2019-2020学年新教材高中数学 第六章 平面向量及其应用 6.1 平面向量的概念学案 新人教A版必修第二册
高中数学 第6章 平面向量及其应用 6.1 平面向量的概念 课时作业1 平面向量的概念 新人教A版必
课时作业1 平面向量的概念知识点一平面向量的概念 1.下列说法正确的是( )A .实数可以比较大小,向量也可以比较大小B .方向不同的向量不能比较大小,但方向相同的向量可以比较大小C .向量的模是正数D .向量的模可以比较大小 答案 D解析 对于A ,数量可以比较大小,但向量是矢量,不能比较大小,A 错误;对于B ,向量是矢量,不能比较大小,B 错误;对于C ,零向量的模为0,0不是正数,C 错误;对于D ,向量的模长是数量,可以比较大小,故选D.2.有下列说法: ①位移和速度都是向量;②若向量AB →,CD →满足|AB →|>|CD →|,且AB →与CD →同向,则AB →>CD →; ③零向量没有方向; ④向量就是有向线段. 其中,正确说法的个数是( ) A .1 B .2 C .3 D .4 答案 A解析 对于①,位移和速度都是既有大小,又有方向的量,所以它们是向量,故①正确;对于②,因为向量不能比较大小,故②错误;对于③,零向量有方向,其方向是不确定的,故③错误;对于④,向量可以用有向线段表示,但向量不是有向线段,故④错误.知识点二向量的几何表示3.在下图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA →,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB →,使|AB →|=4,点B 在点A 正东方向上; (3)BC →,使|BC →|=6,点C 在点B 北偏东30°方向上.解 (1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上,点A 距点O 的横向小方格数与纵向小方格数相等.又|OA →|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA →,如图所示.(2)由于点B 在点A 正东方向上,且|AB →|=4,所以在坐标纸上,点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB →,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC →|=6,依据勾股定理可得:在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC →,如图所示.4.某船从A 点出发向西航行了150 km 到达点B ,然后改变方向向北偏西30°方向航行了200 km 到达点C ,最后又改变方向向东航行了150 km 到达点D .作出向量AB →,BC →,CD →.解 作出向量AB →,BC →,CD →,如图所示.知识点三相等向量与共线向量 5.给出下列命题:①若|a |=|b |,则向量a 与b 的长度相等且方向相同或相反;②对于任意非零向量a ,b ,若|a |=|b |且a 与b 的方向相同,则a =b ; ③非零向量a 与非零向量b 满足a ∥b ,则向量a 与b 方向相同或相反; ④向量AB →与CD →是共线向量,则A ,B ,C ,D 四点共线; ⑤若a ∥b 且b ∥c ,则a ∥c . 其中正确的个数为( ) A .0 B .1 C .2 D .3 答案 C解析 若|a |=|b |,则向量a 与b 的长度相等而方向可以任意,故①不正确;根据相等向量的定义可知②正确;根据共线向量的定义可知③正确;向量AB →与CD →是共线向量,则A ,B ,C ,D 四点共线或AB ∥CD ,故④不正确;若b =0,则a 与c 不一定共线,故⑤不正确.综上可知只有②③正确,故选C.6.如图,以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中,(1)写出与AF →,AE →相等的向量; (2)写出与AD →的模相等的向量.解 (1)与AF →相等的向量为BE →,CD →,与AE →相等的向量为BD →. (2)与AD →的模相等的向量为DA →,CF →,FC →.7. 如图,在△ABC 中,三边长AB ,BC ,AC 均不相等,E ,F ,D 分别是边AC ,AB ,BC 的中点.(1)写出与EF →共线的向量; (2)写出与EF →的模相等的向量; (3)写出与EF →相等的向量.解 (1)∵E ,F 分别为边AC ,AB 的中点, ∴EF ∥BC .从而与EF →共线的向量包括:FE →,DB →,BD →,DC →,CD →,BC →,CB →. (2)∵E ,F ,D 分别是边AC ,AB ,BC 的中点, ∴EF =12BC ,BD =DC =12BC .又∵AB ,BC ,AC 均不相等,从而与EF →的模相等的向量有FE →,BD →,DB →,DC →,CD →. (3)与EF →相等的向量有DB →,CD →.8.如图,在四边形ABCD 中,AB →=DC →,N ,M 分别是边AD ,BC 上的点,且→=MA →.求证:DN →=MB →. 证明 ∵AB →=DC →, ∴|AB →|=|CD →|且AB ∥CD , ∴四边形ABCD 是平行四边形, ∴|DA →|=|CB →|,且DA ∥CB . 又∵DA →与CB →的方向相同,∴CB →=DA →. 同理可证,四边形AM 是平行四边形, ∴CM →=NA →.∵|CB →|=|DA →|,|CM →|=|NA →|, ∴|DN →|=|MB →|.∵DN ∥MB 且DN →与MB →的方向相同, ∴DN →=MB →.一、选择题1.下列说法正确的是( )A.AB →∥CD →就是AB →所在的直线与CD →所在的直线平行或重合 B .长度相等的向量叫做相等向量C .有向线段可以表示向量但不是向量,且向量也不是有向线段D .共线向量是在一条直线上的向量 答案 C解析 由定义知,向量有大小、方向两个要素,而有向线段有起点、方向、长度三个要素,故C 正确.2.汽车以120 km/h 的速度向西走了2 h ,摩托车以45 km/h 的速度向东北方向走了2 h ,则下列命题中正确的是( )A .汽车的速度大于摩托车的速度B .汽车的位移大于摩托车的位移C .汽车走的路程大于摩托车走的路程D .以上都不对 答案 C解析 由向量不能比较大小,可知选C. 3.下列说法正确的是( ) A .有向线段AB →与BA →表示同一向量 B .两个有公共终点的向量是平行向量 C .零向量与单位向量是平行向量 D .对任一向量a ,a|a |是一个单位向量答案 C解析 向量AB →与BA →方向相反,不是同一向量;有公共终点的向量的方向不一定相同或相反;当a =0时,a|a |无意义,故A ,B ,D 错误.零向量与任何向量都是平行向量,C 正确.4.下列结论中,正确的是( )A .2019 cm 长的有向线段不可能表示单位向量B .若O 是直线l 上的一点,单位长度已选定,则l 上有且仅有两个点A ,B ,使得OA →,OB →是单位向量C .方向为北偏西50°的向量与南偏东50°的向量不可能是平行向量D .一个人从A 点向东走500米到达B 点,则向量AB →不能表示这个人从A 点到B 点的位移 答案 B解析 一个单位长度取作2019 cm 时,2019 cm 长的有向线段刚好表示单位向量,故A 错误;B 正确;C 中两向量为平行向量;D 中的AB →表示从点A 到点B 的位移.5.O 是△ABC 内一点,且|OA →|=|OB →|=|OC →|,则O 是△ABC 的( ) A .重心 B .内心 C .外心 D .垂心 答案 C解析 ∵|OA →|=|OB →|=|OC →|,∴O 到三角形三个顶点的距离相等,∴点O 是△ABC 的外心,故选C.二、填空题6.如果在一个边长为5的正△ABC 中,一个向量所对应的有向线段为AD →(其中D 在边BC 上运动),则向量AD →长度的最小值为________.答案532解析 结合图形进行判断求解(图略),根据题意,在正△ABC 中,有向线段AD 长度最小时,AD 应与边BC 垂直,有向线段AD 长度的最小值为正△ABC 的高,为532.7.如图,四边形ABCD 是平行四边形,E ,F 分别是边AD 与BC 的中点,则在以A ,B ,C ,D 四点中的任意两点为始点和终点的所有向量中,与向量EF →方向相反的向量为________.答案 BA →,CD →解析 由题意得AB ∥EF ,CD ∥EF ,∴在以A ,B ,C ,D 四点中的任意两点为始点和终点的所有向量中,与EF →平行的向量为DC →,CD →,AB →,BA →,其中方向相反的向量为BA →,CD →.8.如图,在△ABC 中,∠ACB 的角平分线CD 交AB 于点D ,AC →的模为2,BC →的模为3,AD →的模为1,那么DB →的模为________.答案 32解析 由三角形内角平分线的性质,得|AC →|∶|BC →|=|AD →|∶|DB →|,故|DB →|=32.三、解答题9.在如图所示的方格纸上(每个小方格边长均为1),已知向量a .(1)试以B 为起点画一个向量b ,使b =a ;(2)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么. 解 (1)根据相等向量的定义,所作向量应与a 平行,且长度相等,如图所示. (2)满足条件的向量c 可以是图中的CD →.所有这样的向量c 的终点的轨迹是以C 为圆心,2为半径的圆,如图.10.已知飞机从甲地按北偏东30°的方向飞行2000 km到达乙地,再从乙地按南偏东30°的方向飞行2000 km到达丙地,再从丙地西南方向飞行1000 2 km到达丁地,问丁地在甲的什么方向?丁地距甲地多远?解如图,用A,B,C,D分别表示甲地、乙地、丙地、丁地,依题意知△ABC为正三角形.∴AC=2000.又∵∠ACD=45°,CD=1000 2.∴△ACD为等腰直角三角形.即AD=10002,∠CAD=45°.答:丁地在甲地的东南方向,距甲地1000 2 km.。
2019_2020学年新教材高中数学第六章平面向量及其应用6.3.1平面向量基本定理课件新人教A版必修第二册
状元随笔 平面向量基本定理的理解
(1)→e 1,→e 2 是同一平面内的两个不共线的向量,→e 1,→e 2 的选 取不唯一,即一个平面可以有多组的基底.
