方程与不等式整理(知识点配题完整版)

合集下载

高中数学一元二次函数方程和不等式知识点总结全面整理

高中数学一元二次函数方程和不等式知识点总结全面整理

(每日一练)高中数学一元二次函数方程和不等式知识点总结全面整理单选题1、设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点,若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.32答案:B分析:因为C:x 2a2−y2b2=1(a>0,b>0),可得双曲线的渐近线方程是y=±bax,与直线x=a联立方程求得D,E两点坐标,即可求得|ED|,根据△ODE的面积为8,可得ab值,根据2c=2√a2+b2,结合均值不等式,即可求得答案.∵C:x2a2−y2b2=1(a>0,b>0)∴双曲线的渐近线方程是y=±bax∵直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点不妨设D为在第一象限,E在第四象限联立{x=ay=ba x,解得{x=ay=b故D(a,b)联立{x=ay=−ba x,解得{x=ay=−b故E(a,−b)∴|ED|=2b∴△ODE面积为:S△ODE=12a×2b=ab=8∵双曲线C:x2a2−y2b2=1(a>0,b>0)∴其焦距为2c=2√a2+b2≥2√2ab=2√16=8当且仅当a=b=2√2取等号∴C的焦距的最小值:8故选:B.小提示:本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.2、若a>0,b>0,则下面结论正确的有()A.2(a2+b2)≤(a+b)2B.若1a +4b=2,则a+b≥92C.若ab+b2=2,则a+b≥4D.若a+b=1,则ab有最大值12答案:B分析:对于选项ABD利用基本不等式化简整理求解即可判断,对于选项C取特值即可判断即可. 对于选项A:若a>0,b>0,由基本不等式得a2+b2≥2ab,即2(a2+b2)≥(a+b)2,当且仅当a=b时取等号;所以选项A不正确;对于选项B:若a>0,b>0,1 2×(1a+4b)=1,a+b=12×(1a+4b)(a+b)=12(5+ba+4ab)≥12(5+2√ba⋅4ab)=92,当且仅当1a +4b=2且ba=4ab,即a=32,b=3时取等号,所以选项B正确;对于选项C:由a>0,b>0,ab+b2=b(a+b)=2,即a+b=2b,如b=2时,a+b=22=1<4,所以选项C不正确;对于选项D:ab≤(a+b2)2=14,当且仅当a=b=12时取等则ab有最大值14,所以选项D不正确;故选:B3、已知函数y=x−4+9x+1(x>−1),当x=a时,y取得最小值b,则a+b=()A.−3B.2C.3D.8答案:C分析:通过题意可得x+1>0,然后由基本不等式即可求得答案解:因为x>−1,所以9x+1>0,x+1>0,所以y=x−4+9x+1=x+1+9x+1−5≥2√(x+1)⋅9x+1−5=1,当且仅当x+1=9x+1即x=2时,取等号,所以y的最小值为1,所以a=2,b=1,所以a+b=3,故选:C4、不等式|5x−x2|<6的解集为()A.{x|x<2,或x>3}B.{x|−1<x<2,或3<x<6} C.{x|−1<x<6}D.{x|2<x<3}答案:B分析:按照绝对值不等式和一元二次不等式求解即可. 解:∵|5x−x2|<6,∴−6<5x−x2<6∴{x2−5x−6<0 x2−5x+6>0⇒{−1<x<6x<2或x>3⇒−1<x<2或3<x<6则不等式的解集为:{x|−1<x<2或3<x<6}故选:B.5、已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=A.{x|−4<x<3}B.{x|−4<x<−2}C.{x|−2<x<2}D.{x|2<x<3}答案:C分析:本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.由题意得,M={x|−4<x<2},N={x|−2<x<3},则M∩N={x|−2<x<2}.故选C.小提示:不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.6、已知1a <1b<0,则下列结论正确的是()A.a<b B.a+b<ab C.|a|>|b|D.ab>b2答案:B分析:结合不等式的性质、差比较法对选项进行分析,从而确定正确选项.因为1a <1b<0,所以b<a<0,故A错误;因为b<a<0,所以a+b<0,ab>0,所以a+b<ab,故B正确;因为b<a<0,所以|a|>|b|不成立,故C错误;ab−b2=b(a−b),因为b<a<0,所以a−b>0,即ab−b2=b(a−b)<0,所以ab<b2成立,故D错误.故选:B7、若实数a、b满足a>b>0,下列不等式中恒成立的是()A.a+b>2√ab B.a+b<2√ab C.a2+2b>2√ab D.a2+2b<2√ab答案:A分析:利用作差法可判断各选项中不等式的正误.因为a>b>0,则a+b−2√ab=(√a−√b)2>0,故a+b>2√ab,A对B错;a 2+2b−2√ab=a2+2b−2√a2⋅2b=(√a2−√2b)2≥0,即a2+2b≥2√ab,当且仅当a2=2b时,即当a=4b时,等号成立,CD都错.故选:A.8、已知实数a,b,c满足a>b>0>c,则下列不等式中成立的是()A.a+1b <b+1aB.2a+ba+2b<abC.ba−c>ab−cD.√ca3<√cb3答案:B分析:对于A,利用不等式的性质判断;对于CD,举例判断;对于B,作差法判断解:对于A,因为a>b>0,所以1a <1b,所以a+1b>b+1a,所以A错误,对于B ,因为a >b >0,所以2a+b a+2b −a b =(2a+b)b−a(a+2b)(a+2b)b =b 2−a 2(a+2b)b <0,所以2a+b a+2b <a b ,所以B 正确,对于C ,当a =2,b =1,c =−1时,b a−c =13<a b−c =1,所以C 错误,对于D ,当a =8,b =1,c =−1时,√c a 3=−12>√c b 3=−1,所以D 错误,故选:B9、关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根α,β,且α2+β2=12,那么m 的值为()A .−1B .−4C .−4或1D .−1或4答案:A分析:α2+β2=(α+β)2−2α⋅β,利用韦达定理可得答案.∵关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根,∴Δ=[2(m −1)]2−4×1×(m 2−m )=−4m +4⩾0,解得:m ⩽1,∵关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根α,β,∴α+β=−2(m −1),α⋅β=m 2−m ,∴α2+β2=(α+β)2−2α⋅β=[−2(m −1)]2−2(m 2−m )=12,即m 2−3m −4=0,解得:m =−1或m =4(舍去).故选:A.10、已知正实数a ,b 满足a +1b =2,则2ab +1a 的最小值是( )A .52B .3C .92D .2√2+1答案:A分析:由已知得,a=2−1b 代入得2ab+1a=2(2b−1)+b2b−1,令2b−1=t,根据基本不等式可求得答案.解:因为a+1b =2,所以a=2−1b>0,所以0<b<2,所以2ab+1a =2(2−1b)b+b2b−1=2(2b−1)+b2b−1,令2b−1=t,则b=t+12,且−1<t<3,所以2ab+1a =2t+t+12t=2t+12t+12≥2√2t⋅12t+12=52,当且仅当2t=12t,即t=12,b=34,a=23时,取等号,所以2ab+1a 的最小值是52.故选:A.填空题11、已知a,b,c∈R,a+b+c=0,a+bc−1=0,则a的取值范围是________答案:a≥−2+2√2或a≤−2−2√2分析:先由已知条件,得到−a=b+c,bc=1−a,对bc的正负进行分类讨论,利用基本不等式得到关于a 的不等式,解出a的范围.①当b>0,c>0时,∵a+b+c=0,a+bc−1=0,∴−a=b+c,bc=1−a,可得:−a>0,1−a>0,可得:a<0,∴−a=b+c≥2√bc=2√1−a,化为a2+4a−4≥0,解得:a≤−2−2√2;②当b<0,c<0时,∵a+b+c=0,a+bc−1=0,∴a=(−b)+(−c),bc=1−a,可得:a>0,1−a>0,可得0<a<1.∴a=−b−c≥2√bc=2√1−a,化为a2+4a−4≥0,解得:−2+2√2≤a<1;③当bc=0时,不妨取c=0,由已知可得:a=1,b=−1,此时a=1;④当bc <0时,∵a +b +c =0,a +bc −1=0,∴a =−(b +c ),a =1−bc >1.综上可得:a 的取值范围是a ≥−2+2√2或a ≤−2−2√2.所以答案是:a ≥−2+2√2或a ≤−2−2√212、已知x >0,y >0且12x+1+1y+1=1,则x +y 的最小值为___________.答案:√2分析:令a =2x +1,b =y +1,将已知条件简化为1a +1b =1;将x +y 用a,b 表示,分离常数,再使用“乘1法”转化后利用基本不等式即可求得最小值.解:令a =2x +1,b =y +1,因为x >0,y >0,所以a >1,b >1,则x =a−12,y =b −1,所以1a +1b =1,所以x +y =a−12+b −1=a 2+b −32=(a 2+b)(1a +1b )−32=12+1+b a +a 2b −32=b a +a 2b ≥2√b a ×a 2b =√2,当且仅当{b a =a 2b 1a +1b =1 ,即b =2+√22,a =√2+1,即x =y =√22时取“=”, 所以x +y 的最小值为√2.所以答案是:√2.13、已知正数a,b 满足a +3b +3a +4b =18,则a +3b 的最大值是___________.答案:9+3√6分析:设t =a +3b ,表达出t (18−t ),结合基本不等式求解最值,再根据二次不等式求解即可. 设t =a +3b ,则3a +4b =18−t ,所以t (18−t )=(a +3b )(3a +4b )=15+9b a +4a b ≥15+2√9b a ⋅4a b =27,当且仅当2a =3b 时取等号.所以t2−18t+27⩽0,解得9−3√6⩽t⩽9+3√6,即a+3b的最大值9+3√6,当且仅当2a=3b,即a=3+√6,b=2+2√6时取等号.3所以答案是:9+3√614、关于x的不等式x2−4x+4a≥a2在[1,6]内有解,则a的取值范围为________.答案:[−2,6]分析:根据不等式有解可得当x∈[1,6]时,a2−4a≤(x2−4x)max,结合二次函数的最值可求得结果.∵x2−4x+4a≥a2在[1,6]内有解,∴a2−4a≤(x2−4x)max,其中x∈[1,6];设y=x2−4x(1≤x≤6),则当x=6时,y max=36−24=12,∴a2−4a≤12,解得:−2≤a≤6,∴a的取值范围为[−2,6].所以答案是:[−2,6].15、若关于x的不等式x2−(m+2)x+2m<0的解集中恰有3个正整数,则实数m的取值范围为___________.答案:(5,6]分析:不等式化为(x−m)(x−2)<0,根据解集中恰好有3个正整数即可求得m的范围.x2−(m+2)x+2m<0可化为(x−m)(x−2)<0,该不等式的解集中恰有3个正整数,∴不等式的解集为{x|2<x<m},且5<m⩽6;所以答案是:(5,6].16、正数a,b满足ab=a+b+3,则ab的取值范围是________.答案:[9,+∞)分析:由题得ab=a+b+3≥2√ab+3,解不等式ab−2√ab−3≥0即得解.∵a,b是正数,∴ab=a+b+3≥2√ab+3(当且仅当a=b=3时等号成立),所以ab−2√ab−3≥0,所以(√ab−3)(√ab+1)≥0,所以√ab≥3或√ab≤−1,所以ab≥9.所以答案是:[9,+∞)小提示:本题主要考查基本不等式的应用,意在考查学生对这些知识的理解掌握水平.17、函数y=x+1+4x+1(x>−1)的最小值为______.答案:4分析:利用基本不等式直接求解即可因为x>−1,所以x+1>0,所以y=x+1+4x+1≥2√(x+1)⋅4x+1=4,当且仅当x+1=4x+1,即x=1时取等号,所以y=x+1+4x+1(x>−1)的最小值为4,所以答案是:418、函数y=2√x2+1的最小值是___________. 答案:4分析:根据基本不等式可求出结果.令t=√x2+1≥1,则y=2√x2+1=t+4t≥4,当且仅当t=2,即x=±√3时,y min=4.所以函数y=2√x2+1的最小值是4.所以答案是:4小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.19、已知x、y为两个正实数,且mx+y ≤1x+1y恒成立,则实数m的取值范围是________.答案:(−∞,4]分析:由参变量分离法可得m≤(x+y)(1x +1y),利用基本不等式求出(x+y)(1x+1y)的最小值,由此可得出实数m的取值范围.因为x、y为两个正实数,由mx+y ≤1x+1y可得m≤(x+y)(1x+1y),因为(x+y)(1x +1y)=2+xy+yx≥2+2√xy⋅yx=4,当且仅当x=y时,等号成立.所以,m≤4,因此,实数m的取值范围是(−∞,4].所以答案是:(−∞,4].20、若方程x2+(m-3)x+m=0有实数解,则m的取值范围是__________.答案:{m|m≥9或m≤1}分析:根据一元二次方程根的判别式,结合解一元二次不等式的方法进行求解即可. 由方程x2+(m-3)x+m=0有实数解,∴Δ=(m-3)2-4m≥0,即m2-10m+9≥0,∴(m-9)(m-1)≥0,∴m≥9或m≤1.所以答案是:{m|m≥9或m≤1}解答题21、求实数m的范围,使关于x的方程x2+2(m−1) x+2m+6=0.(1)有两个实根,且一个比2大,一个比2小;(2)有两个实根α , β,且满足0<α<1<β<4;(3)至少有一个正根.答案:(1)m<−1(2)−75<m<−54(3)m≤−1分析:设y=f(x)=x2+2(m−1)x+2m+6,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定.(1)设y=f(x)=x2+2(m−1)x+2m+6.依题意有f(2)<0,即4+4(m−1)+2m+6<0,得m<−1.(2)设y=f(x)=x2+2(m−1)x+2m+6.依题意有{f(0)=2m+6>0 f(1)=4m+5<0f(4)=10m+14>0,解得−75<m<−54.(3)设y=f(x)=x2+2(m−1)x+2m+6.方程至少有一个正根,则有三种可能:①有两个正根,此时可得{Δ≥0 f(0)>02(m−1)−2>0,即{m≤−1或m≥5m>−3m<1.∴−3<m≤−1.②有一个正根,一个负根,此时可得f(0)<0,得m<−3.③有一个正根,另一根为0,此时可得{6+2m=02(m−1)<0,∴m=−3.综上所述,得m≤−1.22、已知a>0,b>0.(1)求证:a2+3b2≥2b(a+b);(2)若a+b=2ab,求ab的最小值.答案:(1)证明见解析;(2)1.分析:(1)对不等式两边式子作差,分解因式,判断作差的结果的符号,可得证.(2)根据a+b=2ab,可得2ab=a+b≥2√ab,从而得到√ab≥1,进而求得ab≥1,注意等号成立的条件,得到结果.证明:(1)∵a2+3b2−2b(a+b)=a2−2ab+b2=(a−b)2≥0,∴a2+3b2≥2b(a+b).(2)∵a>0,b>0,∴2ab=a+b≥2√ab,即2ab≥2√ab,∴√ab≥1,∴ab≥1.当且仅当a=b=1时取等号,此时ab取最小值1.小提示:该题主要是考查不等式的证明和运用基本不等式求最值,在证明不等式时,可以运用综合法也可以运用分析法,一般的比较大小的最重要的方法就是作差法,然后结合综合法和分析法来一起证明,属于中档题.。

