极端值的影响,这在某些 情况下是优点,但它对极端值的不敏感有时也会成为 缺点。
3、由于平均数与每一个样本的数据有关,所以任何 一个样本数据的改变都会引起平均数的改变,这是众 数、中位数都不具有的性质。也正因如此 ,与众数、 中位数比较起来,平均数可以反映出更多的关于样本 数据全体的信息,但平均数受数据中的极端值的影响 较大,使平均数在估计时可靠性降低。
乙:9 5 7 8 7 6 8 6 7 7
如果你是教练,你应当如何对这次射击作出评价?
如果看两人本次射击的平均成绩,由于x甲7,x乙7
平均数、众数、中位数、极差、方差、标准差
![平均数、众数、中位数、极差、方差、标准差](https://img.taocdn.com/s3/m/e5203313650e52ea5518986b.png)
(平均数、众数、中位数、极差、方差、标准差六个统计量的数学内涵,学生学习过程中可能产生的困难及主要原因、因对策略)一、六个统计量的数学内涵1、平均数是对于几个数据的算数平均数。
平均数是反映样本或总体的平均水平的特征数,反映了一组数据的集中趋势。
平均数的大小与一组数据里的每一个数据都有关系,其中任何一个数据的变化都会引起平均数的变化,即平均数受较大数和较小数的影响,是衡量一组数据波动大小的基准。
2、在一组数据中出现次数最多的数据叫做这一组数据的众数。
众数的大小仅与一组数据中的部分数据有关,他着眼于对数据出现的次数的分析。
这就告诉我们在求一株数据的众数是,既不要排列,又不需要计算,只要能找出出现次数最多的一个(或几个)数据就可以,众数也是描述一组数据集中趋势的统计量。
一组数据的众数又是不唯一,也可以没有众数。
3、中位数是指将一组数据按大小顺序排列后,处在最中间的一个数或处在最中间的两个数的平均数(数据有奇数个时是最中间的一个,有偶数个时最中间的两个的平均数),中位数的大小仅与数据的排列位置有关,他前后的数各占一半,不受偏大和偏小数的影响,一组数据的中位数是唯一的。
4、一组数据中的最大值减去最小值所得的差叫极差。
他能反映数据的变化范围。
极差在计算时简单方便,但只对极端值较为敏感,因此用它来表示一组数据的波动还比较粗略。
5、方差是一组数据中的各个数据与其平均数的差的平方的平均数。
一组数据的方差越大,说明这组数据的波动越大;方差越小,说明数据的波动越小。
要比较数据的稳定性,一般会用到方差,方差计算比较复杂,但可以比较全面地反映数据的离散程度。
6、有时为了运用方便,常将求出的方差开平方,即算术平方根。
这个算术平方根,即称为这组数据的标准差。
标准差也是用来表示一组数据的波动大小的量。
标准差是为了实际的应用,将求出的方差再开平方得到的。
二、基本规律1、反映一组数据的集中程度的统计量主要有平均数、中位数、众数这三种,这三个统计量能从不同的角度反映一组数据的集中趋势,都可作为一组数据的代表。
(完整版)中考数学试题平均数、中位数、众数、方差
![(完整版)中考数学试题平均数、中位数、众数、方差](https://img.taocdn.com/s3/m/78ea85d4336c1eb91b375d2a.png)
知识点2:平均数,中位数,众数,方差一、选择题1.(2008年浙江省衢州市)为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如下表:甲和乙两位同学6次测试成绩(每分钟输入汉字个数)及部分统计数据表有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是( )A、甲的方差大于乙的方差,所以甲的成绩比较稳定;B、甲的方差小于乙的方差,所以甲的成绩比较稳定;C、乙的方差小于甲的方差,所以乙的成绩比较稳定;D、乙的方差大于甲的方差,所以乙的成绩比较稳定;2.(2008淅江金华)金华火腿闻名遐迩。
某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500克的火腿心片。
现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()A、甲B、乙C、丙D、不能确定3.(2008浙江义乌)国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003年至2007年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是( )A.6969元B.7735元C.8810元D.10255元4.(2008湖南益阳)某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是A. 23,25B. 23,23C. 25,23D. 25,255.(2008年浙江省绍兴市)在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,6.5,9.1,7.7,则这四人中,射击成绩最稳定的是()A.甲B.乙C.丙D.丁6.(2008年四川巴中市)下列命题是真命题的是()A.对于给定的一组数据,它的平均数一定只有一个B.对于给定的一组数据,它的中位数可以不只一个C.对于给定的一组数据,它的众数一定只有一个D.对于给定的一组数据,它的极差就等于方差答案:A7.