同位素示踪在植物光合作用研究中应用
同位素化学及其应用
同位素化学及其应用同位素化学是一个涵盖了同位素的性质、合成和应用的广泛领域。
它在化学、生物学、地质学、医学和环境科学等多个学科中具有重要的应用价值。
本文将系统介绍同位素的基本概念,分析同位素化学的研究方法,并探讨其在不同领域中的应用。
同位素的基本概念同位素是指具有相同原子序数但质子数不同的元素变体。
简单来说,同位素是原子核中质子数相同,而中子数不同的元素形式。
例如,碳元素(C)有三种自然存在的同位素:碳-12(¹²C)、碳-13(¹³C)和碳-14(¹⁴C)。
其中,¹²C和¹³C是稳定同位素,而¹⁴C是放射性同位素。
同位素通常被分为两类:稳定同位素和放射性同位素。
稳定同位素不会经历放射性衰变,而放射性同位素则会随时间衰变,并发出辐射。
这一特性使放射性同位素在时间测定与追踪过程中非常重要。
同位素化学研究的方法质量分离技术同位素化学的一个核心问题是如何有效地分离不同质量的同位素。
目前,质谱分析是最常用的方法之一。
质谱仪可以根据离子的质量电荷比(m/z)来分离和检测不同同位素,从而确定其丰度。
此技术在环境科学和生物标记等领域得到了广泛应用。
核磁共振技术(NMR)核磁共振技术也常用于同位素化学研究,尤其是在生物化学领域。
通过对特定同位素(例如¹³C或¹⁵N)的核磁共振信号进行分析,研究人员可以获得分子的结构和动力学信息。
这对于理解复杂生物分子的功能及其行为至关重要。
放射性同位素示踪技术放射性同位素示踪技术是一种重要的实验手段,它能够追踪特定元素在化学反应、生态系统和生物体内的运动与转化过程。
例如,通过使用碳-14标记的化合物,研究人员可以探索其在植物光合作用中的转化路径。
同位素化学的应用领域1. 地质学与考古学在地质学与考古学中,同位素化学被广泛用于地球历史及人类文明的发展研究。
同位素示踪在农业科学中的应用
一.同位素示踪技术在土壤与植物营养研 究中的应用
二.同位素示踪技术在植物保护研究中的 应用
三.同位素示踪技术在植物生理生化研究 中的应用
四.同位素示踪技术在生物技术中的应用
一.同位素示踪技术在土壤与植物营养研究中的应用
利用示踪技术对土壤、植物营养问题研究是土壤农 化研究中的重要手段。 主要研究内容:
2磷肥利用率的研究
磷肥与氮肥及钾肥相比,其利用率要低得多。 这主要是由于土壤中的磷易被固定,移动性差。 主要包括三种形态:速效磷、缓效磷和固定态 磷。
3钾肥利用率的研究
由于钾没有合适的放射性同位素,常用同族 元素86Rb(铷)代替钾来研究钾肥肥效。
二.同位素示踪技术在植物保护研究中的应用 (一)在昆虫学研究中的应用
1 害虫防治研究
标记昆虫的方法: 1)饲喂法; 2)喷洒法; 3)注射法; 4)浸渍法; 5)插入法; 6)间接标记法
辐射昆虫不育防治害虫
优点:不污染环境;对人、畜和天敌无害; 防治效果持久;专一性强;使植物生态系统 保持良性循环。
2 昆虫生态学研究
昆虫生态特性的研究可为有效防治农作物害虫 提供依据。
1)研究农药在作物上残留和消失动态 2)农药在作物体内吸收和运转的研究
2 农药在土壤中的残留、迁移和降解的研究
为防治害虫和杂草农药直接或间接进入土壤,残留 在土壤中的农药不仅直接影响土壤微生物的活动、繁殖、 代谢,而且还可通过淋溶、迁移、转化,给环境生物会 带来各种不良影响。弄清农药在土壤中的吸附积累、残 留和分解动态,对保护人类生存环境意义重大。
包括昆虫的生长发育、食物习性、迁移、寄生 性和捕食天敌的关系等。应用同位素示踪技术 具有方便、直观、有效等优点。
同位素示踪法在生物学中的应用
用 放 射 性 同位 素 标 记 尿 嘧 啶 核 糖 核 苷 酸 ( R N A 的特 征 碱 基 为 U) 、 氨基酸 , 则在基因转录 、 翻 译 的 产 物 中就会 含有 放 射 性 同位 素 , 还 可 以 用 来确 定 转 录 、 翻译 的场 所 。
五 探究D N A分子 半泌 蛋 白 的 合
通 过放射性标记来 “ 区别 ” 亲代 与子代的D N A, 如放射性标记 J 5 N, 因为放射性物质 N的原子量和 N 的原 子量 不 同 , 因此 D N A的相 对 分子 质 量 不 同 。 如 果 D N A 分子 的两条链都 是 N , 则离 心时 为重带 ; 如果 D N A 分 子 的一 条链 是 ” N, 一 条链 是 “ N, 则 离 心 时 为 中带 ; 如果D N A 分子 的两条链都 是1 4 N , 则 离 心 时 为 轻 带 。因此 可 以根 据 重 带 、 中带 、 轻带D N A 出 现 的 比 例, 判断D N A 复 制 是全 保 留复 制 还 是半 保 留复 制 。
要 方 法 ,它 可 以研 究 细 胞 内 的元 素或 化合 物 的来 源 、 组 成、 分布 和去向等 , 进 而 了解 细胞 的 结 构 和 功 能 、化 学 物 质 的变 化 、 反应机理等 。 用 于 示踪 技术 的放射性 同位素一 般 是 用 于 构 成 细胞 化 合 物 的 重要 元素 , 如 H、 1 4 C、 N、 I s 0、 P 、 S 、 1 3 1 1 等 。在 高 中生物学 教材 中有 多 处 涉 及 放 射 性 同 位 素 的应 用 ,下 面 对 教 材 中 的相 关 知 识 进 行 归 纳 如下 :
七 在 生物 诱 变 育 种 方 面 的应 用
同位素示踪法在高中生物中的应用归纳
同位素示踪法在高中生物中的应用归纳1同位素示踪法,是利用放射性核素作为示踪剂对研究对象进行标记的微量分析的方法。
常用的标记元素有:(1)14C:常用于标记CO2,葡萄糖,生长素等物质中的C,也可用与标记生长素的运输方向(2)18O:常用于标记光合作用和呼吸作用过程中的H2O,CO2,O2,葡萄糖等,(3)3H:经常用于标记核苷酸示踪DNA,RNA的分布(4)15N:常用于标记无机盐,示踪在自然界中的N循环,也可用来标记氨基酸等(5)32P:常用于标记核酸,标记含P的无机盐可示踪无机盐在植物体内的利用状况,也可用来标记DNA的复制情况(6)35S:标记蛋白质,在研究遗传的物质基础实验中标记噬菌体例11.陆生植物光合作用所需要的碳源,主要是空气中的C02,CO2主要是通过叶片气孔进入叶内。