(完整版)方程与不等式的知识点梳理

(完整版)方程与不等式的知识点梳理

方程与不等式知识点梳理1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。

那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。

也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。

在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。

方程和不等式总结与经典例题

方程和不等式总结与经典例题

方程和不等式一、重点、难点提示:1.一元二次方程的一般形式:ax2+bx+c=0(a、b、c是常数,a≠0)。

在解一元二次方程,应按方程特点选择方法,各方法依次为:(1)直接开平方法;(2)配方法;(3)公式法;(4)因式分解法。

一元二次方程的求根公式是:x= (b2-4ac≥0)。

(注意符号问题)2.解分式方程的基本思想是:将分式方程转化为整式方程,转化的方法有两种:(1)去分母法;(2)换元法。

3.一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac。

当Δ>0时,方程有两个不相等的实数根x1= ,x2= ;当Δ=0时,方程有两个相等的实数根x1=x2=- ;当Δ<0时,方程没有实数根。

4.若一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2,则x1+x2=- , x1x2= 。

(注意两根的和是的相反数)。

以x1,x2为根的一元二次方程是x2-(x1+x2)x+x1x2=0。

5. 不等式的解法:解一元一次不等式和解一元一次方程类似。

不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。

6.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况见下表:二、例题分析:例1.解不等式组 ,并把它的解集在数轴上表示出来。

说明:不等式组的解集是不等式组中各个不等式解集的公共部分,通常借助数轴来确定其解集,这样既直观又不易错。

注意除以负数时,改变不等号的方向。

解:解不等式3(x-2)+8>2x ,得x>-2解不等式 ≥x- ,得 x ≤-1。

所以不等式组的解集是 -2<x ≤-1。

它在数轴上表示如右图所示。

例2.解不等式组 ,并写出不等式组的整数解。

说明:求一元一次不等式组的整数解时,先求出不等式组的解集,再按要求取特殊解。

解:解不等式3(x+1)>4x+2, 得x<1。

解不等式≥,得x≥-2。

所以不等式组的解集是:-2≤x<1。

方程与不等式总结与经典例题

方程与不等式总结与经典例题

方程和不等式一、重点、难点提示:1.一元二次方程的一般形式:ax2+bx+c=0(a、b、c是常数,a≠0)。

在解一元二次方程,应按方程特点选择方法,各方法依次为:(1)直接开平方法;(2)配方法;(3)公式法;(4)因式分解法。

一元二次方程的求根公式是:x= (b2-4ac≥0)。

(注意符号问题)2.解分式方程的基本思想是:将分式方程转化为整式方程,转化的方法有两种:(1)去分母法;(2)换元法。

3.一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac。

当Δ>0时,方程有两个不相等的实数根x1= ,x2= ;当Δ=0时,方程有两个相等的实数根x1=x2=- ;当Δ<0时,方程没有实数根。

4.若一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2,则x1+x2=- , x1x2= 。

(注意两根的和是的相反数)。

以x1,x2为根的一元二次方程是x2-(x1+x2)x+x1x2=0。

5. 不等式的解法:解一元一次不等式和解一元一次方程类似。

不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。

6.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况见下表:二、例题分析: 例1.解不等式组 ,并把它的解集在数轴上表示出来。

说明:不等式组的解集是不等式组中各个不等式解集的公共部分,通常借助数轴来确定其解集,这样既直观又不易错。

注意除以负数时,改变不等号的方向。

解:解不等式3(x-2)+8>2x ,得x>-2解不等式 ≥x- ,得 x ≤-1。

所以不等式组的解集是 -2<x ≤-1。

它在数轴上表示如右图所示。

例2.解不等式组 ,并写出不等式组的整数解。

说明:求一元一次不等式组的整数解时,先求出不等式组的解集,再按要求取特殊解。

解:解不等式3(x+1)>4x+2, 得x<1。

解不等式≥,得x≥-2。

所以不等式组的解集是:-2≤x<1。

方程与不等式的解法例题和知识点总结

方程与不等式的解法例题和知识点总结

方程与不等式的解法例题和知识点总结在数学的学习中,方程与不等式是非常重要的内容,它们在解决实际问题中有着广泛的应用。

下面我们将通过一些具体的例题来深入理解方程与不等式的解法,并对相关知识点进行总结。

一、方程的解法方程是含有未知数的等式,求解方程的目的就是找出未知数的值,使得等式成立。

1、一元一次方程形如 ax + b = 0(a ≠ 0)的方程叫做一元一次方程。

例:解方程 3x + 5 = 14解:首先,将常数项移到等号右边:3x = 14 5,即 3x = 9然后,将系数化为 1:x = 9 ÷ 3,解得 x = 3知识点总结:解一元一次方程的一般步骤为:去分母(若有)、去括号、移项、合并同类项、系数化为 1。

2、二元一次方程组由两个一次方程组成,并且含有两个未知数的方程组叫做二元一次方程组。

例:解方程组x + y = 5 ①2x y = 1 ②解:①+②得:3x = 6,解得 x = 2将 x = 2 代入①得:2 + y = 5,解得 y = 3所以方程组的解为 x = 2,y = 3知识点总结:解二元一次方程组的基本思想是消元,常用方法有代入消元法和加减消元法。

3、一元二次方程形如 ax²+ bx + c = 0(a ≠ 0)的方程叫做一元二次方程。

例:解方程 x² 4x + 3 = 0解:因式分解得:(x 1)(x 3) = 0所以 x 1 = 0 或 x 3 = 0解得 x₁= 1,x₂= 3知识点总结:一元二次方程的解法有直接开平方法、配方法、公式法和因式分解法。

求根公式为 x =b ± √(b² 4ac) /(2a)。

二、不等式的解法不等式是用不等号表示两个数或表达式之间关系的式子。

1、一元一次不等式形如 ax + b > 0 或 ax + b < 0(a ≠ 0)的不等式叫做一元一次不等式。

例:解不等式 2x 1 < 5解:移项得:2x < 5 + 1,即 2x < 6系数化为 1 得:x < 3知识点总结:解一元一次不等式的步骤与解一元一次方程类似,但要注意不等式两边乘或除以同一个负数时,不等号的方向要改变。

九年级数学中考复习专题——方程与不等式(附答案)

九年级数学中考复习专题——方程与不等式(附答案)

知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。

(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。

(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。

知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。

高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版(带答案)

高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版(带答案)

高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、已知x,y,z都是正实数,若xyz=1,则(x+y)(y+z)(z+x)的最小值为()A.2B.4C.6D.8答案:D分析:均值定理连续使用中要注意等号是否同时成立.由x>0,y>0,z>0可知x+y≥2√xy>0(当且仅当x=y时等号成立)y+z≥2√yz>0(当且仅当y=z时等号成立)x+z≥2√xz>0(当且仅当x=z时等号成立)以上三个不等式两边同时相乘,可得(x+y)(y+z)(z+x)≥8√x2y2z2=8(当且仅当x=y=z=1时等号成立)故选:D2、已知2<a<3,−2<b<−1,则2a−b的范围是()A.(6,7)B.(5,8)C.(2,5)D.(6,8)答案:B分析:由不等式的性质求解即可.2<a<3,−2<b<−1,故4<2a<6,1<−b<2,得5<2a−b<8故选:B3、下列命题中,是真命题的是()A.如果a>b,那么ac>bc B.如果a>b,那么ac2>bc2C.如果a>b,那么ac >bcD.如果a>b,c<d,那么a−c>b−d答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案.对于A ,如果c =0,那么ac =bc ,故错误; 对于B ,如果c =0,那么ac 2=bc 2,故错误; 对于C ,如果c <0,那么ac <bc ,故错误;对于D ,如果c <d ,那么−c >−d ,由a >b ,则a −c >b −d ,故正确. 故选:D.4、y =x +4x (x ≥1)的最小值为( ) A .2B .3C .4D .5 答案:C分析:利用均值不等式求解即可.因为y =x +4x(x ≥1),所以x +4x≥2√x ×4x=4,当且仅当x =4x即x =2时等号成立.所以当x =2时,函数y =x +4x 有最小值4. 故选:C.5、已知使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则实数a 的取值范围为( )A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞) 答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解.解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集, 又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13, 当a >1,x ∈[−a,−1]⊆(−∞,13],符合, 故实数a 的取值范围为[−13,+∞). 故选:C.6、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1, ∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .7、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab <1B .ba +ab >2C .1ab 2<1a 2b D .a 2+a <b 2+b 答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C8、若a,b,c为实数,且a<b,c>0,则下列不等关系一定成立的是()A.a+c<b+c B.1a <1bC.ac>bc D.b−a>c答案:A分析:由不等式的基本性质和特值法即可求解.对于A选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a<b⇒a+c<b+c,A选项正确;对于B选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若a=−2,b=−1,则1a >1b,B选项错误;对于C选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,c>0,0<a<b⇒ac<bc,C选项错误;对于D选项,因为a<b⇒b−a>0,c>0,所以无法判断b−a与c大小,D选项错误.多选题9、若−1<a<b<0,则()A.a2+b2>2ab B.1a <1bC.a+b>2√ab D.a+1a>b+1b答案:AD分析:应用作差法判断B、D,根据重要不等式判断A,由不等式性质判断C.A:由重要不等式知:a2+b2≥2ab,而−1<a<b<0,故a2+b2>2ab,正确;B:由−1<a<b<0,则1a −1b=b−aab>0,故1a>1b,错误;C:由−1<a<b<0,则a+b<0<2√ab,错误;D :(a +1a )−(b +1b )=a −b +1a −1b =a −b +b−a ab=(a −b)(ab−1ab)>0,故a +1a >b +1b ,正确.故选:AD10、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4 答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确;由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4, 当且仅当{ab =1ab a b =b a ,即a =b =1时取等号,故D 正确. 故选:ACD.11、十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a 、b 、c ∈R ,则下列命题正确的是( )A .若a >b >0,则ac 2>bc 2B .若a <b <0,则a +1b <b +1a C .若a <b <c <0,则ba <b+ca+c D .若a >0,b >0,则b 2a +a 2b≥a +b答案:BCD解析:取c =0可判断A 选项的正误;利用作差法可判断BCD 选项的正误. 对于A 选项,当c =0时,则ac 2=bc 2,A 选项错误;对于B 选项, (a +1b )−(b +1a )=(a −b )+(1b −1a )=(a −b )+a−b ab=(a −b )(1+1ab ),∵a <b <0,a −b <0,ab >0,∴1+1ab >0,则(a +1b )−(b +1a )<0,B 选项正确; 对于C 选项,ba −b+ca+c =b (a+c )−a (b+c )a (a+c )=c (b−a )a (a+c ),∵a <b <c <0,则b −a >0,a +c <0,则ba −b+ca+c <0,C 选项正确; 对于D 选项,(b 2a +a 2b)−(a +b )=b 2−a 2a+a 2−b 2b=(b 2−a 2)(1a −1b )=(b 2−a 2)(b−a )ab=(b+a )(b−a )2ab,∵a >0,b >0,则(b 2a +a 2b)−(a +b )=(b+a )(b−a )2ab≥0,D 选项正确.故选:BCD.小提示:判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便. 填空题 12、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)13、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值. 设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32, 因此,z =x +2y 的最小值是32.所以答案是:32.14、已知集合A={x|−5<−2x+3<7},B={x|x2−(3a−1)x+2a2−a<0} ,若B⊆A,则实数a的取值范围为______.答案:[−12,5 2 ]分析:分类讨论解不等式,再利用集合的包含关系列式求解作答.依题意,B={x|(x−a)(x−2a+1)<0},当a<2a−1,即a>1时,B=(a,2a−1),当a=2a−1,即a=1时,B=∅,当a>2a−1,即a<1时,B=(2a−1,a),又A=(−2,4),B⊆A,于是得{a>12a−1≤4,解得1<a≤52,或{a<12a−1≥−2,解得−12≤a<1,而∅⊆A,则a=1,综上得:−12≤a≤52,所以实数a的取值范围为[−12,52 ].所以答案是:[−12,5 2 ]解答题15、实数a、b满足-3≤a+b≤2,-1≤a-b≤4.(1)求实数a、b的取值范围;(2)求3a-2b的取值范围.答案:(1)a∈[-2,3],b∈[-72,3 2 ](2)[-4,11]分析:(1)由a=12[(a+b)+(a-b)],b=12[(a+b)-(a-b)]根据不等式的性质计算可得;(2)求出3a-2b=12(a+b)+52(a-b),再利用不等式的性质得解.(1)解:由-3≤a+b≤2,-1≤a-b≤4,则a=12[(a+b)+(a-b)],所以-4≤(a+b)+(a-b)≤6,所以-2≤12[(a+b)+(a-b)]≤3,即-2≤a≤3,即实数a的取值范围为[-2,3].因为b=12[(a+b)-(a-b)],由-1≤a-b≤4,所以-4≤b -a ≤1,所以-7≤(a +b )-(a -b)≤3, 所以-72≤12[(a +b )-(a -b)]≤32,∴-72≤b ≤32,即实数b 的取值范围为[-72,32].(2)解:设3a -2b =m (a +b )+n(a -b)=(m +n )a +(m -n)b , 则{m +n =3m -n =-2 ,解得{m =12n =52 ,∴3a -2b =12(a +b )+52(a -b ), ∵-3≤a +b ≤2,-1≤a -b ≤4. ∴-32≤12(a +b )≤1,-52≤52(a -b )≤10, ∴-4≤3a -2b ≤11,即3a -2b 的取值范围为[-4,11].。

八上 一次函数与方程组、不等式 知识点+例题+练习 (非常好 分类全面)

八上 一次函数与方程组、不等式 知识点+例题+练习 (非常好 分类全面)

例1 从2014年起,中国的鞋号已“变脸”,新的国家标准要求鞋号用毫米数标注.据了解大多数市民还不了解此新标准,小明对新旧鞋号的标注变化进行了对比研究,发现新标准鞋子毫米数y与旧鞋号x之间存在着一次函数关系,并得到相关数据如下:旧鞋号 x 36 38 40新标准毫米数y230 240 250(1)请你帮助小明根据上述数据归纳出新标准毫米数与旧鞋号标注之间的换算关系式,并用一句简明的数学语言来表示;(2)如果小明的爸爸穿的一双42号凉鞋坏了,准备买一双同样尺寸的新凉鞋,那么应买一双多少毫米数的新凉鞋?例2 某种拖拉机的油箱可储油40L,加满油并开始工作后,•油箱中的余油量y(L)与工作时间x(h)之间为一次函数关系,如图所示.(1)求y与x的函数解析式.(2)一箱油可供拖位机工作几小时?知识点2 图像法解决实际问题注:读图时一定要明确横纵坐标表示的量所代表的意义。

例3 某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求yl 与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案.二、典型例题题型1 运用一次函数的关系解决生活中的实际问题例 1 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数表达式;(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度;(3)若桌面上有若干个饭碗,整齐叠放成一摞,已测得它的高度为37.5cm,你能求出此时有多少个饭碗吗?题型2利用图表信息解决实际问题例2 某厂家生产两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A种购物袋x个,每天共获利y元.(1)求y与x的函数关系式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?题型3 建立一次函数模型解决实际问题例3 某下岗职工购进一批苹果到农贸市场零售,已知买出的苹果数量x(kg)与收入y(元)的关系如下表:在平面直角坐标系中描点,观察点的分布情况,探求收入y(元)与买出数量x(kg)之间的函数关系式。