(2008年四川巴中市)用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为( )A.14.15 B.14.16 C.14.17 D.14.20答案:B8.(2008年陕西省)在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中8位工作者的捐款分别是5万,10万,10万,10万,20万,20万,50万,100万.这组数据的众数和中位数分别是()A.20万,15万B.10万,20万C.10万,15万D.20万,10万答案:C9.(2008北京)众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是()A.50,20 B.50,30 C.50,50 D.135,50答案:C10.(2008湖北鄂州)数据的众数为,则这组数据的方差是()A.2 B.C.D.答案:B11.(2008年浙江省嘉兴市)已知甲、乙两组数据的平均数分别是,,方差分别是,,比较这两组数据,下列说法正确的是()A.甲组数据较好B.乙组数据较好C.甲组数据的极差较大D.乙组数据的波动较小答案:D12.(2008年山东省枣庄市)小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8, 4.2.关于这组数据,下列说法错误的是()A.极差是0.4B.众数是3.9C.中位数是3.98D.平均数是3.98答案:B13.(2008山东济南)“迎奥运,我为先”联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题.联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10张,发现有2张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是()A.60张B.80张C.90张D.110答案:B14.(2008湖北黄石)若一组数据2,4,,6,8的平均数是6,则这组数据的方差是()A.B.8 C.D.40答案:B15.(2008 湖南益阳)某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是( )A. 23,25B. 23,23C. 25,23D. 25,25答案:D16.(2008 重庆)数据2,1,0,3,4的平均数是()A、0B、1C、2D、3答案:C17.(08厦门市)某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差答案:C18.(08乌兰察布市)十名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为,中位数为,众数为,则有()A.B.C.D.答案:B19.(08绵阳市)某校初三·一班6名女生的体重(单位:kg)为:35 36 38 40 42 42则这组数据的中位数等于().A.38 B.39 C.40 D.42答案:B20.(2008浙江金华)金华火腿闻名遐迩。
平均数、中位数、众数与方差
![平均数、中位数、众数与方差](https://img.taocdn.com/s3/m/cfdf97e3581b6bd97e19ea25.png)
平均数、中位数、众数与方差2卢老师家教内部资料平均数、中位数、众数与方差 姓名【基本概念】1.总体:在统计学里,所要考察对象的______,叫做总体。
2.个体:总体中的每一个考察对象叫做_______.3.样本:从_____中所抽取的________个体,叫做总体的一个样本。
4.样本容量:样本中个体的______叫做样本容量(样本容量没有______).5.平均数:样本中所有个体的平均数叫做样本_______.设一组数据123,,,,nx x x x 的平均数为x ,(1)一般平均数:x =_________________________;(2)加权平均数:在n 个数据中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(1f +2f +…kf =n ),则x =___________________; (3)简化计算公式:x x a '=+,其中x '是12,,nx x x '''的平均数,(1,2,,),i ix x a i n a '=-=为接近样本平均数的较“整”的常数,在数据较大且在平均数左右波动时,用平均数简化计算公式较为简便。
6.众数:在一组数据中,出现次数______的数据叫做这组数据的众数,众数可能不止一个。
7.中位数:将一组数据按_________排列,把处在最中间位置的一个数据(或最中间的两个数据的________)叫做这组数据的中位数(中位数可能不是这组数据中的任何一个)。
例 1.为了了解某校初三年级学生的身高状况,从中抽查了50名学生的身高。
在这个问题中,下列说法正确的是()A.300名学生是总体B.300是众数C.50名是学生抽取的一个样本D.样本容量是50例2.将一组数据中的所有数都加2,则所得到的一组新数据的平均数与原来那组数据相比( ) A.扩大2倍B.增加2 C.数值不变D.增加2倍例3.要了解某市初中毕业会考的数学成绩情况,从中抽查了1000名学生的数学成绩,样本是指()(A)此城市所有参加毕业会考的学生(B)此城市所有参加毕业会考的学生的数学成绩(C)被抽查的1 000名学生(D)被抽查345叫做这组数据(或样本)的标准差,记作_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均数、中位数、众数与方差【基本概念】1.总体:在统计学里,所要考察对象的______,叫做总体。