陆生植物能不能通过根部获得碳源,且用于光合作用?请做出假设,且根据提供的实验材料,完成相关实验问题。
(1)假设为:。
(2)利用实验器材,补充相关实验步骤。
(3)方法和步骤:①;②;③对菜豆幼苗的光合作用产物进行检查。
结果预测和结论:。
该实验最可能的结果是,原因是。
答案 (1)陆生植物能通过根部获得碳源 (2)①把适量含有NaH14CO3,的营养液置于锥形瓶中,并选取生长正常的菜豆幼苗放入锥形瓶中②将上述装置放在温暖、阳光充足的地方培养③结果预测和结论:在光合作用产物中发现有14C,说明陆生植物能通过根部获得碳源,用于光合作用。
如果是在光合作用产物中没有发现14C,说明陆生植物不能通过根部获得碳源,用于光合作用。
最可能的结果和结论是:在光合作用产物中发现有14C,说明陆生植物能通过根部获得碳源,用于光合作用。
原因是陆生植物的根部可以吸收土壤中的CO2和碳酸盐,用于光合作用。
例2将植物细胞放在有3H标记的胸腺嘧啶脱氧核糖核苷酸存在的环境中,温育数小时。
然后收集细胞,粉碎并轻摇匀浆,进行分级离心以获得各种细胞结构。
放射性3H将主存在于()A.核仁、质体和高尔基体 B.细胞核、核仁和溶酶体C.细胞核、核糖体和液泡 D.细胞核、线粒体和叶绿体例3 从某腺体的细胞中提取一些细胞器,放入含有14C氨基酸的培养液中,培养液中有这些细胞器完成其功能所需的物质和条件,连续取样测定标记的氨基酸在这些细胞器中的数量,下图中能正确描述的曲线是()例4.用32P标记了水稻体细胞(含24条染色体)的DNA分子双链,再次这些细胞转入不含32P的培养基中培养,在第二次细胞分裂的中期、后期,一个细胞中的染色体总条数和被32P标记的染色体条数分别是()A.中期24和12、后期48和12 B.中期24和12、后期48和24C.中期24和24、后期48和12 D.中期24和24、后期48和24 例5.用32P和35S分别标记噬菌体的DNA分子和蛋白质外壳,然后去侵染含31P与32S的细菌,待细菌解体后,子代噬菌体的DNA分子和蛋白质外壳()A.少数含32P、大多数含31P和全部含32SB.只含31P和少数含32SC.少数含32P、大多数含31P和少数含35S、大多数含32SD.只含32P和大多数含35S。
高一生物单元测试 _第五章 细胞的能量供应和利用(一)(新人教版)
第五章细胞的能量供应和利用单元测试(一)时间45分钟分值100分班级姓名得分一、选择题(3×20)1.能够促使脂肪酶水解的酶是()。
A.肽酶B.蛋白酶C.脂肪酶D.淀粉酶2.酶具有极强的催化功能,其原因是()。
A.降低了化学反应的活化能B.增加了反应物之间的接触面积C.提高了反应物分子的活化能D.酶提供使反应开始所必需的活化能3.如图反应式中的A~F各代表一种物质,假如E是果糖、F是葡萄糖,则A、D分别是()。
A.蔗糖、蔗糖酶B.蔗糖酶、蔗糖C.麦芽糖酶、麦芽糖D.乳糖酶、乳糖4.下列有关生物体内酶的叙述,正确的是()。
A酶是活细胞产生的B有的从食物中获得,有的在体内转化而来C有的酶是蛋白质,有的是固醇 D 酶在代谢中有多种功能5.下列各项是关于酶的叙述,其中正确的一组是()。
①酶是活细胞产生的②酶都有消化功能③酶的本质是蛋白质、蛋白质都是酶④酶具有专一性、高效性⑤酶促反应与外界条件无关⑥淀粉酶能促进淀粉水解A.①②③B.①②③④C.①②④⑥D.①④⑥6.若用呼吸酶抑制剂处理小肠绒毛上皮,则会明显影响其细胞吸收的物质是()。
A.氧气、甘油B.脂肪酸、水C.葡萄糖、水D.钾离子、氨基酸7.A—P~P~P中的“高能磷酸键”个数是()。
A.1 B.2 C.3 D.48.关于A TP的叙述,错误的是()。
A.ATP中含有C、H、O、N、P元素B.活细胞中ATP与ADP之间的相互转化时刻发生C.ATP是生物体生命活动的直接能源物质D.动植物形成A TP的途径分别是呼吸作用和光合作用9.在有氧呼吸过程中,水分子参与反应的过程和生成水分子的过程分别在()。
A.第一和第二阶段B.第二和第三阶段C.第一和第三阶段D.第三和第二阶段10.在呼吸过程中有二氧化碳放出,则可判断此过程()。
A.一定是无氧呼吸B.一定是有氧呼吸C.一定不是酒精发酵D.一定不是乳酸发酵11.用酵母菌酿酒时,如果向酿酒的原料中通入足量的氧气,会出现的现象是()。
高中生物论文:例析同位素示踪法在高中生物学中的应用
例析同位素示踪法在高中生物学中的应用同位素用于追踪物质运行和变化过程时,叫示踪元素。
用示踪元素标记的化合物,化学性质不变。
人们可以根据这种化合物的放射性,对有关的一系列化学反应进行追踪。
这种科学研究方法叫同位素示踪法。
生物学上常用放射性同位素作为示踪元素,来研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。
用于示踪的放射性元素一般是构成细胞化合物的重要元素,如3H 、15N 、18O 、32P 、35S 等。
在高中生物学教材中有多处涉及到放射性同位素的应用,下面笔者对教材中的相关知识进行归纳例析。
1 光合作用和呼吸作用过程中特征元素的示踪例1 一个密闭的透明玻璃容器内,放有绿色植物和小白鼠(小白鼠以植物为食),容器内供应18O 2,每天给予充足的光照,一段时间后,绿色植物和小白鼠体内的有机物含18O 的情况是 ( )A .只在植物体内 B.植物和小白鼠体内均含有C .只在小白鼠体内 D. 植物和小白鼠体内均无解析 18O 在绿色植物体内的转移途径如下:18O 2−−−→−呼吸作用H 218O −−−→−呼吸作用C 18O 2−−−→−光合作用C 6H 1218O 6绿色植物体内的C 6H 1218O 6被动物摄食,通过同化作用转变成自身的有机物。
因此,植物和小白鼠体内的有机物都含有18O 。