全国通用版高中数学第二章一元二次函数方程和不等式知识点总结全面整理

全国通用版高中数学第二章一元二次函数方程和不等式知识点总结全面整理

(名师选题)全国通用版高中数学第二章一元二次函数方程和不等式知识点总结全面整理单选题1、已知正实数a ,b 满足a +1b =2,则2ab +1a 的最小值是( ) A .52B .3C .92D .2√2+1 答案:A分析:由已知得, a =2−1b代入得2ab +1a=2(2b −1)+b2b−1,令2b −1=t ,根据基本不等式可求得答案.解:因为a +1b=2,所以a =2−1b>0,所以0<b <2 ,所以2ab +1a =2(2−1b )b +b 2b−1=2(2b −1)+b2b−1,令2b −1=t ,则b =t +12,且−1<t <3 ,所以2ab +1a =2t +t +12t=2t +12t +12≥2√2t ⋅12t +12=52,当且仅当2t =12t ,即t =12,b =34,a =23时,取等号,所以2ab +1a 的最小值是52. 故选:A.2、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为( ) A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞) 答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可. 不等式ax 2+bx +2>0的解集是{x |−12<x <13}则根据对应方程的韦达定理得到:{(−12)+13=−ba(−12)⋅13=2a , 解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16)故选:A3、已知集合M ={x |−4<x <2 },N ={x |x 2−x −6 <0},则M ∩N = A .{x |−4<x < 3}B .{x |−4<x < −2}C .{x |−2<x < 2}D .{x |2<x < 3} 答案:C分析:本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.由题意得,M ={x |−4<x <2 },N ={x |−2<x <3 },则 M ∩N ={x |−2<x <2 }.故选C .小提示:不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分. 4、要使关于x 的方程x 2+(a 2−1)x +a −2=0的一根比1大且另一根比1小,则实数a 的取值范围是( ) A .{a |−1<a <2 }B .{a |−2<a <1 } C .{a |a <−2 }D .{a |a >1 } 答案:B分析:根据二次方程根的分布可得出关于实数a 的不等式,由此可解得实数a 的取值范围. 由题意可得1+(a 2−1)+a −2=a 2+a −2<0,解得−2<a <1. 故选:B.5、已知a >0,b >0,a +b =1,则y =1a +3b 的最小值是( ) A .7B .2+√3C .4D .4+2√3 答案:D分析:由“1”的妙用和基本不等式可求得结果. 因为a>0,b>0,a+b=1,所以y=1a +3b=(a+b)(1a+3b)=4+ba+3ab≥4+2√ba⋅3ab=4+2√3,当且仅当ba =3ab即b=√3a时,等号成立.结合a+b=1可知,当a=√3−12,b=3−√32时,y有最小值4+2√3.故选:D.6、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a(元/个)的取值范围应是()A.90<a<100B.90<a<110C.100<a<110D.80<a<100答案:A分析:首先设每个涨价x元,涨价后的利润与原利润之差为y元,结合条件列式,根据y>0,求x的取值范围,即可得到a的取值范围.设每个涨价x元,涨价后的利润与原利润之差为y元,则a=x+90,y=(10+x)⋅(400−20x)−10×400=−20x2+200x.要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A7、若(x−a)2<4成立的一个充分不必要条件是1+12−x≤0,则实数a的取值范围为()A.(−∞,4]B.[1,4]C.(1,4)D.(1,4]答案:D分析:解一元二次不等式、分式不等式求得题设条件为真时对应x的范围,再根据条件的充分不必要关系求参数a的取值范围.由(x−a)2<4,可得:a−2<x<a+2;由1+12−x =3−x 2−x ≤0,则{(x −2)(x −3)≤02−x ≠0,可得2<x ≤3;∵(x −a)2<4成立的一个充分不必要条件是1+12−x≤0,∴{a −2≤2a +2>3 ,可得1<a ≤4. 故选:D.8、已知a >b >0,下列不等式中正确的是( ) A .ca>cb B .ab <b 2C .a −b +1a−b≥2D .1a−1<1b−1答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论. 解:对于选项A ,因为a >b >0,0<1a<1b,而c 的正负不确定,故A 错误;对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b>0,所以a −b +1a−b≥2√(a −b )×1a−b=2,故C 正确;对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误; 故选:C.9、若不等式x 2+ax +1≥0对于一切x ∈(0,12]恒成立,则a 的最小值是( )A .0B .−2C .−52D .−3答案:C解析:采用分离参数将问题转化为“a ≥−(x +1x )对一切x ∈(0,12]恒成立”,再利用基本不等式求解出x +1x 的最小值,由此求解出a 的取值范围.因为不等式x 2+ax +1≥0对于一切x ∈(0,12]恒成立, 所以a ≥−(x +1x )对一切x ∈(0,12]恒成立,所以a ≥[−(x +1x )]max(x ∈(0,12]),又因为f (x )=x +1x 在(0,12]上单调递减,所以f (x )min =f (12)=52,所以a ≥−52,所以a 的最小值为−52,故选:C.小提示:本题考查利用基本不等式求解最值,涉及不等式在给定区间上的恒成立问题,难度一般.不等式在给定区间上恒成立求解参数范围的两种方法:参变分离法、分类讨论法. 10、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab<1B .ba+ab>2C .1ab 2<1a 2b D .a 2+a <b 2+b 答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答. 取a =−2,b =−1,满足a <b ,而ab =2>1,A 不成立;取a =−2,b =1,满足a <b ,而b a +a b =−12+(−2)=−52<2,B 不成立; 因1ab 2−1a 2b =a−ba 2b 2<0,即有1ab 2<1a 2b ,C 成立;取a =−2,b =−1,满足a <b ,而a 2+a =2,b 2+b =0,即a 2+a >b 2+b ,D 不成立. 故选:C11、小李从甲地到乙地的平均速度为a ,从乙地到甲地的平均速度为b(a >b >0),他往返甲乙两地的平均速度为v ,则( ) A .v =a+b 2B .v =√abC .√ab <v <a+b 2D .b <v <√ab答案:D分析:平均速度等于总路程除以总时间设从甲地到乙地的的路程为s ,从甲地到乙地的时间为t 1,从乙地到甲地的时间为t 2,则 t 1=sa,t 2=sb,v =2s t 1+t 2=2ss a +s b=21a +1b,∴v =21a +1b>21b +1b=b ,v =21a +1b=2ab a+b<2√ab=√ab ,故选:D.12、下列命题正确的是( ) A .若ac >bc ,则a >b B .若ac =bc ,则a =b C .若a >b ,则1a<1bD .若ac 2>bc 2,则a >b 答案:D分析:由不等式性质依次判断各个选项即可. 对于A ,若c <0,由ac >bc 可得:a <b ,A 错误;对于B ,若c =0,则ac =bc =0,此时a =b 未必成立,B 错误; 对于C ,当a >0>b 时,1a >0>1b ,C 错误;对于D ,当ac 2>bc 2时,由不等式性质知:a >b ,D 正确. 故选:D. 填空题13、函数y =3x +1x−1(x >1)的最小值是_____ 答案:3+2√3分析:利用基本不等式可求得原函数的最小值. 因为x >1,则x −1>0,所以y =3(x −1)+1x−1+3≥2√3(x −1)×1x−1+3=2√3+3,当且仅当3(x −1)=1x−1,因为x >1,即当x =3+√33时,等号成立.所以函数y =3x +1x−1(x >1)的最小值是2√3+3. 所以答案是:3+2√3. 14、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞)分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案. 原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0, 解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)15、若x >−1,则x +3x+1的最小值是___________. 答案:2√3−1分析:由x +3x+1=x +1+3x+1−1,结合基本不等式即可. 因为x >−1,所以x +1>0, 所以x +3x+1=x +1+3x+1−1≥2√3−1,当且仅当x +1=3x+1即x =√3−1时,取等号成立.故x +3x+1的最小值为2√3−1, 所以答案是:2√3−116、已知x >54,则函数y =4x +14x−5的最小值为_______.答案:7分析:由x >54,得4x −5>0,构造导数关系,利用基本不等式即可得到. 法一:∵x >54,∴4x −5>0,y =4x +14x−5=(4x −5)+14x−5+5≥2+5=7,当且仅当4x −5=14x−5,即x =32时等号成立,所以答案是:7.法二:∵x >54,令y ′=4−4(4x−5)2=0得x =1或x =32,当54<x <32时y′<0函数单调递减, 当x >32时y′>0函数单调递增,所以当x =32时函数取得最小值为:4×32+14×32−5=7,所以答案是:7.【点晴】此题考基本不等式,属于简单题. 17、设x >0, y >0, x +2y =5,则√xy的最小值为______.答案:4√3分析:把分子展开化为2xy +6,再利用基本不等式求最值.∵(x +1)(2y +1)√xy=2xy +x +2y +1√xy,∵x >0, y >0, x +2y =5,xy >0,∴√xy≥√3√xy √xy=4√3,当且仅当xy =3,即x =3,y =1时成立, 故所求的最小值为4√3.小提示:使用基本不等式求最值时一定要验证等号是否能够成立. 解答题18、已知函数f (x )=x 2+ax −2,f (x )>0的解集为{x |x <−1 或x >b }. (1)求实数a 、b 的值;(2)若x ∈(0,+∞)时,求函数g (x )=f (x )+4x的最小值.答案:(1)a =−1,b =2 (2)2√2−1分析:(1)分析可知−1、b 是方程x 2+ax −2=0的两个根,利用一元二次方程根与系数的关系可求得a 、b 的值;(2)求得g (x )=x +2x −1,利用基本不等式可求得g (x )在(0,+∞)上的最小值. (1)解:因为关于x 的不等式x 2+ax −2>0的解集为{x |x <−1 或x >b },所以,−1、b 是方程x 2+ax −2=0的两个根,所以,{1−a −2=0−1⋅b =−2 ,解得{a =−1b =2.(2)解:由题意知g (x )=f (x )+4x =x 2−x+2x=x +2x−1,因为x >0,由基本不等式可得g (x )=x +2x −1≥2√x ⋅2x −1=2√2−1, 当且仅当x =2x 时,即x =√2时,等号成立 故函数g (x )的最小值为2√2−1.19、设p :实数x 满足x 2−2ax −3a 2<0(a >0),q:2<x <4. (1)若a =1,且p ,q 都为真命题,求x 的取值范围; (2)若q 是p 的充分不必要条件,求实数a 的取值范围. 答案:(1)2<x <3; (2)a ≥43.分析:(1)解不等式确定命题p ,然后求出p,q 中x 范围的交集可得; (2)求出不等式的解,根据充分不必要条件的定义列不等式组求解.(1)a =1时,x 2−2x −3<0,−1<x <3,即p:−1<x <3,又q:2<x <4,而p ,q 都为真命题,所以2<x <3;(2)a >0,x 2−2ax −3a 2<0 ⇔−a <x <3a ,q 是p 的充分不必要条件,则{−a ≤23a ≥4且等号不能同时取得,所以a ≥43.20、已知一元二次函数f(x)=ax 2+bx +c (a >0,c >0)的图像与x 轴有两个不同的公共点,其中一个公共点的坐标为(c,0),且当0<x <c 时,恒有f(x)>0. (1)当a =1,c =12时,求出不等式f(x)<0的解; (2)求出不等式f(x)<0的解(用a,c 表示);(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a 的取值范围; (4)若不等式m 2−2km +1+b +ac ≥0对所有k ∈[−1, 1]恒成立,求实数m 的取值范围. 答案:(1)(12,1);(2)(c,1a );(3)a ∈(0, 18];(4)m ≤−2 或 m =0 或m ≥2. 分析:(1)根据根与系数的关系,求出f(x)=0的另一根,得到不等式f(x)<0的解;(2)根据根与系数的关系,求出f(x)=0另一根,并判断两根的大小,得到不等式f(x)<0的解;(3)先求出f(x)的图像与坐标轴的交点,表示出以这些点组成的三角形的面积,再将a 用c 表示出来,再求得a 的范围;(4)根据f(c)=0,得到a,b,c 的关系式,化简不等式,将k,m 分离,分离时注意讨论m 的符号,求得实数m 的范围.(1)当a =1,c =12时,f(x)=x 2+bx +12,f(x)的图像与x 轴有两个不同交点,∵f(12)=0设另一个根为x 2,则12x 2=12,∴x 2=1,则f(x)<0的解集为(12,1).(2)f(x)的图像与x 轴有两个交点,∵f(c)=0,设另一个根为x 2, 则cx 2=ca ∴x 2=1a 又当0<x <c 时,恒有f(x)>0,则1a >c , ∴f(x)<0的解集为(c,1a ).(3)由(2)的f(x)的图像与坐标轴的交点分别为(c,0),(1a ,0),(0,c)这三交点为顶点的三角形的面积为S=12(1a−c)c=8,∴a=c16+c2≤2√16c=18,故a∈(0, 18].(4)∵f(c)=0,∴ac2+bc+c=0,又∵c>0,∴ac+b+1=0,要使m2−2k m≥0,对所有k∈[−1, 1]恒成立,则当m>0时,m≥(2k)max=2;当m<0时,m≤(2k)min=−2;当m=0时,02≥2k⋅0,对所有k∈[−1, 1]恒成立.从而实数m的取值范围为m≤−2 或 m=0 或m≥2.小提示:本题考查了二次函数,一元二次方程,一元二次不等式三个二次之间关系及应用,根与系数的关系,恒成立求参问题,参变分离技巧,属于中档题.。