2.个体:总体中的每一个考察对象叫做_______.3.样本:从_____中所抽取的________个体,叫做总体的一个样本。
4.样本容量:样本中个体的______叫做样本容量(样本容量没有______).5.平均数:样本中所有个体的平均数叫做样本_______. 设一组数据123,,,,n x x x x 的平均数为x ,(1)一般平均数:x =_________________________;(2)加权平均数:在n 个数据中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(1f +2f +…k f =n ),则x =___________________;(3)简化计算公式:x x a '=+,其中x '是12,,nx x x '''的平均数,(1,2,,),i i x x a i n a '=-=为接近样本平均数的较“整”的常数,在数据较大且在平均数左右波动时,用平均数简化计算公式较为简便。
6.众数:在一组数据中,出现次数______的数据叫做这组数据的众数,众数可能不止一个。
7.中位数:将一组数据按_________排列,把处在最中间位置的一个数据(或最中间的两个数据的________)叫做这组数据的中位数(中位数可能不是这组数据中的任何一个)。
例1.为了了解某校初三年级学生的身高状况,从中抽查了50名学生的身高。
在这个问题中,下列说确的是( )A.300名学生是总体B.300是众数C.50名是学生抽取的一个样本D.样本容量是50例2.将一组数据中的所有数都加2,则所得到的一组新数据的平均数与原来那组数据相比( ) A.扩大2倍 B.增加2 C.数值不变 D.增加2倍例3.要了解某市初中毕业会考的数学成绩情况,从中抽查了1000名学生的数学成绩,样本是指( )(A )此城市所有参加毕业会考的学生(B )此城市所有参加毕业会考的学生的数学成绩 (C )被抽查的1 000名学生 (D )被抽查的1 000名学生的数学成绩 例4.如果x 1与x 2的平均数是6,那么x 1+1与x 2+3的平均数是( ) (A )4 (B )5 (C )6 (D )8 例5.甲、乙两个样本的方差分别是甲2s=6.06,乙2s =14.31,由此可反映( )(A )样本甲的波动比样本乙大 (B )样本甲的波动比样本乙小(C )样本甲和样本乙的波动大小一样(D )样本甲和样本乙的波动大小关系,不能确定 例 6.某餐厅共有7名员工,所有员工的工资情况如下表所示,则餐厅所有员工工资的众数是________________,中位数是________________。
例7.如果数据1、4、5、x 、7的平均数是4,那么这组数据的中位数是____。
( 05丰台) 例8.某班的5位同学在向“救助贫困学生”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是_______,中位数是_________,平均数是_______.例9.n 个数据的和为56,平均数为8,则n =_______.例10.在数据-1,0,4,5,8中插入一个数x ,使这组数据的中位数为3,则x =_______. 8.极差:一组数据中最大数据与最小数据的差,叫做这组数据的_______。
9.方差:一组数据(或样本)中,各数据与这组数据(或样本)的_______的差的_____的_______,叫做这组数据(或样本)的方差,记作____.方差是反映一组数据(或样本)____________的特征数,方差越大,说明这组数据(或样本)______越大。
设一组数据123,,,,n x x x x 的平均数为x ,方差为2s ,则()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎣⎦ 简化计算公式:()22222121n s x x x nx n =+++-10.标准差:一组数据(或样本)的方差的_______叫做这组数据(或样本)的标准差,记作_____。
例1.在公式s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]中,符号S 2,n ,x 依次表示样本的…( )(A )方差,容量,平均数 (B )容量,方差,平均数 (C )平均数,容量,方差 (D )方差,平均数,容量11.频数:对一组数据适当分组后,落在每一个小组的数据的_____叫做频数。
12.频率:每一个小组的频数与数据_____的比值叫做这个小组的频率,频率分布反映了一组数据(或样本)落在各个小组围的比例的大小。
13.频率分布:将每一个小组的频数、频率填在相应的频数、频率栏中便得到频率分布表,将频率分布表中的结果,利用图形直观形象地表示出来,就得到______________。