答案 B2 研究C 4植物光合作用的途径例2 在光照下,供给玉米离体叶片少量的14C O 2,随着光合作用时间的延续,在光合作用固定C O 2形成C 3化合物与C 4化合物中,14C含量变化示意图正确的是 ( ) 时间/S14C 含量 时间/S14C含量B解析用14C标记C O2来追踪C4植物光合作用的途径:首先在C4植物叶肉细胞叶绿体内C O2与P EP相结合形成C4化合物,然后C4化合物进入维管束鞘细胞叶绿体并分解为C O2和丙酮酸,CO2与一个C5化合物相结合,形成2个C3化合物,C3化合物被还原为C6H12O6。
同位素示踪技术的原理及应用阐释
剂$研究各种物理)化学)生物)环境和材料等领域中科
学问题的技术&
原 "4%! 理!自然界中组成每种元素的稳定核素和放
射性核素大体具有相同的物理性质和化学性质& 因
此$可利用放射性核素或经富集的稀有稳定核素来示
踪待研究对象的客观状态及其变化过程& 通过放射性
测量方法$可观察由放射性核素标记的物质的分布和
标记的化合物$则称为双标记化合 同位素置换后的化合物$其化学性
物 质
如! " 通常
没^"
%( P"
有明
&
显
用 变
化$可参与同类的化学反应& 但它易于测定$故可用来
研究该化合物的运动和变化的规律&
"4+4%!稳定同位素标记化合物!用经富集的稀有稳
定同位素取代化合物分子中的一种或几种原子& 它与
未标记的相应化合物具有相同的化学及生物学的性
机& 对于教师来说$能及时发现学生的问题$得到相关教 学反馈$有利于教师进行教学方法及教学过程的改进&
-基金项目# 江苏省研究生培养创新工程(高中生
"#%"$&"!"" , )(4
0 + 1 邢丽贞$张向阳$张!波$等4藻菌固定化去除污水中氮磷营养 物质的初步研究0914环境科学与技术$"##$$"&!%", ++ +)4
!"同位素
原子序数相同!即具有相同数目质子"的原子$具有
相同的化学性质$都属于同一种元素& 尽管一种元素的
所有原子都含有同样多的质子$但它们却可能具有不同
高中生物学中常见同位素示踪法实验
高中生物学中常见同位素示踪法实验同位素示踪法是一种微量分析方法,利用放射性同位素作为示踪剂对研究对象进行标记,通过放射性探测仪器进行追踪,可以了解放射性原子的运动路径和分布情况。
在生物学实验中,同位素示踪法经常被应用于研究细胞内元素或化合物的来源、组成、分布和去向,以及细胞的结构和功能、化学物质的变化、反应机理等。
放射性同位素一般用于构成细胞化合物的重要元素,如H、C、N、O、P、S、I等。
下面是高中生物学教材中涉及到同位素示踪法的应用:1.研究蛋白质或核酸合成的原料及过程。
将放射性原子标记在合成蛋白质或核酸的原料(氨基酸或核苷酸)中,通过追踪放射性原子的运动路径和分布情况,可以了解其通过的路径、运动到哪里以及分布情况。
2.研究分泌蛋白的合成和运输。
用H标记亮氨酸,探究分泌性蛋白质在细胞中的合成、运输与分泌途径。
通过观察细胞中放射性物质在不同时间出现的位置,可以明确细胞器在分泌蛋白合成和运输中的作用。
3.研究细胞的结构和功能。
用同位素标记氨基酸或核苷酸并引入细胞内,探测这些放射性标记出现在哪些结构中,从而推断该细胞的结构和功能。
4.探究光合作用中元素的转移。
利用放射性同位素O、C、H作为示踪原子来研究光合作用过程中某些物质的变化过程,从而揭示光合作用的机理。
例如,科学家XXX和卡门用氧的同位素O分别标记H2O和CO2,进行两组光合作用实验,结果表明第一组释放的氧全部是O2,第二组释放的氧全部是O2.标记噬菌体的DNA,将其注入大肠杆菌内,并发现放射性物质。
而使用S标记噬菌体的蛋白质,则在大肠杆菌35内未发现放射性物质。
这证明了噬菌体在侵染细菌的过程中,进入细菌体内的是噬菌体的DNA,而不是噬菌体的蛋白质。
这进一步证明了DNA是噬菌体的遗传物质。
通过放射性标记,可以“区别”亲代与子代的DNA。
例如,放射性标记N可以用于区分DNA分子的两条链是否都是15N。
如果是,则在离心时会出现重带;如果一条链是N,一条链是N,则会出现中带;如果两条链都是N,则会出现轻带。
稳定同位素示踪技术在环境科学中的应用
稳定同位素示踪技术在环境科学中的应用环境问题的严重性日益突出,并且在近年来得到了越来越大的关注。
稳定同位素示踪技术是环境科学中的一项重要工具,它可以广泛应用于气候变化、水文地质、生物地球化学、土壤科学等领域。
本文将详细介绍稳定同位素示踪技术的基本原理,以及在环境科学中的实际应用情况。
一、稳定同位素示踪技术的基本原理同位素是指原子核中质子数相同但中子数不同的同一种元素,同位素分为放射性同位素和稳定同位素两种。
稳定同位素示踪技术是利用同位素间微量差异的原理,通过测量同一物质中不同同位素在天然界中的含量比值,再通过某些化学反应、生理过程等使其中某个同位素相对含量发生变化,从而研究不同过程的动力学、来源、去向等问题。
其中最常用的是碳、氢、氧、氮、硫、铅等稳定同位素。
在这里以碳稳定同位素为例,斯文森效应表明,植物利用大气中的二氧化碳进行光合作用,叶片中的13C/12C比值与大气中14C/12C比值成正比。
而稳定同位素是不会衰变的,各种有机物质中的13C/12C比值与植物组织中14C/12C比值的变化趋势相同。
利用合适的仪器可以测定13C/12C比值,从而推算出组织中的14C/12C比值,进而测定出样品中的时间。
二、1.气候变化稳定同位素示踪技术可以从古代天然记录中获取气候变化信息。
如冰川、珊瑚、岩石等中存在各种稳定同位素,它们的含量比例与当时气候改变的速度和程度相关。
利用这些天然记录,可以重建出过去几百年、几千年的气候变化历史。
2.水文地质水资源是人类赖以生存的重要资源,稳定同位素示踪技术可以对其来源、流动和变化等方面进行研究。
比如,利用氢氧稳定同位素探测水的来源以及水的混合程度,可以对地下水资源进行管理和保护。
同时,水体中的氢氧稳定同位素含量与气候因素有关,通过测量水中13C /12C比值、18 O /16 O 比值可以推算出水的蒸发过程、前缘的来源。
3.生物地球化学稳定同位素示踪技术在生物地球化学领域的应用特别广泛,可以应用于研究植物光合作用、碳循环、营养循环以及能量传递等方面。
高中生物中的同位素标记与荧光标记技术