全国通用版高中数学第二章一元二次函数方程和不等式知识点总结归纳完整版

全国通用版高中数学第二章一元二次函数方程和不等式知识点总结归纳完整版

(名师选题)全国通用版高中数学第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、关于x的不等式ax2−|x|+2a≥0的解集是(−∞,+∞),则实数a的取值范围为()A.[√24,+∞)B.(−∞,√24]C.[−√24,√24]D.(−∞,−√24]∪[√24,+∞)答案:A分析:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,分x=0和a≠0两种情况讨论,结合基本不等式即可得出答案.解:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,当x=0时,a≥0,当a≠0时,a≥|x|x2+2=1|x|+2|x|,因为1|x|+2|x|≤2√x⋅2|x|=√24,所以a≥√24,综上所述a∈[√24,+∞).故选:A.2、已知实数a,b满足a+b=ab(a>1,b>1),则(a−1)2+(b−1)2的最小值为( ) A.2B.1C.4D.5答案:A分析:将a -1和b -1看作整体,由a +b =ab (a >1,b >1)构造出(a −1)(b −1)=1,根据(a −1)2+(b −1)2≥2(a −1)(b −1)即可求解.由a +b =ab (a >1,b >1)得a +b −ab −1=−1,因式分解得(a −1)(b −1)=1, 则(a −1)2+(b −1)2≥2(a −1)(b −1)=2,当且仅当a =b =2时取得最小值. 故选:A .3、已知x >0,y >0,x +2y =1,则1x+1y 的最小值为( )A .3+2√2B .12C .8+4√3D .6 答案:A分析:根据基本不等中“1”的用法,即可求出结果. 因为x >0,y >0,x +2y =1, 所以(1x+1y )(x +2y)=3+2y x+xy≥3+2√2,当且仅当2yx =xy ,即x =√2−1,y =2−√22时,等号成立.故选:A.4、已知x >2,则x +4x−2的最小值为( ) A .6B .4C .3D .2 答案:A分析:利用基本不等式可得答案. ∵x >2,∴x −2>0,∴x +4x−2= x −2+4x−2+2≥2√(x −2)⋅4x−2+2=6, 当且仅当x −2=4x−2即x =4时, x +4x−2取最小值6, 故选:A .5、若实数x >32,y >13,不等式4x 2t (3y−1)+9y 2t (2x−3)≥2恒成立,则正实数t 的最大值为( ) A .4B .16C .72D .8答案:D分析:令3y −1=a,2x −3=b ,则(b+3)2a+(a+1)2b≥2t ,由权方和不等式和基本不等式得(b+3)2a+(a+1)2b≥16,即可求解t ≤8.由4x 2t (3y−1)+9y 2t (2x−3)≥2得4x 2(3y−1)+9y 2(2x−3)≥2t 因为x >32,y >13,则3y −1>0,2x −3>0 令3y −1=a,2x −3=b 则4x 2(3y−1)+9y 2(2x−3)≥2t 化为(b+3)2a+(a+1)2b≥2t 恒成立,由权方和不等式得(b+3)2a+(a+1)2b≥(a+b+4)2a+b=(a +b )+16a+b +8≥2√16+8=16当且仅当{b+3a=a+1ba +b =4,得a =53,b =73即x =73,y =109时等号成立.所以16≥2t ⇒t ≤8 故选:D6、若关于x 的不等式|x −1|<a 成立的充分条件是0<x <4,则实数a 的取值范围是( ) A .(-∞,1]B .(-∞,1) C .(3,+∞)D .[3,+∞) 答案:D分析:根据充分条件列不等式,由此求得a 的取值范围. |x −1|<a 成立的充分条件是0<x <4,则a >0, |x −1|<a ⇒1−a <x <1+a ,所以{1−a ≤01+a ≥4⇒a ≥3.故选:D7、已知0<x <2,则y =x√4−x 2的最大值为( ) A .2B .4C .5D .6 答案:A分析:由基本不等式求解即可 因为0<x <2, 所以可得4−x 2>0, 则y =x√4−x 2=√x 2⋅(4−x 2)≤x 2+(4−x 2)2=2,当且仅当x 2=4−x 2,即x =√2时,上式取得等号, y =x√4−x 2的最大值为2. 故选:A . 8、若x >1,则x +1x−1的最小值等于( )A .0B .1C .2D .3 答案:D 分析:将x +1x−1变形为x −1+1x−1+1,即可利用均值不等式求最小值.因为x >1,所以x −1>0,因此x +1x−1=x −1+1x−1+1≥2√(x −1)⋅1x−1+1=3,当且仅当x −1=1x−1,即x =2时,等号成立,所以x +1x−1的最小值等于3. 故选:D.9、已知y =(x −m )(x −n )+2022(n >m ),且α,β(α<β)是方程y =0的两实数根,则α,β,m ,n 的大小关系是( )A .α<m <n <βB .m <α<n <βC .m <α<β<nD .α<m <β<n 答案:C分析:根据二次函数图像特点,结合图像平移变换即可得到答案.∵α,β为方程y =0的两实数根,∴α,β为函数y =(x −m )(x −n )+2022的图像与x 轴交点的横坐标, 令y 1=(x −m )(x −n ),∴m ,n 为函数y 1=(x −m )(x −n )的图像与x 轴交点的横坐标,易知函数y =(x −m )(x −n )+2022的图像可由y 1=(x −m )(x −n )的图像向上平移2022个单位长度得到, 所以m <α<β<n . 故选:C.10、已知−1≤x +y ≤1,1≤x −y ≤5,则3x −2y 的取值范围是( ) A .[2,13]B .[3,13]C .[2,10]D .[5,10] 答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2 ,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.11、已知a,b 为正实数,且a +b =6+1a+9b ,则a +b 的最小值为( )A .6B .8C .9D .12 答案:B分析:根据题意,化简得到(a +b )2=(6+1a +9b )(a +b )=6(a +b )+10+ba +9a b,结合基本不等式,即可求解.由题意,可得(a +b )2=(6+1a +9b )(a +b )=6(a +b )+10+ba +9a b≥6(a +b )+16,则有(a +b )2−6(a +b )−16≥0,解得a +b ≥8,当且仅当a=2,b=6取到最小值8.故选:B.12、要使关于x的方程x2+(a2−1)x+a−2=0的一根比1大且另一根比1小,则实数a的取值范围是()A.{a|−1<a<2}B.{a|−2<a<1}C.{a|a<−2}D.{a|a>1}答案:B分析:根据二次方程根的分布可得出关于实数a的不等式,由此可解得实数a的取值范围.由题意可得1+(a2−1)+a−2=a2+a−2<0,解得−2<a<1.故选:B.填空题13、若对任意x>0,x3+5x2+4x≥ax2恒成立,则实数a的取值范围是___________.答案:(−∞,9]分析:先分离参数a,再运用基本不等式可求解.因为对任意x>0,x3+5x2+4x≥ax2⇔x2+5x+4x ≥a恒成立,只需满足a≤(x2+5x+4x)min,因为x>0,所以x 2+5x+4x=x+4x+5≥2√x⋅4x+5=9,当且仅当x=4x,即x=2时取等号.故实数a的取值范围是(−∞,9].所以答案是:(−∞,9]14、某校生物兴趣小组为开展课题研究,分得一块面积为32m2的矩形空地,并计划在该空地上设置三块全等的矩形试验区(如图所示).要求试验区四周各空0.5m,各试验区之间也空0.5m.则每块试验区的面积的最大值为___________m2.答案:6分析:设矩形空地的长为x m,根据图形和矩形的面积公式表示出试验区的总面积,利用基本不等式即可求出结果.设矩形空地的长为x m,则宽为32xm,依题意可得,试验区的总面积S=(x−0.5×4)(32x −0.5×2)=34−x−64x≤34−2√x⋅64x=18,当且仅当x=64x即x=8时等号成立,所以每块试验区的面积的最大值为183=6m2. 所以答案是:615、已知三个不等式:①ab>0,②ca >db,③bc>ad,用其中两个作为条件,剩下的一个作为结论,则可组成______个真命题.答案:3分析:根据题意,结合不等式性质分别判断①、②、③作为结论的命题的真假性即可.由不等式性质,得{ab>0ca>db⇒{ab>0bc−adab>0⇒bc>ad;{ab>0bc>ad⇒ca>db;{ca>dbbc>ad⇒{bc−adab>0bc>ad⇒ab>0.故可组成3个真命题.所以答案是:3.16、正实数x,y满足:2x+y=1,则2x +1y的最小值为_____.答案:9解析:根据题意,可得2x +1y=(2x+1y)(2x+y)=5+2yx+2xy,然后再利用基本不等式,即可求解.2 x +1y=(2x+1y)(2x+y)=5+2yx+2xy≥5+2√2yx⋅2xy≥5+2√4=9,当且仅当x=y=13时取等号.所以答案是:9.小提示:本题主要考查利用基本不等式求最值,属于基础题.17、当x>1时,求2x+8x−1的最小值为___________.答案:10分析:化为积为定值的形式后,利用基本不等式可求得结果.当x>1时,2x+8x−1=2(x−1)+8x−1+2≥2√2(x−1)⋅8x−1+2=8+2=10,当且仅当{x>12(x−1)=8x−1,即x=3时等号成立.∴2x+8x−1的最小值为10.所以答案是:10.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.解答题18、已知实数x>0,y>0.(1)若x+y+xy=3,求2xy的最大值与x+y的最小值;(2)若x>y,求xy 2x−y +xy+1y2的最小值.答案:(1)最小值为2;(2)最小值为4.分析:(1)由已知结合基本不等式x+y⩾2√xy,及不等式的性质即可求解;(2)先进行换元t=x−y,t>0,然后把x=t+y代入所求式子,进行合理的变形后结合基本不等式可求.解:(1)因为x+y≥2√xy,又因为x+y+xy=3,所以xy+2√xy≤3,解得−3≤√xy≤1,因为0<√xy,所以0<√xy≤1,所以0<xy≤1,所以2xy≤2,当且仅当x=y=1时等号成立,所以2xy最大值为2;因为xy≤(x+y2)2,所以(x+y2)2+(x+y)≥3,当且仅当x=y=1时等号成立,所以x+y≥2,所以x+y最小值为2;(2)xy 2x−y +xy+1y2=x2yx−y+1y2,令t=x−y,t>0,所以x=t+y,x2y x−y +1y2=(t+y)2yt+1y2=ty+y3t+2y2+1y2≥2√ty⋅y3t+2y2+1y2=4y2+1y2≥2√4y2⋅1y2=4;当且仅当ty=y 3t ,且4y2=1y2,即x=√2,y=√22时等号成立,所以xy 2x−y +xy+1y2最小值为4.19、已知12<a<60,15<b<36,求a−2b,2ab的取值范围.答案:a−2b的取值范围是(−60,30),2ab 的取值范围是(23,8).分析:根据题意可得−72<−2b<−30,进而得到a−2b的范围,再根据分数的性质可得2ab的取值范围. 因为15<b<36,所以−72<−2b<−30.又12<a<60,所以12−72<a−2b<60−30,即−60<a−2b<30.因为12<a<60,所以24<2a<120,因为15<b<36,所以136<1b<115,所以2436<2ab<12015,即23<2ab<8.所以a−2b的取值范围是(−60,30),2ab 的取值范围是(23,8).20、设f(x)=ax2+(1-a)x+a-2.(1)若命题“对任意实数x,f(x)≥-2”为真命题,求实数a的取值范围;(2)解关于x的不等式f(x)<a-1(a∈R).答案:(1)a≥13(2)答案见解析分析:(1)根据“对任意实数x,f(x)≥-2”为真命题,知ax2+(1-a)x+a-2≥-2,即ax2+(1-a)x+a≥0,此时对a进行分类讨论,再结合判别式Δ即可求出a的范围.(2)由f(x)<a-1得ax2+(1-a)x+a-2<a-1,即ax2+(1-a)x-1<0,对a进行分类讨论,即可求出不等式f(x)<a-1的解集.(1)∵命题“对任意实数x,f(x)≥-2”为真命题,∴ax2+(1-a)x+a-2≥-2恒成立,即ax2+(1-a)x+a≥0恒成立. 当a=0时,x≥0,不满足题意;当a≠0时,知{a>0,Δ≤0,即{a>0,(1-a)2-4a2≤0,解得a≥13.故实数a的取值范围为a≥13.(2)∵f(x)<a-1(a∈R),∴ax2+(1-a)x+a-2<a-1,即ax2+(1-a)x-1<0.当a=0时,x<1,∴不等式的解集为{x|x<1};当a>0时,ax2+(1-a)x-1<0⇒(ax+1)(x-1)<0,此时方程(ax+1)(x-1)=0的解分别为-1a,1,∵-1a <1,∴不等式的解集为{x|-1a<x<1},当a<0时,不等式可化为(ax+1)(x-1)<0,①当a=-1时,-1a=1,∴不等式的解集为{x|x≠1};②当-1<a<0时,-1a >1,此时不等式的解集为{x|x>−1a或x<1};③当a<-1时,-1a <1,此时不等式的解集为{x|x>1或x<−1a}。

不等式的基础知识点与习题(含答案)

不等式的基础知识点与习题(含答案)

不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(同向可加)(4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(同向同正可乘)(5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且(7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式(二)解不等式1、一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:2、简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。

()()()如:x x x +--<1120233、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。

初中数学方程与不等式之分式方程知识点总复习附解析(1)

初中数学方程与不等式之分式方程知识点总复习附解析(1)