(2)平面内的任一向量→a 都可以沿基底进行分解. (3)基底→e 1,→e 2 确定后,实数 λ1、λ2 是唯一确定的.
[教材解难]
1.平面向量基本定理的作用. 平面内任何一个向量都可以沿着两个不共线的方向分解成两 个向量的和,并且这种分解是唯一的. 2.基底的性质. (1)不共线性. 平面内两个不共线的向量才可以作为一组基底.由于零向量与 任何向量共线,所以零向量不可以作为基底; (2)不唯一性. 对基底的选取不唯一,平面内任一向量 a 都可被这个平面的一 组基底 e1,e2 线性表示.
不共线的向量都可作为平面内所有向量的一组基底;零向量可看成
与任何向量平行,故零向量不可以作为基底中的向量,故 B 项正确. 答案:B
平面内任意一对不共线的向量都可以作为该平面内所有向量 的基底,一定要注意“不共线”这一条件,在做题时容易忽略此条 件而导致错误,同时还要注意零向量不能作基底.
题型二 用基底表示平面向量[教材 P26 例 1] 例 2 如图,O→A,O→B不共线,且A→P=tA→B(t∈R),用O→A,O→B表 示O→P.
题型三 向量的夹角[经典例题] 例 3 已知|a|=|b|,且 a 与 b 的夹角为 120°,求 a+b 与 a 的夹 角及 a-b 与 a 的夹角.
【解析】 如图,作O→A=a,O→B=b,∠AOB=120°,以O→A,O→B 为邻边作平行四边形 OACB,
则O→C=a+b,B→A=a-b. 因为|a|=|b|,所以平行四边形 OACB 为菱形. 所以O→C与O→A的夹角∠AOC=60°, B→A与O→A的夹角即为B→A与B→C的夹角∠ABC=30°. 所以 a+b 与 a 的夹角为 60°,a-b 与 a 的夹角为 30°. 作图,由图中找到→a -→b 与→a 的夹角,利用三角形、四边形的 知识求角.
(新教材)2019-2020学年人教B版高中数学必修第二册第6章 平面向量初步 6.1.5 课时29
所以O→A+O→C=2O→E=-3O→B.
知识对点练
课时综合练
解析
所以O→B=-23O→E, |O→B|=23|O→E|. 设点 A 到 BD 的距离为 h,则 S△AOB=12|O→B|·h,S△AOC=2S△AOE=|O→E|·h.
1→ 1→ 所以SS△△AAOOCB=2|O|→OEB|·|·hh=2|O|→OEB||=12×23=13.
求证:D→E=13(b-a).
知识对点练
课时综合练
大儒诚信教育资源
证明 ∵CDDA=EABE=12,∴D→A=23C→A=23b,A→E=13A→B=13(A→C+C→B)=13(-b -a)=-13b-13a.
∴D→E=D→A+A→E=23b-13b-13a=13b-13a=13(b-a).
知识对点练
知识对点练
课时综合练
正解 因为 D 为 BC 的三等分点, 当 BD=13BC 时,如图 1,
B→D=13B→C,
知识对点练
课时综合练
答案
大儒诚信教育资源
所以A→D=A→B+B→D=A→B+13B→C =A→B+13(A→C-A→B) =23A→B+13A→C =23a+13b.
知识对点练
课时综合练
答案 C
知识对点练
课时综合练
答案
解析 找出一个非零实数 λ 使得 a=λb 即可判断 a∥b.A 项中 a=-12b; B 项中 a=4b;D 项中 a=-32b,故 A,B,D 三项中 a∥b,而 C 项中 a=e1 -2e2,b=-2e1+e2,所以 C 项 a 与 b 不一定共线,故选 C.
知识对点练
课时综合练
解析
3.(1)已知 3(x+a)+3(x-2a)-4(x-a+b)=0(其中 a,b 为已知向量), 求 x;
高中数学新教材目录-必修第二册
高中数学新教材目录
(整理到节)
必修(第二册)
第六章平面向量及其应用
6.1平面向量的概念
6.2平面向量的运算
6.3平面向量基本定理及坐标表示
6.4平面向量的应用
第七章复数
7.1复数的概念
7.2复数的四则运算
7.3* 复数的三角表示
第八章立体几何初步
8.1基本立体图形
8.2立体图形的直观图
8.3简单几何体的表面积与体积
8.4空间点、直线、平面之间的位置关系
8.5空间直线、平面的平行
8.6空间直线、平面的垂直
第九章统计
9.1 随机抽样
9.2用样本估计总体
9.3统计分析案例公司员工的肥胖情况调查分析第十章概率
10.1 随机事件与概率
10.2事件的相互独立性
10.3频率与概率
1。
新教材人教A版高中数学必修第二册 第六章 平面向量及其应用 教学课件
1.向量的定义: 2. 想一想:实数能进行加减乘除运算,位移、力可以合成,向量 能进行运算吗?
一起来探究吧!
1. 如图,某质点从点A经过点B到点C,这个质点的位移如何表示?
C
A B
求两个向量和的运算,叫做向量的加法.这种求向量和的方法, 称为向量加法的三角形法则.
B
C
F
O
A
B O
C A
O
O B
A B
A C
O
A
B
O
B
A
O
A
B
数的加法满足交换律、结合律,向量的加法是否也满足交换律和 结合律呢?
D A
C B
D
A
C
B
综上所述,向量的加法满足交换律和结合律.
例2 长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如图, 一艘船从长江南岸A地出发,垂直于对岸航行,航行速度的大小为15 km/h,同时江水的速度为向东6 km/h.
问题2 在物理课中,如果一个物体在力F的作用下产生位移s,如何计 算力F所做的功?
问题3 能否把“功”看成是两个向量相乘的结果呢?
观察力做功的计算公式,发现公式中涉及力与位移的夹角,所以 先来定义向量的夹角概念.
规定:零向量与任一向量的数量积为0.
向量线性运算的结果是一个向量,而两个向量的数量积是一个数 量,这个数量的大小与两个向量的长度及其夹角有关.
2.如图,EF是△ABC的中位线,AD是BC边上的中线,在以A、B、 C、D、E、F为端点的有向线段表示的向量中请分别写出:
7
5
2
1.向量的定义; 2.有向线段的三要素及向量的几何表示; 3.向量的模、零向量、单位向量的定义及表示; 4.平行向量、相等向量、共线向量.