高中生物中的同位素标记与荧光标记技术同位素标记法是生物学实验和研究中常用的技术手段之一,可用于追踪研究对象的运行和变化规律。
同位素可分为稳定同位素和放射性同位素,其中稳定同位素没有放射性,如H、H、N、O等,而放射性同位素常用的有C、P、S、H等。
放射性同位素能不断地放出特征射线的核物理性质,因此可以用探测器随时追踪它在体内或体外的位置、数量及其转变等。
稳定性同位素作为示踪剂其灵敏度较低,可获得的种类少,价格较昂贵,而用放射性同位素作为示踪剂不仅灵敏度高,测量方法简便易行,能准确地定量和定位。
在高中阶段,同位素标记法的应用非常广泛。
例如,研究分泌蛋白的合成和分泌时,可以标记某一氨基酸如亮氨酸的H,在一次性给予放射性标记的氨基酸的前提下,通过观察细胞中放射性物质在不同时间出现的位置,就可以明确地看出细胞器在分泌蛋白合成和运输中的作用。
另外,研究光合作用中氧气的来源时,可以用O分别标记H2O和CO2,然后进行两组对比实验,分析出不同组释放的氧气成分,从而证明植物释放的氧气来自于H2O而不是CO2.此外,还可以利用同位素标记法研究光合作用中CO2中的碳原子转移途径等问题。
在20世纪50年代,科学家利用荧光标记技术,将DNA与染色体上的特定区域相结合,从而证明了基因位于染色体上。
这一实验证据为基因遗传的分子机制提供了重要证明。
4、荧光显微镜成像荧光标记技术的应用还包括荧光显微镜成像。
通过将荧光物质标记在特定的生物分子上,可以在荧光显微镜下观察这些分子在细胞内的分布和运动情况,从而深入研究生物分子的功能和相互作用。
5、生物医学研究荧光标记技术在生物医学研究中也有广泛应用。
例如,利用荧光标记技术可以追踪药物在体内的分布和代谢情况,从而为药物研发提供重要信息。
总之,荧光标记技术在生命科学领域中的应用非常广泛,为我们深入了解生物分子的结构和功能提供了强有力的工具。
通过现代分子生物学技术,可以使用荧光标记直观地观察基因在染色体上的线性排列。
碳稳定同位素技术在植物和土壤中的应用研究进展
碳稳定同位素技术在植物和土壤中的应用研究进展吉林建筑大学长春 130118碳对于地球上的生物进化起着极其重要的作用。
植物的呼吸和光合作用都是通过碳的传递来与大气产生交互,从而形成碳的平衡与循环。
同时,对碳的同位素进行追踪从而进行分析研究的技术已经广泛运用到各种对于农业的研究中,并取得了一定的成果。
在国外,稳定碳同位素在生态系统研究中应用较早,已对暗呼吸中碳同位素分馈、碳同位素分馏与环境和生理因素的关联、土壤-植物-大气连续体中的碳同位素通量等方面进行了综述。
Matteo等根据28种文献绘制了1996—2015年稳定碳同位素在林学研究中的热点分布图,发现研究集中在森林土壤碳固存、植物和动物群落的人为影响以及造林后树种的生理生态反应3个方面。
在国内,稳定碳同位素技术应用起步较晚但发展较快,国内研究者综述了稳定碳同位素技术在植物-土壤系统碳循环、树轮稳定碳同位素、植物水分利用效率和全球气候变化等方面的应用。
随着同位素技术应用范围不断拓展,在植物的细胞、叶肉组织、韧皮部、叶片、植株、冠层、生态系统乃至全球尺度上均有应用。
Smedley[1]等利用对植物叶片中δ13C值的测定,发现多年生植物的δ13C含量大于一年生植物,且早开花植物小于晚开花植物。
Munn6-Bosch总结前人研究也得到相似的结论。
植物在不同的生长阶段也表现出不同的δ13C变化。
Victor等指出随植物生长阶段的变化其δ13C值有升高的趋势。
分析原因是,植株在幼年时δ13C低与环境有一定关系,幼年时植株比较小,处于群落下层,光照受到影响,且土壤释放的CO2也会使植株δ13C值较小。
为了得知树木生长时的气候条件,蒋高明等通过测定油松年轮中δ13C的含量推测出工业革命前中国北方的CO2变化量。
Saurer[2]等对欧洲山毛榉年轮纤维素中的δ13C与气候参数(尤其是降雨量)之间的关系进行研究,表明最近50年树木年轮δ13C与降雨量变化有显著相关性。
稳定同位素示踪技术在农业中的应用
稳定同位素示踪技术在农业中的应用稳定同位素示踪技术(Stable isotope tracer technology)是近年来发展起来的一种现代分析技术,在农业领域中有着广泛的应用。
这种技术基于同位素比例分析的原理,通过将标记同位素引入试验样品中,计算稳定同位素之间的比例变化,以揭示其代谢和运动方式,从而进一步探究作物养分吸收利用规律等问题。
本文将重点详细介绍稳定同位素示踪技术在农业中的应用。
一、稳定同位素示踪技术的原理稳定同位素示踪技术的基本原理是利用同位素比值测定物质在代谢过程中的分布、转化、运动等过程的信息。
同位素是一种原子量相等、电子结构相同但质量不同的物质,例如同一元素的质子数不同的核素。
稳定同位素是指不放射性的同位素。
稳定同位素示踪技术可以通过添加稳定同位素标记化合物或利用大气中稳定同位素示踪元素的比例变化等方法,重点考察同位素比值的变化,以推断样品组分的代谢和运动情况。
从而完成对指定物质在生物体内转化过程的定量研究。
其最大特点是可以使用生物体内的代谢物质作为稳定同位素示踪元素,没有放射性污染问题。
而同位素比例分析技术可以快速分析、高效定量,有较高的分析灵敏度和准确性。
二、稳定同位素示踪技术在农业领域中的应用1.养分吸收利用规律的探究稳定同位素示踪技术可以应用于农业领域中的养分吸收利用规律的探究。
例如,利用氮(N)示踪可定量测定作物与环境中不同形态的氮利用效率,进而评估作物对氮的利用高效性以及肥料利用率。
利用碳(C)同位素示踪,可以回溯作物的光合作用过程及其与土壤碳循环和有机碳贮积之间的关系。
稳定同位素示踪技术主要应用于稻田、果树、小麦、玉米等重要农作物的营养动态及其土壤养分与生物循环的研究。
2.土地污染及其影响因素研究稳定同位素示踪技术也可应用于农业领域中的土地污染及其影响因素研究。
例如,利用稳定同位素示踪指标可以对土壤中的重金属、放射性元素等进行监测评价及来源确认。
同时可以通过稳定同位素技术跟踪其与植物生长之间的关系,以评估土壤污染对植物生产和环境质量的影响。
有关同位素标记的考点归纳
高中生物同位素标记的考点归纳同位素标记法能较直观地反映出生物体内物质动态变化的过程和途径,是高考生物命题的重要背景材料。