初中数学方程与不等式之分式方程知识点总复习附解析(1)一、选择题1.关于x 的方程无解,则m 的值为( )A .﹣5B .﹣8C .﹣2D .5【答案】A【解析】解:去分母得:3x ﹣2=2x +2+m ①.由分式方程无解,得到x +1=0,即x =﹣1,代入整式方程①得:﹣5=﹣2+2+m ,解得:m =﹣5.故选A .2.关于x 的方程m 3+=1x 11x--解为正数,则m 的范围为( ) A .m 2m 3≥≠且B . 2 B 3m m >≠C .m<2m 3≠且D .m>2 【答案】B【解析】【分析】首先解分式方程,然后令其大于0即可,注意还有1x ≠.【详解】方程两边同乘以()1x -,得2x m =-∴210x m x =-⎧⎨-≠⎩解得2m >且3m ≠故选:B.【点睛】此题主要考查根据分式方程的解求参数的取值范围,熟练掌握,即可解题.3.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( )A .5B .4C .3D .2 【答案】D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a 的值即可.【详解】不等式组整理得:13x a x ≥-⎧⎨≤⎩, 由不等式组有解且都是2x+6>0,即x >-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个,故选:D .【点睛】 本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.4.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4B .-2C .-3D .2 【答案】A【解析】【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可.【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数, 不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<, 由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a ≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4,则和为4,故选:A .【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.5.若关于x 的分式方程2x x -﹣12m x--=3的解为正整数,且关于y 的不等式组2()522126m y y y ⎧-≤⎪⎪⎨+⎪+>⎪⎩至多有六个整数解,则符合条件的所有整数m 的取值之和为( ) A .1B .0C .5D .6【答案】A【解析】【分析】先求出一元一次不等式组的解集,根据“不等式组的解至多有六个整数解”确定m 的取值范围,再解分式方程,依据“解为正整数”进一步确定m 的值,最后求和即可.【详解】 解:化简不等式组为25632y m y y -≤⎧⎨+>+⎩, 解得:﹣2<y ≤52m +, ∵不等式组至多有六个整数解, ∴52m +≤4, ∴m ≤3,将分式方程的两边同时乘以x ﹣2,得x +m ﹣1=3(x ﹣2),解得:x =52m +, ∵分式方程的解为正整数,∴m +5是2的倍数,∵m ≤3,∴m =﹣3或m =﹣1或m =1或m =3,∵x ≠2, ∴52m +≠2, ∴m ≠﹣1,∴m =﹣3或m =1或m =3,∴符合条件的所有整数m 的取值之和为1,故选:A .【点睛】本题考查分式方程的解法、解一元一次不等式组;熟练掌握分式方程的解法、一元一次不等式组的解法,是解题关键,分式方程切勿遗漏增根的情况是本题易错点.6.“母亲节”当天,某花店主打“康乃馨花束”,上午销售额为3000元,下午因市场需求量增大,店家将该花束单价提高30元,且下午比上午多售出40束,销售额为7200元,设该花束上午单价为每束x 元,则可列方程为( )A .300072004030x x -=+ B .720030004030x x -=+ C .720030004030x x-=+ D .300072004030x x -=+ 【答案】C【解析】【分析】设该花束上午单价为每束x 元,则下午单价为每束(x+30)元,根据数量=总价÷单价,结合下午比上午多售出40束,即可得出关于x 的分式方程,此题得解.【详解】设该花束上午单价为每束x 元,则下午单价为每束(x+30)元,依题意,得:720030004030x x-=+ 故选:C【点睛】本题考查了列分式方程解决实际问题,审题是基础,难点是找出能够表示应用题全部含义的一个相等关系,关键是设未知数和用未知数的代数式表示有关的未知量.7.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=- B .120100x x 10=+ C .120100x 10x =- D .120100x 10x=+ 【答案】A【解析】【分析】【详解】 甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同, 所以,120100x x 10=-. 故选A.8.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 【答案】D【解析】【分析】 根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a -+,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 的数量关系.【详解】根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故11+423a a -+=0, 解得:a=13. 故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.9.中秋节是我国的传统节日,人们素有吃月饼的习俗.汾阳月饼不仅汾阳人爱吃,而且风靡省城市场.省城某商场在中秋节来临之际购进A 、B 两种汾阳月饼共1500个,已知购进 A 种月饼和 B 种月饼的费用分别为3000元和2000元,且 A 种月饼的单价比 B 种月饼单价多1元.求 A 、B 两种月饼的单价各是多少?设 A 种月饼单价为x 元,根据题意,列方程正确的是( )A .3000200015001x x +=+ B .2000300015001x x +=+ C .3000200015001x x +=- D .2000300015001x x +=- 【答案】C【解析】【分析】设A 种月饼单价为x 元,再分别表示出A 种月饼和B 种月饼的个数,根据“购进A 、B 两种汾阳月饼共1500个”,列出方程即可.【详解】设A 种月饼单价为x 元,则B 种月饼单价为(x -1)元, 根据题意可列出方程3000200015001x x +=-, 故选C.【点睛】本题考查分式方程的应用,读懂题意是解题关键.10.已知关于x 的分式方程13222mx x x -+=--有解,则m 应满足的条件是( ) A . 1 2m m ≠≠且B .2m ≠C .1m =或2m =D .1m ≠或2m ≠ 【答案】A【解析】【分析】分式方程去分母转化为整式方程(m-2)x=-2,由分式方程有解可知m-2≠0,最简公分母x-2≠0,求出x 的值,进一步求出m 的取值即可.【详解】 13222mx x x-+=--, 去分母得,1-(3-mx )=2(x-2)整理得,(m-2)x=-2 ∵分式方程13222mx x x-+=--有解, ∴m-2≠0,即m≠2,∴22x m -=- ∵分式方程13222mx x x-+=--有解, ∴x-2≠0,即x≠2, ∴222m -≠-,解得,m≠1, 所以,m 的取值为: 1 m ≠且2m ≠故选:A.【点睛】此题主要考查了分式方程的求解,关键是会解出方程的解,注意隐含条件.11.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508x x =+ 【答案】D【解析】【分析】 首先用x 表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x 个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x =+, 故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.12.方程1235x x =+的解为( ). A .1x =-B .0x =C .3x =-D .1x = 【答案】D【解析】【分析】方程两边同乘以3x (x+5),化分式方程为整式方程,解整式方程求得x 的值,检验即可求得分式方程的解.【详解】方程两边同乘以3x (x+5)得,x+5=6x ,解得x=1,经检验,x=1是原分式方程的解.故选D.【点睛】本题考查了分式方程的解法,方程两边同乘以最简公分母化分式方程为整式方程是解决问题的关键.注意,解分式方程一定要验根.13.解分式方程221112x x x x --=--时,去分母后所得的方程正确的是( ) A .220x x -+= B .4241x x x -+=-C .4241x x x +-=-D .221x x x +-=- 【答案】C【解析】【分析】根据等式的性质,方程两边同时乘以最简公分母2(x-1),整理即可得答案.【详解】 ∵221112x x x x --=--, ∴221112x x x x -+=--, 方程两边同时乘以最简公分母2(x-1)得:4x+2(x-2)=x-1,去括号得:4x+2x-4=x-1,故选:C .【点睛】本题考查解分式方程,正确得出最简公分母是解题关键.14.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( )A .405012x x =- B .405012x x =- C .405012x x =+ D .405012x x=+ 【答案】B【解析】 试题解析:设乙车的速度为x 千米/小时,则甲车的速度为(x-12)千米/小时, 由题意得,405012x x=-. 故选B .15.若数k 使关于x 的不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩只有4个整数解,且使关于y 的分式方程1k y -+1=1y k y ++的解为正数,则符合条件的所有整数k 的积为( ) A .2B .0C .﹣3D .﹣6【答案】A【解析】【分析】解不等式组求得其解集,根据不等式组只有4个整数解得出k 的取值范围,解分式方程得出y=-2k+1,由方程的解为整数且分式有意义得出k 的取值范围,综合两者所求最终确定k 的范围,据此可得答案.【详解】 解:解不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩得:﹣3≤x ≤﹣3k , ∵不等式组只有4个整数解,∴0≤﹣3k <1, 解得:﹣3<k ≤0, 解分式方程1k y -+1=1y k y ++得:y =﹣2k +1, ∵分式方程的解为正数,∴﹣2k +1>0且﹣2k +1≠1,解得:k <12且k ≠0, 综上,k 的取值范围为﹣3<k <0,则符合条件的所有整数k 的积为﹣2×(﹣1)=2,故选A .【点睛】本题考查了解一元一次不等式组、分式方程的解,有难度,注意分式方程中的解要满足分母不为0的情况.16.如果关于x 的分式方程2ax 423x x 3++=--有正整数解,且关于y 的不等式组()3y 34y y a⎧-⎨≥⎩>无解,那么符合条件的所有整数a 的和是( ) A .﹣16 B .﹣15 C .﹣6 D .﹣4【答案】D【解析】【分析】先根据分式方程有正整数解确定出a的值,再由不等式组无解确定出满足题意的a的值,求出之和即可.【详解】解:分式方程去分母得:2+ax﹣2x+6=﹣4,整理得:(a﹣2)x=﹣12(a﹣2≠0),解得:x12a2 =--,由分式方程有正整数解,得到a=1,0,﹣1,﹣2,﹣4,﹣10,当a=﹣2时,x=3,原分式方程无解,所以a=1,0,﹣1,﹣4,﹣10,不等式组整理得:y<9 y a-⎧⎨≥⎩,由不等式组无解,即a≥﹣9,∴符合条件的所有整数a有1,0,﹣1,﹣4,∴a=1,0,﹣1,﹣4,之和为﹣4,故选:D.【点睛】此题考查了分式方程的解,解一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.17.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.10000x﹣90005x-=100 B.90005x-﹣10000x=100C.100005x-﹣9000x=100 D.9000x﹣100005x-=100【答案】B【解析】【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x元,则可列方程为:9000 x5 -﹣10000x=100,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.18.小明上月在某文具店正好用 20 元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜 1 元,结果小明只比上次多用了 4 元钱,却比上次多买了 2 本.若设他上月买了 x 本笔记本,则根据题意可列方程()A.24x2+-20x=1 B.20x-24x2+=1C.24x-20x2+=1 D.20x2+-24x=1【答案】B【解析】试题解析:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:2020412x x+-=+,即:202412x x-=+.故选B.考点:分式方程的应用.19.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x个月,则根据题意可列方程中错误的是()A.3212x x+=-B.32212x x x++=-C.3+2212x x+=-D.3112()12x x x++=-【答案】A【解析】【分析】设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据题意,得:5212x x+=-;A、3212x x+=-,与上述方程不符,所以本选项符合题意;B 、32212x x x ++=-可变形为5212x x +=-,所以本选项不符合题意; C 、3+2212x x +=-可变形为5212x x +=-,所以本选项不符合题意; D 、3112()12x x x ++=-的左边化简得5212x x +=-,所以本选项不符合题意. 故选:A .【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.20.已知关于x 的分式方程22124x mx x x --=+-无解,则m 的值为( ) A .0B .0或-8C .-8或-4D .0或-8或-4 【答案】D【解析】【分析】分式方程无解的条件是:去分母后所得整式方程无解或解这个整式方程得到的解使原方程的分母等于0.【详解】解:分式方程去分母得:(x−2)2−mx =(x +2)(x−2),整理得:(4+m )x =8,当m =−4时整式方程无解;当x =−2时原方程分母为0,此时m =−8;当x =2时原方程分母为0,此时m =0,故选:D .【点睛】本题考查了分式方程无解的条件,分式方程无解分两种情况:去分母后所得整式方程无解;分式方程产生增根;是需要识记的内容.。

高中数学第二章一元二次函数方程和不等式知识点总结归纳完整版(带答案)

高中数学第二章一元二次函数方程和不等式知识点总结归纳完整版(带答案)

高中数学第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、已知a,b 为正实数且a +b =2,则ba +2b 的最小值为( ) A .32B .√2+1C .52D .3 答案:D分析:由题知ba +2b =2(1a +1b )−1,再结合基本不等式求解即可.解:因为a,b 为正实数且a +b =2, 所以b =2−a , 所以,ba +2b =2−a a +2b =2a +2b −1=2(1a +1b )−1因为2a +2b =2(1a +1b )=(a +b )(1a +1b )=2+ba +ab ≥2+2=4,当且仅当a =b =1时等号成立; 所以ba +2b =2−a a+2b =2a +2b −1≥3,当且仅当a =b =1时等号成立;故选:D2、已知正数x ,y 满足2x+3y+13x+y=1,则x +y 的最小值( )A .3+2√24B .3+√24C .3+2√28D .3+√28答案:A分析:利用换元法和基本不等式即可求解. 令x +3y =m ,3x +y =n ,则2m +1n =1, 即m +n =(x +3y )+(3x +y )=4(x +y ), ∴x +y =m+n 4=(m 4+n 4)(2m +1n )=12+m 4n +2n 4m +14≥2√m 4n ⋅2n 4m +34=2×2√2+34=2√2+34, 当且仅当m4n =2n4m ,即m =2+√2,n =√2+1时,等号成立, 故选:A.3、已知关于x 的不等式(2a +3m )x 2−(b −3m )x −1>0(a >0,b >0)的解集为(−∞,−1)∪(12,+∞),则下列结论错误的是()A.2a+b=1B.ab的最大值为18C.1a +2b的最小值为4D.1a+1b的最小值为3+2√2答案:C分析:根据不等式的解集与方程根的关系,结合韦达定理,求得2a+3m=2,b−3m=−1,可判定A正确;结合基本不等式和“1”的代换,可判断B正确,C错误,D正确.由题意,不等式(2a+3m)x2−(b−3m)x−1>0的解集为(−∞,−1]∪[12,+∞),可得2a+3m>0,且方程(2a+3m)x2−(b−3m)x−1=0的两根为−1和12,所以{−1+12=b−3m2a+3m−1×12=−12a+3m,所以2a+3m=2,b−3m=−1,所以2a+b=1,所以A正确;因为a>0,b>0,所以2a+b=1≥2√2ab,可得ab≤18,当且仅当2a=b=12时取等号,所以ab的最大值为18,所以B正确;由1a +2b=(1a+2b)(2a+b)=4+ba+4ab≥4+2√ba⋅4ab=4+4=8,当且仅当ba =4ab时,即2a=b=12时取等号,所以1a+2b的最小值为8,所以C错误;由1a +1b=(1a+1b)(2a+b)=3+ba+2ab≥3+2√ba⋅2ab=3+√2,当且仅当ba =2ab时,即b=√2a时,等号成立,所以1a +1b的最小值为3+2√2,所以D正确.故选:C.4、已知a=√2,b=√7−√3,c=√6−√2,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.c>a>b D.c>b>a答案:B分析:通过作差法,a−b=√2+√3−√7,确定符号,排除D选项;通过作差法,a−c=2√2−√6,确定符号,排除C选项;通过作差法,b−c=(√7+√2)−(√6+√3),确定符号,排除A选项;由a−b=√2+√3−√7,且(√2+√3)2=5+2√6>7,故a>b;由a−c=2√2−√6且(2√2)2=8>6,故a>c;b−c=(√7+√2)−(√6+√3)且(√6+√3)2=9+2√18>9+2√14=(√7+√2)2,故c>b.所以a>c>b,故选:B.5、要使关于x的方程x2+(a2−1)x+a−2=0的一根比1大且另一根比1小,则实数a的取值范围是()A.{a|−1<a<2}B.{a|−2<a<1}C.{a|a<−2}D.{a|a>1}答案:B分析:根据二次方程根的分布可得出关于实数a的不等式,由此可解得实数a的取值范围.由题意可得1+(a2−1)+a−2=a2+a−2<0,解得−2<a<1.故选:B.6、若x<0,则x+14x−2有()A.最小值−1B.最小值−3C.最大值−1D.最大值−3答案:D分析:根据基本不等式,首先取相反数,再尝试取等号,可得答案.因为x<0,所以x+14x −2=−(−x+1−4x)−2≤−2√−x⋅1−4x−2=−3,当且仅当−x=1−4x,即x=−12时等号成立,故x+14x−2有最大值−3.故选:D.7、若a>b>0,则下列不等式中一定成立的是()A.ba >b+1a+1B.a+1a>b+1bC.a+1b>b+1aD.2a+ba+2b>ab答案:C分析:根据不等式的性质,对选项逐一判断对于A,ba −b+1a+1=b−aa(a+1),因为a>b>0,故ba−b+1a+1=b−aa(a+1)<0,即ba<b+1a+1,故A错;对于B,a+1a −(b+1b)=(a−b)(1−1ab)不确定符号,取a=1,b=12则a+1a<b+1b,故B错误;对于C,a+1b −(b+1a)=(a−b)(1+1ab),因为a>b>0,故a+1b −(b+1a)=(a−b)(1+1ab)>0,即a+1b>b+1a,故C正确;对于D,2a+ba+2b −ab=(b+a)(b−a)(a+2b)b,因为a>b>0,故2a+ba+2b −ab=(b+a)(b−a)(a+2b)b<0,即2a+ba+2b<ab,故D错误.故选:C8、设a<b<0,则下列不等式中不一定正确的是()A.2a >2bB.ac<bc C.|a|>-b D.√−a>√−b答案:B分析:利用不等式的性质对四个选项一一验证:对于A,利用不等式的可乘性进行证明;对于B,利用不等式的可乘性进行判断;对于C,直接证明;对于D,由开方性质进行证明.对于A,因为a<b<0,所以2ab >0,对a<b同乘以2ab,则有2a>2b,故A成立;对于B,当c>0时选项B成立,其余情况不成立,则选项B不成立;对于C,|a|=-a>-b,则选项C成立;对于D,由-a>-b>0,可得√−a>√−b,则选项D成立.故选:B多选题9、若a>1,b<2,则()A.a−b>−1B.(a−1)(b−2)<0C .a +1a−1的最小值为2D .12−b≥b答案:ABD分析:利用不等式的性质可判断ABD 选项;利用基本不等式可判断C 选项. 因为b <2,所以−b >−2,又a >1,所以a −b >−1,A 正确;因为a >1,b <2,则a −1>0,b −2<0,所以(a −1)(b −2)<0,B 正确; 因为a >1,所以a −1>0,所以a +1a−1=a −1+1a−1+1≥2√(a −1)⋅1a−1+1=3, 当且仅当a =2时,等号成立,C 不正确;因为b <2,则b (b −2)+1=(b −1)2≥0,所以,b (2−b )≤1, 因为2−b >0,所以12−b≥b ,D 正确.故选:ABD.10、已知不等式ax 2+bx +c >0的解集为{x|−12<x <2},则下列结论正确的是( ) A .a >0B .b >0C .c >0D .a +b +c >0 答案:BCD分析:对A ,根据一元二次方程与一元二次函数的关系即可判断;对B ,C ,利用韦达定理即可判断;对D ,根据韦达定理以及b >0,即可求解.解:对A ,∵不等式ax 2+bx +c >0的解集为{x|−12<x <2}, 故相应的二次函数y =ax 2+bx +c 的图象开口向下, 即a <0,故A 错误;对B ,C ,由题意知: 2和−12是关于x 的方程ax 2+bx +c =0的两个根, 则有ca =2×(−12)=−1<0,−ba =2+(−12)=32>0, 又∵a <0,故b >0,c >0,故B ,C 正确; 对D ,∵c a =−1, ∴a +c =0, 又∵b >0,∴a+b+c>0,故D正确.故选:BCD.11、《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据.通过这一原理,很多代数的公理或定理都能够通过图形实现证明.如图,在AB上取一点C,使得AC=a,BC=b,过点C作CD⊥AB交以AB为直径,O为圆心的半圆周于点D,连接.下面不能由OD≥CD直接证明的不等式为()A.√ab≤a+b2(a>0,b>0)B.√ab≥2aba+b(a>0,b>0)C.a2+b2≥2ab(a>0,b>0)D.a+b2≤a2+b22(a>0,b>0)答案:BCD解析:由AC=a,BC=b,得到OD=12(a+b),然后利用射影定理得到CD2=ab判断. 因为AC=a,BC=b,所以OD=12(a+b),因为∠ADB=90∘,所以由射影定理得CD2=ab,因为OD≥CD,所以√ab≤a+b2,当且仅当a=b时取等号,故选:BCD12、若1≤x≤3≤y≤5,则()A.4≤x+y≤8B.x+y+1x +16y的最小值为10C.−2≤x−y≤0D.(x+1y )(y+4x)的最小值为9OD答案:AB分析:根据不等式的基本性质和基本不等式进行求解判断即可.因为1≤x ≤3≤y ≤5,所以4≤x +y ≤8,−4≤x −y ≤0,故A 正确,C 错误; 因为x +y +1x +16y=x +1x +y +16y≥2√x ⋅1x +2√y ⋅16y=10,当且仅当x =1,y =4时,等号成立,所以x +y +1x +16y的最小值为10,因此B 正确;因为(x +1y )(y +4x )=xy +4xy +5≥2√4+5=9,当且仅当xy =2时,等号成立,但1≤x ≤3≤y ≤5,xy 取不到2,所以(x +1y )(y +4x )的最小值不是9,因此D 不正确, 故选:AB13、若a <b <0,则下列不等式恒成立的是( ) A .1a−b <1a B .1|a |>1|b |C .(a +1b )2>(b +1a )2D .(a +1a )2>(b +1b )2答案:AC分析:根据作差法比较大小或者取特殊值举反例即可. 对于A 选项, 由于a <b <0,故a −b <0,所以1a−b −1a =a−(a−b )a (a−b )=b a (a−b )<0, 即1a−b <1a ,故A 选项正确; 对于B 选项, 由于a <b <0,故a −b <0, 1|a|−1|b|=|b |−|a ||a ||b |=a−b |a ||b |<0,故1|a|<1|b |,故B 选项错误;对于C 选项, 因为a <b <0,故0>1a >1b ,所以0>b +1a >a +1b ,所以(a +1b )2>(b +1a )2,故C 选项正确; 对于D 选项,令a =−2,b =−12,则a +1a =b +1b =−52,所以(a +1a )2>(b +1b )2不成立,故D 选项错误;故选:AC小提示:本题考查不等式的性质,作差法比较大小,考查运算求解能力,是中档题.本题解题的关键在于利用不等式的性质或者作差法比较大小,进而判断. 填空题14、不等式ax 2+x +1>0的解集为(m,1),则m =__________. 答案:−12##−0.5分析:利用一元二次方程根与系数的关系可求得m 的值.由已知,关于x 的二次方程ax 2+x +1=0的两根分别为m 、1,且a <0, 所以,{a +2=01⋅m =1a,解得{a =−2m =−12.所以答案是:−12.15、函数y =2√x 2+1的最小值是___________.答案:4分析:根据基本不等式可求出结果. 令t =√x 2+1≥1,则y =2√x 2+1=t +4t≥4,当且仅当t =2,即x =±√3时,y min =4.所以函数y =2√x 2+1的最小值是4.所以答案是:4小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 16、已知a >0,b >0,且ab =1,则12a+12b+8a+b的最小值为_________.答案:4分析:根据已知条件,将所求的式子化为a+b 2+8a+b ,利用基本不等式即可求解. ∵a >0,b >0,∴a +b >0,ab =1,∴12a+12b +8a+b=ab 2a+ab 2b+8a+b=a+b 2+8a+b ≥2√a+b 2×8a+b =4,当且仅当a +b =4时取等号,结合ab =1,解得a =2−√3,b =2+√3,或a =2+√3,b =2−√3时,等号成立. 所以答案是:4小提示:本题考查应用基本不等式求最值,“1”的合理变换是解题的关键,属于基础题. 解答题17、如图,动物园要以墙体为背面,用钢筋网围成四间具有相同面积的矩形虎笼.(1)现有可围36m 长钢筋网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼的面积最大?(2)若每间虎笼的面积为20m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小? 答案:(1)长为92m ,宽为185m(2)长为5m ,宽为4m分析:(1)设每间老虎笼的长为xm ,宽为ym ,则每间老虎笼的面积为S =xy ,可得出4x +5y =36,利用基本不等式可求得S 的最大值,利用等号成立的条件求出x 、y 的值,即可得出结论;(2)设每间老虎笼的长为xm ,宽为ym ,则xy =20,利用基本不等式可求得钢筋网总长4x +5y 的最小值,利用等号成立的条件求出x 、y 的值,即可得出结论. (1)解:设每间老虎笼的长为xm ,宽为ym ,则每间老虎笼的面积为S =xy , 由已知可得4x +5y =36,由基本不等式可得S =xy =120⋅4x ⋅5y ≤120×(4x+5y 2)2=815(m 2),当且仅当{4x =5y4x +5y =36,即当{x =92y =185时,等号成立, 因此,每间虎笼的长为92m ,宽为185m 时,可使得每间虎笼的面积最大. (2)解:设每间老虎笼的长为xm ,宽为ym ,则xy =20, 钢筋网总长为4x +5y ≥2√20xy =40(m ),当且仅当{4x =5y xy =20,即当{x =5y =4时,等号成立,因此,每间虎笼的长为5m ,宽为4m 时,可使围成四间虎笼的钢筋网总长最小. 18、实数a 、b 满足−3≤a +b ≤2,−1≤a −b ≤4. (1)求实数a 、b 的取值范围; (2)求3a −2b 的取值范围. 答案:(1)a ∈[−2,3],b ∈[−72,32](2)[−4,11]分析:(1)由a =12[(a +b )+(a −b )],b =12[(a +b )−(a −b )]根据不等式的性质计算可得;(2)求出3a −2b =12(a +b)+52(a −b),再利用不等式的性质得解. (1)解:由−3≤a +b ≤2,−1≤a −b ≤4,则a =12[(a +b )+(a −b )],所以−4≤(a +b )+(a −b )≤6,所以−2≤12[(a +b )+(a −b )]≤3,即−2≤a ≤3,即实数a 的取值范围为[−2,3]. 因为b =12[(a +b )−(a −b )], 由−1≤a −b ≤4,所以−4≤b −a ≤1,所以−7≤(a +b )−(a −b )≤3, 所以−72≤12[(a +b )−(a −b )]≤32, ∴−72≤b ≤32,即实数b 的取值范围为[−72,32].(2)解:设3a −2b =m (a +b )+n (a −b )=(m +n )a +(m −n )b , 则{m +n =3m −n =−2,解得{m =12n =52,∴3a−2b=12(a+b)+52(a−b),∵−3≤a+b≤2,−1≤a−b≤4.∴−32≤12(a+b)≤1,−52≤52(a−b)≤10,∴−4≤3a−2b≤11,即3a−2b的取值范围为[−4,11].。