高中数学第六章平面向量及其应用6.1平面向量的概念教案第二册
6。
1 平面向量的概念本节课选自《普通高中课程标准数学教科书—必修第二册》(人教A 版)第六章《平面向量及其应用》,本节课是第1课时,本节课内容包括向量的实际背景与概念、向量的几何表示、相等向量与共线向量。
本节从物理学中的位移、力这些既有大小又有方向的量出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念。
在“向量的物理背景与概念"中介绍向量的定义;在“向量的几何表示"中,主要介绍有向线段、有向线段的三个要素、向量的表示、向量与有向线段的区别与联系、向量的长度、零向量、单位向量、平行向量;在“相等向量与共线向量”中,主要介绍相等向量,共线向量定义等1。
教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.2.教学难点:平行向量、相等向量和共线向量的区别和联系.多媒体意的,单位向量的方向具体而定.(2)注意:向量是不能比较大小的,但向量的模(是正数或零)是可以进行大小比较的。
例1。
在图中,分别用向量表示A地至B、C两地的位移,并根据图中的比例尺,并求出A地至B、C两地的实际距离(精确到1km)(三)。
相等向量与共线向量思考1:向量由其模和方向所确定.对于两个向量b a,,就其模等与不等,方向同与不同而言,有哪几种可能情形?【答案】模相等,方向相同;模相等,方向不相同;模不相等,方向相同; 模不相等,方向不相同;1.平行向量定义:[来源:学科网ZXXK]通过例题进一步理解向量的概念,提高学生用向量解决问题的能力。
通过思考,引入平行向量,提高学生的理解问题的能力。
①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行。
说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.2。
相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线....段的起点无关......。
2019_2020学年新教材高中数学第6章平面向量初步 共线向量基本定理练习(含解析)新人教B版必修第二册
课时30 共线向量基本定理知识点一 共线向量基本定理1.已知向量a ,b 是两个非零向量,在下列四个条件中,一定能使a ,b 共线的是( ) ①2a -3b =4e 且a +2b =-2e ;②存在相异实数λ,μ,使λa -μb =0; ③x a +y b =0(其中实数x ,y 满足x +y =0); ④已知梯形ABCD ,其中AB →=a ,CD →=b . A .①② B .①③ C .② D .③④ 答案 A解析 由2a -3b =-2(a +2b )得到b =-4a ,故①可以;∵λa -μb =0,∴λa =μb ,故②可以;当x =y =0时,有x a +y b =0,但b 与a 不一定共线,故③不可以;梯形ABCD 中,没有说明哪组对边平行,故④不可以.2.已知e 1,e 2不共线,若a =3e 1-4e 2,b =6e 1+k e 2,且a ∥b ,则k 的值为( ) A .8 B .-8 C .3 D .-3 答案 B解析 ∵a ∥b ,∴存在实数m ,使得a =m b ,即3e 1-4e 2=6m e 1+mk e 2,∴⎩⎪⎨⎪⎧3=6m ,-4=mk ,即⎩⎪⎨⎪⎧m =12,k =-8.3. 如图所示,已知OA ′ →=3OA →,A ′B ′ →=3AB →,则向量OB →与OB ′ →的关系为( )A .共线B .同向C .共线且同向D .共线、同向,且OB ′ →的长度是O B →的3倍 答案 D解析 由题意,知OB →=OA →+AB →,OB ′→=OA ′→+A ′B ′→=3OA →+3AB →=3OB →,故选D.知识点二 共线向量基本定理的应用4.已知点P 是△ABC 所在平面内的一点,且3PA →+5PB →+2PC →=0,设△ABC 的面积为S ,则△PAC 的面积为( )A.34SB.23SC.12SD.25S 答案 C解析 如图,由于3PA →+5PB →+2PC →=0,则3(PA →+PB →)=-2(PB →+PC →), 3(PA →+PB →)2=-2(PB →+PC →)2. 设AB ,BC 的中点分别为M ,N ,则PM →=12(PA →+PB →),PN →=12(PB →+PC →),即3PM →=-2PN →,则点P 在中位线MN 上,则△PAC 的面积是△ABC 的面积的一半.5.设AB →=22(a +5b ),BC →=-2a +8b ,CD →=3(a -b ),则共线的三点是________.答案 A ,B ,D解析 BD →=BC →+CD →=a +5b ,AB →=22BD →,即A ,B ,D 三点共线.6.已知e 1,e 2是两个不共线的向量,a =k 2e 1+⎝ ⎛⎭⎪⎫1-52k e 2与b =2e 1+3e 2是两个平行的向量,则k =________.答案 13或-2解析 ∵a ∥b ,∴存在实数m ,使得a =m b ,∴k 2e 1+⎝ ⎛⎭⎪⎫1-52k e 2=m (2e 1+3e 2),∴⎩⎪⎨⎪⎧k 2=2m ,1-52k =3m ,即3k 2+5k -2=0,∴k =13或-2.7.设O 为△ABC 内任一点,且满足OA →+2OB →+3OC →=0,且D ,E 分别是BC ,CA 的中点,则△ABC 与△AOC 的面积之比为________.答案 3∶1解析 如图,OB →+OC →=2OD →,OA →+OC →=2OE →,∴OA →+2OB →+3OC →=(OA →+OC →)+2(OB →+OC →)=2(2OD →+OE →)=0,即2OD →+OE →=0, ∴DO →与OE →共线,即D ,E ,O 共线, ∴2|OD →|=|OE →|,∴S △AOC =2S △COE =2×23S △CDE =2×23×14S △ABC =13S △ABC ,即S △ABCS △AOC=3.8.已知梯形ABCD ,AB ∥DC ,E ,F 分别是AD ,BC 的中点.用向量法证明:EF ∥AB ,EF =12(AB +DC ).证明 如图,延长EF 到点M ,使FM =EF ,连接CM ,BM ,EC ,EB ,得平行四边形ECMB ,由平行四边形法则得EF →=12E M →=12( EB →+EC →).由于AB ∥DC ,所以AB →, DC →共线且同向,根据向量共线定理,存在正实数λ,使AB →=λDC →.由三角形法则得EB →=EA →+AB →, EC →=ED →+DC →且ED →+EA →=0,∴EF →=12(E B →+EC →)=12(E A →+AB →+ED →+DC →)=12(AB →+DC →)=1+λ2D C →, ∴EF →∥DC →.由于E ,D 不共点,∴EF ∥DC ∥AB ,又|EF →|=⎪⎪⎪⎪⎪⎪12( AB →+DC →)=12(|AB →|+|D C →|),∴EF =12(AB +DC ),所以结论得证.易错点 对共线向量基本定理理解不透致误9.如果向量a =(-k ,-1)与b =(4,k )共线且方向相反,则k =________.易错分析 出错的根本原因是对共线向量基本定理b =λa 理解不透,误认为向量反向时,参数k 的值应该为负值,实质应是λ的值为负值.答案 2正解 因为向量a =(-k ,-1)与b =(4,k )共线, 所以k 2-4=0,解得k =±2,当k =-2时,b =2a ,此时a 与b 方向相同,不符合题意,应舍去,因此k =2.一、选择题1.已知向量a =e 1+2e 2,b =2e 1-e 2,其中e 1,e 2不共线,则a +b 与c =6e 1+2e 2的关系是( )A .不共线B .共线C .相等D .不确定 答案 B解析 a +b =3e 1+e 2,∴c =6e 1+2e 2=2(a +b ). ∴c 与a +b 共线.2.下面向量a ,b 共线的有( ) ①a =2e 1,b =-2e 2;②a =e 1-e 2,b =-2e 1+2e 2; ③a =4e 1-25e 2,b =e 1-110e 2;④a =e 1+e 2,b =2e 1-2e 2(e 1,e 2不共线). A .②③ B .②③④ C .①③④ D .①②③④答案 A解析 对于①,e 1与e 2不一定共线,故a 与b 不一定共线;对于②,a =-12b ,∴a ,b 共线;对于③,a =4b ,∴a ,b 共线;对于④,若a ,b 共线,则存在一实数λ,使得b =λa ,即2e 1-2e 2=λ(e 1+e 2),得(2-λ)e 1=(λ+2)e 2,当λ=2时,得e 2=0,e 1,e 2共线,矛盾,当λ≠2时,e 1=λ+22-λe 2,则e 1,e 2共线,矛盾.故a 与b 不共线.综上,选A. 3.若M 是△ABC 的重心,则下列各向量中与AB →共线的是( ) A .AB →+BC →+AC →B . AM →+MB →+BC → C . AM →+BM →+CM →D .3A M →+AC →答案 C解析 设D ,E ,F 分别为BC ,AC ,AB 的中点,根据点M 是△ABC 的重心, AM →+BM →+CM →=23( AD →+BE →+CF →)=23(AB →+B D →+BC →+CE →+CA →+AF →)=0,而零向量与任何向量共线,所以与AB →共线.4.点P 是△ABC 所在平面内一点,若CB →=λPA →+PB →,其中λ∈R ,则点P 一定在( )A .△ABC 内部B .AC 边所在的直线上 C .AB 边所在的直线上D .BC 边所在的直线上答案 B解析 ∵CB →=λPA →+PB →,∴CB →-PB →=λPA →,即CP →=λPA →.∴点P ,A ,C 共线.∴点P 一定在AC 边所在的直线上. 二、填空题5.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 同向,则实数λ的值为________.答案 1解析 由于c 与d 同向,所以可设c =k d (k >0),于是λa +b =k [a +(2λ-1)b ], 整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,所以λ=1或λ=-12.又k >0,所以λ>0,故λ=1.6.在△ABC 中,点D 在BC 边上,且CD →=4DB →,CD →=rAB →+sAC →,则3r +s 的值为________. 答案 85解析 ∵AB →+BC →=AC →,CD →=4DB →,∴CD →=45CB →,即CD →=45AB →-45AC →,∴r =45,s =-45,∴3r +s =85.7.已知△ABC 的三个顶点A ,B ,C 及平面内一点P 满足PA →+PB →+P C →=A B →,则点P 在边AC 的________等分点处.答案 三解析 由PA →+PB →+PC →=AB →,得PA →+PC →=AB →-PB →=AP →,所以PC →=2AP →,从而点P 在边AC 的三等分点处.三、解答题8.已知非零向量e 1,e 2不共线,(1)如果AB →=e 1+e 2, BC →=2e 1+8e 2, CD →=3(e 1-e 2),求证:A ,B ,D 三点共线; (2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解 (1)证明:∵AB →=e 1+e 2,B D →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →. ∴AB →与BD →共线,且AB 与BD 有公共点B , ∴A ,B ,D 三点共线.(2)∵k e 1+e 2与e 1+k e 2共线,且此两向量均为非零向量, ∴存在λ,使k e 1+e 2=λ(e 1+k e 2),则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线, 只能有⎩⎪⎨⎪⎧k -λ=0,λk -1=0,∴k =±1.9.如图,平行四边形OACB 中,BD =13BC ,OD 与BA 相交于E .求证:BE =14BA .证明 如图,设E ′是线段BA 上的一点,且BE ′=14BA ,只要证E ,E ′重合即可.设OA →=a , OB →=b ,则BD →=13a , OD →=b +13a .∵BE ′ →=OE ′ →-b ,E ′A →=a -OE ′ →,3BE ′ →=E ′A →, ∴3(OE ′ →-b )=a -OE ′ →, ∴OE ′ →=14(a +3b )=34⎝ ⎛⎭⎪⎫b +13a ,即OE ′ →=34O D →,∴O ,E ′,D 三点共线,∴E 与E ′重合.∴BE =14BA .10.已知OA →,OB →是不共线的两个向量,设OM →=λOA →+μOB →,且λ+μ=1,λ,μ∈R .求证:M ,A ,B 三点共线. 证明 ∵λ+μ=1,∴μ=1-λ. ∴OM →=λOA →+(1-λ)OB →=λOA →+OB →-λOB →. ∴OM →-OB →=λ(OA →-OB →),即BM →=λBA →(λ∈R ),∴BM →,BA →共线. 又∵BM ,BA 有公共点B , ∴M ,B ,A 三点共线.11.如图所示,点P 在直线AB 上,O 为直线外任意一点,且OP →=λOA →+μOB →(λ,μ∈R ),求证:λ+μ=1.证明 OP →=λOA →+μOB →=λ(OP →+PA →)+μ(OP →+PB →) =(λ+μ)OP →+λPA →+μPB →, 又点P 在直线AB 上,不妨设PA →=kPB →, 则(λ+μ-1)OP →+(λk +μ)PB →=0又OP →与PB →不共线,故⎩⎪⎨⎪⎧λ+μ-1=0,λk +μ=0,得λ+μ=1.12.如图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,且AE →=23AD →,AB →=a ,AC →=b .(1)用a ,b 表示向量AD →,AE →,AF →,BE →; (2)求证:B ,E ,F 三点共线. 解 (1)AD →=AB →+BD →=a +12BC →=a +12AC →-12AB →=12b +12a ,AE →=23AD →=13b +13a , AF →=12AC →=12b ,BE →=AE →-AB →=13b +13a -a=13b -23a . (2)证明:BF →=AF →-AB →=12AC →-AB →=12b -a ,BE →=13b -23a ,∴23BF →=BE →,故BF →∥BE →, 又BF 与BE 有公共点B ,∴B ,E ,F 三点共线.。
2019_2020学年新教材高中数学第六章平面向量初步6.3平面向量线性运算的应用课件新人教B版必修第二册
课前篇自主预习
一
二
二、向量在物理中的应用
1.填空.