复习时将课本中有关同位素示踪知识进行整合再生,对于学生深刻理解基础知识,培养分析解决问题能力是大有裨益的。
现将高中生物学课本中同位素标记法的应用归纳如下:1.研究细胞的分裂或分化[例]将数量相同的两组小鼠肝细胞,用含有标记的胸腺嘧啶脱氧核苷酸的培养液培养,甲组加入某种物质,乙组不加,经过一段时间培养后,洗去培养液分别取出两组的全部细胞,测量每组的总放射性强度,结果甲组明显大于乙组。
甲组加入的物质的作用是()A. 促进细胞分裂B. 促进细胞分化C. 促进细胞衰老D. 促进细胞癌变分析:在细胞分裂的过程中,发生了DNA的复制,此时,细胞对组成DNA的原料需要量会增加。
而在细胞停止分裂,发生分化、发育的时候,细胞对组成RNA的原料需要量会增加,利用同位素分别标记组成DNA和RNA的特定碱基,可判断细胞所处的状态。
答案:A2.研究新陈代谢2.1光合作用利用同位素14C、3H、18O分别标记参与光合作用的CO2、H2O,根据光合作用中的物质转变过程,可得到元素转移的方向如下:(1)3H2O→〔3H〕→C3H2O (2)H218O→18O2→周围大气(3)14CO2→14C3→14CH2O2.2呼吸作用由于有氧呼吸过程中物质转变与光合作用刚好相反,由光合作用中的物质转变途径可推知有氧呼吸的物质转变:(1)18O2→H218O (2)186126182182C H OC OH O⎫⎪→⎬⎪⎭综合以上光合作用与呼吸作用中元素转移途径,可总结出绿色植物体内同位素标记18O的转移途径:有氧呼吸Ⅲ阶段有氧呼吸Ⅱ阶段光合作用暗反应18O2 H218O C18O2CH218O 光合作用光反应光合作用暗反应有氧呼吸Ⅰ、Ⅱ阶段无氧呼吸[例]将生长旺盛的绿色植物置于玻璃钟罩内并向其提供充足18O2(如图)。
在适宜条件下光照1小时。
第五章_同位素示踪在农业科学中的应用
报道者 Vernon(1952) Biddulph(1957) Kursanov(1953) Pristupa(1957) Mokronosov(1961) Swanson(1958) Weatherley(1959)
3 物质代谢研究
氮、磷营养元素既是构成生命篺基础的重要元素, 又是生命活动中催化、调节、供能等物质的主要组 成之一。
Y=
植物样品中 肥料样品中
32 32
P的比活度 P的比活度
100
假定示踪肥料的比活度为Sf,植物样品的比活度为 Sp,土壤有效磷含量为A,作为标准的标记源(肥 料)为B,则A值法的公式为:
B(1 S p )
A
S f B( S f 1)Βιβλιοθήκη SpSpSf
例题
为研究扬州沙壤土中有效磷的含量,设计了一 示踪试验,在一盆钵中施入5g 比活度为1.85M Bq/g的磷肥,同时播种玉米,14天后取玉米植株, 烘干,取样2g,测定其磷含量为2.5mg,放射性活 度为500Bq,计算该土壤中有效磷含量。
(一)植物营养物质的吸收、运转和分配的研究
1研究植物体内物质运转的方法
1)环割法,适合于木本植物 2)隔离法 3)蚜虫吻刺法
如物质的运输方向研究
作物多探头活体测量仪
2 物质运输速度
植物 大豆 菜豆 糖甜菜 南瓜 马铃薯 葡萄 垂柳
运转速度(cm/h) 84 107
85-100 40-60 20-80
2磷肥利用率的研究
磷肥与氮肥及钾肥相比,其利用率要低得多。 这主要是由于土壤中的磷易被固定,移动性差。 主要包括三种形态:速效磷、缓效磷和固定态 磷。
3钾肥利用率的研究
由于钾没有合适的放射性同位素,常用同族 元素86Rb(铷)代替钾来研究钾肥肥效。
稳定同位素示踪技术在生态环境研究中的应用
稳定同位素示踪技术在生态环境研究中的应用稳定同位素示踪技术是一种用稳定同位素所标记的物质来追踪物质在生物体系中的流向和转化的技术。
这项技术具有高精度、高可靠性的特点,已被广泛应用于生态环境研究中。
本文将介绍其应用与优势。
一、稳定同位素示踪技术的基本原理稳定同位素示踪技术利用不同同位素相对丰度的差异来追踪物质在生态系统中的流向和转化。
稳定同位素是指质子数不变、中子数不同的同种元素。
在自然界中,同种元素的不同同位素存在着一定的相对丰度,其比值可以通过质谱等仪器测定。
通过分析生态系统中物质的同位素比值的变化,可以揭示其在生态系统中的流动规律、生物、化学转化过程等信息。
二、稳定同位素示踪技术在生态环境研究中的应用1. 碳同位素示踪技术碳是生物体系中最常见的元素,也是地球上最常见的元素之一。
稳定同位素示踪技术中,以13C、14C为代表的碳同位素被广泛应用于生态系统中的有机物质的碳循环研究。
通过13C标记的有机物质可以推断出在生态系统中的有机物质的生产来源和转化过程,如光合作用中CO2的转化能力、土壤中有机物的来源等。
2. 氮同位素示踪技术氮是生物体系中不可或缺的营养元素,通过稳定同位素示踪技术,可以研究氮在生态系统中的流向和转化过程,如鱼类食物中的氮成分、原生动物对有机物的初始分解、土壤中化学、生物反应过程的变化等。
3. 氢同位素示踪技术氢是水分子的成分之一,在稳定同位素示踪技术中,利用氢同位素分析水的运移情况、水-土壤-植物系统的异质同位素内循环、动物饮水水源等信息。
4. 氧同位素示踪技术在生态系统中,氧同位素示踪技术可用于水的来源及其质量的研究,如大气水湿滞过程中的同位素分布。
三、稳定同位素示踪技术的优势1. 非放射性示踪:与放射性示踪技术相比,稳定同位素示踪技术不会产生放射性废物和辐射污染,对人体和环境无害。
2. 高精度:稳定同位素示踪技术样品处理比较简单,并且稳定性较高,测量精度高。
3. 应用广泛:稳定同位素示踪技术在生态环境研究中可应用于不同类型的生物体系和环境领域。
植物学习题 4
一、填空1.光合作用本质上是一个氧化还原过程。
其中是氧化剂,是还原剂,作为CO2还原的氢的供体。
(CO2,H2O)2.1940年S.Ruben等发现当标记物为H218O时,植物光合作用释放的O2是,而标记物为C18O2时,在短期内释放的O2则是。
这清楚地指出光合作用中释放的O2来自于。