部编版高中数学必修一第二章一元二次函数方程和不等式知识点总结全面整理

部编版高中数学必修一第二章一元二次函数方程和不等式知识点总结全面整理

(名师选题)部编版高中数学必修一第二章一元二次函数方程和不等式知识点总结全面整理单选题1、已知a>1,则a+4a−1的最小值是()A.5B.6C.3√2D.2√2答案:A分析:由于a>1,所以a−1>0,则a+4a−1=(a−1)+4a−1+1,然后利用基本不等式可求出其最小值由于a>1,所以a−1>0所以a+4a−1=a−1+4a−1+1≥2√(a−1)⋅4(a−1)+1=5,当且仅当a−1=4a−1,即a=3时取等号. 故选:A.2、y=x+4x(x≥1)的最小值为()A.2B.3C.4D.5答案:C分析:利用均值不等式求解即可.因为y=x+4x (x≥1),所以x+4x≥2√x×4x=4,当且仅当x=4x即x=2时等号成立.所以当x=2时,函数y=x+4x有最小值4.故选:C.3、关于x的方程x2+(m−2)x+2m−1=0恰有一根在区间(0,1)内,则实数m的取值范围是()A.[12,32]B.(12,23]C.[12,2)D.(12,23]∪{6−2√7}答案:D分析:把方程的根转化为二次函数的零点问题,恰有一个零点属于(0,1),分为三种情况,即可得解. 方程x2+(m-2)x+2m-1=0对应的二次函数设为:f(x)=x2+(m-2)x+2m-1因为方程x 2+(m -2)x +2m -1=0恰有一根属于(0,1),则需要满足: ①f (0)⋅f (1)<0,(2m -1)(3m -2)<0,解得:12<m <23;②函数f (x )刚好经过点(0,0)或者(1,0),另一个零点属于(0,1), 把点(0,0)代入f (x )=x 2+(m -2)x +2m -1,解得:m =12,此时方程为x 2-32x =0,两根为0,32,而32⋅(0,1),不合题意,舍去 把点(1,0)代入f (x )=x 2+(m -2)x +2m -1,解得:m =23,此时方程为3x 2-4x +1=0,两根为1,13,而13⋅(0,1),故符合题意; ③函数与x 轴只有一个交点,Δ=(m -2)2-8m +4=0,解得m =6±2√7, 经检验,当m =6-2√7时满足方程恰有一根在区间 (0,1) 内; 综上:实数m 的取值范围为(12,23]⋅{6-2√7} 故选:D4、设m ,n 为正数,且m +n =2,则4m+1+1n+1的最小值为( ) A .134B .94C .74D .95答案:B分析:将m +n =2拼凑为m+14+n+14=1,利用“1”的妙用及其基本不等式求解即可.∵m +n =2,∴(m +1)+(n +1)=4,即m+14+n+14=1,∴4m+1+1n+1=(4m+1+1n+1)(m+14+n+14) =n+1m+1+m+14(n+1)+54≥2√n+1m+1⋅m+14(n+1)+54 =94,当且仅当n+1m+1=m+14(n+1),且m +n =2时,即 m =53,n =13时等号成立. 故选:B .5、若不等式组{x −1>a 2x −4<2a 的解集非空,则实数a 的取值范围是( )A .(−1,3)B .(−∞,−1)∪(3,+∞)C.(−3,1)D.(−∞,−3)∪(1,+∞)答案:A分析:分别解出两个不等式的解,再根据集合交集的概念求解.由题意{x>a 2+1x<2a+4,∴a2+1<2a+4,即a2−2a−3<0,解得−1<a<3.故选:A.小提示:本题考查不等式组的解,考查集合的交集运算,属于基础题.6、若a,b,c为实数,且a<b,c>0,则下列不等关系一定成立的是()A.a+c<b+c B.1a <1bC.ac>bc D.b−a>c答案:A分析:由不等式的基本性质和特值法即可求解.对于A选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a<b⇒a+c<b+c,A选项正确;对于B选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若a=−2,b=−1,则1a >1b,B选项错误;对于C选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,c>0,0<a<b⇒ac<bc,C选项错误;对于D选项,因为a<b⇒b−a>0,c>0,所以无法判断b−a与c大小,D选项错误.7、小李从甲地到乙地的平均速度为a,从乙地到甲地的平均速度为b(a>b>0),他往返甲乙两地的平均速度为v,则()A.v=a+b2B.v=√abC.√ab<v<a+b2D.b<v<√ab答案:D分析:平均速度等于总路程除以总时间设从甲地到乙地的的路程为s,从甲地到乙地的时间为t1,从乙地到甲地的时间为t2,则t 1=s a,t 2=s b,v =2s t 1+t 2=2ss a +s b=21a +1b,∴v =21a +1b>21b +1b=b ,v =21a +1b=2ab a+b<2√ab=√ab ,故选:D.8、已知x >0,y >0,且x +y =2,则下列结论中正确的是( ) A .2x+2y 有最小值4B .xy 有最小值1C .2x +2y 有最大值4D .√x +√y 有最小值4 答案:A分析:利用基本不等式和不等式的性质逐个分析判断即可 解: x >0,y >0,且x +y =2,对于A ,2x +2y =12(x +y )(2x +2y )=2+xy +yx ≥2+2√xy ⋅yx =4,当且仅当x =y =1时取等号,所以A 正确,对于B ,因为2=x +y ≥2√xy ,所以xy ≤1,当且仅当x =y =1时取等号,即xy 有最大值1,所以B 错误, 对于C ,因为2x +2y ≥2√2x ⋅2y =2√2x+y =4,当且仅当x =y =1时取等号,即2x +2y 有最小值4,所以C 错误,对于D ,因为(√x +√y)2=x +y +2√xy ≤2(x +y)=4,当且仅当x =y =1时取等号,即√x +√y 有最大值4,所以D 错误, 故选:A 多选题9、若x ,y 满足x 2+y 2−xy =1,则( ) A .x +y ≤1B .x +y ≥−2 C .x 2+y 2≤2D .x 2+y 2≥1 答案:BC分析:根据基本不等式或者取特值即可判断各选项的真假. 因为ab ≤(a+b 2)2≤a 2+b 22(a,b ∈R ),由x 2+y 2−xy =1可变形为,(x +y)2−1=3xy ≤3(x+y 2)2,解得−2≤x+y≤2,当且仅当x=y=−1时,x+y=−2,当且仅当x=y=1时,x+y=2,所以A错误,B 正确;由x2+y2−xy=1可变形为(x2+y2)−1=xy≤x2+y22,解得x2+y2≤2,当且仅当x=y=±1时取等号,所以C正确;因为x2+y2−xy=1变形可得(x−y2)2+34y2=1,设x−y2=cosθ,√32y=sinθ,所以x=cosθ√3y=√3,因此x2+y2=cos2θ+53sin2θ√3=1√3−13cos2θ+13=43+23sin(2θ−π6)∈[23,2],所以当x=√33,y=−√33时满足等式,但是x2+y2≥1不成立,所以D错误.故选:BC.10、不等式ax2+bx+c≥0的解集是{x|−1≤x≤2},则下列结论正确的是()A.a+b=0B.a+b+c>0C.c>0D.b<0答案:ABC分析:根据二次函数图像与二次不等式关系求解即可.解:因为不等式ax2+bx+c≥0的解集是{x|−1≤x≤2},所以a<0,且{−ba=−1+2=1>0ca=−2<0,所以{b>0,b=−a,c>0,所以a+b=0,c>0,b>0,故AC正确,D错误.因为二次函数y=ax2+bx+c的两个零点为−1,2,且图像开口向下,所以当x=1时,y=a+b+c>0,故B正确.故选:ABC.11、对于实数a,b,c,下列说法正确的是()A.若a>b,则ac2>bc2B.若a>b>0,则1a <1bC.若a>0>b,则ab<a2D.若c>a>b,则ac−a >bc−b答案:BC分析:由特值法可判断A、D;由不等式的性质可判断B、C.解:对于A,当c=0时,ac2=bc2,故A错误;对于B,若a>b>0,则1a <1b,故B正确;对于C,若a>0>b,则a2>ab,故C正确;对于D,因为c>a>b,当c=0时,ac−a =bc−b=−1,故D错误.故选:BC.填空题12、不等式x2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞)分析:将x2+2x−3x+1≥0等价转化为{x2+2x−3≥0x+1>0或{x2+2x−3≤0x+1<0,解不等式组可得答案.原不等式等价于{x 2+2x−3≥0x+1>0或{x2+2x−3≤0x+1<0,解得x≥1或−3≤x<−1,所以答案是:[−3,−1)∪[1,+∞)。

高中数学第二章一元二次函数方程和不等式知识点题库(带答案)

高中数学第二章一元二次函数方程和不等式知识点题库(带答案)