(1)物理问题中常见的向量有力,速度,加速度,位移等.
(2)向量的加减法运算体现在力,速度,加速度,位移的合成与分解.
2.做一做:一条渔船距对岸4 km,以2 km/h的速度向垂直于对岸的
方向划去,到达对岸时,船的实际航程为8 km,则河水的流速为( )
20 5
=4.
由v3=v1+v2,
得v2=v3-v1
=(0,4)-(-3,4)=(3,0),
所以|v2|=3,即水流速度的大小为3 m/s. 方法点睛根据图形合理地选用向量的加减法,通过建系求出所求
量.
探究一
探究二
思维辨析 当堂检测
课堂篇探究学习
1.在矩形 ABCD 中,|������������|=4,|������������|=2,则|������������ + ������������ + ������������|=( )
v2=(20,0),
则帆船的行驶速度 v=v1+v2=(10,10 3)+(20,0)=(30,10 3),
所以|v|= 302 + (10 3)2=20 3(km/h).
因为 tan α=10303 = 33(α 为 v 和 v2 的夹角,α 为锐角),所以 α=30°. 所以帆船向北偏东 60°的方向行驶,速度为 20 3 km/h.
最小值为2 5,
5
∴|������������ + ������������|∈ 2 5,2 2 ,故答案为 2 5,2 2 .
5
5
探究一
探究二
思维辨析 当堂检测
新教材高中数学第六章平面向量及其应用64平面向量的应用642余弦定理作业课件新人教A版必修第二册
新教材高中数学第六章平面向量及其应用6.4平面向量的应用6.4.2余弦定理 作业课件新人教A版必修第二册
2021/4/17
新教材高中数学第六章平面向量及其应用64平面向量的应 用642余弦定理作业课件新人教A版必修第二册
第六章 平面向量及其应用
6.4 平面向量的应用 第13课时 余弦定理
——能力提升——
14.(多选)(5 分)已知△ABC 中,三边 a,b,c 满足a+1 b+b+1 c=
a+3b+c,则( BC )
A.B=30°
B.cosB=12
C.B=60°
D.sinB=12
解析:由a+1 b+b+1 c=a+3b+c得 (a+2b+c)(a+b+c)=3(a+b)(b+c), 整理得 a2+c2-b2=ac,cosB=a2+2ca2c-b2=2aacc=12, 故 B=60°.
9.在△ABC 中,若 B=60°,b2=ac,则其形状是 等边三角形.
解析:由余弦定理可得 cos 60°=a2+2ca2c-b2,
即1=a2+c2-ac,于是 2 2ac
a2+c2-ac=ac,
所以(a-c)2=0,因此 a=c,
又 B=60°,所以△ABC 是等边三角形.
10.在△ABC 中,若 a=2,b+c=7,cosB=-14,则 b= 4 . 解析:在△ABC 中,由 b2=a2+c2-2accosB 及 b+c=7 知,b2 =4+(7-b)2-2×2×(7-b)×(-14),整理得 15b-60=0.∴b=4.
C.6 2
D.2 19
解 析 : 由 余 弦 定 理 得 : c2 = a2 + b2 - 2abcosC = 16 + 36 - 2×4×6cos120°=76,
2019-2020学年新教材人教A版高中数学必修第二册课件:第六章 6.4.1 平面几何中的向量方法
第十一页,共34页。
2
又| AC |2=|a+b|2=a2+2a·b+b2=1+4+2a·b=6, ∴ | AC |= 6 ,即AC= 6 .
第十七页,共34页。
◆利用向量法解决长度问题的方法 (1)基向量法:利用图形特点选择基底,向向量的数量积转化,用 公式|a|2=a2求解; (2)坐标法:建立平面直角坐标系,确定相应向量的坐标,代入公 式,若a=(x,y),则|a|= x2 y2 .
第五页,共34页。
◆用向量方法解决平面几何问题的“三步曲” (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元 素,将平面几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问 题; (3)把运算结果“翻译”成几何关系. ◆用向量法解决平面几何问题的两种方法 (1)几何法:选取适当的基底(基底中的向量尽量已知模或夹角), 将题中涉及的向量用基底表示出来,利用向量的运算法则、运算律或 性质计算. (2)坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问 题中的长度、垂直、平行等问题转化为代数运算. 一般地,存在坐标系或易建坐标系的题目适合用坐标法.
1.用向量方法解决平面几何问题的“三步曲” (1)建立平面几何与向量的联系,用 向量 表示问题中涉及 的几何元素,将平面几何问题转化为 向量问题 ; (2)通过 向量运算 ,研究几何元素之间的关系,如距离、 夹角等问题; (3)把运算结果“翻译”成几何关系. 2.向量在物理中的应用 (1)物理问题中常见的向量有力、速度、位移等. (2)向量的加减法运算体现在一些物理量的合成和分解中. (3)动量 mv 是向量的数乘运算. (4)功是力 F 与位移 s 的数量积.
新教材人教A版高中数学必修第二册 第六章 平面向量及其应用 精品教学课件(共471页)
1.如图,在▱ABCD 中,点 E,F 分别是 AB,CD 的
中点,图中与A→E平行的向量的个数为( )
A.1
B.2
C.3
D.4
解析:选 C.图中与A→E平行的向量为B→E,F→D,F→C共 3 个.
2.下列结论中正确的是( )
①若 a∥b 且|a|=|b|,则 a=b;
②若 a=b,则 a∥b 且|a|=|b|;
(6) 两 个 向 量 平 行 时 , 表 示 向 量 的 有 向 线 段 所 在 的 直 线 一 定 平
行.( × ) (7)零向量是最小的向量.( × )
已知向量 a 如图所示,下列说法不正确的是( )
A.也可以用M→N表示 C.起点是 M 答案:D
B.方向是由 M 指向 N D.终点是 M
已知点 O 固定,且|O→A|=2,则 A 点构成的图形是( )
【解析】 A→B=D→C,A,B,C,D 四点可能在同一条直线上,故 ①不正确;在▱ABCD 中,|A→B|=|D→C|,A→B与D→C平行且方向相同, 故A→B=D→C,故②正确;a=b,则|a|=|b|,且 a 与 b 的方向相同;b =c,则|b|=|c|,且 b 与 c 的方向相同,则 a 与 c 长度相等且方向相 同,故 a=c,故③正确. 【答案】 ②③
6.4.1 余弦定理
6.4.2 正弦定理
6.4.3 余弦定理、正弦定理应用举例
6.4.4 三角形中的几何计算 章末复习
6.1 平面向量的概念
1.向量的概念及表示
(1)概念:既有__大__小__又有_方__向___的量.
(2)有向线段 ①定义:具有方向的线段.
②三个要素:__起__点__、_方___向__、_长__度___.