(18O2,O2,H2O)3.1939年Hill发现在分离的叶绿体悬浮液中加入适当的电子受体,如铁氰化钾或草酸铁等,照光时可使水分解而释放氧气,这一现象称为,其中的电子受体被称为。
(希尔反应,希尔氧化剂)4.1954年美国科学家D.I.Arnon等在给叶绿体照光时发现,当向体系中供给无机磷、ADP和NADP时,体系中就会有和两种高能物质的产生。
同时发现,只要供给了这两种高能物质,即使在黑暗中,叶绿体也可将转变为糖。
所以这两种高能物质被称为“”。
(ATP,NADPH,CO2,同化力)5.20世纪初人们研究光强、温度和CO2浓度对光合作用影响时发现,在弱光下增加光强能提高光合速率,但当光强增加到一定值时,再增加光强则不再提高光合速率。
这时要提高温度或CO2浓度才能提高光合速率。
用藻类进行闪光试验,发现在光能量相同的前提下闪光照射的光合效率是连续光下的200%~400%。
这些实验表明。
(光合作用可以分为光反应和暗反应两个阶段)6.类囊体膜上主要含有四类蛋白复合体,即、、、和。
由于光合作用的光反应是在类囊体膜上进行的,所以称类囊体膜为膜。
(PSI复合体,PS Ⅱ复合体,Cytb6/f复合体,A TPase复合体,光合)7.反应中心色素分子是一种特殊性质的分子,它不仅能捕获光能,还具有光化学活性,能将能转换成能。
其余的叶绿素分子和辅助色素分子一起称为色素或色素。
(叶绿素a,光,电,集光,天线)8.一个“光合单位”包含多少个叶绿素分子?这要依据其执行的功能而定。
就O2的释放和CO2的同化而言,光合单位为;就吸收一个光量子而言,光合单位为;就传递一个电子而言,光合单位为。
放射性同位素示踪法在高中生物学中的应用
放射性同位素示踪法在高中生物学中的应用摘要】放射性同位素广泛应用于生物学的研究中,如对DNA是遗传物质、,DNA的半保留复制、基因诊断、矿质元素的运输。
C4植物光合途径、生长素的极性运输、分泌蛋白的合成与运输、光合作用、呼吸作用的原子转移的途径的研究。
【关键词】放射性同位素半保留复制 C4途径分泌蛋白基因诊断在生物学飞速发展的今天,离不开物理学和化学,我们可以这样说,物理学和化学的发展推动着生物学的发展。
如:光学显微镜、电子显微镜的应用,使我们对细胞的结构有了更进一步的认识。
各种物质的物质代谢更离不开化学,特别是化学中的同位素示踪法为研究生物的各种生命活动提供了更大的便利,下面是同位素示踪法在高中生物学中的应用实例。
一、同位素示踪法证明DNA是遗传物质在噬菌体浸染细菌的实验中,噬菌体只有两种物质:分别是DNA和蛋白质。
从组成元素上看,DNA含C、H、O、N、P,而蛋白质含C、H、O、N、S等。
且P主要存在于DNA中,而S主要存在于蛋白质外壳中,用35S、32P分别标记蛋白质和DNA,直接单独地去观察它们到底哪一种物质是遗传物质.实验过程和结果:二、研究DNA的半保留复制特点DNA的复制是全保留复制、半保留复制、还是弥散复制?我们可以用同位素示踪法进行研究。
我们把DNA用15N标记,然后提供14N的原料让其进行复制,在F1代、F2代、F3代的DNA分子中,含14N、15N的链到底有多少条?通过同位素示踪法非常清楚,即:即:DNA在第一次复制后,形成两个DNA分子,即四条链,两条链含15N,两条链含14N,进行第二次复制后,得到4个DNA分子,即八条链:其中含15N的两条,含14N的6条。
进行第三次复制后,得到八个DNA分子,即16条链,其中含15N的两条,14N的14条。
即不管DNA复制多少次,含15N的模板链只有2条,其余都是含14N的链。
若用密度梯度离心法进行离心,得到这样的结果。
所以,不论是用同位素示踪法研究DNA的复制,还是复制后进行密度梯度离心,都证明了DNA是半保留复制的。
同位素示踪技术在农业科学中的应用
2)喷洒法;
3)注射法; 4)浸渍法; 5)插入法; 6)间接标记法
辐射昆虫不育防治害虫
优点:不污染环境;对人、畜和天敌无害; 防治效果持久;专一性强;使植物生态系统
保持良性循环。
2 昆虫生态学研究
昆虫生态特性的研究可为有效防治农作物害虫 提供依据。
包括昆虫的生长发育、食物习性、迁移、寄生
4
Northern 印迹杂交
(二)核酸探针
概念: 进行核酸分子杂交时,用于检测试验的已知DNA 和RNA片段称作核酸探针。
同位素核酸分子探针的制备方法主要有化学标记法 和酶标记法。
酶标法
1 缺口移位标记。DNA 水解酶Ⅰ
2 T4DNA聚合酶标记
3 RNA聚合酶标记。标记RNA 4 随机引物DNA标记。 DNA聚合酶 5 人工合成寡核苷酸片段 6 末端标记。T4多聚核苷酸激酶
• 1958年Meselson和Stahl用同位素(15N)实验证明 了DNA的半保留复制方式。
• 20种编码氨基酸的遗传密码的解读也是通过该 技术完成的。
米西尔逊-斯塔尔的半保留复制实验 Meselson-Stahl experiment
(一)核酸分子杂交 1 斑点杂交
2 3
原位杂交 Southern 印迹杂交
4)施最佳时期
5)施肥量 6)土壤中有效养分,等等
(一)土壤有效养分的测定
土壤中有效养分含量的高低是土壤肥力的基本指 标之一,也是指导科学合理施肥的重要依据。
常用的土壤有效养分含量测定方法主要有化学 提取速测法、阳离子交换树脂法、生物方法和 同位素示踪法。
1 测定土壤有效磷的“A ”值法
1954年美国科学家Fried 和Dean,提出了测定土壤 中有效养分的“A”值概念,可用以下公式表示:
高中生物学中常见同位素示踪法实验
同位素示踪法在高中生物学实验中的应用同位素示踪法是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,即把放射性同位素的原子参到其他物质中去,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径,运动到哪里了,是怎样分布的。
同位素示踪法是生物学实验中经常应用的一项重要方法,它可以研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。
总之,同位素示踪法正在更大规模地应用于生物研究领域。