高中数学第二章一元二次函数方程和不等式知识点题库单选题1、设m ,n 为正数,且m +n =2,则4m+1+1n+1的最小值为( )A .134B .94C .74D .95 答案:B分析:将m +n =2拼凑为m+14+n+14=1,利用“1”的妙用及其基本不等式求解即可.∵m +n =2,∴(m +1)+(n +1)=4,即m+14+n+14=1,∴4m+1+1n+1=(4m+1+1n+1)(m+14+n+14)=n+1m+1+m+14(n+1)+54 ≥2√n+1m+1⋅m+14(n+1)+54=94,当且仅当n+1m+1=m+14(n+1),且m +n =2时,即m =53,n =13时等号成立.故选:B .2、若不等式ax 2+bx +c >0的解集为{x |−1<x <2},则不等式a (x 2+1)+b(x −1)+c >2ax 的解集是( )A .{x |0<x <3}B .{x |x <0或x >3}C .{x |1<x <3}D .{x |−1<x <3} 答案:A分析:由题知{ba =−1ca=−2,a <0,进而将不等式转化为x 2−3x <0,再解不等式即可. 解:由a (x 2+1)+b (x −1)+c >2ax ,整理得ax 2+(b −2a )x +(a +c −b )>0 ①. 又不等式ax 2+bx +c >0的解集为{x |−1<x <2},所以a <0,且{(−1)+2=−b a (−1)×2=c a,即{ba=−1ca=−2②. 将①两边同除以a 得:x 2+(ba −2)x +(1+ca −ba )<0③.将②代入③得:x2−3x<0,解得0<x<3.故选:A3、已知二次函数y=ax2+bx+c的图象如图所示,则不等式ax2+bx+c>0的解集是()A.{x|−2<x<1}B.{x|x<−2或x>1}C.{x|−2≤x≤1}D.{x|x≤−2或x≥1}答案:A分析:由二次函数与一元二次不等式关系,结合函数图象确定不等式解集.由二次函数图象知:ax2+bx+c>0有−2<x<1.故选:A4、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x+600x−30)元(试剂的总产量为x单位,50≤x≤200),则要使生产每单位试剂的成本最低,试剂总产量应为()A.60单位B.70单位C.80单位D.90单位答案:D分析:设生产每单位试剂的成本为y,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y,然后利用基本不等式求解最值即可.解:设每生产单位试剂的成本为y,因为试剂总产量为x单位,则由题意可知,原料总费用为50x元,职工的工资总额为7500+20x元,后续保养总费用为x(x+600x−30)元,则y=50x+7500+20x+x2−30x+600x =x+8100x+40≥2√x⋅8100x+40=220,当且仅当x=8100x,即x=90时取等号,满足50≤x≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.故选:D.5、若“﹣2<x<3”是“x2+mx﹣2m2<0(m>0)”的充分不必要条件,则实数m的取值范围是()A.m≥1B.m≥2C.m≥3D.m≥4答案:C分析:x2+mx﹣2m2<0(m>0),解得﹣2m<x<m.根据“﹣2<x<3”是“x2+mx﹣2m2<0(m>0)”的充分不必要条件,可得﹣2m≤﹣2,3≤m,m>0.解出即可得出.解:x2+mx﹣2m2<0(m>0),解得﹣2m<x<m.∵“﹣2<x<3”是“x2+mx﹣2m2<0(m>0)”的充分不必要条件,∴﹣2m≤﹣2,3≤m,(两个等号不同时取)m>0.解得m≥3.则实数m的取值范围是[3,+∞).故选:C.6、已知p:a>b>0q:1a2<1b2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A分析:根据a>b>0与1a2<1b2的互相推出情况判断出属于何种条件.当a>b>0时,a2>b2>0,所以1a2<1b2,所以充分性满足,当1a2<1b2时,取a=−2,b=1,此时a>b>0不满足,所以必要性不满足,所以p是q的充分不必要条件,故选:A.7、不等式(x+1)(x+3)<0的解集是()A.R B.∅C.{x∣−3<x<−1}D.{x∣x<−3,或x>−1}答案:C分析:根据一元二次不等式的解法计算可得;解:由(x+1)(x+3)<0,解得−3<x<−1,即不等式的解集为{x∣−3<x<−1};故选:C8、若不等式(ax−2)(|x|−b)≥0对任意的x∈(0,+∞)恒成立,则()A.a>0,ab=12B. a>0,ab=2C.a>0,a=2b D.a>0,b=2a答案:B分析:由选项可知a>0,故原不等式等价于(x−2a)(|x|−b)≥0,当b≤0时,不满足题意,故b>0,再由二次函数的性质即可求解由选项可知a>0,故原不等式等价于(x−2a)(|x|−b)≥0,当b≤0时,显然不满足题意,故b>0,由二次函数的性质可知,此时必有2a=b,即ab=2,故选:B多选题9、若−1<a<b<0,则()A.a2+b2>2ab B.1a <1bC.a+b>2√ab D.a+1a>b+1b答案:AD分析:应用作差法判断B、D,根据重要不等式判断A,由不等式性质判断C.A:由重要不等式知:a2+b2≥2ab,而−1<a<b<0,故a2+b2>2ab,正确;B:由−1<a<b<0,则1a −1b=b−aab>0,故1a>1b,错误;C:由−1<a<b<0,则a+b<0<2√ab,错误;D :(a +1a )−(b +1b )=a −b +1a −1b =a −b +b−a ab=(a −b)(ab−1ab)>0,故a +1a >b +1b ,正确.故选:AD10、下列说法中正确的是( ) A .若a >b ,则ac 2+1>bc 2+1 B .若-2<a <3,1<b <2,则-3<a -b <1 C .若a >b >0,m >0,则ma<mbD .若a >b ,c >d ,则ac >bd 答案:AC分析:利用不等式的性质对各选项逐一分析并判断作答.对于A ,因c 2+1>0,于是有1c 2+1>0,而a >b ,由不等式性质得a c 2+1>bc 2+1,A 正确; 对于B ,因为1<b <2,所以-2<-b <-1,同向不等式相加得-4<a -b <2,B 错误; 对于C ,因为a >b >0,所以1a <1b ,又因为m >0,所以ma <mb ,C 正确;对于D ,−1>−2且−2>−3,而(−1)⋅(−2)<(−2)(−3),即ac >bd 不一定成立,D 错误. 故选:AC11、下列说法正确的是( )A .若x >2,则函数y =x +1x−1的最小值为3B .若x >0,y >0,3x +1y =5,则3x +4y 的最小值为5 C .若x >0,则xx 2+1的最大值为12D .若x >0,y >0,x +y +xy =3,则xy 的最小值为1 答案:BC分析:利用基本不等式以及“1”的代换,结合不等式的解法,逐项判定,即可求解.对于A 中,由x >2,可得函数y =x +1x−1=(x −1)+1x−1+1≥2√(x −1)×1x−1+1=3, 当且仅当x −1=1x−1时,即x =2时等号成立,因为x >2,所以等号不成立,所以函数y =x +1x−1的最小值为不是3,所以A 不正确;对于B 中,由x >0,y >0,3x+1y=5,则3x +4y =15⋅(3x +4y)(3x+1y)=15×[13+(12y x+3x y)]≥15×(13+2√12y x×3x y)=5,当且仅当12y x=3x y时,即x =2y =1时,等号成立,所以3x +4y 的最小值为5,所以B 正确;对于C 中,由x >0,则x x 2+1=1x+1x因为x +1x≥2√x ×1x=2,当且仅当x =1x时,即x =1时,等号成立,所以x x 2+1的最大值为12,所以C 正确;对于D 中,由x >0,y >0,可得x +y +xy ≥2√xy +xy ,当且仅当x =y 时,等号成立, 所以xy +2√xy ≤3,即xy +2√xy −3=(√xy +3)(√xy −1)≤0, 解得0<√xy ≤1,即0<xy ≤1,所以xy 的最大值为1,所以D 不正确. 故选:BC.12、已知正数a ,b 满足a +2b =1,则( ) A .ab 有最大值18B .1a +2b 有最小值8 C .1b+ba有最小值4D .a 2+b 2有最小值15答案:ACD分析:A 由a ⋅2b ≤(a+2b 2)2即可确定ab 最大值;B 利用基本不等式“1”的代换有1a +2b =2b a+2a b+5即可求最小值;C 将a +2b =1代入,利用基本不等式即可求最小值;D 将a =1−2b 代入,结合二次函数的性质求最值. A :a ⋅2b ≤(a+2b 2)2=14,则ab ≤18当且仅当a =12,b =14时取等号,正确;B :1a +2b =(a +2b )(1a +2b )=2b a +2a b+5≥4+5=9,当且仅当a =b =13时取等号,错误;C :1b +ba =a+2b b+ba =2+ab +ba ≥2+2=4,当且仅当a =b =13时取等号,正确;D :a 2+b 2=(1−2b )2+b 2=5b 2−4b +1=5(b −25)2+15(0<b <12),故最小值为15,正确.故选:ACD13、下列命题不正确的()A.1a <1b<0⇒|a|>|b|B.ac>bc⇒a>bC.a 3>b3ab>0}⇒1a<1bD.a2>b2ab>0}⇒1a<1b答案:ABD分析:利用不等式的性质,结合特殊值法、比较法逐一判断即可.A:∵1a <1b<0∴ab>0且−1a>−1b>0,因此−1a⋅ab>−1b⋅ab>0⋅ab,即−b>−a>0⇒|−b|>|−a|>0⇒|b|>|a|,故本命题不正确;B:因为4−2>8−2,显然4>8不成立,所以本命题不正确;C:由a3>b3⇒a3−b3=(a−b)(a2+ab+b2)>0,而ab>0,所以有a>b,而1a −1b=b−aab<0⇒1a<1b,故本命题正确;D:若a=−2,b=−1,显然{a 2>b2ab>0成立,但是1−2<1−1不成立,故本命题不正确,故选:ABD小提示:方法点睛:关于不等式是否成立问题,一般有直接运用不等式性质法、特殊值法、比较法. 填空题14、已知a,b,c均为正实数,且aba+2b ⩾13,bcb+2c⩾14,cac+2a⩾15,那么1a+1b+1c的最大值为__________.答案:4分析:本题目主要考察不等式的简单性质,将已知条件进行简单变形即可因为a,b,c均为正实数,所以由题可得:0<a+2bab ≤3,0<b+2cbc≤4,0<c+2aac≤5,即0<1b+2a≤3,0<1c+2 b ≤4,0<1a+2c≤5,三式相加得:0<3(1a+1b+1c)≤12,所以0<1a+1b+1c≤4所以1a +1b+1c的最大值为4所以答案是:415、若a>0,b>0,则1a +ab2+b的最小值为____________.答案:2√2分析:两次利用基本不等式即可求出. ∵a >0,b >0, ∴1a +a b2+b ≥2√1a⋅a b2+b =2b+b ≥2√2b⋅b =2√2, 当且仅当1a =a b2且2b=b ,即所以1a +ab 2+b 的最小值为2√2. 所以答案是:2√2.16、已知a ,b ∈R ,若对任意x ≤0,不等式(ax +2)(x 2+2bx −1)≤0恒成立,则a +b 的最小值为___________. 答案:√3分析:考虑两个函数g(x)=ax +2,f(x)=x 2+2bx −1,由此确定a >0,x <0时,f(x),g(x)有相同的零点,得出a,b 的关系,检验此时f(x)也满足题意,然后计算出a +b (用a 表示),然后由基本不等式得最小值.设g(x)=ax +2,f(x)=x 2+2bx −1,f(x)图象是开口向上的抛物线,因此由x ≤0时,f(x)g(x)≤0恒成立得a >0, g(x)=0时,x =−2a ,x <−2a 时,g(x)<0,−2a <x ≤0时,g(x)>0, 因此x <−2a 时,f(x)>0,−2a <x ≤0时,f(x)<0,f(−2a )=0, 所以4a 2−4b a−1=0①,−b >−2a②,由①得b =1a−a 4,代入②得a 4−1a>−2a,因为a >0,此式显然成立.a +b =1a+3a 4≥2√1a×3a 4=√3,当且仅当1a=3a 4,即a =2√33时等号成立, 所以a +b 的最小值是√3. 所以答案是:√3.小提示:关键点点睛:本题考查不等式恒成立问题,考查基本不等式求最值.解题关键是引入两个函数f(x)和g(x),把三次函数转化为二次函数与一次函数,降低了难度.由两个函数的关系得出参数a,b 的关系,从而a b ==可求得a +b 的最小值. 解答题17、设函数f (x )=mx 2−mx −1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)解不等式f (x )<(m −1)x 2+2x −2m −1. 答案:(1)(−4,0];(2)答案见解析.分析:(1)分别在m =0和m ≠0两种情况下,结合二次函数图象的分析可确定不等式组求得结果; (2)将不等式整理为(x −m )(x −2)<0,分别在m <2,m >2和m =2三种情况下求得结果. (1)由f (x )<0知:mx 2−mx −1<0, 当m =0时,−1<0,满足题意;当m ≠0时,则{m <0Δ=m 2+4m <0,解得:−4<m <0;综上所述:m 的取值范围为(−4,0].(2)由f (x )<(m −1)x 2+2x −2m −1得mx 2−mx −1−mx 2+x 2−2x +2m +1<0, 即x 2−(m +2)x +2m <0,即(x −m )(x −2)<0;当m <2时,解得:m <x <2;当m >2时,解得2<x <m ;当m =2时,解集为∅. 综上所述:当m <2时,解集为(m,2);当m >2时,解集为(2,m );当m =2时,解集为∅. 18、已知关于x 的不等式kx 2−2x +6k <0(k ≠0). (1)若不等式的解集是{x |x <−3或x >−2},求k 的值; (2)若不等式的解集是R ,求k 的取值范围; (3)若不等式的解集为∅,求k 的取值范围. 答案:(1)k =−25;(2)(−∞,−√66);(3)[√66,+∞). 分析:(1)由题意可知不等式kx 2−2x +6k =0的两根分别为−3、−2,利用韦达定理可求得实数k 的值; (2)由题意得出{k <0Δ<0,由此可解得实数k 的取值范围;(3)由题意得出{k >0Δ≤0,由此可解得实数k 的取值范围.(1)因为不等式kx 2−2x +6k <0(k ≠0)的解集是{x |x <−3或x >−2}, 所以,−3和−2是方程kx 2−2x +6k =0的两个实数根,且k <0, 由韦达定理得(−3)+(−2)=2k,所以k =−25;(2)由于不等式kx 2−2x +6k <0(k ≠0)的解集是R ,所以{k <0Δ=4−24k 2<0,解得k <−√66, 因此,实数k 的取值范围是(−∞,−√66); (3)由于不等式kx 2−2x +6k <0(k ≠0)的解集为∅, 则不等式kx 2−2x +6k ≥0(k ≠0)对任意的x ∈R 恒成立, 所以{k >0Δ=4−24k 2≤0,解得k ≥√66. 因此,实数k 的取值范围是[√66,+∞). 小提示:本题考查利用一元二次不等式的解求参数,同时也考查了一元二次不等式恒成立,考查计算能力,属于中等题.。

(word完整版)中考方程(组)与不等式(组)知识点汇总,推荐文档

(word完整版)中考方程(组)与不等式(组)知识点汇总,推荐文档

1、方程含有未知数的等式叫做方程。

2、等式的性质性质(1)若a=b,则a________=b________。

性质(2)若a=b,则a________=b________;a________=b________。

3、一元一次方程满足一元一次方程的条件①_____________________________②____________________________ ③____________________________。

解一元一次方程的步骤:①_________________②____________________③__________________ ④______________________⑤___________________。

4、二元一次方程组1、二元一次方程满足二元一次方程的条件①_____________________________②____________________________③____________________________。

2、二元一次方程组的解法①_____________________________②____________________________不等式的概念1、不等式用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

求不等式的解集的过程,叫做解不等式。

3、用数轴表示不等式的方法不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

考试题型:一元一次不等式1、一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

方程与不等式知识点总结

方程与不等式知识点总结

第一章 一元一次方程1、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2、一元一次方程的标准形式: ax+b=0(x 是未知数,a 。

b 是已知数,且a ≠0)。

3、一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解)。

4、列一元一次方程解应用题:(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。

(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有 关的代数式是获得方程的基础。

11、列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 ,利润=售价-成本, %100⨯-=成本成本售价利润率; (6)周长。