2019_2020学年高中数学第6章平面向量的坐标及其运算、两点间的距离公式与中点坐标公式练习新人教B版
课时33 平面向量的坐标及其运算、两点间的距离公式与中点坐标公式知识点一 平面向量的坐标1.如下图,向量a ,b ,c 的坐标分别是________、________、________.答案 (-4,0) (0,6) (-2,-5) 解析 将各向量向基底所在直线分解.a =-4i +0j ,∴a =(-4,0),b =0i +6j ,∴b =(0,6),c =-2i -5j ,∴c =(-2,-5).2.在平面直角坐标系中,点A (2,3),B (-3,4),如图所示,x 轴、y 轴正方向上的两个单位向量分别为i 和j ,则下列说法正确的是________(只填序号).①OA →=2i +3j ; ②OB →=3i +4j ; ③AB →=-5i +j ; ④BA →=5i -j . 答案 ①③④解析 i ,j 互相垂直,故可作为基底,由平面向量基本定理,有OA →=2i +3j ,OB →=-3i +4j ,AB →=OB →-OA →=-5i +j ,BA →=OA →-OB →=5i -j ,故①③④正确.知识点二 平面上向量的运算与坐标的关系3.设平面向量a =(3,5),b =(-2,1),则a -2b =( ) A .(7,3) B .(7,7) C .(1,7) D .(1,3)答案 A解析 a -2b =(3,5)-2(-2,1)=(7,3).4.已知平面向量a =(x,1),b =(-x ,x 2),则a +b ( ) A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线 答案 C解析 因为a +b =(0,1+x 2),所以a +b 平行于y 轴.5.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 相等,则m n=________,|n a +m b |=________.答案 -1241解析 m a +n b =(2m -n,3m +2n ),a -2b =(4,-1).∴⎩⎪⎨⎪⎧2m -n =4,3m +2n =-1,解得⎩⎪⎨⎪⎧m =1,n =-2,∴m n =-12. n a +m b =-2a +b =(-5,-4),∴|n a +m b |=|-2a +b |=(-5)2+(-4)2=25+16=41. 知识点三 两点之间的距离公式与中点坐标公式6.在△ABC 中,已知点A (3,7),B (-2,5),若线段AC ,BC 的中点都在坐标轴上. (1)求点C 的坐标; (2)求△ABC 的三边长.解 (1)①若AC 的中点在y 轴上,则BC 的中点在x 轴上,设点C 的坐标为(x ,y ),由中点坐标公式得3+x 2=0,y +52=0,∴x =-3,y =-5,即C 点坐标为(-3,-5).②若AC 的中点在x 轴上,则BC 的中点在y 轴上,则同理可得C 点坐标为(2,-7).综上C 点坐标为(-3,-5)或(2,-7). (2)当C 点坐标为(-3,-5)时,AB =(-2-3)2+(5-7)2=29, AC =(-3-3)2+(-5-7)2=65, BC =(-3+2)2+(-5-5)2=101.当C 点坐标为(2,-7)时,AB =29,AC =(2-3)2+(-7-7)2=197, BC =(2+2)2+(-7-5)2=410.7.已知在△ABC 中,A (7,8),B (3,5),C (4,3),M ,N 是AB ,AC 的中点,D 是BC 的中点,MN 与AD 交于点F ,求DF →.解 因为A (7,8),B (3,5),C (4,3), 所以AB →=(-4,-3),AC →=(-3,-5). 又因为D 是BC 的中点,有AD →=12(AB →+AC →)=(-3.5,-4),而M ,N 分别为AB ,AC 的中点,所以F 为AD 的中点. 故有DF →=12DA →=-12AD →=(1.75,2).知识点四 向量的坐标运算的应用8.已知点O (0,0),A (1,2),B (4,5),且OP →=OA →+tAB →,试问:(1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第二象限?(2)四边形OABP 能否为平行四边形?若能,求出相应的t 值;若不能,请说明理由.解 由已知得OA →=(1,2),AB →=(3,3), OP →=(1,2)+t (3,3)=(1+3t,2+3t ).(1)若点P 在x 轴上,则有2+3t =0,t =-23;若点P 在y 轴上,则有1+3t =0,t =-13;若点P 在第二象限,则有⎩⎪⎨⎪⎧1+3t <0,2+3t >0,解得-23<t <-13.(2) PB →=OB →-OP →=(4,5)-(1+3t,2+3t )=(3-3t ,3-3t ),若四边形OABP 是平行四边形,则有OA →=P B →,即有3-3t =1,且3-3t =2,这显然是不可能的,因此,四边形OABP 不可能是平行四边形.9.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2B .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求点M ,N 的坐标及MN →的坐标.解 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵m b +n c =(-6m +n ,-3m +8n )=(5,-5),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5.解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)∵CM →=OM →-OC →=3c ,∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20),∴M (0,20).又∵CN →=ON →-OC →=-2b ,∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), ∴N (9,2).∴MN →=(9,-18). 易错点 转换向量关系失误10.平面上有A (2,-1),B (1,4),D (4,-3)三点,点C 在直线AB 上,且AC →=12BC →,连接DC 并延长至点E ,使|CE →|=14|ED →|,则点E 的坐标为________.易错分析 连接DC 并延长至E ,即E 在DC 的延长线上,注意向量的方向不要判断错误.答案 ⎝ ⎛⎭⎪⎫83,-7 正解 设坐标原点为O ,∵AC →=12BC →,∴OC →-OA →=12(OC →-OB →).∴OC →=2OA →-OB →=(3,-6). ∴点C 的坐标为(3,-6).又∵|CE →|=14|ED →|,且E 在DC 的延长线上,∴CE →=-14ED →.设E (x ,y ),则(x -3,y +6)=-14(4-x ,-3-y ),得⎩⎪⎨⎪⎧x -3=-14(4-x ),y +6=-14(-3-y ),解得⎩⎪⎨⎪⎧x =83,y =-7,∴点E 的坐标为⎝ ⎛⎭⎪⎫83,-7.一、选择题1.已知向量a =(-2,3),b =(2,-3),则下列结论正确的是( ) A .向量a 的终点坐标为(-2,3) B .向量a 的起点坐标为(-2,3) C .向量a 与b 互为相反向量 D .向量a 与b 关于原点对称 答案 C解析 a =(-2,3),b =(2,-3),故a =-B .故选C . 2.已知a =(-2,3),b =(1,5),则3a +b 等于( ) A .(-5,14) B .(5,14) C .(7,4) D .(5,9)答案 A解析 3a +b =3(-2,3)+(1,5)=(-5,14),故选A .3.如图所示,{e 1,e 2}为正交基底,则向量2a +b 的坐标为( )A .(3,4)B .(2,4)C .(3,4)或(4,3)D .(4,2)或(2,4)答案 A解析 由图可知2a =2e 1+e 2,b =e 1+3e 2,所以2a +b =3e 1+4e 2=(3,4).4.设向量a =(1,2),b =(-3,5),c =(4,x ),若a +b =λc (λ∈R ),则λ+x 的值是( )A .-112B .112C .-292D .292答案 C解析 a +b =(1,2)+(-3,5)=(-2,7),λc =(4λ,x λ),又a +b =λc ,故⎩⎪⎨⎪⎧-2=4λ,7=x λ,解得⎩⎪⎨⎪⎧λ=-12,x =-14,则λ+x =-292.5.已知M (2,-1),N (0,5),且点P 在MN 的延长线上,|MP |=2|PN |,则P 点坐标为( ) A .(-2,11)B .⎝ ⎛⎭⎪⎫43,3C .⎝ ⎛⎭⎪⎫23,3 D .(-2,12)答案 A解析 因为P 在MN 的延长线上且|MP |=2|PN |, 所以MP →=2NP →,则OP →-OM →=2(OP →-ON →), 所以OP →=2ON →-OM →=2(0,5)-(2,-1), 即OP →=(-2,11). 二、填空题6.如图,正方形ABCD 中,O 为中心,且OA →=(1,1),试用基底向量i ,j 表示下列向量:OB →=________,OC →=________,AB →=________,AC →=________.答案 -i +j -i -j -2i -2i -2j 解析 如题图所示,OA →=(1,1)=i +j , ∴OE →=i ,EA →=j .∴OF →=-OE →=-i ,FB →=EA →=j ,FC →=-FB →=-j .∴OB →=OF →+FB →=-i +j ;OC →=OF →+FC →=-i -j ;AB →=OB →-OA →=-i +j -(i +j )=-2i . 同理,BC →=OC →-OB →=-i -j -(-i +j )=-2j ,AC →=AB →+BC →=-2i +(-2j )=-2i -2j .7.已知a +b =(2,-8),a -b =(-8,16),则|a |+|b |=________. 答案 18 解析 联立⎩⎪⎨⎪⎧a +b =(2,-8), ①a -b =(-8,16), ②由①+②得,a =(-3,4), 由①-②得,b =(5,-12).故|a |+|b |=(-3)2+42+52+(-12)2=5+13=18.8.已知点A (-1,-1),B (1,3),C (x,5),若对于平面上任意一点O ,都有OC →=λOA →+(1-λ) OB →,λ∈R ,则x =________.