例1.在对100个数据进行整理的频率分布表中,各组的频数之和等于________,各组的频率之和等于________.例2.已知一个样本含20个数据:68 69 70 66 68 65 64 65 69 62 67 66 65 67 63 65 64 61 65 66.在列频率分布表时,如果取组距为2,那么应分________组,64.5~66.5这一小组的频率为________,上述样本的容量是____________.【典型例】例1. 公司销售部有销售人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(1)求这15位营销人员销售量的平均数、中位数、众数(直接写出结果,不要求过程);(2)假设销售部把每位销售人员的月销售定额规定为320件,你认为是否合理,为什么?如果不合理,请你从表中选一个较合理的销售定额,并说明理由.(07西城)例 2.为了从甲、乙两名学生中选拔一人参加今年六月份的全县中学生数学竞赛,每个月对他们的学习水平进行一次测验右图是两人赛前5次测验成绩的折线统计图.(1)别求出甲、乙两名学生5次测验成绩的平均数及方差. (2)如果你是他们的辅导教师,应选派哪一名学生参加这次数学竞赛,请结合所学统计知识说明理由.例 3.为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动.初中三个年级根据初赛成现分别选 出了10名同学参加决定,这些选手的决赛成绩(满分为100分)如下表 决赛成绩(单位:分)初一年级 80 86 88 80 88 99 80 74 91 89 初二年级 85 85 87 97 85 76 88 77 87 88 初三年级 82 80 78 78 81 96 97 88 89 86平均数 众数 中位数 初一年级 85.5 87 初二年级 85.5 85 初三年级84(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析: ①从平均数和众数相结合看(分析哪个年级成绩好些); ②从平均数和中位数相结合看(分析哪个年级成绩好些). (3)如果在每个年级参加决赛的选 手中分别是选出3人参加决赛,你认为哪个年级的实力每人销售件数 1800 510 250 210 150 120人数 1 1 3 5 3 2更强一些?并说明理由.成绩(分)50 60 70 80 90 100人数(人) 2 x 10 y 4 2①若这个班的数学平均成绩是69分,求x和y的值;②设此班40名学和成绩的众数为a, 中位数为b(a-b)2的值。
【效果测试】1.已知一组数据2,5,2,8,3,2,6.这组数据的中位数和众数分别是()(A)3,2 (B)3,3 (C)4,2 (D)3,42.某校四人绿化小组一天植树如下:10,10,x,8.已知这组数据的众数与平均数相等,那么这组数据的中位数是()(A)9 (B)10 (C)11 (D)123.当五个数从小到大排列后,其中位数为4.如果这组数据的唯一众数是6,那么这5个数可能的最大的和是()(A)21 (B)22 (C)23 (D)244.期中考试后,学习小组长算出全组5位同学数学成绩的平均分为M,如果把M ,当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M:N为()(A)5/6 (B)1 (C)6/5 (D)25.小洪和小斌两人参加体育项目训练,近期的5次测试成绩如图所示,根据分析,你认为他们中成一较为稳定的是。
6.数据0、1、2、3、x的平均数是2,则这组数据的标准差是。
7.某同学进行机抽查了某个地区的20个家庭的收入情况,并绘制了统计图.请你根据统计图给了的信息回答:(1)填写完成下表:这20个家庭的年平均收入为万元;(2)样本中的中位数是万元,众数是万元;(3)在平均数、中位数两数中, 更能反映这个地区家庭的年收入水平.8.观察与探究:(1)观察下列各组数据并填空:x:,S2A= (A)1 2 3 4 5Ax:,S2B= (B)11 12 13 14 15Bx:,S2C= (C)10 20 30 40 50Cx:,S2D= (D)3 5 7 9 11D(2)分别比较A与B、C、D的计算结果,你能发现什么规律?(3)若已知一组数据x1,x2…,x n 的平均数为x ,方差为S2,那么另一组数据3x1-2,3x2-2,…,3x n-2的平均数为,方差为。
【中考】1.为了了解学校运动队的训练情况,该校对运动队中的甲、乙两名运动员的训练进行了跟踪记录。
下图是他们在同一训练项目中连续十次的测试成绩:(1)请根据图中提供的信息填写下表:平均数众数甲乙(运动员的训练成绩进行比较;(3)请依据折线图分析哪位运动员的训练效果更好?(07一模)2.某高速公路检测点抽测了200辆汽车的车速,并将检测结果绘制出部分车速频率分布直方图(每组包含最大值不包含最小值),如图所示。
根据以上信息,解答下列问题:(1)补全频率分布直方图;(2)按规定,车速在70千米/时—120千米/时围为正常行驶,试计算正常行驶的车辆所占的百分比;(3)按规定,车速在120千米/时以上时为超速行驶,如果该路段每天的平均车流量约为1万辆,试估计每天超速行驶的车辆数。
(07崇文一模)3.在“不闯红灯,珍惜生命”活动中,文明中学的关欣和想两位同学周六来到市中心的十字路口,观察、统计上午7:00~12:00中闯红灯的人次,制作了如下的两个数据统计图。
填空:(1)图(1)提供的五个数据(各时段闯红灯人次)的众数是______________;平均数是______________。
(2)估计一个月(按30天计算)上午7:00~12:00在该十字路口闯红灯的未成年人约有______________人次。