面积。

体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h 。

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。

(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。

(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。

对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。

(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。

注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程与不等式知识点配题1.解二元一次方程组14.解方程组:2,2 1.x y x y +=⎧⎨-=⎩2.方程组⎩⎨⎧=+=-422y x y x 的解是 A .⎩⎨⎧==21y x B .⎩⎨⎧==13y x C .⎩⎨⎧-==20y x D .⎩⎨⎧==02y x16.已知⎩⎨⎧==b y a x ,是方程组⎩⎨⎧=-=+12,32y x y x 的解, 求5)4()(4+-+-b a b b a a 的值.14. 解方程组212x y x y +=⎧⎨-=⎩,.2.解不等式(组)15.(本题满分5分)求不等式组⎩⎨⎧---≤-x x x x 15234)2(2<的整数解.14.求满足不等式组63213x x x -≥⎧⎪+⎨->-⎪⎩0,.的整数解.14. 解不等式()x x ≤--122,并把它的解集在数轴上表示出来.14.解不等式组:12(2)3.x x x -⎧⎨+⎩≥0, >14.解不等式组: 480,521 1.x x +>⎧⎨-->⎩()14.解不等式组: ()20213 1.x x x ->⎧⎨+≥-⎩,14.解不等式组 并求它的所有的非负整数14.解不等式组251345x x +>-⎧⎨⎩≤,并写出它的整数解.14.解不等式1312523-+≥-x x ,并把解集表示在数轴上.①②⎪⎩⎪⎨⎧-+<-21 15)1(3x x x ,≥2x -4,14. 解不等式组 ⎩⎨⎧-≥+->+;54x 4x ,1x 12x 并把解集在数轴上表示出来.9. 不等式 512422x x ->+的解集为________________. 14.解不等式312+-)(x <x 5,并把它的解集在数轴上表示出来.14.解不等式2(2)x +≤4(1)6x -+,并把它的解集在数轴上表示出来.14.解不等式组:()⎪⎩⎪⎨⎧<-+≤+321234x x x x10.不等式组211,1(6)2x x x -⎧⎪⎨-⎪⎩≥>的解集是 .2-1-2103.解一元二次方程14.用配方法解方程:01632=--x x .14.用配方法解方程:0242=--x x4.解分式方程14.解分式方程211x x x +=-.14.解分式方程:21213=++-x x x14. 解分式方程312212x x x -=++.15.(本题满分5分)解方程:542332x x x +=--14.解分式方程123482---=-x x x .16.解分式方程:32322x x x -=+-.15.解分式方程:21124x x x -=--.14.解方程:x x 211=-14.解方程:6123x x x +=-+.14.解方程:53412-=+x x .14.解方程:211x x x+=-.14.解分式方程:451+=x x14. 解方程2x 1x 2142x 3++=-+.14.解方程:2132+=+-a a a5.一元二次方程根与判别式23.已知关于x 的方程032)1(2=+++-k kx x k .(1)若方程有两个不相等的实数根,求k 的取值范围;(2)当方程有两个相等的实数根时,求关于y 的方程2(4)10y a k y a +-++=的整数根(a 为正整数).23.已知:1x 、2x 分别为关于x 的一元二次方程 2220mx x m ++-=的两个实数根.(1) 设1x 、2x 均为两个不相等的非零整数根,求m 的整数值;(2)利用图象求关于m 的方程1210x x m ++-=的解.6.如果关于x 的一元二次方程0122=+-x kx 有两个不相等的实数根,则k 的取值范围是( ).A. 1<kB. 1<k 且0≠kC. 1>kD. 1≤k 且0≠k23. 已知:关于x 的方程()0322=-+-+k x k x ⑴求证:方程()0322=-+-+k x k x 总有实数根; ⑵若方程()0322=-+-+k x k x 有一根大于5且小于7,求k 的整数值; ⑶在⑵的条件下,对于一次函数b x y +=1和二次函数2y =()322-+-+k x k x ,当71<<-x 时,有21y y >,求b 的取值范围.7. 若关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是A .a <2且a ≠0 B.a >2 C.a <2且a ≠1 D.a <-223.已知关于x 的方程(k +1)x 2+(3k -1)x +2k -2=0. (1)讨论此方程根的情况;(2)若方程有两个整数根,求正整数k 的值;(3)若抛物线y =(k +1)x 2+(3k -1)x +2k -2与x 轴的两个交点之间的距离为3,求k 的值.23.已知:关于x 的一元二次方程02)21(22=-++-k x k x 有两个实数根.(1)求k 的取值范围;(2)当k 为负整数时,抛物线2)21(22-++-=k x k x y与x 轴的交点是整数点,求抛物线的解析式;(3)若(2)中的抛物线与y 轴交于点A ,过A 作x 轴的平行 线与抛物线交于点B ,连接OB ,将抛物线向上平移n 个单位, 使平移后得到的抛物线的顶点落在△OAB 的内部(不包括 △OAB 的边界),求n 的取值范围.23.已知:关于x 的一元二次方程:22240x mx m -+-=. (1)求证:这个方程有两个不相等的实数根;(2)当抛物线2224y x mx m =-+-与x 轴的交点位于原点的两侧, 且到原点的距离相等时,求此抛物线的解析式;(3)将(2)中的抛物线在x 轴下方的部分沿x 轴翻折,其余部分保持能 够不变,得到图形C 1,将图形C 1向右平移一个单位,得到图形C 2,当直线 y=x b +(b <0)与图形C 2恰有两个公共点时,写出b 的取值范围.23.已知关于x 的方程 03)13(2=+++x m mx . (1)求证: 不论m 为任何实数, 此方程总有实数根;(2)若抛物线()2313y mx m x =+++与x 轴交于两个不同的整数 点,且m 为正整数,试确定此抛物线的解析式;(3)若P ),(11y x 与Q ),(21y n x +在(2)中抛物线上 (点P 、Q 不重合), 且y 1=y 2, 求代数式81651242121++++n n n x x 的值.23. 已知关于x 的一元二次方程210x px q +++=的一个实数根为 2. (1) 用含p 的代数式表示q ;(2) 求证:抛物线2y x px q =++与x 轴有两个交点; (3) 设抛物线21y x px q =++的顶点为M ,与 y 轴的交点为E , 抛物线221y x px q =+++顶点为N ,与y 轴的交点为F ,若四边形FEMN 的面积等于2,求p 的值.23.已知:关于x 的方程()()01342=---+m x m x 有两个不相等的实数根.(1)求m 的取值范围;(2)抛物线C :()()1342-+---=m x m x y 与x 轴交于A 、B 两点.若1-≤m 且直线1l :12--=x my 经过点A ,求抛物 线C 的函数解析式;(3)在(2)的条件下,直线1l :12--=x my 绕着点A 旋转得 到直线2l :b kx y +=,设直线2l 与y 轴交于点D ,与抛物线C 交于点M (M 不与点A 重合),当23≤AD MA 时,求k 的取值范围.18. 已知:关于x 的一元二次方程kx 2-(4k+1)x+3k+3=0 (k 是整 数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x 1,x 2(其中x 1<x 2),设y= x 2-x 1,判断y 是否为变量k 的函数?如果是,请写出函数 解析式;若不是,请说明理由.8.已知关于x 的一元二次方程02=++n mx x 的两个实数根分别 为a x =1,b x =2(b a <),则二次函数n mx x y ++=2中, 当0<y 时,x 的取值范围是A .a x <B .b x >C .b x a <<D .a x <或b x >23.已知关于x 的一元二次方程22(41)30x m x m m -+++=. (1)求证:无论m 取何实数时,原方程总有两个实数根;(2)若原方程的两个实数根一个大于2,另一个小于7,求m 的取值范围; (3)抛物线22(41)3y x m x m m =-+++与x 轴交于点A 、B ,与y 轴交于点C ,当m 取(2)中符合题意的最小整数时,将此抛物线向上平移n个单位,使平移后得到的抛物线顶点落在△ABC的内部(不包括△ABC的边界),求n的取值范围(直接写出答案即可).23. 已知:关于x 的一元二次方程01-m x 2m 2-mx 2=++)( (1)若此方程有实根,求m 的取值范围;(2)在(1)的条件下,且m 取最小的整数,求此时方程的两个根;(3)在(2)的前提下,二次函数1-m x 2m 2-m x y 2++=)(与x 轴有两个交点,连接这两点间的线段,并以这条线段为直径在x 轴的上方作半圆P,设直线l 的解析式为y=x+b,若直线l 与半圆P 只有两个交点时,求出b 的取值范围.7.关于x 的一元二次方程032=-+m x x 有两个不相等的实数根,则m 的取值范围是A. B. C. D.121>m 121<m 121->m 121-<m23.已知关于x 的一元二次方程242(1)0x x k -+-=有两个不相等的实数根.(1)求k 的取值范围;(2)如果抛物线242(1)y x x k =-+-与x 轴的两个交点的横坐标为整数,求正整数k 的值;(3)直线y =x 与(2)中的抛物线在第一象限内的交点为点C ,点P 是射线OC 上的一个动点(点P 不与点O 、点C 重合),过点P 作垂直于x 轴的直线,交抛物线于点M ,点Q 在直线PC 上,距离点P个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.22.已知关于x 的方程2(31)220mx m x m --+-= (1)求证:无论m 取任何实数时,方程恒有实数根.(2)若关于x 的二次函数2(31)22y mx m x m =--+-的图象经过坐标原点(0,0),求抛物线的解析式.(3)在直角坐标系xoy 中,画出(2)中的函数图象,结合图象回答问题:当直线y x b =+ 与(2)中的函数图象只有两个交点时,求b 的取值范围.23.已知关于x 的方程 2220x ax a b --+=,其中a 、b 为实数. (1)若此方程有一个根为2 a (a <0),判断a 与b 的大小关系并说明理由;(2)若对于任何实数a ,此方程都有实数根,求b 的取值范围.23.已知m 为整数,方程221x mx +-=0的两个根都大于-1且小于32, 当方程的两个根均为有理数时,求m 的值.16.已知关于x 的一元二次方程 (m +1)x 2+ 2mx + m - 3 = 0 有两个不相等 的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最小奇数时,求方程的根.16.已知方程4x 2+12x+k=0有两个相等的实数根,求k 的值和方程的解.23. 已知关于x 的方程2(1)(4)30m x m x -+-+=.(1) 若方程有两个不相等的实数根,求m 的取值范围;(2)若正整数m 满足822m ->,设二次函2(1)(4)3y m x m x =-+-+的图象与x 轴交于A B 、两点,将此图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线3y kx =+与此图象恰好有三个公共点时,求出k 的值(只需要求出两个满足题意的k 值即可).23.已知:关于x 的方程mx 2-3(m -1)x +2m -3=0.⑴当m 取何整数值时,关于x 的方程mx 2-3(m -1)x +2m -3=0的根都是整数;⑵若抛物线32)1(32-+--=m x m mx y 向左平移一个单位后,过反比例函数)0(≠=k xk y 上的一点(-1,3),①求抛物线32)1(32-+--=m x m mx y 的解析式; ②利用函数图象求不等式0>-kx xk 的解集.18.列方程或方程组解应用题:在城区改造项目中,区政府对某旧小区进行节能窗户改造.该小区拥有相同数量的A 、B 两种户型.已知所有A 户型窗户改造的总费用为54万元,所有B 户型窗户改造的总费用为48万元,且B 户型窗户的每户改造费用比A 户型窗户的每户改造费用便宜500元.问A 、B 两种户型的每户窗户改造费用各为多少元?21. (本题满分5分)进入防汛期后,某地对河堤进行了加固.该地驻军 在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段 对话:17.在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A 型洗衣机,小王购买了一台B 型洗衣机,两人一共得到财政补贴351元,又知B 型洗衣机售价比A 型洗衣机售价多500元.求:(1)A 型洗衣机和B 型洗衣机的售价各是多少元?(2)小王购买洗衣机除财政补贴外实际付款多少元通过这段对话,请你求出该地驻军原来每天加固的米数.18.列方程或方程组解应用题:为响应低碳号召,肖老师上班的交通方式由自驾车改为骑自行车,肖老师家距学校15千米,因为自驾车的速度是骑自行车速度的4倍,所以肖老师每天比原来早出发45分钟,才能按原时间到校,求肖老师骑自行车每小时走多少千米.18.列方程或方程组解应用题:三月植树节期间,某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,问现在平均每天植树多少棵?18. 列方程(组)解应用题:为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场. 现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.17.2012年3月30日,对于北京球迷来说是一个美妙的夜晚:在篮球比赛中,北京篮球队战胜了广东篮球队,最终夺得了男篮总冠军;在足球比赛中,北京国安队战胜了天津泰达队.据统计两场比赛大约共有60000人到达现场观看比赛,其中观看足球比赛的人数比观看篮球比赛的人数的2倍还多6000人,求观看篮球和足球比赛的观众大约各有多少人?17. 列方程或方程租应用题:北京到石家庄的铁路里程约为280km , 2012年底京石高铁即将通车,其上运行的新型动车速度可比目前的普通列车提高1.8倍, 届时从北京到石家庄乘坐高铁新型动车将比现在乘坐普通列车少用一个半小时即可到达,求目前普通列车的运行速度.19.列方程解应用题:为提高运输效率、保障高峰时段人们的顺利出行,地铁公司在保证安全运行的前提下,缩短了发车间隔,从而提高了运送乘客的数量. 缩短发车间隔后比缩短发车间隔前平均每分钟多运送乘客50人,使得缩短发车间隔后运送14400人的时间与缩短发车间隔前运送12800人的时间相同,那么缩短发车间隔前平均每分钟运送乘客多少人?18.列方程或方程组解应用题:食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?18.列方程(组)解应用题:如图是一块长、宽分别为60 m、50 m的矩形草坪,草坪中有宽度均为x m 的一横两纵的甬道.(1)用含x的代数式表示草坪的总面积S ;(2)当甬道总面积为矩形总面积的4.10%时,求甬道的宽.18. 列方程或方程组解应用题某中学库存960套旧桌凳,修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天修的桌凳套数是甲小组的1.5倍.求甲、乙两个木工小组每天各修桌凳多少套?7.小张每天骑自行车或步行上学,他上学的路程为2 800米,骑自行车 的平均速度是步行的平均速度的4倍,骑自行车上学比步行上学少用30 分钟.设步行的平均速度为x 米/分.根据题意,下面列出的方程正确的 是A .30428002800=-xx B .30280042800=-x x C .30528002800=-x x D .30280052800=-xx 18.某纺织厂有纺织工人300名,为增产创收,该纺织厂又增设了制衣车间,准备将这300名纺织工人合理分配到纺织车间和制衣车间.现在知道工人每人每天平均能织布30米或制4件成衣,每件成衣用布1.5米,若使生产出的布匹刚好制成成衣,求应有多少人去生产成衣?18.列方程解应用题:某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?18.列方程(组)解应用题:李明同学喜欢自行车和长跑两项运动,在某次训练中,他骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5000米,用时15分钟.求自行车路段和长跑路段的长度.18.某小型超市购进了两批相同品种的水果,第一批用了200元,第二批用了550元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.求第一批购进水果多少千克?17. 列方程或方程组解应用题:某石化工程公司第一工程队承包了铺设一段输油管道的工程,原计划用9天时间完成;实际施工时,每天比原计划平均多铺设50米,结果只用了7天就完成了全部任务. 求实际施工时,平均每天铺设多少米?这段输油管道有多长?17. 列方程或方程组解应用题:小明家有一块长8m、宽6m的矩形空地,现准备在该空地上建造一个十字花园(图中阴影部分),并使花园面积为空地面积的一半,小明设计了如图的方案,请你帮小明求出图中的x值.18.列方程(组)解应用题:夏季里某一天,离供电局30千米远的郊区发生供电故障,抢修队接到通知后,立即前去抢修.维修工骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度.。

相关文档
最新文档