答案 2解析 取O (0,0),由OC →=λOA →+(1-λ) OB →得,(x,5)=λ(-1,-1)+(1-λ)(1,3),∴⎩⎪⎨⎪⎧x =-λ+(1-λ),5=-λ+3(1-λ).解得⎩⎪⎨⎪⎧λ=-12,x =2.9.已知边长为1的正方形ABCD ,若点A 与坐标原点重合,边AB ,AD 分别落在x 轴、y 轴的正方向上,则向量2AB →+3BC →+AC →的坐标为________.答案 (3,4)解析 根据题意建立坐标系如图,则A (0,0),B (1,0),C (1,1),D (0,1).∴AB →=(1,0),BC →=(0,1),AC →=(1,1).∴2AB →+3BC →+AC →=(2,0)+(0,3)+(1,1)=(3,4). 三、解答题10.(1)已知平面上三个点A (4,6),B (7,5),C (1,8),求AB →,AC →,AB →+AC →,AB →-AC →,2AB →+12AC →的坐标; (2)已知a =(1,2),b =(-3,4),求向量a +b ,a -b,3a -4b 的坐标. 解 (1)∵A (4,6),B (7,5),C (1,8). ∴AB →=(7,5)-(4,6)=(3,-1); AC →=(1,8)-(4,6)=(-3,2);AB →+AC →=(3,-1)+(-3,2)=(0,1); AB →-AC →=(3,-1)-(-3,2)=(6,-3); 2AB →+12AC →=2(3,-1)+12(-3,2)=(6,-2)+⎝ ⎛⎭⎪⎫-32,1=⎝ ⎛⎭⎪⎫92,-1.(2)a +b =(1,2)+(-3,4)=(-2,6);a -b =(1,2)-(-3,4)=(4,-2);3a -4b =3(1,2)-4(-3,4)=(15,-10).11.已知点A (6,3),O 为坐标原点,点P 在直线OA 上,且OP →=12PA →,若P 是线段OB 的中点,求点B 的坐标及PB 的长.解 设点P (x 1,y 1),B (x ,y ),∵OP →=12PA →,∴(x 1,y 1)=12(6-x 1,3-y 1),∴⎩⎪⎨⎪⎧x 1=12(6-x 1),y 1=12(3-y 1),解得⎩⎪⎨⎪⎧x 1=2,y 1=1,∴点P 的坐标为(2,1). ∵点P 是OB 的中点,∴2=0+x 2,1=0+y2⇒x =4,y =2,∴点B 的坐标为(4,2).∴PB 的长为(4-2)2+(2-1)2= 5.12.已知a =(2,-4),b =(-1,3),c =(6,5),p =a +2b -c , (1)求p 的坐标;(2)若以a ,b 为基底,求p 的表达式.解 (1)p =(2,-4)+2(-1,3)-(6,5)=(-6,-3).(2)设p =λa +μb (λ,μ∈R ),则(-6,-3)=λ(2,-4)+μ(-1,3)=(2λ-μ,-4λ+3μ),∴⎩⎪⎨⎪⎧2λ-μ=-6,-4λ+3μ=-3,∴⎩⎪⎨⎪⎧λ=-212,μ=-15,∴p =-212a -15b .。
2020_2021学年新教材高中数学第六章平面向量及其应用6.4.1平面几何中的向量方法课件新人
[对点练清] 1.[变结论]若本例(3)的条件不变,求 DF 的长.
解 : 由 例 (3) 的 解 析 知 F n3,0 , D n2,m2 , 所 以 ―D→F = -n6,-m2 , 故|―D→F |= 316n2+14m2=16 n2+9m2, 即 DF=16 n2+9m2.
2.如图,平行四边形 ABCD 中,已知 AD=1,AB=2,对角 线 BD=2,求对角线 AC 的长.
[方法技巧] 1.三点共线问题的解法 (1)若 b=λa(a≠0),且 b 与 a 所在的直线无公共点,则这 两条直线平行. (2)若 b=λa(a≠0),且 b 与 a 所在的直线有公共点,则这 两条直线重合.例如,若向量―AB→=λ―AC→,则―AB→,―A→ C 共线, 又―AB→与―AC→有公共点 A,从而 A,B,C 三点共线,这是证 明三点共线的重要方法.
三、易错防范题
5.已知 A,B,C,D 四点的坐标分别为(-2,0),(0,2),(1,3),
(2,4),则 A,B,C,D 构成的图形为( )
A.梯形
B.菱形
C.矩形
D.线段
解析:∵―AB→=(2,2),―CD→=(1,1),―AC→=(3,3),
(2)证明线段垂直问题,如证明四边形是矩形、正方形,判 断两直线(或线段)是否垂直等,常用向量垂直的条件:a⊥ b⇔a·b=0⇔____x_1x_2_+__y_1_y2______=0. (3)求夹角问题,利用夹角公式:
x1x2+y1y2 cos〈a,b〉=|aa|·|bb|=___x_21_+__y_21·__x_22_+__y_22_. (4)求线段的长度或说明线段相等,可以用向量的模: |a|= a2= x2+y2或|AB|=|―AB→| = x1-x22+y1-y22.
2019_2020学年新教材高中数学第六章平面向量及其应用6.3.26.3.36.3.4第1课时平面
第1课时 平面向量的分解及加、减、数乘运算的坐标表示[A 基础达标]1.设i ,j 是平面直角坐标系内分别与x 轴,y 轴正方向相同的两个单位向量,O 为坐标原点,若OA →=4i +2j ,OB →=3i +4j ,则2OA →+OB →的坐标是( )A .(1,-2)B .(7,6)C .(5,0)D .(11,8)解析:选D.因为OA →=(4,2),OB →=(3,4), 所以2OA →+OB →=(8,4)+(3,4)=(11,8).2.设向量a =(1,2),b =(-3,5),c =(4,x ),若a +b =λc (λ∈R ),则λ+x 的值为( )A .-112B.112 C .-292D.292解析:选C.由已知,可得(1,2)+(-3,5)=λ(4,x ),所以⎩⎪⎨⎪⎧4λ=-2,x λ=7,解得⎩⎪⎨⎪⎧λ=-12,x =-14,所以λ+x =-292,故选C.3.已知MA →=(-2,4),MB →=(2,6),则12AB →等于( )A .(0,5)B .(0,1)C .(2,5)D .(2,1)解析:选D.12AB →=12(MB →-MA →)=12(2,6)-12(-2,4)=(2,1).4.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( )A.⎝ ⎛⎭⎪⎫2,72 B.⎝ ⎛⎭⎪⎫2,-12 C .(3,2)D .(1,3)解析:选A.设点D (m ,n ),则由题意得(4,3)=2(m ,n -2)=(2m ,2n -4),故⎩⎪⎨⎪⎧2m =4,2n -4=3,解得⎩⎪⎨⎪⎧m =2,n =72,即点D 的坐标为⎝ ⎛⎭⎪⎫2,72,故选A.5.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,且∠AOC =45°,设OC →=λOA →+(1-λ)OB →(λ∈R ),则λ的值为( )A.15B.13C.25D.23解析: 选C.如图所示,因为∠AOC =45°, 所以设C (x ,-x ), 则OC →=(x ,-x ).又因为A (-3,0),B (0,2), 所以λOA →+(1-λ)OB →=(-3λ,2-2λ),所以⎩⎪⎨⎪⎧x =-3λ-x =2-2λ⇒λ=25.6.已知点A (-1,-5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为________. 解析:设O 为坐标原点,因为OA →=(-1,-5),AB →=3a =(6,9),故OB →=OA →+AB →=(5,4),故点B 的坐标为(5,4).答案:(5,4)7.已知向量a =(1,2),b =(-2,3),c =(4,1),若用a 和b 表示c ,则c =________. 解析:设c =x a +y b ,则(x ,2x )+(-2y ,3y )=(x -2y ,2x +3y )=(4,1).故⎩⎪⎨⎪⎧x -2y =4,2x +3y =1,解得⎩⎪⎨⎪⎧x =2,y =-1. 所以c =2a -b . 答案:2a -b8.已知A (-1,2),B (2,8).若AC →=13AB →,DA →=-23AB →,则CD →的坐标为________.解析:AC →=13AB →=13(3,6)=(1,2),DA →=-23AB →=-23(3,6)=(-2,-4),DC →=DA →+AC →=(-1,-2), 所以CD →=(1,2). 答案:(1,2)9.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c . (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n 的值.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)因为m b +n c =(-6m +n ,-3m +8n ),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.10.已知向量AB →=(4,3),AD →=(-3,-1),点A (-1,-2). (1)求线段BD 的中点M 的坐标;(2)若点P (2,y )满足PB →=λBD →(λ∈R ),求λ与y 的值. 解:(1)设B (x 1,y 1),因为AB →=(4,3),A (-1,-2), 所以(x 1+1,y 1+2)=(4,3), 所以⎩⎪⎨⎪⎧x 1+1=4,y 1+2=3,所以⎩⎪⎨⎪⎧x 1=3,y 1=1,所以B (3,1). 同理可得D (-4,-3), 设BD 的中点M (x 2,y 2),则x 2=3-42=-12,y 2=1-32=-1.所以M ⎝ ⎛⎭⎪⎫-12,-1. (2)由PB →=(3,1)-(2,y )=(1,1-y ), BD →=(-4,-3)-(3,1)=(-7,-4),又PB →=λBD →(λ∈R ),所以(1,1-y )=λ(-7,-4)=(-7λ,-4λ),所以⎩⎪⎨⎪⎧1=-7λ,1-y =-4λ,所以⎩⎪⎨⎪⎧λ=-17,y =37.[B 能力提升]11.对于向量m =(x 1,y 1),n =(x 2,y 2),定义m n =(x 1x 2,y 1y 2).已知a =(2,-4),且a +b =ab ,那么向量b 等于( )A.⎝ ⎛⎭⎪⎫2,45B.⎝ ⎛⎭⎪⎫-2,-45C.⎝⎛⎭⎪⎫2,-45 D.⎝⎛⎭⎪⎫-2,45 解析:选A.设b =(x ,y ),由新定义及a +b =a b ,可得(2+x ,y -4)=(2x ,-4y ),所以2+x =2x ,y -4=-4y ,解得x =2,y =45,所以向量b =⎝ ⎛⎭⎪⎫2,45.12.