用于示踪技术的放射性同位素一般是用于构成细胞化合物的重要元素,如3H、14C、15N、18O、32P、35S、131I等。
在高中生物学教材中有多处涉及到放射性同位素的应用,下面笔者对教材中的相关知识进行归纳如下:1 研究蛋白质或核酸合成的原料及过程把具有反射性的原子参到合成蛋白质或核酸的原料(氨基酸或核苷酸)中,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径、运动到哪里以及分布如何。
2 研究分泌蛋白的合成和运输用3H标记亮氨酸,探究分泌性蛋白质在细胞中的合成、运输与分泌途径。
在一次性给予放射性标记的氨基酸的前提下,通过观察细胞中放射性物质在不同时间出现的位置,就可以明确地看出细胞器在分泌蛋白合成和运输中的作用。
例如,通过实验说明分泌蛋白在附着于内质网上的核糖体中合成之后,是按照内质网→高尔基体→细胞膜的方向运输的,从而证明了细胞内的各种生物膜在功能上是紧密联系的。
3 研究细胞的结构和功能用同位素标记氨基酸或核苷酸并引入细胞内,探测这些放射性标记出现在哪些结构中,从而推断该细胞的结构和功能。
4 探究光合作用中元素的转移利用放射性同位素18O、14C、3H作为示踪原子来研究光合作用过程中某些物质的变化过程,从而揭示光合作用的机理。
例如,美国的科学家鲁宾和卡门研究光合作用中释放的氧到底是来自于水,还是来自于二氧化碳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:同位素示踪在植物光合作用研究中应用学院:XXXXXXX学院专业班级:XXXXXX班姓名:XXX引言:同位素示踪法是利用放射性核素或稀有稳定核素作为示踪剂对研究对象进行标记的微量分析方法,Hevesy创立了示踪实验并于1923年首先用天然放射性212Pb研究铅盐在豆科植物内的分布和转移。
继后Jolit和Curie于1934年发现了人工放射性,以及其后生产方法的建立(加速器、反应堆等),为放射性同位素示踪法的更快的发展和广泛应用提供了基本的条件和有力的保障。
中文名称:同位素示踪英文名称:isotopic tagging;isotopic tracing定义:化合物的同位素标记物与其非标记物具有相同的生物化学性质,且同位素能够很灵敏地被检测,因而追踪同位素标记物在所研究对象中的移动、分布、转变或代谢等,是生物科学研究的有力手段。
正文:同位素示踪所利用的放射性核素(或稳定性核素)及它们的化合物,与自然界存在的相应普通元素及其化合物之间的化学性质和生物学性质是相同的,只是具有不同的核物理性质。
因此,就可以用同位素作为一种标记,制成含有同位素的标记化合物(如标记食物,药物和代谢物质等)代替相应的非标记化合物。
利用放射性同位素不断地放出特征射线的核物理性质,就可以用核探测器随时追踪它在体内或体外的位置、数量及其转变等,稳定性同位素虽然不释放射线,但可以利用它与普通相应同位素的质量之差,通过质谱仪,气相层析仪,核磁共振等质量分析仪器来测定。
放射性同位素和稳定性同位素都可作为示踪剂(tracer),但是,稳定性同位素作为示踪剂其灵敏度较低,可获得的种类少,价格较昂贵,其应用范围受到限制;而用放射性同位素作为示踪剂不仅灵敏度,测量方法简便易行,能准确地定量,准确地定位及符合所研究对象的生理条件等特点:1.灵敏度高放射性示踪法可测到10-14-10-18克水平,即可以从1015个非放射性原子中检出一个放射性原子。
它比目前较敏感的重量分析天平要敏感108-107倍,而迄今最准确的化学分析法很难测定到10-12克水平。
2.方法简便放射性测定不受其它非放射性物质的干扰,可以省略许多复杂的物质分离步骤,体内示踪时,可以利用某些放射性同位素释放出穿透力强的r射线,在体外测量而获得结果,这就大大简化了实验过程,做到非破坏性分析,随着液体闪烁计数的发展,14C和3H等发射软β射线的放射性同位素在医学及生物学实验中得到越来越广泛的应用。
3.定位定量准确放射性同位素示踪法能准确定量地测定代谢物质的转移和转变,与某些形态学技术相结合(如病理组织切片技术,电子显微镜技术等),可以确定放射性示踪剂在组织器官中的定量分布,并且对组织器官的定位准确度可达细胞水平、亚细胞水平乃至分子水平。
4.符合生理条件在放射性同位素实验中,所引用的放射性标记化合物的化学量是极微量的,它对体内原有的相应物质的重量改变是微不足道的,体内生理过程仍保持正常的平衡状态,获得的分析结果符合生理条件,更能反映客观存在的事物本质。
放射性同位素示踪法的优点如上所述,但也存在一些缺陷,如从事放射性同位素工作的人员要受一定的专门训练,要具备相应的安全防护措施和条件,在目前个别元素(如氧、氮等)还没有合适的放射性同位素等等。
在作示踪实验时,还必须注意到示踪剂的同位素效应和放射效应问题。
所谓同位素效应是指放射性同位素(或是稳定性同位素)与相应的普通元素之间存在着化学性质上的微小差异所引起的个别性质上的明显区别,对于轻元素而言,同位素效应比较严重。
因为同位素之间的质量判别是倍增的,如3H质量是1H的三倍,2H是1H的两倍,当用氚水(3H2O)作示踪剂时,它在普通H2O中的含量不能过大,否则会使水的物理常数、对细胞膜的渗透及细胞质粘性等都会发生改变。
但在一般的示踪实验中,由同位素效应引起的误差,常在实验误差内,可忽略不计。
放射性同位素释放的射线利于追踪测量,但射线对生物体的作用达到一定剂量时,会改变机体的生理状态,这就是放射性同位素的辐射效应,因此放射性同位素的用量应小于安全剂量,严格控制在生物机体所能允许的范围之内,以免实验对象受辐射损伤,而得错误的结果。
设计一个放射性同位素的示踪实验应从实验的目的性,实验所具备的条件和对放射性的防护水平三方面着手考虑。
原则上必须从两个主要方面来设计放射性示踪实验:一是必须寻求有效的、可重复的测定放射性强度的条件,二是必须选择一个合适的比活度λqδ(单位是原子/时间/分子,dpm /mol或ci/mol)。
其中,λ=-dN’dt/N’为该处放射性原子核的衰变常数。
q=N’/n’,表示n’个该化学形式分子为N’个放射性原子所标记。