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4,设OC →=λOA →+OB →(λ∈R ),则λ=______.解析:过C 作CE ⊥x 轴于点E ,由∠AOC =π4知,|OE |=|CE |=2,所以OC →=OE →+OB →=λOA→+OB →,即OE →=λOA →,所以(-2,0)=λ(-3,0),故λ=23.答案:2313.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →=________.解析:PQ →-PA →=AQ →=(1,5)-(4,3)=(-3,2),因为点Q 是AC 的中点,所以AQ →=QC →,所以PC →=PQ →+QC →=(1,5)+(-3,2)=(-2,7).因为BP →=2PC →,所以BC →=BP →+PC →=3PC →=3(-2,7)=(-6,21).答案:(-6,21)14.已知O 是△ABC 内一点,∠AOB =150°,∠BOC =90°,设OA →=a ,OB →=b ,OC →=c ,且|a |=2,|b |=1,|c |=3,试用a ,b 表示c .解:如图,以O 为原点,向量OA →所在的直线为x 轴建立平面直角坐标系. 因为|a |=2,所以a =(2,0).设b =(x 1,y 1),所以x 1=|b |·cos 150°=1×⎝ ⎛⎭⎪⎫-32=-32, y 1=|b |sin 150°=1×12=12,所以b =⎝ ⎛⎭⎪⎫-32,12.同理可得c =⎝ ⎛⎭⎪⎫-32,-332. 设c =λ1a +λ2b (λ1,λ2∈R ),所以⎝ ⎛⎭⎪⎫-32,-332=λ1(2,0)+λ2⎝ ⎛⎭⎪⎫-32,12=(2λ1-32λ2,12λ2), 所以⎩⎪⎨⎪⎧2λ1-32λ2=-32,12λ2=-332,解得⎩⎨⎧λ1=-3,λ2=-3 3.所以c =-3a -33b .[C 拓展探究]15.在平面直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2). (1)若PA →+PB →+PC →=0,求OP →的坐标;(2)若OP →=mAB →+nAC →(m ,n ∈R ),且点P 在函数y =x +1的图象上,试求m -n 的值. 解:(1)设点P 的坐标为(x ,y ),因为PA →+PB →+PC →=0,又PA →+PB →+PC →=(1-x ,1-y )+(2-x ,3-y )+(3-x ,2-y )=(6-3x ,6-3y ).所以⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2. 所以点P 的坐标为(2,2), 故OP →=(2,2).(2)设点P 的坐标为(x 0,y 0), 因为A (1,1),B (2,3),C (3,2). 所以AB →=(2,3)-(1,1)=(1,2),AC →=(3,2)-(1,1)=(2,1),因为OP →=mAB →+nAC →,所以(x 0,y 0)=m (1,2)+n (2,1)=(m +2n ,2m +n ),所以⎩⎪⎨⎪⎧x 0=m +2n ,y 0=2m +n ,两式相减得m -n =y 0-x 0,又因为点P 在函数y =x +1的图象上, 所以y 0-x 0=1,所以m -n =1.。
2020-2021学年新教材高中数学第6章平面向量及其应用6
1.(多选题)下列各式一定成立的是( )
A.a+b=b+a
B.0+a=a
C.A→C+C→B=A→B
D.|a+b|=|a|+|b|
ABC [A,B,C 项满足运算律及运算法则,而 D 项向量和的模 不一定与向量模的和相等,满足三角形法则.]
2.(多选题)对于任意一个四边形 ABCD,下列式子能化简为B→C的
平行
四边
形法 已知两个不共线向量 a,b,作A→B=a,A→D=b,以A→B,A→D为 则 邻边作▱ABCD,则对角线上的向量_A→_C___=a+b.
思考:两个向量相加就是两个向量的模相加吗?
[提示] 不是,向量相加要考虑大小及方向,而模相加是数量的 加法.
3.|a+b|与|a|、|b|之间的关系 一般地,我们有|a+b| ≤ |a|+|b|,当且仅当 a,b方向相同时等号 成立.
①A→B+D→F=A→B+B→C=A→C. ②A→D+F→C=A→D+D→B=A→B. ③A→D+B→C+F→C=A→D+D→F+F→C=A→C.]
(2)[解] ①首先作向量O→A=a,然后作向量A→B=b,则向量O→B= a+b.如图所示.
②法一(三角形法则):如图所示,首先在平面内 任取一点 O,作向量O→A=a,再作向量A→B=b,则得 向量O→B=a+b,然后作向量B→C=c,则向量O→C=(a +b)+c=a+b+c 即为所求.
练地进行向量加法运算.(重点) 2.对比数的加法,给出了向量的
3.能区分数的加法与向量的加法 加法运算律,培养数学运算的核心
的联系与区别.(易混点)
素养.
情境 导学 探新 知
有一名台湾商人想去拉萨游玩,但是由于台湾没有直达拉萨的航 班,因此他选择了这样一个出行方案:乘飞机要先从台北到香港,再 从香.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1 平面向量的概念考点学习目标核心素养 平面向量的相关概念了解平面向量的实际背景,理解平面向量的相关概念数学抽象平面向量的几何表示 掌握向量的表示方法,理解向量的模的概念数学抽象相等向量与共线向量 理解两个向量相等的含义以及共线向量的概念数学抽象、逻辑推理问题导学预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些? 3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量AB →与向量BA →是相等向量吗?1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB →.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|. (3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素.(2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|. (2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.判断(正确的打“√”,错误的打“×”) (1)两个向量,长度大的向量较大.( ) (2)如果两个向量共线,那么其方向相同.( ) (3)向量的模是一个正实数.( ) (4)向量就是有向线段.( ) (5)向量AB →与向量BA →是相等向量.( )(6)两个向量平行时,表示向量的有向线段所在的直线一定平行.( ) (7)零向量是最小的向量.( )答案:(1)× (2)× (3)× (4)× (5)× (6)× (7)× 已知向量a 如图所示,下列说法不正确的是( )A .也可以用MN →表示 B .方向是由M 指向N C .起点是M D .终点是M答案:D已知点O 固定,且|OA →|=2,则A 点构成的图形是( ) A .一个点B .一条直线C .一个圆D .不能确定答案:C如图,四边形ABCD 和ABDE 都是平行四边形,则与ED →相等的向量有________.答案:AB →,DC →向量的相关概念给出下列命题:①若AB →=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →; ③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.【解析】 AB →=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.【答案】 ②③(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可. (2)理解零向量和单位向量应注意的问题①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向.1.下列说法中正确的是( )A .数量可以比较大小,向量也可以比较大小B .方向不同的向量不能比较大小,但同向的向量可以比较大小C .向量的大小与方向有关D .向量的模可以比较大小解析:选D.不管向量的方向如何,它们都不能比较大小,故A ,B 不正确;向量的大小即为向量的模,指的是有向线段的长度,与方向无关,故C 不正确;向量的模是一个数量,可以比较大小.故D 正确.2.下列说法正确的是( )A .向量AB →∥CD →就是AB →所在的直线平行于CD →所在的直线 B .长度相等的向量叫做相等向量 C .零向量与任一向量平行 D .共线向量是在一条直线上的向量解析:选C.向量AB →∥CD →包含AB →所在的直线与CD →所在的直线平行和重合两种情况,故A 错;相等向量不仅要求长度相等,还要求方向相同,故B 错;C 显然正确;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故D 错.向量的表示在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA →,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB →,使|AB →|=4,点B 在点A 正东方向上; (3)BC →,使|BC →|=6,点C 在点B 北偏东30°方向上.【解】 (1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA →|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA →,如图所示.(2)由于点B 在点A 正东方向上,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB →,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC →|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC →,如图所示.用有向线段表示向量的步骤已知飞机从A 地按北偏东30°的方向飞行2 000 km 到达B 地,再从B 地按南偏东30°的方向飞行 2 000 km 到达C 地,再从C 地按西南方向飞行1 000 2 km 到达D 地.(1)作出向量AB →,BC →,CD →,DA →;(2)问D 地在A 地的什么方向?D 地距A 地多远? 解:(1)由题意,作出向量AB →,BC →,CD →,DA →,如图所示.(2)依题意知,三角形ABC 为正三角形,所以AC =2 000 km.又因为∠ACD =45°,CD =1 0002,所以△ACD 为等腰直角三角形,即AD =1 000 2 km ,∠CAD =45°,所以D 地在A 地的东南方向,距A 地1 000 2 km.共线向量与相等向量如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?【解】 (1)与a 的长度相等、方向相反的向量有OD →,BC →,AO →,FE →. (2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.1.[变条件、变问法]本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,FA →;与c 相等的向量有FO →,ED →,AB →.2.[变问法]本例条件不变,与AD →共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意] 对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.1.已知向量AB →与向量BC →共线,下列关于向量AC →的说法中,正确的为( ) A .向量AC →与向量AB →一定同向 B .向量AC →,向量AB →,向量BC →一定共线 C .向量AC →与向量BC →一定相等 D .以上说法都不正确解析:选B.根据共线向量的定义,可知AB →,BC →,AC →这三个向量一定为共线向量,故选B. 2.如图,四边形ABCD 和BCED 都是平行四边形,在每两点所确定的向量中:(1)写出与BC →相等的向量; (2)写出与BC →共线的向量.解:(1)因为四边形ABCD 和BCED 都是平行四边形,所以BC ∥AD ∥DE ,BC =AD =DE ,所以BC →=AD →=DE →.故与BC →相等的向量为AD →,DE →.(2)与BC →共线的向量共有7个,分别是AD →,DE →,DA →,ED →,AE →,EA →,CB →.1.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE →平行的向量的个数为( )A .1B .2C .3D .4解析:选C.图中与AE →平行的向量为BE →,FD →,FC →共3个. 2.下列结论中正确的是( ) ①若a ∥b 且|a |=|b |,则a =b ; ②若a =b ,则a ∥b 且|a |=|b |;③若a 与b 方向相同且|a |=|b |,则a =b ; ④若a ≠b ,则a 与b 方向相反且|a |≠|b |. A .①③ B .②③ C .③④D .②④解析:选B.两个向量相等需同向等长,反之也成立,故①错误,a ,b 可能反向;②③正确;④两向量不相等,可能是不同向或者长度不相等或者不同向且长度不相等.3.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC →相等的向量; (2)与OB →长度相等的向量; (3)与DA →共线的向量. 解:画出图形,如图所示. (1)易知BC ∥AD ,BC =AD , 所以与BC →相等的向量为AD →.(2)由O 是正方形ABCD 对角线的交点知OB =OD =OA =OC , 所以与OB →长度相等的向量为BO →,OC →,CO →,OA →,AO →,OD →,DO →.(3)与DA →共线的向量为AD →,BC →,CB →.[A 基础达标]1.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等; ④与非零向量a 共线的单位向量是a |a|. A .3 B .2 C .1D .0解析:选D.根据单位向量的定义,可知①②③明显是错误的;对于④,与非零向量a 共线的单位向量是a |a|或-a|a|,故④也是错误的. 2.下列说法正确的是( )A .若a 与b 平行,b 与c 平行,则a 与c 一定平行B .终点相同的两个向量不共线C .若|a|>|b|,则a>bD .单位向量的长度为1解析:选D.A 中,因为零向量与任意向量平行,若b =0,则a 与c 不一定平行.B 中,两向量终点相同,若夹角是0°或180°,则共线.C 中,向量是既有大小,又有方向的量,不可以比较大小.3.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A.AB →=OC →B.AB →∥DE → C .|AD →|=|BE →|D.AD →=FC →解析:选D.由题图可知,|AD →|=|FC →|,但AD →、FC →的方向不同,故AD →≠FC →,故选D. 4.设O 是△ABC 的外心,则AO →,BO →,CO →是( ) A .相等向量 B .模相等的向量 C .平行向量D .起点相同的向量解析:选B.因为三角形的外心是三角形外接圆的圆心,所以点O 到三个顶点A ,B ,C 的距离相等,所以AO →,BO →,CO →是模相等的向量.5.若a 是任一非零向量,b 是单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a|a |=b ,其中正确的有( )A .①④⑤B .③C .①②③⑤D .②③⑤解析:选B.①|a |>|b |不正确,a 是任一非零向量,模长是任意的,故不正确;②不一定有a ∥b ,故不正确;③向量的模长是非负数,而向量a 是非零向量,故|a |>0正确;④|b |=1,故④不正确;⑤a|a |是与a 同向的单位向量,不一定与b 同向,故不正确.6.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.解析:因为正方形的对角线长为22,所以|OA →|= 2. 答案: 27.如果在一个边长为5的正△ABC 中,一个向量所对应的有向线段为AD →(其中D 在边BC 上运动),则向量AD →长度的最小值为________.解析:根据题意,在正△ABC 中,有向线段AD 的长度最小时,AD 应与边BC 垂直,有向线段AD 长度的最小值为正△ABC 的高,为532.答案:5328.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.解析:因为A ,B ,C 不共线, 所以AB →与BC →不共线. 又m 与AB →,BC →都共线, 所以m =0. 答案:09.在平行四边形ABCD 中,E ,F 分别为边AD ,BC 的中点,如图. (1)在每两点所确定的向量中,写出与向量FC →共线的向量; (2)求证:BE →=FD →.解:(1)由共线向量满足的条件得与向量FC →共线的向量有:CF →,BC →,CB →,BF →,FB →,ED →,DE →,AE →,EA →,AD →,DA →.(2)证明:在▱ABCD 中,AD 綊BC . 又E ,F 分别为AD ,BC 的中点, 所以ED 綊BF ,所以四边形BFDE 是平行四边形, 所以BE 綊FD , 所以BE →=FD →.10.已知在四边形ABCD 中,AB →∥CD →,求AD →与BC →分别满足什么条件时,四边形ABCD 满足下列情况.(1)四边形ABCD 是等腰梯形; (2)四边形ABCD 是平行四边形. 解:(1)|AD →|=|BC →|,且AD →与BC →不平行.因为AB →∥CD →,所以四边形ABCD 为梯形或平行四边形.若四边形ABCD 为等腰梯形,则|AD →|=|BC →|,同时两向量不平行.(2)AD →=BC →(或AD →∥BC →).若AD →=BC →,即四边形的一组对边平行且相等,此时四边形ABCD 为平行四边形.[B 能力提升]11.在菱形ABCD 中,∠DAB =120°,则以下说法错误的是 ( ) A .与AB →相等的向量只有一个(不含AB →) B .与AB →的模相等的向量有9个(不含AB →) C .BD →的模恰为DA →模的3倍 D .CB →与DA →不共线解析:选D.两向量相等要求长度(模)相等,方向相同.两向量共线只要求方向相同或相反.D 中CB →,DA →所在直线平行,向量方向相同,故共线.12.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →解析:选D.由平面几何知识知,AD →与BC →方向不同,故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →;PE →与PF →的模相等而方向相反,故PE →≠PF →;EP →与PF →的模相等且方向相同,所以EP →=PF →.13.如图,在△ABC 中,∠ACB 的平分线CD 交AB 于点D .若AC →的模为2,BC →的模为3,AD →的模为1,则DB →的模为________.解析:如图,延长CD ,过点A 作BC 的平行线交CD 的延长线于点E .因为∠ACD =∠BCD =∠AED ,所以|AC →|=|AE →|.因为△ADE ∽△BDC , 所以|AD →||DB →|=|AE →||BC →|=|AC →||BC→|,故|DB →|=32. 答案:3214.某人从A 点出发向东走了5米到达B 点,然后改变方向沿东北方向走了102米到达C 点,到达C 点后又改变方向向西走了10米到达D 点.(1)作出向量AB →,BC →,CD →;(2)求向量AD →的模.解:(1)作出向量AB →,BC →,CD →,如图所示.(2)由题意得,△BCD 是直角三角形,其中∠BDC =90°,BC =102米,CD =10米,所以BD =10米.△ABD 是直角三角形,其中∠ABD =90°,AB =5米,BD =10米,所以AD =52+102=55(米).所以|AD →|=5 5.[C 拓展探究]15.如图,A 1,A 2,…,A 8是⊙O 上的八个等分点,则在以A 1,A 2,…,A 8及圆心O 九个点中任意两点为起点与终点的向量中,模等于半径的向量有多少个?模等于半径的2倍的向量有多少个?解:模等于半径的向量只有两类,一类是OA →i (i =1,2,…,8),共8个;另一类是A i O →(i=1,2,…,8),也有8个.两类共计有16个.以A 1,A 2,…,A 8中四点为顶点的⊙O 的内接正方形有两个,一个是正方形A 1A 3A 5A 7,另一个是正方形A 2A 4A 6A 8.在题中所述的向量中,只有这两个正方形的边(看成有向线段,每一边对应两个向量)的长度为半径的2倍,故模为半径的2倍的向量共有4×2×2=16(个).。