δ=n’/n表示放射性标记的分子数n’与总分子数(标记的加未标记的)n之比。
采用放射性同位素示踪技术来实现所研究课题预期目的全部或一部分,一般须经过实验准备阶段,实验阶段和放射性废物处理三个步骤。
(一)实验准备阶段1.示踪剂的选择选定放射性示踪剂的比活度λqδ的值必须足够大,以保证实验所需要的灵敏度,而又要尽可能地小,使得在该实验条件下辐射自分解可忽略。
一般情形是根据实验目的和实验周期长短,来选择具有合适的衰变方式,辐射类型和半衰期,且放射毒性低的放射性同位素。
至今已确定的放射性核素包括天然的58种和人工制造的约1300种,其中大多数不常能用作放射性示踪剂。
主要原因是制备困难、半衰期不合适及放射性不足以定量。
在任何一种生产方法中,生产步骤很可能包含或多或少的化学处理,因而示踪实验人员需要了解某个核素及其周围的那些元素的化学性质,因为它们有可能成为此放射性同位素的杂质。
放射性同位素都衰变(经过或不经过中间状态)到处于基态的子体核素,衰变时伴随各种形式的能量辐射,如α、β-、β+、γ、X放射等。
在选择示踪剂时,示踪实验人员要仔细研究衰变纲图,根据实验条件和计数条件来决定那一种辐射,在衰变纲变内,代表核能级的两条水平线之间和距离表示能量差,↑或↓表示能级同伴随原子序数增或减少的能量,↓表示从激发态至基态的同质异能跃迁。
一般要选择最适宜的半衰期τ的放射性同位素,使τ足够长,从而使衰变校正有意义或干脆不必作衰变校正,同时又要足够短,能较安全地进行示踪实验,并使得放射性废物容易处理,在实际工作中,使用的放射性同位素的半衰期应该与实验需要持续的时间t相适应,如对于某个实验,t/τ=0.04时,应所选放射性同位素的衰变校正为3.5%;而t/τ=0.10时,应选放射性同位素的衰变校正为6.6%。
t/τ=0.15时,应选用其衰变校正为10%。
在体外示踪条件,一般选用半衰期较长而射线强度适中,既利于探测,又易于防护和保存的放射性示踪剂。
体内示踪条件下,若实验周期短,应选用半衰期短,且能放出一定强度r射线物放射性同位素,若实验周期长,如需要将动物活杀后对组织脏器分别测定的,则应选用半衰期较长放射性同位素。
此外,根据实验目的来选用定位的或不定位的标记示踪剂,例如研究氨基酸的脱羧反应,14C应标记在羧基上,只有这种定位标记的氨基酸,才能在脱羧后产生14CO2。
而有些实验不要求特定位置标记,只须均匀标记即可。
选择放射性示踪剂还必须同时满足高化学纯度,高放射性核纯度的要求。
在示踪剂制备期间、贮存期间以用试验体系中所使用的溶剂、化学试剂、酶等可能会产生化学杂质、放射化学杂质及辐射自分解引起的放射性杂质,这些杂质的存在,使得示踪实验中使用的示踪剂不“纯”,而或多或少影响实验的结果,甚至会导致错误结论。
氚标记的胸腺嘧啶核苷(3H-T d R)和尿嘧啶核苷(3H-U R)是两种常用的示踪剂,前者有效地结合到DNA中,后者则掺入到RNA中,它们的辐射分解速度随比较放射性的增高及保存时间的延长而增加,在不同温度和不同溶液中的稳定性也不同。
经保存八年的3H-T d R约有35%辐射分解为3H-胸腺嘧啶,并导致二醇和水合物的形式,在实验中这杂质会很快掺入细胞并与大分子(很可能是蛋白质)结合,而不是与DNA和RNA 相结合,这些杂质用DNA酶和RNA酶处理细胞都不除去。
3H-T d R和3H-U R贮存在-20℃的冷冻溶液中辐射分离速度要比+2℃增加3-4倍,但低温度(-140℃)对贮存也有利,在允许对示踪实验人员在选择保存放射性示踪剂时会有所启发。
2.放射性同位素测量方法的选择测量方法的选择取决于射线种类,对于α射线通常可用硫化锌晶体、电离室、核乳胶等方法探测;对能量高的β射线可用云母窗计数管、塑料闪烁晶体及核乳胶测定,对于能量低的β射线可用液体闪烁计数器测量:对于γ射线则用G -M计数管,碘化钠(铊)闪烁晶体探测。
目前大多数实验室主要采用晶体闪烁计数法和液体闪烁计数法两种测量方式。
同一台探测仪器对不同量的示踪剂具有不同的最佳工作条件,在实验准备阶段要检查探测器是否已调有所用示踪同位素的工作条件,否则需要用一定量的示踪剂作为放射源(或选用该同位素的标准源),把探测器的最佳工作条件调整好,并且要保证探测器性能处于稳定可靠的状态。
探测最佳工作条件的选择方法:一种是测“坪曲线”,另一种是找最好的品质因素。
对于光电倍增管,在理论上不存在“坪”(plateau)。
但随着高压的增加,在一定范围内,脉冲数变化较小,形成一段坡度较小的电压脉冲曲线,通常也称其为坪。
测坪曲线的方法:固定放射源,根据其射线能量的大小,初选一个广大器增益(放大倍数)和甄别器阈值。
不断地改变高压(由低到高,均匀增加伏度),每改变一次高压,都测定一次本底和放射源的计数率,最后作出高压本底计数率和高压放射源计数曲线。
用同样的方法,作另一个甄别阈值(放大倍数不变)下的高压计数率曲线,这样反复多作几条曲线。
必要时,还可固定甄别阈值,改变放大倍数,求出高压计数率曲线。
应选择“坪”比较平坦的曲线工作条件:甄别阈值和放大增益,作为正式测定时间的仪器工作条件,高压值应选择在该“坪”中点偏向起始段一边相应的高压值。
品质因素,又称为优值,是指在一定条件下,要达到合适的统计数目所需要的时间是仪器的计数效率E和本底计数Nb 的函数:品质因素F=E2/N b它是衡量一台计数器性能的指标,仪器的品质因素F应该越大越好,品质因素F越大,表示测量效率E越高而本底N b越小。
如果某放射性示踪的标准源存在来源困难等问题的话,可以用相对品质因素f来代替。
相品质因素f=n s/n b式中n s指某种放射性样品的计数率。
找最好品质因素的方法与测坪曲线一样,作出几条高压-F(或f)的关系曲线,在几条曲线中选择峰值最高的曲线。
这根曲线的峰值所对应的条件:高压,甄别阈,放大倍数等,就是该仪器对被测同位素的最佳工作条件。
最佳品质因素不一定恰好落在“坪”上,有的在“坪”附近,有的却在“坪”的下端。
着眼于把同位素的整个能谱峰都计下来的示踪实验者主张取“坪”所对应的工作条件,而着眼于优值者,主张取最佳品质因素所对应的工作条件,也有人折衷。